Arab. J. Math. (2023) 12:201-218 ")

https://doi.org/10.1007/s40065-022-00400-1 Arabian Journal of Mathematics @i

Supansa Noinakorn - Nopparat Wairojjana -
Nuttapol Pakkaranang@® - Natttawut Pholasa

A novel accelerated extragradient algorithm to solve
pseudomonotone variational inequalities

Received: 1 February 2021 / Accepted: 31 August 2022 / Published online: 8 October 2022
© The Author(s) 2022

Abstract In this paper, we propose a new inertial iterative method to solve classical variational inequalities
with pseudomonotone and Lipschitz continuous operators in the setting of a real Hilbert space. The proposed
iterative scheme is basically analogous to the extragradient method used to solve the problems of variational
inequalities in real Hilbert spaces. The strong convergence of the proposed algorithm is set up with the prior
knowledge of Lipschitz’s constant of an operator. Finally, several computational experiments are listed to show
the applicability and efficiency of the proposed algorithm.
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1 Introduction

This article studies the iterative method that is used to estimate the solution of variational inequality problem
(shortly, VIP) in the setting of a real Hilbert space. Let X be a real Hilbert space and D be a non-empty, closed,
and convex subset of X'. Let S : X — X to be an operator. The problem (VIP) for S on D is given as follows
[15,22]:

Find u* € D such that (S(u*), y —u*) >0, Vy €D. (VIP)

Let us consider that IT is the solution set of the problem (VIP). This idea of variational inequalities includes
different disciplines such as partial differential equations, optimization, optimal control, mechanics, mathe-
matical programming, and finance (see [6,11-14,18,24]). This problem is an important topic in the physical
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sciences, and a considerable amount of discussion has been given to many authors who have dedicated them-
selves to studying not only the theory of existence and the stability of solutions but also the iterative method
used to solve the problem.
Korpelevich [16] and Antipin [2] have established the following extragradient method. Their method
consists of the following: Let ug € Dand 0 < 7 < % such that
{”p=PDmn—r8wnn, N
upy1 = Ppluy, —tS(yn)l.

On the other hand, many projection methods are used to figure out the numerical solution of variational
inequalities. Many researchers have suggested various forms of projection techniques to solve the problem
(VIP) (see for details [10,16,19,25,26,28-32,34,36]). Almost all the methods for solving the problem (VIP)
are based on the projection method, which is computed on the feasible set D. It is important to note that the
above well-established method has two significant flaws, the first being the fixed constant step size, which
involves the knowledge or approximation of the Lipschitz constant of the respective operator and is only
weakly convergent in the Hilbert spaces. From the computational point of view, it might be problematic to use
a fixed step size, and hence the convergence rate and appropriateness of the method could be affected.

The main contribution of this study is to develop an inertial-type method used to improve the convergence
rate of the sequence. Previously, such approaches have been developed based on the oscillator equation with
damping and conservative force restoration. This second-order dynamical structure is called a strong friction
ball and was originally studied by Polyak in [20]. Primarily, the functionality of the inertial-type method is
that it will use the two prior iterations to execute the next iteration.

Therefore, a natural question is raised:
“Is it possible to introduce new strongly convergent inertial extragradient-like method to solve the problem
(VIP)”?

In this study, we give a positive answer to the above question, i.e., the gradient method indeed generates
a strongly convergent iterative sequence by letting a fixed and variable step size rule. In this paper, we study
a different method to obtain strong convergence and introduce a new iterative method for solving variational
inequalities involving pseudomonotone and the Lipschitz operator in a real Hilbert space. Our method is inspired
by one projection method [16] and the inertial technique in [20]. At each iteration, the method only needs to
compute one projection onto the feasible set. Under some suitable conditions imposed on control parameters,
the iterative sequences generated by our method converge strongly to some solution of the considered problem.
We also provide numerical examples to illustrate the computational effectiveness of the new method over some
existing methods.

The paper is organized in the following way. In Sect. 2, we review some concepts and preliminary results
used in the paper. Section 3 deals with the description of the method and proves its convergence theorems.
Finally, Sect. 4 presents some numerical results to illustrate the convergence and effectiveness of the proposed
method.

2 Background
In this section of the manuscript, we have written a number of important identities and relevant lemmas and

definitions.
Forall u, y € X, we have

o+ yI* = lull® + 24, y) + Iyl
A metric projection Pp(y1) of y; € X is defined by
Pp(y1) = argmin{||y; — y2| : y2 € D}.

First, we list some of the important features of projection operator.

