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Abstract It is well known that if a finite set A ⊂ Z tiles the integers by
translations, then the translation set must be periodic, so that the tiling is
equivalent to a factorization A ⊕ B = ZM of a finite cyclic group. We are
interested in characterizing all finite sets A ⊂ Z that have this property. Coven
and Meyerowitz (J Algebra 212:161–174, 1999) proposed conditions (T1),
(T2) that are sufficient for A to tile, and necessary when the cardinality of A
has at most two distinct prime factors. They also proved that (T1) holds for all
finite tiles, regardless of size. It is not known whether (T2) must hold for all
tilings with no restrictions on the number of prime factors of |A|. We prove
that the Coven–Meyerowitz tiling condition (T2) holds for all integer tilings of
period M = (pi p j pk)2, where pi , p j , pk are distinct odd primes. The proof
also provides a classification of all such tilings.
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1 Introduction

We say that a set A ⊂ Z tiles the integers by translations if there is a set
T ⊂ Z such that every integer n can be represented uniquely as n = a+ t with
a ∈ A and t ∈ T . Throughout this article, we assume that A is finite. It is well
known (see [35]) that any tiling of Z by a finite set A must be periodic, i.e.
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The Coven–Meyerowitz tiling conditions 367

T = B ⊕ MZ for some finite set B ⊂ Z such that |A| |B| = M . Equivalently,
A ⊕ B is a factorization of the cyclic group ZM .
We are interested in determining which finite sets A ⊂ Z have this property,

and, in particular, in a characterization proposed by Coven and Meyerowitz
[2]. In order to state their conditions, we need to introduce some notation.
By translational invariance, we may assume that A, B ⊂ {0, 1, . . . } and that
0 ∈ A∩ B. The characteristic polynomials (also known asmask polynomials)
of A and B are

A(X) =
∑

a∈A

Xa, B(x) =
∑

b∈B
Xb.

Then the tiling condition A ⊕ B = ZM is equivalent to

A(X)B(X) = 1 + X + · · · + XM−1 mod (XM − 1). (1.1)

Let �s(X) be the s-th cyclotomic polynomial, i.e., the unique monic,
irreducible polynomial whose roots are the primitive s-th roots of unity. Alter-
natively, �s can be defined inductively via the identity

Xn − 1 =
∏

s|n
�s(X).

In particular, (1.1) is equivalent to

|A||B| = M and �s(X) | A(X)B(X) for all s|M, s �= 1. (1.2)

Since �s are irreducible, each �s(X) with s|M must divide at least one of
A(X) and B(X).
The following result is due to Coven and Meyerowitz [2].

Theorem 1.1. [2] Let SA be the set of prime powers pα such that �pα (X)

divides A(X). Consider the following conditions.

(T1) A(1) = ∏
s∈SA �s(1),

(T2) if s1, . . . , sk ∈ SA are powers of different primes, then �s1...sk (X)

divides A(X).

Then:

• if A satisfies (T1), (T2), then A tiles Z;
• if A tiles Z then (T1) holds;
• if A tiles Z and |A| has at most two distinct prime factors, then (T2) holds.
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368 I. Łaba, I. Londner

While (T1) is relatively easy to prove, (T2) turns out to be much deeper and
more difficult. Coven and Meyerowitz [2] proved that if A satisfies (T2), then
A ⊕ B� = ZM , where M = lcm(SA) and B� is an explicit, highly structured
“standard” tiling complement (defined here in Sect. 2.4). We prove in [24]
that having a tiling complement of this type is in fact equivalent to (T2). In
this formulation, (T2) bears some resemblance to questions on replacement of
factors in theory of factorizations of abelian groups (see [45] for an overview
of the latter).

The proof of Theorem 1.1 in [2] is based on an inductive argument. Coven
and Meyerowitz use a theorem of Tijdeman [48] to prove that if A tiles the
integers, then it also tiles ZM for some M which has the same prime factors as
|A|. Hence, if |A| has at most two distinct prime factors, we may assume that
so doesM . The authors then use Sands’s theorem [38], which states that, in any
tiling A⊕ B = ZM with M divisible by at most 2 primes, at least one of A and
B must be contained in pZM for some prime p|M . Coven andMeyerowitz use
this to decompose the given tiling into tilings of smaller groups while keeping
track of the (T2) property. We also note that if |A| is a prime power, then the
Coven–Meyerowitz characterization simplifies further since (T2) is vacuous;
in this case, the result had been proved earlier by Newman [35].

The Coven–Meyerowitz proof does not extend to the general case. Sands’s
factor replacement theorem is false if M has three or more prime factors, with
counterexamples in [26,44]. On the other hand, we prove in [24, Corollary 6.2]
(using a relatively minor modification of the argument in [2]) that if A⊕ B =
ZM , and if |A| and |B| share at most two distinct prime factors, then both
A and B satisfy (T2). (See also [40,47].) Thus the simplest case that is not
covered by these methods is when |A| = |B| = pi p j pk , where pi , p j , pk are
distinct primes.

Our main result is the following theorem.

Theorem 1.2. Let M = p2i p
2
j p

2
k , where pi , p j , pk are distinct odd primes.

Assume that A ⊕ B = ZM, with |A| = |B| = pi p j pk. Then both A and B
satisfy (T2).

We also obtain a classification of all tilings A ⊕ B = ZM , where M =
p2i p

2
j p

2
k . Our main results in that regard are Theorems 3.1 and 3.2. Since those

theorems require some notation and definitions, we postpone their statements
until Sect. 3.

The proof of Theorem 1.2 relies on the methods and concepts introduced
in [24]. In order to keep this article reasonably self-contained modulo results
that can be used as black boxes, we provide a summary of the concepts and
results that we will need here, specialized to the 3-prime setting, in Sect. 2.
We then state our classification results in Sect. 3.1. In Sect. 3.2, we discuss our
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The Coven–Meyerowitz tiling conditions 369

strategy and the main new ideas of the proof. The rest of the paper is devoted
to the proof of Theorems 1.2, 3.1, and 3.2.

Since [2], there has been essentially no progress on proving (T2), except
for a few special cases that either assume particular structure of the tiling
(see [4,22]) or are covered by the methods of [2] as in [24, Corollary 6.2]
(see [40,47]). However, there has been recent work on other questions related
to tiling. For instance, Bhattacharya [1] has established the periodic tiling
conjecture in Z

2, with a quantitative version due to Greenfeld and Tao [13].
There has also been interesting work on tilings of the real line by a function
(see [19] for a survey and some open questions).

The Coven–Meyerowitz tiling conditions have implications for the ongoing
work on Fuglede’s spectral set conjecture [10]. Fuglede conjectured that a set
� ⊂ R

n of positive n-dimensional Lebesgue measure tiles R
n by translations

if and only if it is spectral, in the sense that the space L2(�) admits an orthog-
onal basis of exponential functions. While the conjecture has been disproved
in its full generality in dimensions 3 and higher [8,9,20,21,34,46], significant
connections between tiling and spectrality do exist (see [5] for an overview of
the problem in dimension 1), and there is a large body of work investigating
such connections from many points of view. In higher dimensions, the conjec-
ture has been proved for convex sets in R

n , by Iosevich, Katz and Tao [14] for
n = 2, Greenfeld and Lev [12] for n = 3, and by Lev and Matolcsi [30] for
general n. There have been many recent results on special cases of the finite
abelian group analogue of the conjecture [6,7,15–18,31,32,40–42,49].

If (T2) could be proved for all finite integer tiles, this would imply the “tiling
implies spectrum” part of Fuglede’s spectral set conjecture for all compact tiles
in dimension 1, aswell as for all cyclic groupsZM . This follows from the results
of [23,27,28]. Proving (T2) for specific tiling problems does not resolve the
full conjecture, but it does imply that the conjecture holds in those settings.
In that regard, our Theorem 1.2 combined with [23, Theorem 1.5] and [24,
Corollary 6.2] has the following immediate corollary.

Corollary 1.3. Let M = p2i p
2
j p

2
k be odd.

(i) The “tiling implies spectrum” part of Fuglede’s spectral set conjecture
holds for the cyclic group ZM. In other words, if A ⊂ ZM tiles ZM by trans-
lations, then it is spectral.

(ii) Let A ⊂ Z be a finite set such that A mod M tiles ZM, and let
F = ⋃

a∈A[a, a + 1], so that F tiles R by translations. Then F is spectral.

Indeed, letM and A be as inCorollary 1.3. If |A| �= pi p j pk , then both A and
B satisfy (T2) by [24, Corollary 6.2]. If on the other hand |A| = pi p j pk , then
both A and B satisfy (T2) by Theorem 1.2. In both cases, spectrality follows
from [23, Theorem 1.5]. (While Theorem 1.5 in [23] is stated for unions of
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370 I. Łaba, I. Londner

finite intervals as in (ii), the same argument applies in the finite group setting.
See e.g. [5].)

After this paper was completed, we were able to extend Theorem 1.2 and
Corollary 1.3 to the case when M = p2i p

2
j p

2
k is even. Thus, both results are

now known to hold with no restrictions on the parity of M . See the follow-up
article [25] for details.

2 Notation and preliminaries

This section summarizes the relevant definitions and results of [24], specialized
to the 3-prime case. All material due to other authors is indicated explicitly as
such.

2.1 Multisets and mask polynomials

Throughout this paper, we will assume thatM = pnii p
n j
j pnkk , where pi , p j , pk

are distinct primes and ni , n j , nk ∈ N. The indices {i, j, k} can be thought
of as a permutation of {1, 2, 3}; however, we will always use i, j, k for this
purpose, freeing up numerical subscripts for other uses.While the full proof of
Theorem 1.2 requires that ni = n j = nk = 2 and that pi , p j , pk �= 2, many
of our intermediate results are valid under weaker assumptions as indicated.

We will always work in either ZM or in ZN for some N |M . We use
A(X), B(X), etc. to denote polynomials modulo XM − 1 with integer coef-
ficients. Each such polynomial A(X) = ∑

a∈ZM
wA(a)Xa is associated with

a weighted multiset in ZM , which we will also denote by A, with weights
wA(x) assigned to each x ∈ ZM . (If the coefficient of Xx in A(X) is 0, we set
wA(x) = 0.) In particular, if A has {0, 1} coefficients, then wA is the charac-
teristic function of a set A ⊂ ZM . We will use M(ZM) to denote the family
of all weighted multisets in ZM , and reserve the notation A ⊂ ZM for sets.

If N |M , then any A ∈ M(ZM) induces a weighted multiset A mod N
in ZN , with the corresponding mask polynomial A(X) mod (XN − 1) and
induced weights

wN
A (x) =

∑

x ′∈ZM :x ′≡x mod N

wA(x ′), x ∈ ZN .

We will continue to write A and A(X) for A mod N and A(X) mod XN − 1,
respectively, while working in ZN .

If A, B ∈ M(ZM), we will use A + B to indicate the weighted multiset
corresponding to the mask polynomial (A + B)(X) = A(X) + B(X), with
the weight function wA+B(x) = wA(x) + wB(x). We use the convolution
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The Coven–Meyerowitz tiling conditions 371

notation A∗B to denote the weighted sumset of A and B, so that (A∗B)(X) =
A(X)B(X) and

wA∗B(x) = (wA ∗ wB)(x) =
∑

y∈ZM

wA(x − y)wB(y).

If one of the sets is a singleton, say A = {x}, we will simplify the notation and
write x∗B = {x}∗B. The direct sum notation A⊕B is reserved for tilings, i.e.,
A ⊕ B = ZM means that A, B ⊂ ZM are both sets and A(X)B(X) = XM−1

X−1
mod XM − 1. We will not use derivatives of polynomials in this paper, hence
notation such as A′, A′′, etc., will be used to denote auxiliary multisets and
polynomials rather than derivatives.

2.2 Array coordinates and geometric representation

For ν ∈ {i, j, k}, define Mν := M/pnν
ν = ∏

κ �=ν pnκ
κ . Then each x ∈ ZM can

be written uniquely as

x =
∑

ν∈{i, j,k}
πν(x)Mν, πν(x) ∈ Zpnν

ν
.

This sets up an isomorphism ZM 
 Zp
ni
i

⊕ Z
p
n j
j

⊕ Zp
nk
k
, and identifies each

element x ∈ ZM with an element of a 3-dimensional lattice with coordinates
(πi (x), π j (x), πk(x)). The tiling A ⊕ B = ZM can then be interpreted as a
tiling of that lattice.

For D|M , a D-grid in ZM is a set of the form

	(x, D) := x + DZM = {x ′ ∈ ZM : D|(x − x ′)}
for some x ∈ ZM . In other words, it is a coset of the subgroup of order M/D
in ZM .

A few special cases have a geometric interpretation of interest. A line
through x ∈ ZM in the pν direction is the set 
ν(x) := 	(x, Mν), and a
plane through x ∈ ZM perpendicular to the pν direction, on the scale Mν p

αν
ν ,

is the set �(x, pαν
ν ) := 	(x, pαν

ν ).

An M-fiber in the pν direction is a set of the form x ∗ Fν , where x ∈ ZM
and

Fν = {0, M/pν, 2M/pν, . . . , (pν − 1)M/pν}.
Thus x ∗ Fν = 	(x, M/pν). A set A ⊂ ZM is M-fibered in the pν direction
if there is a subset A′ ⊂ A such that A = A′ ∗ Fν .
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372 I. Łaba, I. Londner

For N |M , we define

D(N ) = N

rad(N )
,

where rad(N ) is the radical of N , i.e., the product of the distinct primes dividing
N . Explicitly, if N = pαi

i p
α j
j pαk

k with 0 ≤ αν ≤ nν , then

D(N ) := pγi
i p

γ j
j pγk

k , where γν = max(0, αν − 1) for ν ∈ {i, j, k}.

We will also write Nν = M/pν for ν ∈ {i, j, k}.

2.3 Divisor set and divisor exclusion

For m, n ∈ Z, we use (m, n) to denote the greatest common divisor of m and
n. We will also write pα ‖ m, where p is prime and α is a nonnegative integer,
if pα|m and pα+1

� m.
For N |M and A ⊂ ZM , we define

DivN (A) := {(a − a′, N ) : a, a′ ∈ A}

When N = M , we will omit the subscript and write Div(A) = DivM(A).
Informally, we will refer to the elements of Div(A) as the divisors of A or
differences in A. A theorem due to Sands [38] states that A ⊕ B = ZM if and
only if A, B ⊂ ZM are sets such that |A| |B| = M and

Div(A) ∩ Div(B) = {M}.