Lemma 2.1 [3] Suppose that Pp : X — D is a metric projection. Then, the following conditions were
satisfied.
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() y3 = Pp(y) if and only if
(y—y3,y2—»m) <0, VyeD.
(i)
Iyt = PpOD)I? + 1Pp(y2) = »2l? < Iy1 = »2l”. y €Dy e X.
(iii)
Iyt = PoOYDI < Iyt = y2ll, y2 €D, y1 € X,
Lemma 2.2 [35] Assume that {p,} C [0, +00) is a sequence satisfies the following inequality:
P+t = (L —=gn)pn + gnra, VYn eN.

Furthermore, {q,} C (0, 1) and {r,} C R be two sequences such that

+00
lim =0, =400 d lims <0.
n—i-ﬁ-ooqn ;%z + an iﬁﬁ;grn =

Then, lim,,— y oo pp = 0.

Lemma 2.3 [17] Assume that {p,} is a sequence of real numbers such that there exists a subsequence {n;} of
{n} such that

DPn; < Pniyy Vi €N

Then, there is a non decreasing sequence my C N such that my — 400 as k — +00, and meet the following
requirements for numbers k € N:

P < Pmypsy and  pi < Py, -

Indeed, my =max{j <k:p; < pji1}.
Next, we list some of the important identities that were used to prove the convergence analysis.

Lemma 2.4 [3] For any y1, y2 € X and £ € R. Then, the following inequalities hold:
(i)
ey + (1 = O)y2l1> = €liyilI* + (1 = Olly2ll* — €1 = O)ly1 — 21>
(ii)
Iyr+ Y2l < Iyil? + 2(y2. y1 + ya)-

Lemma 2.5 [23] Assume that S : D — X is a pseudomonotone and continuous operator. Then, u* is a
solution to the problem (VIP) if and only if u™ is a solution to the following problem:

Find u € D such that (S(y),y —u) >0, VyeD.
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Algorithm 1 (Inertial Strongly Convergent Iterative Method)

Step 0: Select ug, u; € D, > 0and0 < 7 < % Moreover, choose {y,,} C (0, 1) satisfies the following conditions:

—+00
Jim s, =0 and D Y = o
n=1
Step 1: Compute
In = un + oty Uy — Up—1) — wn[un + o (un — un—l)],

where «,, such that

.« < .

R R min|5, —2——1t if u Up—1,

0<a,<d, and o), = {2 ”“'f“n—l”} n 7 - 2)
5 else,

where €, = o(y;,) is a positive sequence, i.e., lim,_, 4 o % =0.
Step 2: Compute
yn = Pp(ty — tS8tn)).
If t, = yy, then STOP and y, is a solution. Otherwise, go to next step.
Step 3: Compute
Un+1 = Pp(ty — TS(Yn))-
Setn = n 4+ 1 and go back to Step 1.

3 Main results

To investigate the convergence analysis, it is considered that the following requirements are satisfied:
(S1) A solution set of problem (VIP) is denoted by IT and it is non-empty;
(S2) An operator S : X — X is said to be pseudomonotone if

(SOD.y2=y1)= 0= (S(2). y1 —y2) <0, Vy1,y €D;

(S3) An operator S : X — X is said to be Lipschitz continuous with constant L > 0 if there exists L > 0
such that

ISG1) =Sl < Lliyt — y2ll, ¥y, y2 € D;

(S4) An operator S : X — X is said to be sequentially weakly continuous if {S(u,)} converges weakly to
S(u) for every sequence {u,} converges weakly to u.
The main algorithm is given the following form:

Lemma 3.1 Assume that S : X — X satisfies the conditions (S1)—(S4). For a given u* € Tl # @, we have
et = w12 < lltw = w17 = (A= L)t = yull® = (1 = TL) uns1 = vl
Proof First consider the following
Junsr = w*|* = | Ppltn — 7S Q)] — |
= | Pplty = TSI + ltn — 7S] = [tn — 7S] — ¥

= |[tn — TSOW] — u*|)* + | Pplts — TSl — [ta — TS|
+ 2(PD[tn —tS()] = [tn — TS [t — TS ()] — u*> (3)

It is given that u™ € IT C D such that
2
| Pplty — TS = [tn — TSGW|

+ (PD[tn =S = [tn = SO [t — TS — ”*>
= ([tn — tS(yn)] = Pplty — tS(yn)l, u* — Pplty — TS(yn)]) <0, 4)
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which implies that
<PD[tn =S = tn — SO, [tn — TS — u*)
2
< —|Ppltn — TS — [ta — TSGW]| " 5)
By the use of expressions (3) and (5), we obtain
%12 *]|2 2
lns1 = w*I1* < [t = TS) = w* " = | Ppltn — eSO = [ta — TS|
< Mltw = w17 = Nltn = 1 1>+ 22(S Q) u* = w1}, 6)
By given that #* is the solution of problem (VIP), we have
(Sw*),y —u*) >0, forallyeD.
Due to the pseudomonotonicity of S on D, we get
(S8(y),y —u*) >0, forallyeD.
By substituting y = y, € D, we get
(Sn)s yn — M*) > 0.
Thus, we have
(SOm) u* = ung1) = (SGw)s ™ = yu) +(SOn)s Yn — ttns1) < (Sn)s Yn — Uns1). ©)
By the use of expressions (6) and (7), we obtain
* (2 *12 2
lunt1 —u™ 17 < tw — w17 = tn — un+1ll +2T(S(yn)y Yn — ”n+]>
< lltn = w11 = lltn = yn + Yn = n1II* + 20(S ), yu — 1)
< Mltw = w17 = tn = yull> = Iyn = a1 1+ 2(t0 = TSGn) = ¥ thns1 = ya). (8)
It is given that u,4+1 = Pplt, — tS(yn)], we have
2<tn = tSOn) = Yn, Unt+1 — )’n>
= 2<tn = T8(tn) = Y, Un41 — )’n) =+ 2"/'(‘S“(l‘n) — S(n), Unt1 — yn>
< 2tLlty = yullltns1 = yull < TLItw = yull* + T Llltns1 — yull>. ©)
Combining expressions (8) and (9), we obtain
#12 #12 2 2
lunsr —u™ " < lltg — ™[I = (X =Lty — yul® — (1 = TL) g1 — yall* (10)
O

Theorem 3.2 Let {u,} be a sequence generated by Algorithm 1 and satisfies the conditions (S1)-(S4).

Moreover, choose {{,,} C (0, 1) meet the conditions, i.e.,

+o00
nlgil-loo Y, =0 and Z} Y, = +o00.
n=

Then, {u,} strongly converges to u* € T1. Moreover, Pr;(0) = u*.
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Proof 1tis given in expression (2) that

im S iy — | < tim S u, — w0 | =0, (1)
n—+00 Y, n—+00 Yy,

By the use of definition of {f,,} and inequality (11), we obtain

|tn — ™| = un + onun — un—1) = Vit — €V — up—1) —u*||
= [ (1 = ) (un — ™) + (1 = V) (y — 1) — Y™ (12)
< A=) |un — ™| + (1 = Yo | un — w1 || + V| u*|
< (I =Y)lluy —u™|| + ¥ My, (13)

where
(= V)2t — || + | < M1,
wﬂ

By the use of Lemma 3.1, we obtain
ltngr — u*|* < llta —u*|*>, VneN. (14)
Combining (13) with (14), we obtain

lun1 —w*ll < (1= ) llup — u™|l + ¥ M)

< max {llun — u*l, M}

< max {|lug — u*||, M1 }. (15)
Thus, we conclude that the {u,} is bounded sequence. Indeed, by (13) we have
2
|tn —u*]|” = (= W) llun — |7 + g MT + 2M 1y (1 = i) 1y — ™|
< luw — ¥ + Y [ MT + 2M1 (1 = i) un — u*]
< llun — u*|* + ¥ Ma, (16)
for some M> > (. Combining the expressions (10) with (16), we have
ltnrt — w*l* < flun — u* 1> + ¥ My
— (A =tL)tw = yall* = (L = L) lups1 — yull*. (17)

Due to the Lipschitz-continuity and pseudomonotonicity of S implies that the solution set IT is a closed and
convex set. It is given that u* = Pr1(0) and using Lemma 2.1(ii), we have

0—u*,y—u*)y<0, Vyell. (18)

The remainder of the facts shall be split into the following two parts:
Case 1: Now consider that a fixed number N; € N such that

lpsyr — u*|| < llup —u™||, Yn > Nj. (19)

Thus, above implies that lim,,—, 4o ||u, — u*|| exists and let lim,,—, 4 oo |4, — u*|| = [, for some [ > 0. From
the expression (17), we have

(=D lltw = yall® + (1 = TL) up1 = yal?
< llun = w17 + Y Mo — llt1 — u*|%. (20)
Due to existence of a limit of sequence |u, — u*|| and v,, — 0, we infer that

it — yull = 0 and Jlups1 — yull > 0 asn — 4o0. 2
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By the use of expression (21), we have

lim ||ty —upp1ll = Lm_lty — yull + 1im_|lyp — wpq1ll = 0. (22)
n—+00 n—+00 n—+00
Next, we will evaluate
ltn — unll = llun + otn(un — up—1) — Ipn[’/‘n + an(un — un—l)] — unl
< opllugy —up—1ll + Yallugll + @n ¥ lluy — up—1l
oy 7 Op
= Vn——llun — un—1ll + Yullunll + ¥ —llutp — up—1|| — 0. (23)
Vn Vn
The above provides that
lim |up —upprll <= lm_fup —tall + lim_ [ty — wpq1ll = 0. (24)
n——+00 n—-+00 n——+00