We will refer to this as divisor exclusion.
In caseswhenwe need to indicatewhere a particular divisor of Amust occur,

wewill use the followingnotation for localizeddivisor sets. If A, A1, A2 ⊂ ZM
and a0 ∈ ZM , we will write

DivN (A1, A2) := {(a1 − a2, N ) : a1 ∈ A1, a2 ∈ A2},
DivN (A, a0) = DivN (a0, A) := DivN (A, {a0}) = {(a − a0, N ) : a ∈ A}.

For example, if A ⊕ B = ZM , we will often need to consider Div(A1, A2),
where A1 and A2 are restrictions of A to geometric structures such as planes
or lines.
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The Coven–Meyerowitz tiling conditions 373

2.4 Standard tiling complements

Suppose that A ⊕ B = ZM , and let

Aν(A) =
{
αν ∈ {1, 2, . . . , nν} : �pαν

ν
(X)|A(X)

}
.

The standard tiling complement A� (see Fig. 1) is defined via its mask poly-
nomial

A�(X) =
∏

ν∈{i, j,k}

∏

αν∈Aν(A)

(
1 + XMν p

αν−1
ν + · · · + X (pν−1)Mν p

αν−1
ν

)
.

Then A�(X) satisfies (T2) and has the same prime power cyclotomic divisors
as A(X). For each prime power s|M , �s divides exactly one of A and B ([2]),
hence A� is also uniquely determined by M and B. Coven and Meyerowitz
proved in [2] that if a finite tile satisfies (T2), it has a standard tiling comple-
ment. We prove the converse in [24].

Proposition 2.1. Let A ⊕ B = ZM. Then A� ⊕ B = ZM if and only if B
satisfies (T2).

We say that the tilings A ⊕ B = ZM and A′ ⊕ B = ZM are T2-equivalent
if

A satisfies (T2) ⇔ A′ satisfies (T2).

Since A and A′ tile the same group ZM with the same tiling complement
B, they must have the same cardinality and the same prime power cyclotomic
divisors.Wewill sometimes say simply that A is T2-equivalent to A′ if both M
and B are clear from context. Usually, A′ will be derived from A using certain
permitted manipulations such as fiber shifts (Lemma 2.11). In particular, if we

︷︸︸︷

M/p2j

{

{

{

A�

B�

M/p2i

A� ∩ B�

M/pj

M/pi

Fig. 1 The standard sets A�, B� ⊂ Zp2i p
2
j
with pi = 3, p j = 5 and �p2i

�p2j
|A, �pi �p j |B
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374 I. Łaba, I. Londner

can prove that either A or B in a given tiling is T2-equivalent to a standard
tiling complement, this resolves the problem completely in that case.

Corollary 2.2. Suppose that the tiling A ⊕ B = ZM is T2-equivalent to the
tiling A� ⊕ B = ZM. Then A and B satisfy (T2).

2.5 Box product

Let A ⊂ ZM and N |M . For x ∈ ZM , define

A
N
m [x] = #{a ∈ A : (x − a, N ) = m}.

We may think of A
N
m [x], with x fixed and m ranging over the divisors of N ,

as the entries of the N -box A
N [x] = (AN

m [x])m|N [24]. If C ∈ M(ZM), we
write

A
N
m [C] :=

∑

x∈ZN

wN
C (x)AN

m [x].

In particular, if C ⊂ ZM , we have A
N
m [C] := ∑

c∈C A
N
m [c]. Furthermore, if

X ⊂ ZM and x ∈ ZM , we define the restricted box entries

A
N
m [x |X ] = #{a ∈ A ∩ X : (x − a, N ) = m}.

If N = M , we will usually omit the superscript and write A
M
m [x] = Am[x],

A
M [x] = A[x], A

M
m [C] = Am[C], and so on.

If A, B ⊂ ZM , we define the box product of the associated M-boxes as

〈A[x], B[y]〉 =
∑

m|M

1

φ(M/m)
Am[x]Bm[y].

Here φ is the Euler totient function: if n = ∏L
ι=1 q

rι
ι , where q1, . . . , qL are

distinct primes and rι ∈ N, then φ(n) = ∏L
ι=1(qι − 1)qrι−1

ι .

Theorem 2.3. ([24]; following [11, Theorem 1]) If A ⊕ B = ZM, then

〈AM [x], B
M [y]〉 = 1 ∀x, y ∈ ZM . (2.1)

2.6 Cuboids

Definition 2.4. (i) A cuboid type T onZN is an ordered triple T = (N , δ, T ),
where:
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• N = ∏
ν∈{i, j,k} p

nν−αν
ν is a divisor of M , with 0 ≤ αν ≤ nν for each ν,

• δ = (δi , δ j , δk), with 0 ≤ δν ≤ nν − αν ,
• the template T is a nonempty subset of ZN .
(ii) A cuboid � of type T is a weighted multiset corresponding to a mask

polynomial of the form

�(X) = Xc
∏

ν∈J
(1 − Xdν ),

where J = Jδ := {ν : δν �= 0}, and c, dν are elements of ZM such that
(dν, N ) = N/pδν

ν for ν ∈ {i, j, k}. The vertices of � are the points

xε = c +
∑

ν∈J
ενdν : ε = (εν)ν∈J ∈ {0, 1}|J|,

with weights w�(xε) = (−1)
∑

ν∈J εν .

(iii) Let A ∈ M(ZN ), and let � be a cuboid of type T . Define

A
T [�] = A

N
N [� ∗ T ] =

∑

ε∈{0,1}k
w�(xε)A

N
N [xε ∗ T ],

where we recall that x ∗ T = {x + t : t ∈ T }, so that

A
N
N [xε ∗ T ] :=

∑

t∈T
A

N
N [xε + t].

Informally, a cuboid type T = (N , δ, T ) is a class of cuboids� on the scale
N , defined as in (ii) (so that δ indicates the greatest common divisors of the
differences in � with N ), together with the evaluation rule in (iii) given by the
template T . Thus, when we say that � is a cuboid of type T , this just means
that � satisfies the condition in (ii) which is independent of T ; however, the
evaluation A

T [�] depends on all of A, N , �, and T . For consistency, we will
also write A

T [x] = A
N
N [x ∗ T ] for x ∈ ZM .

An important special case is as follows: for N |M , an N-cuboid is a cuboid
of type T = (N , δ, T ), where N |M , T (X) = 1, and δν = 1 for all ν such that
pν |N . Thus, N -cuboids have the form

�(X) = Xc
∏

pν |N
(1 − Xdν ), (2.2)

with (dν, N ) = N/pν for all ν such that pν |N . We reserve the term “N -
cuboid”, without cuboid type explicitly indicated, to refer to cuboids as in
(2.2); for cuboids of any other type, we will always specify T .
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Cuboids provide useful criteria to determine cyclotomic divisibility prop-
erties of mask polynomials. We say that a multiset A ∈ M(ZM) is T -null if
for every cuboid � of type T ,

A
T [�] = 0.

Note that this is a property of A that depends on all of N , δ, and T .
For A ∈ M(ZN ), we have �N (X)|A(X) if and only if A

N
N [�] = 0 for

every N -cuboid �. This has been known and used previously in the literature,
see e.g. [43, Section 3], or [16, Section 3]. In particular, for any N |M , �N
divides A if and only if it divides the mask polynomial of A∩	(x, D(N )) for
every x ∈ ZM . If N = M , we will follow the convention from Sect. 2.5 and
use the simplified notation A

M
M [�] = AM [�].

More generally, if for every m|N the polynomial �m(X) divides at least
one of A(X), T (X), or �(X) for every � of type T = (N , δ, T ), then A
is T -null [24, Lemma 5.3]. We use such cuboid types to test for divisibility
by combinations of cyclotomic polynomials. In particular, the following are
special cases of Examples (1)–(3) in [24, Section 5.3] with M = pnii p

n j
j pnkk .

• Assume that ni ≥ 2, and let T = (M, δ, 1), with δi = 2 and δ j = δk = 1.
Then

�M�M/pi |A ⇔ A is T -null.

If ni = 1, the same is true with δi = 0 (instead of δi = 2).
• Assume that ni = 2, and let T = (M, δ, T ), where δi = 0, δ j = δk = 1,
and

T (X) = XM/pi − 1

XM/p2i − 1
= 1 + XM/p2i + · · · + X (pi−1)M/p2i .

If �M�M/p2i
|A, then A is T -null.

2.7 Tiling reductions

The general formulations of the tiling reductions below are provided in The-
orems 6.1, 6.5, and Corollary 6.6 in [24]. The additional assumption that
pν ‖ |B| in Theorem 2.5 ensures that in any tiling A′ ⊕ B ′ = ZNν with
|A′| = |A| and |B ′| = |B|/pν , |A′| and |B ′| have only two common factors.
Hence the assumption (ii) of [24, Theorem 6.1] is satisfied by [24, Corol-
lary 6.2], and we deduce that A and B both satisfy (T2). The assumption that
pν ‖ |A| in Corollary 2.7 serves the same purpose.
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Theorem 2.5. (Subgroup reduction) [2, Lemma 2.5] Let M = pnii p
n j
j pnkk .

Assume that A ⊕ B = ZM, and that A ⊂ pνZM for some ν ∈ {i, j, k} such
that pν ‖ |B|. Then A and B satisfy (T2).

Theorem 2.6. Assume that A ⊕ B = ZM and �pnν
ν

|A for some ν ∈ {i, j, k}.
Define

Apν = {a ∈ A : 0 ≤ πν(a) ≤ pnν−1
ν − 1}.

Then the following are equivalent:

(i) For any translate A′ of A we have A′
pν

⊕ B = ZM/pν .

(ii) For every d such that pnν
ν |d|M, at least one of the following holds:

�d |A,

�d/pν�d/p2ν
. . . �d/pnν

ν
| B.

Corollary 2.7. (Slab reduction) Let M = pnii p
n j
j pnkk . Assume that A ⊕ B =

ZM, and that there exists a ν ∈ {i, j, k} such that �pnν
ν

|A, pν ‖ |A|, and
A, B obey the condition (ii) of Theorem 2.6. (In particular, this holds if A is
M-fibered in one of the pi , p j , pk directions.) Then A and B satisfy (T2).

2.8 Saturating sets

Let A ⊕ B = ZM , and x, y ∈ ZM . Define

Ax,y := {a ∈ A : (x − a, M) = (y − b, M) for some b ∈ B},
Ax := {a ∈ A : (x − a, M) ∈ Div(B)} =

⋃

b∈B
Ax,b.

Wewill refer to Ax as the saturating set for x . The sets By,x and By are defined
similarly, with A and B interchanged.

By divisor exclusion, Aa = {a} for all a ∈ A. For x ∈ ZM \ A, saturating
spaces are more robust, but are still subject to geometric constraints based on
divisor exclusion.

Lemma 2.8. (Bispan lemma) [24, Lemma 7.7] Let A⊕ B = ZM. For x, x ′ ∈
ZM such that (x − x ′, M) = pαi

i p
α j
j pαk

k , with 0 ≤ αν ≤ nν , define

Span(x, x ′) =
⋃

ν:αν<nν

�(x, pαν+1
ν ),

Bispan(x, x ′) = Span(x, x ′) ∪ Span(x ′, x).
(2.3)
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Then for any x, x ′, y ∈ ZM, we have

Ax ′,y ⊂ Ax,y ∪ Bispan(x, x ′),

and in particular,

Ax ⊂
⋂

a∈A

Bispan(x, a). (2.4)

The following special case will be used often.

Corollary 2.9. Let A ⊕ B = ZM.

(i) Suppose that x ∈ ZM \ A satisfies (x − a, M) = M/pν for some a ∈ A
and ν ∈ {i, j, k}. Then

Ax ⊂ �(x, pnν
ν ) ∪ �(a, pnν

ν ). (2.5)

(ii) If x ∈ ZM \ A satisfies AM/pν [x] ≥ 2 for some ν ∈ {i, j, k}, then
Ax ⊂ �(x, pnii ).

Proof. Let x, a be as in (i). Then

Bispan(x, a) = �(x, pnii ) ∪ �(a, pnii ),

so that (2.5) follows from (2.4).
Suppose now that AM/pν [x] ≥ 2, and let a, a′ ∈ A satisfy a �= a′ and

(x − a, M) = (x − a′, M) = M/pν . Then (2.5) holds for x and a, as well as
for x and a′. Taking the intersection, we get

Ax ⊂
(
�(x, pnν

ν ) ∪ �(a, pnν
ν )

)
∩

(
�(x, pnν

ν ) ∪ �(a′, pnν
ν )

)

= �(x, pnν
ν ),

as claimed. ��
In the sequel, whenever we evaluate saturating sets, we will always start

with geometric restrictions based on Lemma 2.8 and Corollary 2.9.

2.9 Fibers and cofibered structures

The following is a simplified version of the definitions and results of [24,
Section 8]. In the exposition below, we focus primarily on the case M =
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p2i p
2
j p

2
k , which contains all of the main ideas and will be sufficient for our

purposes most of the time. The more general case is covered in Lemma 2.13.
We refer the reader to [24, Section 8] for more details.

Let N |M , c ∈ N, and ν ∈ {i, j, k}. Assume that pν |N . An N -fiber in the
pν direction with multiplicity c is a set F ⊂ ZM such that F mod N has the
mask polynomial

F(X) ≡ cXa(1 + XN/pν + X2N/pν + · · · + X (pν−1)N/pν ) mod (XN − 1)

for some a ∈ ZM . We will say sometimes that F passes through a, or is rooted
at a. A set A ⊂ ZM is N -fibered in the pν direction if it can be written as a
union of disjoint N -fibers in the pν direction, all with the same multiplicity.

Fiber chains in the pν direction are translates of sets that tile (M/pγ
ν )ZM for

some γ with 1 ≤ γ ≤ ni . For M = p2i p
2
j p

2
k , the only fiber chains of interest

that are not fibers on some scale are multisets F̃ with mask polynomials

F̃(X) = cXa(1 + XMν + X2Mν + · · · + X (p2ν−1)Mν ),

ν ∈ {i, j, k}, a ∈ ZM , c ∈ N.