The above explanation guarantees that the sequences {#,} and {y,} are also bounded. By the use of reflexivity
of X and the boundedness of {u, } guarantees that there exits a subsequence {u,, } in order that {u,, } — it € X
as k — +o00. Next, we have to prove that # € II. This is provided that y,, = Pplty,, — tS(ty,)] that is
equivalent to

(tny, = TSty) — Yy Yy —¥n) <0, VyeD. (25)
The above inequality implies that
(tnk —)’nk,y—ym() §T<S(tnk)1y_ynk>7 Vy €D. (26)
Thus, we shall obtain
1
;(tnk - ynk7 y - Ynk) + <8(tnk)’ )’nk - tnk> E (S(tnk)a y - tnk>1 Vy € D (27)

Due to boundedness of the sequence {t,, } implies that {S(#,, )} is also bounded. By the use of limy_, ¢ [|tn, —
Yl = 0 and k — o0 in (27), we obtain

likm inf(S(ty,), y —t,) >0, VyeD. (28)
— 00
Moreover, we have

(SOn)> Yy — yny)

= (S(Ynk) - S(tnk)a y - tnk) + (S(tnk), y - tnk) + (S(yl’lk)a th, — ynk)- (29)
Since limg— oo [Ity, — yn, Il = 0 and S is L-Lipschitz continuous on X implies that
lim ||S(tn/<) - S()’nk)” =0. (30)
k— 00

which together with (29) and (30), we obtain
liminf(S(yu). y = yw) 2 0. Yy €D, (31)
—00

Let consider a sequence of positive numbers {e } that is decreasing and converge to zero. For each k, we denote
my by the smallest positive integer such that

(Stn),y —tn;)) + € =0, Vi=my. (32)

Due to {€;} is decreasing and {my} is increasing.
Case I: If there is a #,,,,  subsequence of 7, such that S(z,,, ) =0 (V). Let j — oo, we obtain
J J

(S@),y—i)= jILH;O(S(tnnlkj ),y — i) =0. (33)

Hence it € D, therefore we obtain i € I1.
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Case II: If there exits Ny € N such that for all n,,, > Ny, S (t,,mk) = 0. Consider that

Sin,)

o) =— Vv > Np. 34
S 2 GY

Due to the above definition, we obtain
(S(tnmk)a Enmk> =1, vnmk > Nop. (35)

Moreover, expressions (32) and (35), for all n,,, > No, we have
(S(tny ) ¥ + €Enyy, — tny,) > 0. (36)
Due to the pseudomonotonicity of S for n,,, > Ny,
(S + €Enpy ) ¥ + By — ) = 0. (37)
For all n,,,, > Np, we have
(S, y —tny, ) Z(S(y) = SOy + €8, )y ¥ + € Bnyy — ny, ) — €(S(Y), By, ) (38)

Due to {t,, } weakly converges to &i € D through S is sequentially weakly continuous on the set D, we get
{S(t,,)} weakly converges to S(#). Suppose that S(it) # 0, we have

IS@)|I < liminf [|S(#,,) ]l (39)
k— 00

Since {t,,mk} C {ty, } and limy_, oo € = 0, we have

. . €k 0
0 < lim ||&, ||= lim < — =0 40)
k— 00 " koo IS En, I~ IS@I
Next, consider k — 00 in (38), we obtain
(S(»),y—u)>0, VyeD. 41)
By the use of Minty Lemma 2.5, we infer iz € T1. Next, we have
limsup(u™*, u* —u,) = lim (u*, u™ —u,) = @, u*—a) <O0. (42)
n— 400 k—+00
By the use of lim,,_, 4 ||unJr 1 — Uy || = 0. Therefore, (42) implies that
lim sup(u™, u™ — up41)
n——+00
< limsup(u™, u* — u,) + lim sup{(u™, u,, — u,y1) < 0. (43)
n—+o00 n—+00

Consider the expression (12), we have
0 =
= [tn + 0t — tn—1) = Vit — @y — 1) — u*|?
= (1 = Y = ) + (1 = Y)anun — n—y) — Y|
< |0 = Y n = u®) + (1= ) s — wn—)|* + 20 (—u*, 1, — u*)
= (1= )2 un — u* | + (1 = )22 un — ||
+ 20, (1= Y)* [utn — || — n—r || 4 20 (=™, by — tn1) + 290 (—u*, up gy — u*)
< (U =y Jun = |* + @2t — w1 P+ 2000 (1 = Y) Jut — %t — 101 |
+ 2 ||| [t = uns || 4 29 (—u*, up gy — u*)
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2
= (=) fun =+ o fn = | o = e
o
4200 =) i = |2t = | +z||u How = wnir| +206% " —wnen)]. @
n
From expressions (14) and (44), we obtain
2
lunsr — o
< (U= en = [+ v aen = e [ 57 i = |
20 = ) = fen = en | + 2||u How = unsr] +20 " —unin)]- - @9)
n
By the use of (22), (43), (45) and applying Lemma 2.2, conclude that lim,,_, 4 Hun —u* ” =0.
Case 2: Suppose there is one {n;} subsequence of {n} such that
Ny, — u™|| < llup; —u™ll, VieN.
Using Lemma 2.3, there exists a sequence {my} C N as {m;} — 400 such that
Nme — w* Il < lumyy, — ™l and flug —u*|| < llum,, —u*|l, forallk e N. (46)
As in Case 1, the relation (20) gives that
(1= T D)lltmye = Y 1> + (1 = TL) g1 = Yo, I
< Nt = P + Y M2 — Nty — ¥ (47)
Due to ¥,,, — 0, we deduce the following:
gﬂkﬂwk—ymﬂ=k£$xmmﬁ4—ymﬂ=0- (48)
It follows that
kEI—iI-I ||”m/<+1 tmk ” = kEI—Ii-loo ||”mk+1 — Ymy “ + kiig-loo ”ymk - tmk ” =0. (49)
Next, evaluate
”tmk — Umy, | = ”umk + oty (umk - umkfl) - 1//mk [umk + oy (umk - umkfl)] — Umy, I
= Oy ””mk — Umy—1 Il + ka ””mk Il + Uy Iﬁmk ”umk — Umy—1 [
o
= 1;[’mk ok ”umk Umy— 1+ I)bmk”"tmk” + 1ﬁmk ”umk Umy—1 | — 0. (50)
l[’ my wmk
This follows that
My — el <m0l — 1] = 0. (51)
Using the same explanation as in the Case 1, such that
lim sup(u™, u* — upm,4+1) < 0. (52)

k—+00

Using the expressions (45) and (46), we get

Jutmes = u* |

< —=Ym) ”umk —u” “2 + VUmy I:amk ”umk — Umy—1 ” S ”umk — Umyp—1 ”
my
*” my

+2(1 = Yy ||y, — -

Umy — Umy—1|| +2|u Iy — Ump+1 || F2Qu", 0" — Um+
H |+ 2] | +20%, u”

0]
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< (U )ty = Vi s = tmg |2 e, = a1 |
mi

+2(1 = Ym) ||ty — u*| zﬂuumk — -t ||+ 2] || |t — |+ 20F, uF — umk+1)]. (53)
mg

Thus, above implies that

Jumg1 =
= ot e et |57 e = |
mi

200 = Vo) e = 015 i, = 1|+ 2, = ] +200° 0 = )], 59
mg

Since ¥, — 0, and ||umk —u* H is a bounded. Therefore, expressions (52) and (54) implies that

11 — u*[|* = 0, ask — 4oo0. (55)

This means that
i e =t < lim g — a2 < 0. (56)
As a consequence u,, — u*. This is going to conclude the proof of the theorem. O

The second projection in Algorithm 1 is substituted with half-space to minimize computing cost, as inspired
by Algorithm 4.1 in the paper [4]. The second main algorithm is written as follows:

Algorithm 2 (Inertial Strongly Convergent Iterative Method)

Step 0: Select up,u; € D,a > 0and 0 < 7t < % Moreover, choose {y,} C (0, 1) fulfills the following criteria:
lim,, s 100 ¥» = 0 and Z:;xf Y, = +00.
Step 1: Compute
In =t + op(Up — Up—1) — Y [un + an(uy — Mnfl)]y
where «,, such that

e e .
mm{z’ ||un—un71||} ity 7ttt

0<a,<a, and o, =
% else,

where €, = o(y,,) is a positive sequence, i.e., lim,_ 4 % =0.
Step 2: Compute
Yo = Pp(t, — 18ty)).
If t, = y,, then STOP and y, is a solution.
Step 3: Compute
Un+1 = PXn (tn — TS(yn))v
where X, = {z € X : (t, — tS(ty) — yn, 2 — yn) < 0}. Setn = n + 1 and go back to Step 1.

4 Numerical illustrations

This section discusses two numerical tests to explain the efficacy of the proposed algorithms. All these numerical
studies give a detailed understanding of how better control parameters can be chosen. Each of them shows the
advantages of the proposed methods relative to the existing ones in the literature.