If F ⊂ ZM is anM-fiber in the pν direction, we say that an element x ∈ ZM
is at distancem from F ifm|M is themaximal divisor such that (z−x, M) = m
for some z ∈ F . It is easy to see that such m exists.

Let A ⊕ B = ZM . We will often be interested in finding “complemen-
tary” fibers and fibered structures in A and B, with the following special case
occurring particularly often.

Definition 2.10. (Cofibers and (1,2) cofibered structures) Let A, B ⊂ ZM ,
with M = p2i p

2
j p

2
k , and let ν ∈ {i, j, k}.

(i) We say that F ⊂ A,G ⊂ B are (1, 2)-cofibers in the pν direction if F
is an M-fiber and G is an M/pν-fiber, both in the pν direction.

(ii) We say that the pair (A, B) has a (1,2)-cofibered structure in the pν

direction if

• B is M/pν-fibered in the pν direction,
• A contains at least one “complementary” M-fiber F ⊂ A in the pν

direction, which we will call a cofiber for this structure.

The advantage of cofibered structure is that it permits fiber shifts as described
below. In many cases, we will be able to use this to reduce the given tiling to
a simpler one.

Lemma 2.11. (Fiber-Shifting Lemma) [24, Lemma 8.7] Let A ⊕ B = ZM.
Assume that the pair (A, B) has a (1, 2)-cofibered structure in the pν direction,
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with a cofiber F ⊂ A. Let A′ be the set obtained from A by shifting F to a
point x ∈ ZM at a distance M/p2ν from it. Then A′ ⊕ B = ZM, and A is
T2-equivalent to A′.

In order to identify (1, 2)-cofibered structures in (A, B), we will use satu-
rating sets, via the following lemma.

Lemma 2.12. [24, Corollary 8.11] Assume that A ⊕ B = ZM, with M =
p2i p

2
j p

2
k . Suppose that x ∈ ZM \A, b ∈ B, M/pν ∈ Div(A), and Ax,b ⊂ 
ν(x)

for some ν ∈ {i, j, k}. Then
A

M
M/p2ν

[x]BM
M/p2ν

[b] = φ(p2ν).

with the product saturated by a (1, 2)-cofiber pair (F,G) such that F ⊂ A is at
distance M/p2ν from x and G ⊂ B is rooted at b. In particular, if Ax ⊂ 
ν(x),
then the pair (A, B) has a (1, 2)-cofibered structure in the pν direction.

We now return to the more general case when we do not assume that
ni = n j = nk = 2. In this case, the inclusion Ax ⊂ 
ν(x) implies a more
complicated cofibered structure, described in [24] in terms of fiber chains. We
will only need the following fact, which is a consequence of Lemmas 8.7, 8.8,
and 8.10 (i) of [24].

Lemma 2.13. Assume that A⊕ B = ZM, with M = pnii p
n j
j pnkk . Suppose that

x ∈ ZM\A, M/pν ∈ Div(A), and Ax ⊂ 
ν(x) for some ν ∈ {i, j, k}. Then:
(i) There exists a single exponent γ with 2 ≤ γ ≤ ni such that

A
M
M/pγ

ν
[x]BM

M/pγ
ν
[b] = φ(pγ

ν ) for all b ∈ B. (2.6)

(ii) Ax is a disjoint union of M-fibers in the pν direction.
(iii) Let A′ be the set obtained from A by shifting Ax to x. More precisely, let

a ∈ Ax , and let A′ ⊂ ZM be the set such that for all z ∈ ZM,

wA′(z) =
{

wA(z) if M/pγ
ν � x − z,

wA(z − x + a) if M/pγ
ν | x − z.

Then A′⊕B = ZM, and A is T2-equivalent to A′. Moreover, x ∗Fν ⊂ A′.

Proof Part (i) follows from [24, Lemma 8.8 (ii)], with γ ≥ 2 since x /∈ A and
M/pν ∈ Div(A).
Part (ii) follows from [24, Lemma8.10 (ii)]. The lemmaasserts, in particular,

that either the cofiber Ax must be M-fibered in the pν direction, or else every
b ∈ B must belong to a fiber chain in B that is M-fibered in the pν direction
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(see [24, Definition 8.2]). However, the second alternative is not possible since
M/pν ∈ Div(A).
Finally, (iii) follows from [24, Lemma 8.7], with Ax as a cofiber as provided

by [24, Lemma 8.10 (ii)]. ��

3 Classification results

3.1 Classification results

We are now ready to state our classification results and provide a more detailed
outline of the proof. Let A ⊕ B = ZM , where M = pnii p

n j
j pnkk . By (1.2), we

have�s(X) | A(X)B(X) for all s|M such that s �= 1. In particular,�M divides
at least one of A(X) and B(X). Without loss of generality, we may assume
that �M |A.

We have�M |A if and only if�M divides A∩	(x, D(M)) for every x ∈ ZM
(see Sect. 2.6). This implies structure results for restrictions of A to such grids.
Let 	 := 	(a, D(M)) for some a ∈ A, so that A ∩ 	 is nonempty. It is easy
to see that �M |Fν for each ν ∈ {i, j, k}. By the classic results on vanishing
sums of roots of unity [3,29,33,36,37,39], �M divides A ∩ 	 if and only if

(A ∩ 	)(X) =
∑

ν∈{i, j,k}
Qν(X)Fν(X),

where Qi , Q j , Qk are polynomials with integer coefficients depending on
both A and 	.

A particularly simple case occurs when A(X) = Qν(X)Fν(X) for a single
ν ∈ {i, j, k}, so that A is fibered on all D(M)-grids in the same direction.
However, much more complicated structures are also possible. For instance,
A ∩ 	 may be M-fibered in different directions on different D(M)-grids 	,
or there may exist a D(M)-grid 	 such that A ∩ 	 contains nonintersecting
M-fibers in two or three different directions. An additional issue is that the
polynomials Qi , Q j , Qk are not required to have nonnegative coefficients. In
such cases, there may be points a ∈ A such that a ∗ Fν �⊂ A for any ν, due to
cancellations between M-fibers in different directions.

Our classification results, and our proof of (T2), split into cases according
to the fibering properties of A. Theorems 3.1 and 3.2 summarize our main
findings in the unfibered and fibered case, respectively.

Theorem 3.1. Let A ⊕ B = ZM, where M = p2i p
2
j p

2
k is odd. Assume that

|A| = |B| = pi p j pk,�M |A, and there exists a D(M)-grid	 such that A∩	

is nonempty and is not M-fibered in any direction. Assume further, without loss
of generality, that 0 ∈ 	. Then A� = 	, and the tiling A ⊕ B = ZM is T2-
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equivalent to 	 ⊕ B = ZM via fiber shifts. By Corollary 2.2, both A and B
satisfy (T2).

Theorem 3.2. Let A ⊕ B = ZM, where M = p2i p
2
j p

2
k is odd. Assume that

|A| = |B| = pi p j pk,�M |A, and that for every a ∈ A, the set A∩	(a, D(M))

is M-fibered in at least one direction (possibly depending on a).

(I) Suppose that there exists an element a0 ∈ A such that

a0 ∗ Fν ⊂ A ∀ν ∈ {i, j, k}. (3.1)

Then the tiling A⊕ B = ZM is T2-equivalent to 	⊕ B = ZM via fiber shifts,
where 	 := 	(a0, D(M)). By Corollary 2.2, both A and B satisfy (T2).

(II) Assume that (3.1) does not hold for any a0 ∈ A. Then at least one of the
following holds.

• A ⊂ �(a, pν) for some a ∈ A and ν ∈ {i, j, k}. By Theorem 2.5, both A
and B satisfy (T2).

• There exists a ν ∈ {i, j, k} such that (possibly after interchanging A and
B) the conditions of Theorem 2.6 are satisfied in the pν direction. By
Corollary 2.7, both A and B satisfy (T2).

A more detailed breakdown of the case (II) of Theorem 3.2 is provided in
Theorem 9.1.

3.2 Outline of the proof

In the rest of this section, we provide an outline of the proof of Theorems 3.1
and 3.2. We assume that A ⊕ B = ZM , where M = p2i p

2
j p

2
k is odd, |A| =

|B| = pi p j pk , and �M |A. Some of our arguments apply to tilings with more
general M . In order to be able to sketch the main ideas without interruptions,
we postpone the discussion of such extensions until the end of this section.

We begin with general arguments that are needed in both fibered and
unfibered cases. In Sect. 4, we develop technical tools we will use throughout
the article. Lemma 4.1 is from [24]; several of the other results in that section
are specific to the 3-prime setting.

Assume first that �M |A and that there exists a D(M)-grid 	 such that
A ∩ 	 is not M-fibered in any direction. In Sects. 5 and 6, we prove that
A∩	 must then contain at least one of two special structures, either diagonal
boxes (Proposition 5.2) or an extended corner (Proposition 5.5). Large parts
of the argument are combinatorial and apply to all A ⊂ ZM such that �M |A;
however, to get the full strength of our results, we need to use saturating set
techniques, hence the tiling assumption is necessary.
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Some of our technical tools work only when all the “top differences” are
divisors of A, i.e.,

{m : D(M)|m|M} ⊂ Div(A). (3.2)

We therefore must pay special attention to the cases where (3.2) fails. A classi-
fication of such structures is provided in Sect. 6. This analysis is also needed in
the fibered case (Theorem 3.2) when fibering, or lack thereof, on lower scales
must be considered.

We resolve diagonal boxes and extended corner structures in Sects. 7 and 8,
respectively. In Theorem 7.1, we prove that if A∩ 	 contains diagonal boxes,
then A is T2-equivalent to either 	 (in which case we are done) or to another
tile A′ containing an extended corner. We then prove in Theorem 8.1 that if
A ∩ 	 contains an extended corner structure, then A is T2-equivalent to 	.
Theorem 3.1 follows by combining Theorem 7.1 and Theorem 8.1.

The main idea of that part of the proof is that all such tilings can be obtained
via fiber shifts (Lemma 2.11) from the tiling

A� ⊕ B = ZM , (3.3)

where A� = 	(0, D(M)). In the case when B = B� is the standard tiling
complement with �pi�p j�pk |B�, tilings of this type were constructed by
Szabó ( [44]; see also [26]).We prove that all tilings satisfying the assumptions
of Theorems 3.1 must in fact come from constructions of this type. Starting
with an unfibered grid in the given tiling, and using saturating set methods, we
are able to locate the shifted fibers and shift them back into place, returning
to (3.3). This proves (T2) and provides full information about the structure of
the tiling.

In Sect. 9, we consider the fibered case. In the simple casewhen the entire set
A is M-fibered in the same direction, we can apply Corollary 2.7 and be done;
however, it is possible for A to be fibered in different directions on different
D(M)-grids. The proof breaks down into cases, according to how the fibers
in different directions interact.

Suppose first that there exists an element a0 ∈ A such that (3.1) holds. This
case turns out to be similar to that of unfibered grids and is resolved by similar
methods, ending in T2-equivalence to (3.3).

Assumenow that no such element exists.Ourmain intermediate result in this
case is that, in fact, only two fibering directions are allowed (see Theorem 9.1
for more details). This breaks down further into cases according to fibering
properties and cyclotomic divisibility, with each case terminating in either
the subgroup reduction (Theorem 2.5) or slab reduction (Theorem 2.6 and
Corollary 2.7).
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While our final result is restricted to the case when M = p2i p
2
j p

2
k is odd,

many of our methods and intermediate results apply under weaker assump-
tions.Whenever a significant part of the argument can be run in a more general
casewith little or no additional effort, we do so, assuming thatM = pnii p

n j
j pnkk

for more general ni , n j , nk ≥ 2 and pi , p j , pk ≥ 2. For example, the classi-
fication of unfibered grids in Sects. 5 and 6 allows all nν to be arbitrary and
M to be either odd or even. The resolution of the pi extended corner case in
Sect. 8 works for both odd and even M , with ni ≥ 2 arbitrary and with only a
few additional lines needed to accommodate the even case. On the other hand,
the arguments in Sect. 9 are limited to the odd M = p2i p

2
j p

2
k case from the

beginning.
In the follow-up article [25], we prove that our main conclusions continue

to hold in the even case. However, many of our technical tools work differ-
ently when one of the primes is equal to 2. We would like to draw the reader’s
attention to the basic fibering argument in Lemma 4.9. This argument does not
work when pi = 2, and indeed, in Sect. 6 we provide examples of unfibered
grids in the even case where the fibering conclusions of the lemma fail. In par-
ticular, the unfibered structures in Lemma 6.6 do not have a counterpart in the
odd case. Additionally, with fewer geometric restrictions coming from (2.4),
saturating set arguments can be more difficult to run. In [25], we compensate
for this by introducing additional new methods.

The constraint ni = n j = nk = 2 is often needed in arguments based
on divisor exclusion. For example, while (2.4) provides geometric restrictions
on saturating sets, we often need additional constraints based on availability
of divisors, and with ni = n j = nk = 2 there are fewer divisors available to
begin with. In the fibered case, several of our proofs terminate in an essentially
2-dimensional (therefore easier) problem after we have run out of scales in one
direction. In order to allow arbitrary ni , n j , nk throughout the argument, we
expect that a systematic way to induct on scales may be necessary.

4 Toolbox

4.1 Divisors

The first lemma is Lemma 8.9 of [24], specialized to the 3-prime case.

Lemma 4.1. (Enhanced divisor exclusion) Let A ⊕ B = ZM, with M =∏
ι∈{i, j,k} p

nι
ι . Let m = ∏

ι∈{i, j,k} p
αι
ι and m′ = ∏

ι∈{i, j,k} p
α′

ι
ι , with 0 ≤

αι, α
′
ι ≤ nι. Assume that at least one of m,m′ is different from M, and that for

every ι ∈ {i, j, k} we have

either αι �= α′
ι or αι = α′

ι = nι. (4.1)
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Then for all x, y ∈ ZM we have

A
M
m [x] A

M
m′ [x] B

M
m [y] B

M
m′ [y] = 0.

In other words, there are no configurations (a, a′, b, b′) ∈ A × A × B × B
such that

(a − x, M) = (b − y, M) = m, (a′ − x, M) = (b′ − y, M) = m′.
(4.2)

Proof. If we did have a configuration as in (4.2), then, under the assumption
(4.1) for all ι, we would have

(a − a′, M) = (b − b′, M) =
∏

ι∈{i, j,k}
p
min(αι,α

′
ι)

ι ,

with the right side different fromM . But that is prohibited by divisor exclusion.
��

4.2 Cyclotomic divisibility

Lemma 4.2. Let A ∈ M(ZM), and let m, s|M with s �= 1. Suppose that for
every a ∈ A, �s divides A ∩ 	(a,m). Then �s |A.
Proof. Write ZM = ⋃

ν 	ν , where 	ν are pairwise disjoint m-grids. Accord-
ingly, A(X) = ∑

ν Aν(X), where Aν = A ∩ 	ν . If A is disjoint from 	ν , we
have Aν(X) ≡ 0. If on the other hand A ∩ 	ν �= ∅, then �s |Aν . Summing up
in ν, we get �s |A. ��

The next two lemmas are based on a combinatorial interpretation of divis-
ibility by prime power cyclotomics. For A ⊂ ZM and 1 ≤ α ≤ ni , we have
�pα

i
(X)|A(X) if and only if

|A ∩ �(x, pα
i )| = 1

pi
|A ∩ �(x, pα−1

i )| ∀x ∈ ZM , (4.3)

so that the elements of A are uniformly distributedmod pα
i within each residue

class mod pα−1
i . This in particular limits the number of elements that a tiling

set may have in a plane on some scale.

Lemma 4.3. (Plane bound) Let A ⊕ B = ZM, where M = pnii p
n j
j pnkk and

|A| = pβi
i p

β j
j pβk

k . Then for every x ∈ ZM and 0 ≤ αi ≤ ni we have

|A ∩ �(x, pni−αi
i )| ≤ pαi

i p
β j
j pβk

k .
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386 I. Łaba, I. Londner

Corollary 4.4. Let A ⊕ B = ZM, where M = pnii p
n j
j pnkk and |A| =

pβi
i p

β j
j pβk

k with βi > 0. Suppose that for some x ∈ ZM and 1 ≤ α0 ≤ ni

|A ∩ �(x, pni−α0
i )| > pβi−1

i p
β j
j pβk

k , (4.4)

then �
p
ni−α

i
|A for at least one α ∈ {0, . . . , α0 − 1}.

Proof. Suppose that �
p
ni−α

i
� A for all α ∈ {0, . . . , α0 − 1}. It follows that

there must exist a γ with α0 ≤ γ ≤ ni such that �p
ni−γ

i
|A. The latter implies,

by (4.3) and (4.4), that |A| >
∏

ν pβν
ν , which is a contradiction. ��

4.3 Saturating sets

Lemma 4.5. (No missing joints) Let A ⊕ B = ZM, where M = pnii p
n j
j pnkk .

Suppose that

{D(M)|m|M} ∩ Div(B) = {M}, (4.5)

and that for some x ∈ ZM there exist ai , a j , ak ∈ A such that

(x − ai , M) = M/pi , (x − a j , M) = M/p j , (x − ak, M) = M/pk .

(4.6)

Then x ∈ A.

Proof. Suppose that x /∈ A, and let � be the M-cuboid with vertices
x, ai , a j , ak . By (4.6) and (2.5), we have the saturating set inclusions

Ax ⊂ �(x, pnν
ν ) ∪ �(aν, p

nν
ν ) for each ν ∈ {i, j, k}.

Taking the intersection, we see that Ax is contained in the vertex set of �. But
that is impossible by (4.5). ��
Lemma 4.6. (Flat corner) Let A ⊕ B = ZM, where M = p2i p

n j
j pnkk and

|A| = pi p j pk. Suppose that (4.5) holds, and that A contains the following
3-point configuration: for some x ∈ ZM\A there exist a, a j , ak ∈ A such that

(a − a j , M) = (ak − x, M) = M/p j , (a − ak, M)

= (a j − x, M) = M/pk (4.7)

Then Ax ⊂ 
i (x), and the pair (A, B) has a (1, 2)-cofibered structure in the
pi direction, with an M-cofiber in A at distance M/p2i from x.
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The Coven–Meyerowitz tiling conditions 387

Proof. Fix b ∈ B. By (4.7) and (2.5), we have

Ax,b ⊂ �(x, pnν
ν ) ∪ �(aν, p

nν
ν ) for each ν ∈ { j, k}.

Taking the intersection, we see that

Ax,b ⊂ 
i (x) ∪ 
i (a) ∪ 
i (a j ) ∪ 
i (ak).

By (4.5), we have the following.

• Ax,b ∩ 
i (x) �= ∅ implies that AM/p2i
[x]BM/p2i

[b] > 0, hence

M/p2i p j , M/p2i pk, M/p2i p j pk ∈ Div(A) and M/p2i ∈ Div(B).

(4.8)

• Ax,b ∩ 
i (a) �= ∅ implies that AM/p2i p j pk
[x |
i (a)]BM/p2i p j pk

[b] > 0,
hence

M/p2i , M/p2i p j , M/p2i pk ∈ Div(A) and M/p2i p j pk ∈ Div(B).

• Ax,b ∩ 
i (a j ) �= ∅ implies that AM/p2i pk
[x |
i (a j )]BM/p2i pk

[b] > 0, hence

M/p2i , M/p2i p j , M/p2i p j pk ∈ Div(A) and M/p2i pk ∈ Div(B).

• Ax,b ∩ 
i (ak) �= ∅ implies that AM/p2i p j
[x |
i (ak)]BM/p2i p j

[b] > 0, hence

M/p2i , M/p2i pk, M/p2i p j pk ∈ Div(A) and M/p2i p j ∈ Div(B).

It follows from divisor exclusion that Ax,b cannot intersect more than one of
the above lines. We now show it cannot intersect any line other than 
i (x). To
this end, it suffices to prove that neither one of the following can hold:

Ax,b ⊂ 
i (a), (4.9)

Ax,b ⊂ 
i (aν) for some ν ∈ { j, k}. (4.10)

Assume for contradiction that (4.9) holds. It follows from (2.1) that

1 =
∑

m|M

1

φ(M/m)
Am[x |
i (a)]Bm[b],
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and by (4.5), the only contributing divisor can be m = M/p2i p j pk . Hence

φ(p2i p j pk) = AM/p2i p j pk
[x |
i (a)]BM/p2i p j pk

[b]
= AM/p2i

[a]
∑

y:(y−b,M)=M/p j pk

BM/p2i
[y].

Observe that AM/p2i
[a] ≤ φ(p2i ). Since M/pi , M/p2i /∈ Div(B), we have

BM/p2i
[y] ≤ 1 for all y ∈ ZM \ B with (y − b, M) = M/p j pk . It follows

that both must hold with equality. Now, if pi > p j then AM/p2i
[a] = φ(p2i )

implies that

|A ∩ �(a, pnkk )| ≥ |{a}| + AM/p2i
[a]

= 1 + φ(p2i ) > pi p j ,

which contradicts Lemma 4.3. The same argument works if pi > pk , with
the j and k indices interchanged. It remains to consider the case when pi <

min(p j , pk). In this case we have φ(p2i ) < φ(p j pk), so that there are y1 �= y2
with y1 − b, M) = (y2 − b, M) = M/p j pk , and b1, b2 ∈ B with (y1 −
b1, M) = (y2 − b2, M) = M/p2i , such that y1 − b1 = y2 − b2. But then
M/p j pk divides b1 − b2, contradicting (4.5). Hence (4.9) cannot be true.
Next, assume that (4.10) holds with ν = k, so that Ax,b ⊂ 
i (ak). In this

case, (2.1) implies that

1 =
∑

m|M

1

φ(M/m)
Am[x |
i (ak)]Bm[b],

and by (4.5), the only contributing divisor can be m = M/p2i p j . Hence

φ(p j p
2
i ) = AM/p2i p j

[x |
i (ak)]BM/p2i p j
[b]

= AM/p2i
[ak]

∑

y:(y−b,M)=M/p j

BM/p2i
[y].

By the same argument as above, we deduce that AM/p2i
[ak] = φ(p2i ) and

BM/p2i
[y] = 1 for all y ∈ ZM\B with (y−b, M) = M/p j .When pi > p j , we

therefore get |A ∩ �(ak, p
nk
k )| > pi p j , which contradicts Lemma 4.3. When

pi < p j , we haveφ(pi ) < φ(p j ), so that there are y1 �= y2 with (y1−b, M) =
(y2 − b, M) = M/p j , and b1, b2 ∈ B with (y1 − b1, M) = (y2 − b2, M) =
M/p2i , such that pi |b1 − b2. Hence M/pi p j divides b1 − b2, contradicting
(4.5). This proves that Ax,b ∩ 
i (ak) = ∅. By symmetry, Ax,b ∩ 
i (a j ) = ∅.
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The Coven–Meyerowitz tiling conditions 389

We have proved that Ax ⊂ 
i (x), as claimed. If we know that M/pi ∈
Div(A), the cofibered structure statement now follows immediately from
Lemma 2.12 with ν = i . If we only assume that (4.5) holds, we still have
M/pi /∈ Div(B), so that (2.1) implies

AM/p2i
[x]BM/p2i

[b] = φ(p2i ) for all b ∈ B. (4.11)

Moreover, since M/pi /∈ Div(B) and (by (4.8)) M/p2i /∈ Div(A), we must
have AM/p2i

[x] ≤ pi and BM/p2i
[b] ≤ φ(pi ) for each b ∈ B. By (4.11), both

must hold with equality. This implies the desired cofibered structure, with the
cofiber in A equal to A ∩ 
i (x). ��

4.4 Fibering lemmas

Lemma 4.7 below is a simple version of the de Bruijn-Rédei-Schoenberg
theorem for cyclic groups ZN , where N has at most two distinct prime factors.
This was essentially proved in [3]; see also [29, Theorem 3.3].

Lemma 4.7. (Cyclotomic divisibility for 2 prime factors) Let A ∈ M(ZN )

for some N | M, M = pnii p
n j
j pnkk such that pi � N. Then:

(i) �N |A if and only if A is a linear combination of N-fibers in the p j and
pk direction with non-negative integer coefficients.

(ii) Let 	 be a D(N )-grid. Assume that �N |A, and that there exists c0 ∈ N

such that A
N
N [x] ∈ {0, c0} for all x ∈ 	. Then A ∩ 	 is N-fibered in either

the p j or the pk direction.

Lemma 4.8 is a localized version of the above.

Lemma 4.8. (Flat cuboids) Let A ⊂ ZM. Assume that �M |A, and that there
is a plane � := �(z, pnii ) such that A ∩ � is a disjoint union of M-fibers
in the p j and pk directions. Then for every parallel plane �′ := �(z′, pnii ),
where (z − z′, M) = M/pi , the set A ∩ �′ is a disjoint union of M-fibers in
the p j and pk directions.

Proof Consider a 2-dimensional cuboid �′ with vertices x ′, x ′ + d j , x ′ +
dk, x ′ + d j + dk , where x ′ ∈ �′, (d j , M) = M/p j , (dk, M) = M/pk .
Let x ∈ � be the point such that (x − x ′, M) = M/pi , and let � be the
2-dimensional cuboid with vertices x, x + d j , x + dk, x + d j + dk . By the
fibering property of A ∩ �, we have AM [�] = 0. Since �M |A, we also have
AM [�−�′] = 0, henceAM [�′] = 0. If we consider A∩�′ (after translation)
as a subset of ZM/p

ni
i
, it follows that �M/p

ni
i

| (A ∩ �′)(X). By Lemma 4.7,

A ∩ �′ is a union of fibers as claimed. ��
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390 I. Łaba, I. Londner

Lemma 4.9. (Missing topdifference impliesfibering)Let N |Mwith pi p j pk |N.
Let 	 := 	(x0, D(N )) for some x0 ∈ ZN . Assume that A ⊂ ZM satisfies
�N |A and 	 ∩ A �= ∅. Assume further that there exists a constant c0 ∈ N

such that

A
N
N [x] ∈ {0, c0} for all x ∈ ZN .

(i) Suppose that pi �= 2, and that

N/pi /∈ DivN (A ∩ 	). (4.12)

Then A ∩ 	 is N-fibered in one of the p j and pk directions. In particular, if
N/pi /∈ DivN (A), then A ∩ 	 is N-fibered in one of the p j and pk directions
for every D(N )-grid 	.

(ii) Suppose that N/pi , N/p j /∈ DivN (A∩	). Then A∩	 is N-fibered in
the pk direction.

Proof. (i) We will assume that c0 = 1 and identify A with the set A mod N in
ZN . (The general case is identical, except that every element of A mod N has
multiplicity c0 instead of 1.)

We first prove that each a ∈ A∩	 belongs to an N -fiber in the pν direction
for at least one ν ∈ { j, k}. Suppose, for contradiction, that there exists an
a ∈ A ∩ 	 that does not have this property. Then there are x j , xk ∈ ZN\A
such that

(x j − a, N ) = N/p j , (xk − a, N ) = N/pk .

Since pi > 2 and A
N
N/pi

[a] = 0, there exist at least two distinct elements
xi , x ′

i ∈ ZN \ A satisfying

(a − xi , N ) = (a − x ′
i , N ) = N/pi .

Consider two N -cuboids in ZN , each with vertices at a, x j , xk , and with
another vertex at xi and x ′

i respectively. By the cyclotomic divisibility assump-
tion, each of those cuboids must be balanced. This can only happen if there
are two elements ai jk, a′

i jk ∈ A at the opposite vertex of each cuboid from a
(that is, with (a − ai jk, N ) = (a − a′

i jk, N ) = D(N )). However, this leads
to a contradiction, since (ai jk − a′

i jk, N ) = N/pi . We therefore conclude that
each a ∈ A ∩ 	 belongs to an N -fiber in at least one direction as indicated.

Next, suppose that a j , ak ∈ A ∩ 	 belong to N -fibers in, respectively,
the p j and pk direction. If a j ∗ Fj and ak ∗ Fk do not intersect, then N/pi ∈
DivN (a j ∗Fj , ak ∗Fk), contradicting the assumption (4.12).Wemay therefore
assume that a j = ak = a and that a ∗ Fj , a ∗ Fk ⊂ A.
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The Coven–Meyerowitz tiling conditions 391

Consider any N -cuboid with one vertex at a. Then the vertices at distance
N/p j and N/pk from a belong to A, and, by (4.12), the vertices at distance
N/pi p j and N/pi pk from a cannot be in A. The only way to balance the
cuboid is for the vertex at distance N/p j pk from a to be in A. Allowing
such cuboids to vary, we see that a ∗ Fj ∗ Fk ⊂ A. This also implies that
A cannot have any other elements in 	, since that would contradict (4.12).
Hence A ∩ 	 = a ∗ Fj ∗ Fk is N -fibered in both of the p j and pk directions.
This proves part (i) of the lemma.