Example 4.1 First consider the HpHard problem which is taken from [7]. This example has been considered
by many people for experimental test (see, [5,8,21]). A operator S : R” — R is defined by

Su)=Mu+gq
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10 ‘

. —— Algorithm A
N Algorithm B
100 - - —Algorithm C|]

\“.‘\‘ ----- Algorithm D
10 1L \‘ * 4
\

S 102¢ 3
108 F 3
104 3
10% ‘ : ‘ ‘ ‘

0 10 20 30 40 50 60

Number of iterations

Fig. 1 Numerical illustration of Algorithm 1 with Algorithm 1 in [16] and Algorithm 3.1 in [1] and Algorithm 3.1 in [27] while
m=2>5

102 w w
—— Algorithm A
B Algorithm B| |
\ = = =Algorithm C
0 ‘i ----- Algorithm D
10 3 E
v
107 3
)
102 3
103 E
10 E
108 ‘ ‘ ‘ ‘ ‘ ‘

.
0 20 40 60 80 100 120 140 160
Number of iterations

Fig. 2 Numerical illustration of Algorithm 1 with Algorithm 1 in [16] and Algorithm 3.1 in [1] and Algorithm 3.1 in [27] while
m =10

with ¢ € R™ and
M =NNT+B+D.

In above definition, we take N = rand(m) to be a random matrix and B = 0.5K — 0.5KT to be a skew-
symmetric matrix with K = rand(m) and D = diag(rand(m, 1)) is a diagonal matrix. The set D is taken as
follows:

D={uecR": Qu<b),

where Q = rand(100, m) and b = rand(100, 1). It is obvious that S is monotone and that Lipschitz is
continuous by L = ||M||. The starting point for this experiment are ug = u; = (1, 1, ..., 1). The numerical
consequences of these methods are seen in Figs. 1, 2, 3 and 4 and Tables 1 and 8. The control requirement
shall be taken as follows:

(1) Algorithm 1 in [16] (shortly, Algorithm A): 7 = OLJ, Dy, = |lup — yall < 107%;

(2) Algorithm 3.1 in [1] (shortly, Algorithm B): « = 0.60,7 = %7 ¢, = m Up = ——.60, =

L’ (n+2)°
A =Yn), Dy = [ty — yull <1074
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Fig. 3 Numerical illustration of Algorithm 1 with Algorithm 1 in [16] and Algorithm 3.1 in [1] and Algorithm 3.1 in [27] while
m =20
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Number of iterations

Fig. 4 Numerical illustration of Algorithm 1 with Algorithm 1 in [16] and Algorithm 3.1 in [1] and Algorithm 3.1 in [27] while
m = 30

(3) Algorithm 3.1 in [27] (shortly, Algorithm C): « = 0.60,t = OLJ, Yn = ﬁ, €, = m, fu) =
% Dy =ty — yaul <1074

(4) Algorithm 1 (shortly, Algorithm D): r = %7, & = 0.60, ¢, = ﬁ Un = ﬁ Dy = |ty — yull <
10~* (Table 2).

Example 4.2 Consider the non-linear complementarity problem of Kojima—Shindo where the operator S :
R* — R* is described by

ur 4 up + uz + ug — dupuzuy
Sw=|" 4+ upy 4+ uz + ug — 4ujuzug
up +up +uz + ug — dujuruy

Uy +uy +uz +ug — 4uiuous

Moreover, the feasible set D is defined by

D={uelR*:1<u; <5, i=1,273,4}.
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Table 1 Numerical values for Figs. 1, 2, 3 and 4
m Algorithm A Algorithm B

Number of iterations Elapsed time Number of iterations Elapsed time
5 55 1.271423 44 0.8473277
10 154 3.984347 122 2.4970683
20 387 8.871673 287 5.7369488
30 609 16.065671 496 10.8786385
Table 2 Numerical values for Figs. 1, 2, 3 and 4
m Algorithm C Algorithm D

Number of iterations Elapsed time Number of iterations Elapsed time
5 33 0.7823692 19 0.436875
10 94 2.1836821 24 0.570326
20 234 4.9718569 31 0.738349
30 406 9.3679587 41 1.039996

Table 3 Example 4.2: Numerical study of Algorithm 1 in [16] and up = u; = (1, 2, 5, HT

Iter (n) up U us Uq

1 2.46850686712594 3.43518531832707 4.11170031354167 4.85198081270192
2 3.26306718965650 4.10302677285378 4.68884806816664 5.16263925114349
3 3.68345230081183 4.45301272004093 4.90061928579334 5.15843849896288
4 4.11679011556020 4.77035387197085 5.02276694727452 5.16509362041636
5 4.53653342828402 4.92668529039587 5.07024397379473 5.15044222135542
6 4.99407054939005 4.99407309848611 4.99407400449338 4.99407450402104
7 4.99429687804173 4.99429825094701 4.99429873890904 4.99429900794721
8 4.99450616557211 4.99450690502187 4.99450716783928 4.99450731274381
9 4.99470040849581 4.99470080677679 4.99470094833498 4.99470102638317
10 4.99488125238743 4.99488146691464 4.99488154316252 4.99488158520184
33 4.99949439152920 4.99949439152920 4.99949439152920 4.99949439152920
34 4.99949608585900 4.99949608585900 4.99949608585900 4.99949608585900
35 4.99949776887094 4.99949776887094 4.99949776887094 4.99949776887094
36 4.99949944067807 4.99949944067807 4.99949944067807 4.99949944067807
37 4.99950110139188 4.99950110139188 4.99950110139188 4.99950110139188
CPU time is seconds 0.5464821