(ii) Assume that N/pi , N/p j /∈ DivN (A ∩ 	). At least one of pi , p j must
be odd; without loss of generality, we may assume that pi �= 2. By part (i)
of the lemma, A ∩ 	 must be N -fibered in at least one of the p j and pk
directions on 	. However, it cannot be N -fibered in the p j direction, since
N/p j /∈ DivN (A ∩ 	). Part (ii) follows. ��

5 Structure on unfibered grids

5.1 Diagonal boxes

Throughout this section, we will use the following notation. Let M =
pnii p

n j
j pnkk , and let 	 be a fixed D(M)-grid such that A∩	 �= ∅. We identify

	 with Zpi ⊕ Zp j ⊕ Zpk , and represent each point x ∈ 	 as (λi x, λ j x, λk x)
in the implied coordinate system.

Definition 5.1. Let A ⊂ ZM . We say that A∩	 contains diagonal boxes (see
Fig. 2) if there are nonempty sets I ⊂ Zpi , J ⊂ Zp j , K ⊂ Zpk , such that

I c := Zpi \ I, J c := Zp j \ J, Kc := Zpk \ K

are also nonempty, and

(I × J × K ) ∪ (I c × J c × Kc) ⊂ A ∩ 	.

Proposition 5.2. Let A⊕ B = ZM, where M = pnii p
n j
j pnkk , and assume that

�M | A. Suppose that there is a D(M)-grid 	 such that A ∩ 	 is not a union
of disjoint M-fibers (possibly in different directions). Then A ∩ 	 contains
diagonal boxes.

Proof. Write D = D(M) for short. We first construct a set A0 ⊂ A ∩ 	 as
follows. If A∩	 contains no M-fibers, let A0 := A∩	. If A∩	 does contain
an M-fiber F , consider the set (A∩	)\F (if there is more than one such fiber,
just choose one arbitrarily and remove it). If this set contains no M-fibers, we
let A0 be that set; otherwise continue by induction. The procedure terminates
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Fig. 2 A pair of diagonal
boxes

I

J

K

Ic

J c

Kc

when no more M-fibers can be found. The remaining set A0 is nonempty by
our assumption on A, contains no M-fibers, and �M |A0; however, A0 need
not be a tiling complement.

We remark that A0 is not necessarily uniquely determined by A, as the fiber
removal procedure may lead to different outcomes depending on the order in
which fibers are removed. In that event, we fix one such set A0 and keep it
fixed throughout the proof.

For future reference, we record a lemma.

Lemma 5.3. Suppose that x ∈ A \ A0. Then there exists a ν ∈ {i, j, k} such
that x ∗ Fν ⊂ A \ A0.

Proof. This follows directly from the construction, since any point x ∈ A\A0
would have been removed from A together with anM-fiber (in some direction)
containing x . ��

For each x ∈ 	, we define

I (x) = {l ∈ Zpi : (l, λ j x, λk x) ∈ A0}, I c(x) = Zpi \ I (x),

J (x) = {l ∈ Zp j : (λi x, l, λk x) ∈ A0}, J c(x) = Zp j \ J (x),

K (x) = {l ∈ Zpk : (λi x, λ j x, l) ∈ A0}, Kc(x) = Zpk \ K (x).

Let a ∈ A0 be an element such that |K (a)| is maximal, in the sense that

|K (a′)| ≤ |K (a)| ∀a′ ∈ A0. (5.1)
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The Coven–Meyerowitz tiling conditions 393

By translational invariance, we may assume that a = (0, 0, 0). Observe that
I (a), J (a), K (a) are all nonempty since a ∈ A0, and I c(a), J c(a), Kc(a) are
all nonempty since a does not belong to an M-fiber in A0 in any direction.

Claim 1. For all a′ = (0, 0, l) ∈ A0, with l ∈ K (a), we have I (a′) × J (a′) ×
{l} ⊂ A0.

Proof. Since K (a′) = K (a), it suffices to prove this with a′ = a. If |I (a)| = 1
or |J (a)| = 1, there is nothing to prove.Assumenow thatmin(|I (a)|, |J (a)| ≥
2. Letai = (li , 0, 0) anda j = (0, l j , 0) for some li ∈ I (a)\{0}, l j ∈ J (a)\{0},
and let z = (li , l j , 0) ∈ I (a) × J (a) × {0}. We need to prove that z ∈ A0.
Suppose, for contradiction, that z /∈ A0, and consider the cuboid with vertices
at a, ai , a j , and (0, 0, lk). For lk ∈ K (a), the cuboid can only be balanced if
both (li , 0, lk) and (0, l j , lk) are elements of A0. Furthermore, let lk ∈ Kc(a),
then for the cuboid to be balanced we still need at least one of (li , 0, lk) and
(0, l j , lk) to be in A0. This implies that max(|K (ai )|, |K (a j )|) > |K (a)|,
contradicting the maximality assumption (5.1). Hence Claim 1 follows. ��
Claim 2. For all a′ = (0, 0, l) ∈ A0 with l ∈ K (a),we have I c(a′)× J c(a′)×
Kc(a) ⊂ A0.

Proof. Let x ∈ I c(a′) × J c(a′) × Kc(a). Considering the M-cuboid with
opposite vertices at a′ and x , we see that the three vertices at distance
M/pi , M/p j , M/pk from a′ are not in A0. Hence, in order for the cuboid
to be balanced, we must have x ∈ A0 as claimed. ��
Claim 3. Suppose that for all l ′, l ′′ ∈ K (a), we have either (I (a′) × J (a′)) ⊆
(I (a′′)× J (a′′)) or (I (a′′)× J (a′′)) ⊆ (I (a′)× J (a′)), where a′ = (0, 0, l ′),
a′′ = (0, 0, l ′′). Then A0 contains diagonal boxes.

Proof. Under the assumptions of the claim, the sets I (a′)× J (a′)with a′ ∈ A0
and M/pk | a − a′ have a minimal element. Without loss of generality, we
may assume that

(I (a) × J (a)) ⊆ (I (a′) × J (a′)) ∀a′ ∈ A0 such that M/pk | a − a′.

Then Claims 1 and 2 imply that A0 (and therefore A) contains the diagonal
boxes

(I (a) × J (a) × K (a)) ∪ (I c(a) × J c(a) × Kc(a)),

which proves the claim. ��
It remains to consider the case when there exist l ′, l ′′ ∈ K (a) such that for

a′ = (0, 0, l ′), a′′ = (0, 0, l ′′), we have

I (a′) �⊂ I (a′′) and J (a′′) �⊂ J (a′). (5.2)
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For this to be possible, K (a)must have at least two distinct elements, and each
of I (a′) and J (a′′)must have at least one element different from 0. Since none
of a, a′, a′′ belongs to an M-fiber in A0, we must have

pi , p j , pk > 2.

Furthermore, this configuration implies that

{m : D|m|M} ⊂ Div(A0) ⊂ Div(A ∩ 	). (5.3)

Indeed, we have

{m : D|m|M} \ {M/pi p j }
⊂ Div((I (a′) × J (a′) × {l ′}) ∪ (I (a′′) × J (a′′) × {l ′′})),
M/pi p j ∈ Div(I c(a′) × J c(a′) × {lk}, I c(a′′) × J c(a′′) × {lk})
for any lk ∈ Kc(a).

Claim 4. Suppose that (5.2) holds for some l ′, l ′′ ∈ K (a), with a′ = (0, 0, l ′),
a′′ = (0, 0, l ′′). Then

I c(a′′) × J c(a′) × Kc(a) ⊂ A0.

Proof. We may assume that a′′ = a and l ′′ = 0. We will also write lk = l ′,
so that a′ = (0, 0, lk) Let li ∈ I (a′)\I (a), l j ∈ J (a)\J (a′), lci ∈ I c(a′) and
lcj ∈ J c(a). We also fix lck ∈ Kc(a). For the purpose of this proof, we will
need to consider points with coordinates (βi , β j , βk) such that

βν ∈ {0, lν, lcν} for ν ∈ {i, j, k}.
Let xi := (li , 0, 0), x j := (0, l j , lk), and ai := (li , 0, lk), a j := (0, l j , 0).
Then xi , x j /∈ A0, and ai , a j ∈ A0. By Claim 2, we have

zi := (lci , l j , l
c
k) ∈ A0 since l j ∈ J c(a′),

z j := (li , l
c
j , l

c
k) ∈ A0 since li ∈ I c(a),

(5.4)

Let z = (li , l j , lck) ∈ I c(a) × J c(a′) × Kc(a) be the point such that

(z − zi , M) = M/pi , (z − z j , M) = M/p j . (5.5)

We need to prove that

z ∈ A0. (5.6)
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It is tempting at this point to try to apply theflat corner argument to z, with the
flat corner configuration given by zi , z j , and zi j := (lci , l

c
j , l

c
k). Unfortunately,

we do not know that A0 is a tiling complement. This means that an additional
argument is required even in the basic case ni = n j = nk = 2. With more
work, we are also able to extend that argument to more general ni , n j , nk .

We begin with the following reduction.

Claim 4’. Let xi j = (li , l j , 0) and yi j = (li , l j , lk). Suppose that at least one
of the following holds: either

{xi j , yi j } ∩ A �= ∅, (5.7)

or else there exists a set A′ ⊂ ZM , identical to A except possibly along the
line 
 j (xi ), such that A′ ⊕ B = ZM and

xi ∗ Fj ⊂ A′, hence xi j ∈ A′. (5.8)

Then z ∈ A0.

Proof. For notational consistency, if (5.7) holds, we let A′ = A. We have

(xi j − z, M) = (yi j − z, M) = M/pk . (5.9)

Suppose that at least one of xi j , yi j belongs to A′. By (5.5) and (5.3), the
assumptions of Lemma 4.5 hold for z and A′. Hence z ∈ A′. Since A′ and A
may differ only along 
 j (xi ), we must in fact have z ∈ A.

Next,we claim that z ∈ A0. Indeed, assume for contradiction that z ∈ A\A0.
By Lemma 5.3, there is a ν ∈ {i, j, k} such that z ∗ Fν ⊂ (A \ A0). But by
(5.4) and (5.5), zi ∈ (z ∗Fi )∩ A0 and z j ∈ (z ∗Fj )∩ A0. It follows that ν = k,
and z ∗ Fk ⊂ (A \ A0). By (5.9), we have xi j , yi j ∈ z ∗ Fk , and in particular
xi j , yi j ∈ A.

Consider now the point xi . We have

(xi − a, M) = M/pi , (xi − ai , M) = M/pk, (xi − xi j , M) = M/p j ,

(5.10)

with a, a′ ∈ A0, xi j ∈ A. Taking also (5.3) into account, we see that xi satisfies
the assumptions of Lemma 4.5 applied to A. Therefore xi ∈ A.

Since xi /∈ A0, we must have xi ∈ A \ A0. By Lemma 5.3 and (5.10), it
follows that xi ∗ Fj ⊂ A \ A0. However, consider the point xi j ∈ xi ∗ Fj . We
have already seen that z must have been removed from A together with the
fiber z ∗ Fk , which also contains xi j . This is a contradiction, since we are not
allowed to remove the same point twice. ��
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396 I. Łaba, I. Londner

To prove Claim 4, it remains to prove that at least one of (5.6), (5.7), (5.8)
must hold. Assume first that xi ∈ A \ A0. By Lemma 5.3, A \ A0 must contain
an M-fiber xi ∗ Fν for some ν ∈ {i, j, k}. Since a ∈ (xi ∗ Fi ) ∩ A and
ai ∈ (xi ∗ Fk) ∩ A, we must have ν = j . This clearly implies xi j ∈ A. The
same argument applies with i and j interchanged.

We are left with the case when (5.6) fails and

xi , x j , xi j , yi j /∈ A. (5.11)

Consider the M-cuboid with vertices at xi j , z, zi and z j , and note that zi , z j ∈
A0. In order to balance this cuboid in A0, at least one of the points yi :=
(lci , l j , 0) and y j := (li , lcj , 0) must be in A0. However, if y j ∈ A0, then
we can apply Lemma 4.5 again, this time to A and xi , using (5.3), (5.10),
and (xi − y j , M) = M/p j . Hence xi ∈ A. This, however, contradicts the
assumption (5.11) of this case.

We therefore have yi ∈ A0. Now, considering the saturating set Axi , we
claim that

Axi ⊂
⋂

â∈{a,ai ,z j ,yi }
Bispan(xi , â) = 
 j (xi ) ∪ {a, a′, ai , a j , (li , l

c
j , lk)}.

(5.12)

To prove this, we argue as follows. The first inclusion follows from Lemma 2.8
(ii), since a, ai , z j , yi ∈ A. We now prove the second part of the formula. By
(2.5) applied to xi , a and ai we have

Axi ⊂ Bispan(xi , a) ∩ Bispan(xi , ai )

=
(
�(xi , p

ni
i ) ∪ �(a, pnii )

)
∩

(
�(xi , p

nk
k ) ∪ �(ai , p

nk
k )

)

= 
 j (a) ∪ 
 j (a
′) ∪ 
 j (ai ) ∪ 
 j (xi ).

(5.13)

By (2.3), we have

Bispan(xi , yi ) = �(xi , p
ni
i ) ∪ �(xi , p

n j
j ) ∪ �(yi , p

ni
i ) ∪ �(yi , p

n j
j ).

Taking the intersection with (5.13), we get

Axi ⊂ 
 j (ai ) ∪ 
 j (xi ) ∪ {a, a′, a j , x j }.

Finally,

Bispan(xi , z j ) = �(xi , p
n j
j ) ∪ �(xi , p

nk
k ) ∪ �(z j , p

n j
j ) ∪ �(z j , p

nk
k ).
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Taking the intersection again, we get (5.12).
By (5.3), we must in fact have Axi ⊂ 
 j (xi ). Hence Axi satisfies the condi-

tions of Lemma 2.13. In particular, (2.6) holds with some γ ≥ 2, and Axi is a
disjoint union of M-fibers in the p j direction. Applying Lemma 2.13 (iii) to
shift Axi to xi , we obtain a set A′ with the desired properties, thus concluding
the proof of Claim 4. ��

We can now complete the proof of the proposition. We claim that

(I × J × K ) ∪ (I c × J c × Kc) ⊂ A0,

where

I =
⋂

l∈K (a)

I (al), J =
⋂

l∈K (a)

J (al), K = K (a),

I c =
⋃

l∈K (a)

I c(al), J c =
⋃

l∈K (a)

J c(al), Kc = Kc(a),

andal = (0, 0, l). It is clear that I×J×K ⊂ A0. Suppose now that (li , l j , lk) ∈
I c× J c×Kc. Then there are l, l ′ ∈ K (a) such that li ∈ I c(al) and l j ∈ J c(al ′).
If l = l ′, or if li ∈ I c(al ′), then (li , l j , lk) ∈ A0 by Claim 2 applied to al ′ .
The case l j ∈ J c(al) is similar. Assume therefore that li ∈ I (al ′)\I (al) and
l j ∈ J (al)\J (al ′). But then (5.2) holdswitha′, a′′ replaced byal, al ′ . Applying
Claim 4, we see that (li , l j , lk) ∈ A0 in that case as well. This ends the proof
of the proposition. ��

5.2 Extended corners

We continue to write M = pnii p
n j
j pnkk . Assume that A ⊕ B = ZM , �M | A,

and there exists a D(M)-grid 	 such that A ∩ 	 �= ∅ and A ∩ 	 is not M-
fibered in any direction. By Proposition 5.2, if A∩	 is not a union of disjoint
M-fibers, then A∩ 	 contains diagonal boxes. It remains to consider the case
when A ∩ 	 is a union of disjoint M-fibers. In that case, we claim that A ∩ 	

contains the following structure.

Definition 5.4. Suppose that A ⊂ ZM , and let 	 be a D(M)-grid.

(i) We say that A∩ 	 contains a pi corner if there exist a, ai ∈ A∩ 	 with
(a − ai , M) = M/pi satisfying

A ∩ (a ∗ Fj ∗ Fk) = a ∗ Fj , A ∩ (ai ∗ Fj ∗ Fk) = ai ∗ Fk .

(ii) We say that A ∩ 	 contains a pi extended corner if there exist a, ai ∈
A ∩ 	 such that (a − ai , M) = M/pi and

123



398 I. Łaba, I. Londner

• A ∩ (a ∗ Fj ∗ Fk) is M-fibered in the p j direction but not in the pk
direction,

• A ∩ (ai ∗ Fj ∗ Fk) is M-fibered in the pk direction but not in the p j
direction.

Wenowprove that unfibered grids as described abovemust contain extended
corners.

Proposition 5.5. Let D = D(M), and let 	 be a D-grid. Assume that A ∩ 	

is a union of disjoint M-fibers, but is not fibered in any direction. Then A ∩ 	

contains a pν extended corner for some ν ∈ {i, j, k}.
Proof. Fix A and 	 as in the statement of the proposition. We will say that
κ : A ∩ 	 → {i, j, k} is an assignment function if A ∩ 	 can be written as

A ∩ 	 =
⋃

a∈A∩	

(a ∗ Fκ(a)),

where for any a, a′ ∈ A ∩ 	, the fibers a ∗ Fκ(a) and a′ ∗ Fκ(a′) are either
identical or disjoint. Thus, if a′ ∈ a ∗ Fκ(a), then κ(a′) = κ(a).

We recall [24, Proposition 7.10]:

Proposition 5.6. Let M = pnii p
n j
j pnkk , and let D = D(M). Assume that A ⊕

B = ZM and that there exists a D-grid	 such that A∩	 is a nonempty union
of disjoint M-fibers. Then there is a subset {ν1, ν2} ⊂ {i, j, k} of cardinality 2
such that A ∩ 	 is a union of disjoint M-fibers in the pν1 and pν2 directions.

Hence there exists an assignment function κ that takes at most two distinct
values. (In fact, the proof of [24, Proposition 7.10] shows that this is true for
any assignment function.) Without loss of generality, we may assume that
κ(a) ∈ { j, k} for all a ∈ A∩	. We claim that this implies that A∩	 contains
a pi extended corner.

Split 	 into 2-dimensional grids �ι := xι ∗ Fj ∗ Fk , ι = 0, 1, . . . , pi − 1.
Then for each ι, the set A ∩ �ι is a union of disjoint fibers in at least one of
the p j or pk direction. Moreover, we are assuming that A∩	 is not fibered in
either the p j or pk direction. Therefore for each ν ∈ { j, k}, there must be at
least one ι(ν) such that A∩�ι(ν) is fibered only in the pν direction. Choosing
a ∈ A ∩ �ι( j) and ai ∈ A ∩ �ι(k) with (a − ai ) = M/pi , we see that the
condition (ii) of Definition 5.4 is satisfied. ��

A pi corner is a special case of a pi extended corner, with only one fiber
in each of the planes through a and ai in 	. This is one of the special struc-
tures that occur when �M | A, A ∩ 	 is not M-fibered in any direction, and
{D(M)|m|M} �⊂ Div(A) (see Sect. 6).
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In addition to the present purpose of classification of unfibered grids on
scale M , we will also refer to Definition 5.4 (ii) in the fibered case, in the
proofs of Proposition 9.14 (Claim 1) and Lemma 9.30.

6 Unfibered grids with missing top differences

Let A ⊂ ZM , and let 	 be a D(M)-grid such that A∩ 	 �= ∅. The purpose of
this section is to classify all possible unfiberedgrids A∩	under the assumption
that �M |A and that Div(A) does not contain all m such that D(M)|m|M . We
do not assume in this section that A is a tiling complement.

6.1 A structure result

Proposition 6.1. Let M = pnii p
n j
j pnkk . Assume that A ⊂ ZM satisfies �M |A.

Let 	 be a D(M)-grid such that A ∩ 	 �= ∅. Suppose that A ∩ 	 is not
M-fibered in any direction, and that (5.3) fails, i.e.

{m : D(M)|m|M} �⊂ Div(A ∩ 	). (6.1)

Then A ∩ 	 is a union of at most one set of diagonal boxes

A1 = (I1 × J1 × K1) ∪ (I c1 × J c1 × Kc
1), (6.2)

where I1 ⊂ Zpi , J1 ⊂ Zp j , K1 ⊂ Zpk are non-empty sets such that I c1 :=
Zpi \I1, J c1 := Zp j \J1, Kc

1 := Zpk\K1 are also non-empty, and possibly
additional M-fibers in one or more directions, disjoint from A1 and from each
other. Furthermore, if A ∩ 	 does contain a set of diagonal boxes (6.2), then
at least one of the sets I1, J1, K1 has cardinality 1, and at least one of the sets
I c1 , J c1 , Kc

1 has cardinality 1.

Remark 6.2. For simplicity, we only state and prove Proposition 6.1 for sets
A ⊂ ZM . However, if we assume instead that A ∈ M(ZN ) for some N |M ,
and that (6.10) holds (i.e., A ∩ 	 is a multiset of constant multiplicity c0),
the same argument applies except that the diagonal boxes and fibers in the
conclusion also have multiplicity c0.

Proof. We begin as in the proof of Proposition 5.2. Let A0 ⊂ A ∩ 	 be a set
constructed by removingM-fibers from A∩	 until none are left, so that A∩	

is the union of A0 and some number of M-fibers in one or more directions,
disjoint from A0 and from each other. If A0 = ∅, we are done. Otherwise,
we proceed with Claims 1, 2, and 3 from the proof of Proposition 5.2, noting
that this part does not require the use of saturating sets (hence A need not be
a tile). At that point, the only remaining case in the proof of Proposition 5.2
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is when there exist l ′, l ′′ ∈ K (a) such that (5.2) holds. However, in that case
we have (5.3), which contradicts (6.1). Therefore, under the assumptions of
Proposition 6.1, A0 (if nonempty) contains diagonal boxes A1 as in (6.2).
Moreover, the cardinality statement must hold, since otherwise we would not
have (6.1).

As in Proposition 5.2, A0 need not be unique and may depend on the order
in which the fibers are removed, and A1 may then depend on the choice of A0.
We fix one such choice of A0 and A1, and keep it fixed for the remainder of
the proof.

We claim that A0 = A1. To prove this, assume for contradiction that A0\A1
is nonempty. We clearly have �M |A0 and �M |A1, therefore �M |A0(X) −
A1(X). Since the set A0 \ A1 is nonempty and contains no fibers, it must
contain another set of diagonal boxes

A2 = (I2 × J2 × K2) ∪ (I c2 × J c2 × Kc
2),

with obvious notation. Furthermore, since A2 ⊂ A0\A1, we must have

A1 ∩ A2 = ∅. (6.3)

We first claim that at least one of

I1 = I2, I1 = I c2 , J1 = J2, J1 = J c2 , K1 = K2, K1 = Kc
2,

must hold. Indeed, by (6.3), we must have

(I1 × J1 × K1) ∩ (I2 × J2 × K2) = ∅,

so that at least one of I1 ∩ I2, J1 ∩ J2, K1 ∩ K2 is empty. Without loss of
generality, we may assume that K1 ∩ K2 = ∅, so that

K1 ⊂ Kc
2, K2 ⊂ Kc

1 . (6.4)

We also have

(I1 × J1 × K1) ∩ (I c2 × J c2 × Kc
2) = ∅,

and since K1 ∩ Kc
2 �= ∅, one of I1 ∩ I c2 and J1 ∩ J c2 is empty. Without loss of

generality, we may assume that J1 ∩ J c2 = ∅, so that

J1 ⊂ J2, J c2 ⊂ J c1 . (6.5)
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Next,

(I c1 × J c1 × Kc
1) ∩ (I c2 × J c2 × Kc

2) = ∅.

By (6.5), we have J c1 ∩ J c2 �= ∅, therefore one of I c1 ∩ I c2 and Kc
1 ∩ Kc

2 is
empty. If Kc

1 ∩ Kc
2 = ∅, then Kc

2 ⊂ K1, which together with (6.4) shows that
K1 = Kc

2 and proves the claim. If I c1 ∩ I c2 = ∅, we get that

I c1 ⊂ I2, I c2 ⊂ I1. (6.6)

Using that

(I c1 × J c1 × Kc
1) ∩ (I2 × J2 × K2) = ∅.

and taking (6.4) and (6.6) into account, we see that J c1 ∩ J2 = ∅. But then
J2 ⊂ J1, which together with (6.5) proves the claim.
We may assume without loss of generality that

K1 = Kc
2 .

This implies that

(I1 × J1) ∩ (I2 × J2) = ∅ and (I c1 × J c1 ) ∩ (I c2 × J c2 ) = ∅, (6.7)

since otherwise we would have an M-fiber in the pk direction in A0. But also,
considering the box layers with third coordinate l ∈ K1 and l ′ ∈ K2, we have

(I1 × J1) ∩ (I c2 × J c2 ) = ∅ and (I c1 × J c1 ) ∩ (I2 × J2) = ∅, (6.8)

The first parts of (6.7) and (6.8) imply that either

I1 ∩ I2 = J1 ∩ J c2 = ∅, (6.9)

or else the same holds with I, J interchanged. Assume that (6.9) holds. Then
I2 ⊂ I c1 and J c2 ⊂ J c1 , so that in order for the second parts of (6.7) and (6.8)
to hold, we must have

I c1 ∩ I c2 = J c1 ∩ J2 = ∅.

But this implies that I c1 ⊂ I2 and J c2 ⊂ J c1 . Hence I1 = I c2 and J1 = J2. But
then A0 contains M-fibers in the pi direction, a contradiction. ��
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6.2 Special unfibered structures: odd M

Lemma 6.3. Let M = pnii p
n j
j pnkk and N = M/pαi

i p
α j
j pαk

k with αι < nι for
all ι ∈ {i, j, k}. Assume that 2 � M, and that A ∈ M(ZN ) satisfies �N |A. Let
	 be a D(N )-grid such that A ∩ 	 �= ∅. Assume further that
• there exists a c0 ∈ N such that

A
N
N [x] ∈ {0, c0} for all x ∈ 	, (6.10)

• A ∩ 	 is not N-fibered in any direction.

Then there is a permutation of {i, j, k} such that

{D(N )|m|N } \ DivN (A ∩ 	) ⊆ {N/pi p j , N/pi pk}. (6.11)

Moreover, (6.11) holds with equality if and only if there exists x ∈ ZM \ A
such that

A
N
N/pi [x] = c0φ(pi ), A

N
N/p j pk [x] = c0φ(p j pk),

A
N
m [x] = 0 for all m ∈ {D(N )|m|N } \ {N/pi , N/p j pk}.

We will refer to this structure as a pi -full plane (see Fig. 3).

Proof. Wemayassume thatM = N and c0 = 1.Wewill alsowrite D = D(M)

for short. By Proposition 6.1 and the assumption that A ∩ 	 is not fibered,
A ∩ 	 must contain at least one of the following:

(a) two nonintersecting M-fibers in different directions, say pi and p j ,

(b) diagonal boxes as in Definition 5.1, and possibly additional M-fibers in
one or more directions, disjoint from the diagonal boxes and from each other.

Fig. 3 Full plane structure
on a D(M)-grid
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In the first case, we have {D|m|M}\Div(A ∩ 	) ⊆ {M/pi p j }, just based
on these two fibers. It remains to consider the second case. Suppose that A∩	

contains diagonal boxes

(I × J × K ) ∪ (I c × J c × Kc)

with I, J, K , I c, J c, Kc all nonempty. In order for {D|m|M} \Div(A∩ 	) to
be nonempty, we must have

min(|I |, |J |, |K |) = min(|I c|, |J c|, |Kc|) = 1. (6.12)

We may assume without loss of generality that |I c| = |J | = 1. Since pι ≥ 3
for all ι, it follows that |I |, |J c|, and at least one of |K |, |Kc| are greater than
1. Assume that |Kc| > 1. Then

M/pi ∈ Div(I × J × K ),

M/p j , M/pk, M/p j pk ∈ Div(I c × J c × Kc),

M/pi p j pk ∈ Div(I × J × K , I c × J c × Kc).