It is clear to see that S is not monotone on the set D. By the use of Monte-Carlo technique [9], it can be shown
that S is pseudo-monotone on D. There exits a unique solution u* = (5,5, 5,5)7 for given problem. The
starting point for this experiment are ug = u; = (1,1,...,1) and D, = ||t, — y,|| < 1073. The numerical
consequences of these methods are seen in Tables 3, 4, 5 and 6. The control requirement shall be taken as

follows: (1) Algorithm 1 in [16] (shortly, Algorithm A): 7 = OLJ, Dy, = |lup — yall < 10~%;

(2) Algorithm 3.1 in [1] (shortly, Algorithm B): « = 0.60, t

5= ), Dy = ||ty — yall <1074

(3) Algorithm 3.1 in [27] (shortly, Algorithm C): « = 0.60, 7 = %7 vy, = ﬁ €n =

%, Dy = Ity — ynll < 1074

0

07
L 9,

L ki

_ 1 — _1 —
€n = mvwn = mﬁn =

e S0 =

(4) Algorithm 1 (shortly, Algorithm D): 7 = %7, & = 0.60, ¢, = ﬁ Yn = ﬁ Dy, = |ty — yull <

1074,
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Table 4 Example 4.2: Numerical study of Algorithm 1 in [16] and ug = u; = (-3, —4, 1, —S)T

Iter (n) Ui U us Uq

1 3.95798700420275 4.90319832859659 5.24763662592025 4.24662349851835
2 4.88226208073189 5.01271766369566 5.02408134785700 4.91453336394776
3 4.97849884544991 4.98904776095972 4.98511967764930 4.98010334552711
4 4.99054471487201 4.98445005743840 4.98262529908410 4.98878003127405
5 4.99021445709950 4.98791312658462 4.98770097784552 4.98964686129797
6 4.99753023091885 4.99753023091885 4.99753023091885 4.99753023091885
7 4.99761845958073 4.99761845958073 4.99761845958073 4.99761845958073
8 4.99770060194473 4.99770060194473 4.99770060194473 4.99770060194473
9 4.99777726680043 4.99777726680043 4.99777726680043 4.99777726680043
10 4.99784898435845 4.99784898435845 4.99784898435845 4.99784898435845
38 4.99948317721650 4.99948317721650 4.99948317721650 4.99948317721650
39 4.99948715298345 4.99948715298345 4.99948715298345 4.99948715298345
40 4.99949106804850 4.99949106804850 4.99949106804850 4.99949106804850
41 4.99949492379131 4.99949492379131 4.99949492379131 4.99949492379131
42 4.99949872155006 4.99949872155006 4.99949872155006 4.99949872155006
41 4.99950246262296 4.99950246262296 4.99950246262296 4.99950246262296
CPU time is seconds 0.597347

Table 5 Example 4.2: Numerical study of Algorithm 1 and ug = u; = (1,2, 5, 4HT

Iter (n) Uy us us Uq

1 3.91488016372854 4.85252928297821 5.22585944011412 5.72818199081251
2 4.57264127647102 5.00300001557819 5.12274776629554 5.26642638995636
3 4.90746494889927 5.02422967456386 5.04941197855862 5.07649346544389
4 4.97510231126800 4.99574420343289 4.99882318198317 5.00140298171803
5 5.02219257897729 5.01883397835351 5.01760392054566 5.01600966350793
6 5.00045550321418 5.00045550321418 5.00045550321418 5.00045550321418
7 5.00044072203028 5.00044072203028 5.00044072203028 5.00044072203028
8 5.00042473156775 5.00042473156775 5.00042473156775 5.00042473156775
9 5.00041120014611 5.00041120014610 5.00041120014610 5.00041120014610
10 5.00039765754469 5.00039765754474 5.00039765754474 5.00039765754474
15 5.00017419442177 5.00017419442177 5.00017419442177 5.00017419442177
16 5.00017178052361 5.00017178052361 5.00017178052361 5.00017178052361
17 5.00016943260831 5.00016943260831 5.00016943260831 5.00016943260831
18 5.00016714801455 5.00016714801455 5.00016714801455 5.00016714801455
19 5.00016492420973 5.00016492420973 5.00016492420973 5.00016492420973
20 5.00016275880259 5.00016275880259 5.00016275880259 5.00016275880259
CPU time is seconds 0.142008

Example 4.3 Let X = I, be a real Hilbert space with the sequences of real numbers satisfying the following

condition

Nt + fluall® + -+ + llugl® + - -+ < +o0.