(6.13)

This implies (6.11). Furthermore, if (6.11) holds with equality, then |K | = 1,
since otherwise we would also have M/pi pk ∈ Div(I × J × K ). This proves
the second conclusion of the lemma, with x equal to the unique element of
I c × J × K . Note that if we add an M-fiber in any direction to this structure,
then equality in (6.11) can no longer hold. ��
Lemma 6.4. Let M = pnii p

n j
j pnkk and N = M/pαi

i p
α j
j pαk

k with αι < nι for
all ι ∈ {i, j, k}. Assume that 2 � M, and that A ∈ M(ZN ) satisfies �N |A. Let
	 be a D(N )-grid such that A ∩ 	 �= ∅. Assume further that

• (6.10) holds for all x ∈ 	,
• A ∩ 	 is not fibered in any direction,

and that

{D|m|N } \ DivN (A ∩ 	) = {N/pi p j }. (6.14)

Then A ∩ 	 has one of the following, mutually exclusive, possible structures:

(i) (pk-corner, see Fig. 4, cf. Definition 5.4 (i).) For each x ∈ ZN , the set
A ∩ 	 ∩ �(x, pnk−αk

k ) is either empty or consists of a single N-fiber in
one of the pi or p j directions. Since A ∩ 	 is not fibered, there has to be
at least one of each.

(ii) (pk-almost corner, see Fig. 5) There exist x0, x1, . . . , xφ(pk) ∈ ZN
with (xl − xl ′, N ) = N/pk for l �= l ′, and two disjoint sets Li ,L j ⊂ Zpk
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Fig. 4 Corner structure on a
D(M)-grid

Fig. 5 An almost corner
structure on a D(M)-grid

satisfying |Li |, |L j | > 1 and Li ∪ L j = {0, 1, . . . , φ(pk)}, such that for
all z ∈ 	 we have

A
N
N [z] =

⎧
⎪⎨

⎪⎩

c0 if (z − xl, N ) = N/pi for some l ∈ Li

or (z − xl, N ) = N/p j for some l ∈ L j

0 otherwise.

In particular, A
N
N [xl ] = 0 and A

N
N/pi

[xl] = c0φ(pi ) for all l ∈ Li , and
similarly with i and j interchanged.

Proof. We may assume that M = N and c0 = 1, and proceed as in the
proof of Lemma 6.3. Suppose first that (a) holds (i.e., A ∩ 	 contains two
non-overlapping M-fibers in two different directions), but A does not contain
diagonal boxes. Then the M-fibers must be in the pi and p j directions, or else
(6.14) would be violated. Moreover, having any two such fibers in the same
plane �(x, pnk−αk

k ) would also violate (6.14), hence (i) holds in this case.
In case (b), A ∩ 	 contains diagonal boxes. We proceed as in the proof of

Lemma 6.3 to get (6.12). Since M/pi p j /∈ Div(A), we must have

min(|I |, |J |) = min(|I c|, |J c|) = 1.
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Therefore we may again assume without loss of generality that |I c| = |J | = 1
and that |Kc| > 1, and get (6.13). We now consider two cases.

• If |K | = 1, the diagonal boxes are as in the conclusion of Lemma 6.3, and
instead of (6.14) we have (6.11) with equality.

• If |K | > 1, the diagonal boxes present the structure described in (ii), with
Li = K and L j = Kc.

The only way we can add an M-fiber to either of these structures without
adding M/pi p j to Div(A) is to add an M-fiber in the pk direction rooted at x
(in the first case, with x defined as in Lemma 6.3), or at x0 (in the second case,
with x0 specified in (ii)) That, however, puts us in the case (i) of the lemma. ��

6.3 Special unfibered structures: even M

Lemma 6.5. Let M = pnii p
n j
j pnkk with 2|M, and N = M/pαi

i p
α j
j pαk

k with
αι < nι for all ι ∈ {i, j, k}. Assume that A ∈ M(ZN ) satisfies �N |A. Let 	

be a D(N )-grid such that A ∩ 	 �= ∅. Assume further that
• (6.10) holds for all x ∈ 	,
• A ∩ 	 is not fibered in any direction.

Assume that N/pι ∈ DivN (A ∩ 	) for all ι ∈ {i, j, k}, but {D(N )|m|N } �⊂
DivN (A ∩ 	). Then for some permutation of {i, j, k} we have

{D(N )|m|N } \ DivN (A ∩ 	) = {N/pi p j },

and A ∩ 	 has the pk corner structure in the sense of Definition 5.4 (i): for
each x ∈ 	, the set A ∩ 	 ∩ �(x, pnk−αk

k ) is either empty or consists of a
single N-fiber in one of the pi or p j directions. Since A ∩ 	 is not fibered,
there has to be at least one of each.

Proof. We may assume that M = N and c0 = 1. Assume without loss of
generality that pk = 2. In this case, in order for N/pk ∈ Div(A ∩ 	), we
must have at least one N -fiber F in the pk direction in A ∩ 	. Let A1 be the
set obtained from A ∩ 	 by removing all N -fibers in the pk direction. Since
A∩	 is not fibered, A1 is nonempty and satisfies (6.1). By Proposition 6.1, it
must contain either at least one fiber in another direction or a set of diagonal
boxes, each disjoint from F .

• Suppose that A1 contains diagonal boxes as in Definition 5.1. Without loss
of generality, we may assume that F is rooted at a point a ∈ I c × J × K .
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406 I. Łaba, I. Londner

Then

M/pi , M/pi pk ∈ Div(F, I × J × K ),

M/p j , M/p j pk ∈ Div(F, I c × J c × Kc),

M/pi p j pk ∈ Div(I × J × K , I c × J c × Kc).

It follows that the only missing divisor can be M/pi p j . In order to avoid
that divisor within each box, we must have

min(|I |, |J |) = min(|I c|, |J c|) = 1.

Taking into account the differences (a′ − a′′, M), where a′ ∈ F and a′′
belongs to one of the boxes, we see that the only possible case is |I c| =
|J | = 1. Then A contains the M-fiber in the pi direction rooted at the
unique point x ∈ I c × J × K , and the M-fiber in the p j direction rooted
at the unique point x ′ ∈ I c × J × Kc. Any other points in A ∩ 	 would
add M/pi p j to Div(A ∩ 	). Thus the conclusion of the lemma holds.

• If A1 contains no diagonal boxes, then it must contain a fiber in at least
one other direction. This case is identical to the corresponding case of
Lemma 6.4 (i), for some permutation of {i, j, k}. ��

Lemma 6.6. Let M = pnii p
n j
j pnkk with 2|M, and N = M/pαi

i p
α j
j pαk

k with
αι < nι for all ι ∈ {i, j, k}. Assume that A ∈ M(ZN ) satisfies �N |A. Let 	

be a D(N )-grid such that A ∩ 	 �= ∅. Assume further that pk = 2, and that

• (6.10) holds for all x ∈ 	,
• A ∩ 	 is not fibered in any direction,
• {N/pi , N/p j , N/pk} �⊂ DivN (A ∩ 	).

Then

N/pk /∈ DivN (A ∩ 	), (6.15)

and there is a pair of diagonal boxes

A0 = (I × J × K ) ∪ (I c × J c × Kc) ⊂ 	,

as in Definition 5.1 (see Fig. 6), such that for all z ∈ A ∩ 	 we have

A
N
N [z] =

{
c0 if z ∈ A0,

0 otherwise.
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Fig. 6 An even almost
corner structure on a
D(M)-grid with
M/pk /∈ Div(A), pk = 2

Proof. We may assume that M = N and c0 = 1. If M/pi or M/p j is not in
Div(A∩	), then A∩	 is fibered byLemma4.9, contradicting the assumptions
of the lemma. Therefore (6.15) holds. Invoking Proposition 6.1 again, we see
that A∩	 must contain either diagonal boxes or at least two non-overlapping
M-fibers in different directions. The second case cannot be reconciled with
(6.15). Therefore A ∩ 	 must contain a set A0 of diagonal boxes. Notice that
adding an M-fiber in any direction to A0 would introduce M/pk as a divisor
of A ∩ 	. Therefore A ∩ 	 = A0. ��

7 Resolving diagonal boxes

Theorem 7.1. Let A ⊕ B = ZM, where M = p2i p
2
j p

2
k with pi , p j , pk ≥ 3,

|A| = |B| = pi p j pk, and assume that �M | A. Let D = D(M), and let 	 be
a D(M)-grid such that A ∩ 	 �= ∅. Assume further that A ∩ 	 is not fibered
in any direction, and that one of the following holds: either

{m : D(M)|m|M} ⊂ Div(A ∩ 	) (7.1)

and A ∩ 	 contains diagonal boxes as in Definition 5.1, or else A ∩ 	 has
one of the structures described in Lemma 6.3 (full plane) or Lemma 6.4 (ii)
(almost corner). Then at least one of the following is true:

• The tiling A ⊕ B = ZM is T2-equivalent to 	 ⊕ B = ZM via fiber shifts.
Thus 	 is a translate of A�, and by Corollary 2.2, both A and B satisfy
(T2).

• The tiling A ⊕ B = ZM is T2-equivalent to a tiling A′ ⊕ B, where A′ ∩ 	

contains a pν corner structure as inDefinition 5.4 (i) for some ν ∈ {i, j, k}.
We remark that, in the case when (7.1) holds, A ∩ 	 might be larger than

just a pair of diagonal boxes. For example, it could contain diagonal boxes
and some number of M-fibers in various directions disjoint from the boxes.
However, any such additional structures can only make our task easier.
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We split the proof into cases. Since pi , p j , pk ≥ 3, at least one of I and I c

must have cardinality greater than 1, and similarly for each of the pairs J, J c

and K , Kc. We claim that it suffices to consider the following two cases.

Case (DB1): The tiling A ⊕ B satisfies the assumptions of Theorem 7.1, and
additionally min(|I |, |J c|, |Kc|) ≥ 2.

Case (DB2): The tiling A ⊕ B satisfies the assumptions of Theorem 7.1, and
additionally |I c| = |J c| = |Kc| = 1.

Indeed, if either |I | = |J | = |K | = 1 or |I c| = |J c| = |Kc| = 1, then
we are in the case (DB2), possibly after relabelling I, J, K as I c, J c, Kc and
vice versa. Suppose now that neither of these holds, say |I | ≥ 2 and |J c| ≥ 2.
Since pk ≥ 3, at least one of K and Kc must have cardinality at least 2. If
|Kc| ≥ 2, we are in the case (DB1). If |K | ≥ 2, we are in the case (DB1)
again, with pi and p j interchanged, and with the sets I, J, K relabelled as
I c, J c, Kc and vice versa. All other cases are identical up to a permutation of
the indices i, j, k.

We will proceed to resolve the cases (DB1) and (DB2) in Sects. 7.2 and 7.3,
respectively. Throughout this section, we continue to use the notation of
Sect. 5.1.

7.1 Preliminary results

Lemma 7.2. Let A ⊕ B = ZM, where M = p2i p
2
j p

2
k , |A| = |B| = pi p j pk,

and assume that �M | A. Let D = D(M), and let 	 be a D-grid such that
A ∩ 	 �= ∅. Assume that (7.1) holds. Suppose that A ∩ 	 is not fibered, and
that it contains diagonal boxes

A0 := (I × J × K ) ∪ (I c × J c × Kc) ⊂ A ∩ 	, (7.2)

with I, J, K , I c, J c, Kc as in Definition 5.1. If one of the “complementary
boxes” is contained in A, say

(I c × J × K ) ⊂ A, (7.3)

then the tiling A⊕ B = ZM is T2-equivalent to 	 ⊕ B = ZM. Consequently,
A and B both satisfy T2.

Proof. Throughout the proof, we assume that A⊕B = ZM is a tiling satisfying
the assumptions of the lemma.

Claim 1. Assume that (7.3) holds. Then either A ⊕ B = ZM is T2-equivalent
to 	 ⊕ B = ZM , or

(I c × J × Kc) ∩ A = ∅. (7.4)
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Proof. Suppose that there is an a ∈ (I c × J × Kc) ∩ A, and let

Z = �(a, p2i ) ∩ (I c × J c × K ).

For any z ∈ Z , let a j , ak be points such that (z − a j , M) = (ak − a, M) =
M/p j and (z − ak, M) = (a j − a, M) = M/pk . Then a j , ak ∈ A, since
a j ∈ I c × J ×K and ak ∈ I c × J c ×Kc. By Lemma 4.6, either z ∈ A, or else
Az ⊂ 
i (z), with a (1, 2) cofibered structure for (A, B) in the pi direction and
an M-fiber in A at distance M/p2i from z as a cofiber. We can use Lemma 2.11
to shift that fiber to z. Repeating this procedure for all z ∈ Z \ A, we get a
new set A1 ⊂ ZM such that A1 ⊕ B = ZM and A1 is T2-equivalent to A.
Moreover, Z ⊂ A1, and, since A ∩ 	 ⊂ A1 ∩ 	, (7.1) holds with A replaced
by A1.

Now, any x ∈ (I c × J c × K ) \ Z satisfies the assumptions of Lemma 4.5
applied to A1, with (x − z, M) = M/pi for some z ∈ Z , (x − a′

j , M) =
M/p j for some a′

j ∈ I c × J × K , and (x − a′
k, M) = M/pk for some

a′
k ∈ I c × J c × Kc. It follows that

I c × J c × K ⊂ A1. (7.5)

We can then apply Lemma 4.6 and the fiber shifting argument again, first
to all points in I c × J × Kc with the flat corner configurations in planes
perpendicular to the pi direction, then to all points in I × J c × K with the
flat corner configurations in planes perpendicular to the pk direction. Thus A1
is T2-equivalent to a set A2 that satisfies A2 ⊕ B = ZM , continues to obey
(7.3)–(7.5), and moreover has the property that

(I c × J × Kc) ∪ (I × J c × K ) ⊂ A2.