Assume that a mapping S : D — D is defined by

Gw) = (5—llulhu,

Yueld,

(57)

where D = {u € X : |lu|]| < 3}. We can easily see that S is weakly sequentially continuous on X’ and the
solution set is VI(D, S) = {0}. Moreover, S is L-Lipschitz continuous with L = 11. The mapping S is
pseudomonotone on D but not monotone (see for more details [33]). Let considered the following projection
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Table 6 Example 4.2: Numerical study of Algorithm 1 and ug = u; = (-3, —4, 1, —5T

Iter (n) Ui U us Uq
1 3.91488016372854 4.85252928297821 5.22585944011412 5.72818199081251
2 4.57121385239430 5.00184252170840 5.12166538077650 5.26543412274350
3 4.90757824004344 5.02439246837912 5.04958273583595 5.07667166195147
4 4.97308781606032 4.99430374686646 4.99747028860293 5.00012514266696
5 5.02171157115764 5.01876924007345 5.01764240206392 5.01616645155788
6 5.00038452174424 5.00038452174425 5.00038452174425 5.00038452174425
7 5.00037212854981 5.00037212854981 5.00037212854981 5.00037212854981
8 5.00035831848008 5.00035831848008 5.00035831848008 5.00035831848008
9 5.00034686831722 5.00034686831722 5.00034686831722 5.00034686831722
10 5.00033525865097 5.00033525865097 5.00033525865097 5.00033525865097
13 5.00017878677236 5.00017878677236 5.00017878677236 5.00017878677236
14 5.00017574742264 5.00017574742264 5.00017574742264 5.00017574742264
15 5.00017280968570 5.00017280968570 5.00017280968570 5.00017280968570
16 5.00016996854741 5.00016996854741 5.00016996854741 5.00016996854741
17 5.00016721932153 5.00016721932153 5.00016721932153 5.00016721932153
18 5.00016455761801 5.00016455761801 5.00016455761801 5.00016455761801
CPU time is seconds 0.129242
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0 10 20 30 40 50 60 70 80

Number of iterations
Fig. 5 Numerical illustration of Algorithm 1 with Algorithm 1 in [16] and Algorithm 3.1 in [1] and Algorithm 3.1 in [27] while
uop=uy =(1,1,..., 15000, 0,0, ...)

formula:

o[ il =3,
D) =\ 3u otherwise.

el

The numerical consequences of these methods are seen in Figs. 5, 6, 7 and 8 and Table 7. The control requirement
shall be taken as follows:

(1) Algorithm 1 in [16] (shortly, Algorithm A): t = OTS, Dy = llun — yall < 107%;

(2) Algorithm 3.1 in [1] (shortly, Algorithm B): « = 0.70, 7 = 078, € = m, Yn =

5= Y), Dy = Ity — yall <1074

IA

1 —
(n+2)° O =
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Fig. 6 Numerical illustration of Algorithm 1 with Algorithm 1 in [16] and Algorithm 3.1 in [1] and Algorithm 3.1 in [27] while
up=uy =(1,1,..., 15000, 0,0, ...)
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Fig. 7 Numerical illustration of Algorithm 1 with Algorithm 1 in [16] and Algorithm 3.1 in [1] and Algorithm 3.1 in [27] while
up=u; = (1,2,...,5000,0,0,...)
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Fig. 8 Numerical illustration of Algorithm 1 with Algorithm 1 in [16] and Algorithm 3.1 in [1] and Algorithm 3.1 in [27] while
uo =u; = (1,2,...,5000,0,0,...)
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Table 7 Numerical values for Figs. 5, 6, 7 and 8

m Algorithm A Algorithm B

Number of iterations Elapsed time Number of iterations Elapsed time
(1,1,..., 15000, 0,0, ...) 79 3.1150363 56 3.2711516
(1,2,...,5000,0,0,...) 71 2.8090430 52 3.27137490

Table 8 Numerical values for Figs. 5, 6, 7 and 8

m Algorithm C Algorithm D

Number of iterations Elapsed time Number of iterations Elapsed time
(1,1,..., 15000, 0,0, ...) 46 3.3728652 22 0.8332482
(1,2,...,5000,0,0,...) 44 4.76874250 20 0.9056598

(3) Algorithm 3.1 in [27] (shortly, Algorithm C): « = 0.70,t = Tg, Yn = (n—}rz), € = (n++)2, fu) =
%’ Dp =ty — yull = 1074

(4) Algorithm 1 (shortly, Algorithm D): t = %, a=0.70,¢, = ﬁ, Yn =
10~* (Table 8).

ﬁa Dy = |lta —yull =<
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