Finally, we apply Lemma 4.6 and the fiber shifting argument to all points
in (I × J × Kc) ∪ (I × J c × Kc) that are not in A2, with the flat corner
configuration perpendicular to the p j direction. This proves that A2 (therefore
A) is T2-equivalent to 	. ��

Claim 1’. Assume that (7.3) holds. Then either A⊕ B = ZM is T2-equivalent
to 	 ⊕ B = ZM , or

(I c × J c × K ) ∩ A = ∅. (7.6)

Proof. This is identical to the proof of Claim 1, with the p j and pk directions
interchanged, and with J and Kc replaced by J c and K . ��
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Claim 2. Assume that (7.3), (7.4), and (7.6) hold. Then

I × J c × Kc ⊂ A. (7.7)

Proof. Let x ∈ I × J c × Kc. Considering any M-cuboid with one vertex at x
and another in I c × J × K , we see that it can only be balanced if x ∈ A. ��

We can now finish the proof of the lemma. It suffices to consider the case
when (7.3) and (7.7) hold, so that

Y := (Zpi × J × K ) ∪ (Zpi × J c × Kc) ⊂ A.

If there are any elements a ∈ (A ∩ 	) \ Y , we can repeat the argument in
the proof of Claim 1 to prove that the tiling A ⊕ B = ZM is T2-equivalent to
	 ⊕ B = ZM . If on the other hand A ∩ 	 = Y , then this set is fibered in the
pi direction, contradicting the assumptions of the lemma. ��
Corollary 7.3. Let A ⊕ B = ZM, M = p2i p

2
j p

2
k , |A| = |B| = pi p j pk,

and assume that �M | A. Let D = D(M), and let 	 be a D-grid such that
A ∩ 	 �= ∅. Assume that (5.3) holds. Suppose that A ∩ 	 is not fibered, that
it contains diagonal boxes (7.2) with I, J, K , I c, J c, Kc as in Definition 5.1,
and that it also contains at least one M-fiber disjoint from these boxes. Then
the tiling A ⊕ B = ZM is T2-equivalent to 	 ⊕ B = ZM. Consequently, A
and B both satisfy T2.

Proof. Wemay assume without loss of generality that the M-fiber F ⊂ A∩	

is in the p j direction, with F ⊂ I c × Zp j × K . By translational invariance,
we may further assume that

F = {0} × Zp j × {0},

with 0 ∈ I c and 0 ∈ K .
We first claim that there is a set A1 ⊂ ZM , either equal to A or T2-equivalent

to it, such that A1 ⊕ B = ZM and

{0} × J × K ⊂ A1. (7.8)

Indeed, if K = {0}, then {0} × J × K ⊂ F ⊂ A and there is nothing to
prove. Otherwise, let l j ∈ J and lk ∈ K\{0}. Then the point x = (0, l j , lk)
either belongs to A, or else it satisfies the assumptions of Lemma 4.6, with
(0, l j , 0), (li , l j , 0), and (li , l j , lk) all in A for any li ∈ I , so that the flat corner
configuration is perpendicular to the p j direction. By Lemma 4.6, in the latter
case we have Ax ⊂ 
 j (x), implying a (1, 2) cofibered structure. We can then
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The Coven–Meyerowitz tiling conditions 411

use Lemma 2.11 to shift the M-cofiber in A to x . After all such shifts have
been performed, we arrive at A1.

By a similar argument, butwith pi and pk interchanged andwith the possible
flat corner configurations perpendicular to the pk direction, we may further
replace A1 by a T2-equivalent set A2 such that A2 ⊕ B = ZM , (7.8) continues
to hold for A2, and

I c × J c × {0} ⊂ A2. (7.9)

Next, we replace A2 by a T2-equivalent set A3 such that A3 ⊕ B = ZM ,
(7.8) and (7.9) both continue to hold for A3, and

I c × J × {0} ⊂ A3. (7.10)

Indeed, consider a point z = (l ′i , l j , 0) ∈ I c × J × {0}, with l ′i �= 0. (If no
such l ′i exists, (7.10) holds with A3 = A2.) If z /∈ A2, then it satisfies the
assumptions of Lemma 4.6, with (0, l j , 0), (0, l ′j , 0), and (l ′i , l ′j , 0) all in A2

for any l ′j ∈ J c, so that the flat corner configuration is perpendicular to the pk
direction. Then Az ⊂ 
k(z), and again our conclusion follows by Lemma 2.11.

Finally,wemaypass to anotherT2-equivalent set A4 such that A4⊕B = ZM
and

I c × J × K ⊂ A4. (7.11)

If I c = {0} or K = {0}, this follows from (7.8) or (7.10), with A4 = A3.
Otherwise, we let w = (l ′i , l j , lk) ∈ I c × J × K with l ′i �= 0 and lk �= 0, and
repeat the argument from the proof of (7.8) with the first coordinate 0 replaced
by l ′i .

With (7.11) in place, the corollary now follows from Lemma 7.2. ��

7.2 Case (DB1)

Assume that A⊕B = ZM is a tiling satisfying the assumptions of Theorem7.1.
Let D = D(M), and let 	 be the D-grid provided by the assumption of the
theorem. Additionally, we assume that

min(|I |, |J c|, |Kc|) ≥ 2. (7.12)

If A ∩ 	 has one of the structures described in Lemma 6.3 (full plane)
or Lemma 6.4 (ii) (almost corner), then in both cases we have A ∩ 	 =
(I × J × K ) ∪ (I c × J c × Kc) with no other points permitted, so that

(I c × J × K ) ∩ A = ∅.
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(Note that (7.12) covers the cases of a pi full plane and a p j almost corner
structure. See the end of this section for more details).

If on the other hand (7.1) holds and I c × J × K ⊂ A, the conclusion of
Theorem 7.1 follows by Lemma 7.2.Wemay therefore assume that there exists
a point

x ∈ (I c × J × K ) \ A. (7.13)

Lemma 7.4. Assume (DB1), and let x satisfy (7.13). Then for every b ∈ B we
have exactly one of the following:

Ax,b ⊂ 
 j (x), with AM/p2j
[x]BM/p2j

[b] = φ(p2j ), (7.14)

Ax,b ⊂ 
k(x), with AM/p2k
[x]BM/p2k

[b] = φ(p2k ). (7.15)

Furthermore:

• AM/p j [x] · AM/pk [x] = 0,
• ifAM/p j [x] > 0, then (7.14) cannot hold for any b ∈ B, and ifAM/pk [x] >

0, then (7.15) cannot hold for any b ∈ B,
• if (7.14) holds for some b ∈ B, then the product 〈A[x], B[b]〉 is saturated
by a (1, 2)-cofiber pair in the p j direction, with the A-cofiber at distance
M/p2j from x and the B-fiber rooted at b. The same is true for (7.15), with
j and k interchanged.

Proof. The assumptions (DB1) and (7.13) imply in particular thatAM/pi [x] ≥
2. Corollary 2.9 (ii) then gives

Ax ⊂ �(x, p2i ). (7.16)

Moreover, by Lemma 2.8 applied to Ax and a single element a ∈ A satisfying
(x −a, M) = M/p j pk , we get Ax ⊂ Bispan(x, a) = �(x, p2j )∪�(x, p2k )∪
�(a, p2j ) ∪ �(a, p2k ). Taking the intersection for all such a, and using that
min(|J c|, |Kc|) ≥ 2, we get

Ax ⊂
⋂

a:(x−a,M)=M/p j pk

Bispan(x, a) = �(x, p2j ) ∪ �(x, p2k ),

which together with (7.16) proves that

Ax ⊂ 
 j (x) ∪ 
k(x).

By Lemma 4.1, for each b ∈ B we must in fact have either Ax,b ⊂ 
 j (x)
or Ax,b ⊂ 
k(x). If Ax,b ⊂ 
 j (x), then the second part of (7.14) follows
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since M/p j ∈ Div(A), and Lemma 2.12 implies the existence of a cofiber
pair as described in the last part of the lemma. The same applies with j and k
interchanged.

Next, suppose that AM/p j [x] > 0 and let a ∈ A with (x − a, M) = M/p j .
By Corollary 2.9 (i), it follows that Ax ⊂ �(x, p2j ) ∪ �(a, p2j ). If we also
assume that Ax ⊂ 
 j (x), this implies that Ax ⊂ {a, x}. However, x /∈ A by
the assumption (7.13), and (DB1) (in particular, (7.12)) implies that M/p j ∈
Div(A), so that it cannot contribute to the product 〈A[x], B[b]〉 for any b ∈ B.
Hence the assumption that Ax ⊂ 
 j (x) is not compatible with (7.14) for any
b ∈ B. The same applies with j and k interchanged. On the other hand, one
of (7.14) and (7.15) must hold for each b, therefore we cannot have both
AM/pk [x] > 0 and AM/pk [x] > 0.

Finally, the last part of the lemma follows from Lemma 2.12. ��
Lemma 7.5. Assume (DB1). Suppose that there is a point x ∈ 	 such that
(7.13) holds and

max(AM/p j [x], AM/pk [x]) > 0. (7.17)

Then the conclusion of Theorem 7.1 holds.

Proof. Assume without loss of generality that AM/p j [x] > 0. Then Ax ⊂

k(x) by Lemma 7.4. By Lemma 2.12, the pair (A, B) has a (1,2)-cofibered
structure in the pk direction with a cofiber in A at distance M/p2k from x . We
apply Lemma 2.11 to shift the M-cofiber in A to x . Let A1 be the set thus
obtained.

We note that (7.17) does not hold for either the full plane structure or the
almost corner structure. Therefore (7.1) must hold, and since A∩	 ⊂ A1∩	,
the same holds for A1. Furthermore, A1 contains the diagonal boxes inherited
from A as well as the added M-fiber through x in the p j direction, disjoint
from the boxes. By Corollary 7.3, the tiling A1 ⊕ B = ZM (therefore also
A ⊕ B = ZM ) is T2-equivalent to 	 ⊕ B = ZM . ��
It remains to consider the complementary case when

AM/p j [x] = AM/pk [x] = 0 ∀x ∈ (I c × J × K ) \ A. (7.18)

Lemma 7.6. Assume that (DB1) holds, that (I c × J × K )\A �= ∅, and that
(7.18) holds. Fix an index li ∈ I c such that ({li } × J × K )\A is nonempty,
and define

X = X (li ) := {li } × J × K .
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Then either A is T2-equivalent to a set A′ ⊂ ZM such that A′ ⊕ B = ZM
and every point x ′ ∈ X belongs to a fiber in A′ in the p j direction, or else the
same holds with j and k interchanged.

Proof. We fix li as in the statement of the lemma, and keep it fixed for the
duration of the proof. Let also � := �(x, p2i ) for any x ∈ X , and note that
X ⊂ �.

Let x ∈ X \ A. By (7.18), we must have x ′ /∈ A for all x ′ ∈ X with
(x ′ − x, M) ∈ {M/p j , M/pk}. Applying (7.18) to all such x ′, we see that
X ∩ A = ∅. Let

X j = {x ∈ X : ∃b ∈ B such that Ax,b ⊂ 
 j (x)},
and similarly for Xk . By Lemma 7.4, we have X = X j ∪ Xk .

Suppose that Xk �= ∅, with x0 ∈ Xk , and let x1, x2, . . . , x|J |−1, be the
distinct points in X such that (x0 − xν, M) = M/p j for ν �= 0. By the
definition of Xk , there exists b ∈ B such that

Axν ,b ⊂ 
k(xν) (7.19)

for ν = 0. We claim that (7.19) also holds for ν = 1, . . . , |J | − 1, with
the same b ∈ B. Indeed, suppose that Axν ,b ⊂ 
 j (xν) for some ν ≥ 1. By
Lemma 2.12, the product 〈A[xν], B[b]〉 would be saturated by a (1, 2) cofiber
pair in the p j direction at distance M/p2j from xν . But then we would also
have Ax0,b ⊂ 
 j (x0), with the product saturated by the same cofiber pair,
contradicting the assumption that (7.19) holds for ν = 0.

By Lemma 2.12 again, it follows that if Xk �= ∅, then A contains
an M-fiber in the pk direction at distance M/p2k from each of the points
x0, x1, x2, . . . , x|J |−1. Since 
k(xν) ⊂ �, all these fibers are contained in �.

If we had both X j �= ∅ and Xk �= ∅, we would get such sets of fibers in
both directions, all contained in �. But then � contains |J c| |Kc| points of
I c × J c ×Kc, at least |J | fibers in A in the pk direction, and at least |K | fibers
in A in the p j direction, disjoint from 	 ∩ � and from each other. Thus

|A ∩ �| ≥ (p j − |J |)(pk − |K |) + pk |J | + p j |K | = p j pk + |J ||K |.
This contradicts Lemma 4.3.

It follows that at least one of X j and Xk must be empty. Assume without
loss of generality that X j = X and Xk = ∅. It follows that Ax ⊂ 
 j (x) for all
x ∈ X . By Lemma 2.12, the pair (A, B) has a (1, 2)-cofibered structure in the
p j direction, and for every x ∈ X there is a cofiber in A at distanceM/p2j from
x . We can now use Lemma 2.11 to shift all of the aforementioned cofibers in
the p j direction, obtaining the new set A′ as indicated in the conclusion of the
lemma. ��
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We can now conclude the proof of Theorem 7.1 under the assumption that
(7.12), (7.13), and (7.18) hold.

• If (7.1) holds, then the set A′ ⊂ ZM from Lemma 7.6 still satisfies (7.1),
and A′ ∩ 	 contains the diagonal boxes inherited from A as well as the
additional fibers added in Lemma 7.6. ByCorollary 7.3, A′ is T2-equivalent
to 	, and the theorem follows.

• Suppose that A ∩ 	 has the pi full plane structure (Lemma 6.3), with
|I c| = |J | = |K | = 1. Then there is only one index li ∈ I c, and for that
li , X = {x} is a single point. In this case, Lemma 7.6 identifies a direction
pν for some ν ∈ { j, k}, such that the pair (A, B) has a (1, 2)-cofibered
structure in the pν direction with a cofiber in A at distance M/p2ν from x .
Assume without loss of generality that ν = j . After shifting the cofiber to
x as permitted by Lemma 2.11, we arrive at a p j corner structure, where
A′ ∩ 	 is the union of one M-fiber in the pi direction and (p j − 1) M-
fibers in the pk directions, each in a different plane perpendicular to the p j
direction.

• Assume now that A ∩ 	 has the p j almost corner structure (Lemma 6.4
(ii)), with |K | = |I c| = 1 and |J |, |J c| > 1. Then there is again only
one index li ∈ I c, and the set X = {li } × J × K for that value of li has
dimensions 1× |J | × 1. We again apply Lemma 7.6. If the fiber identified
and shifted in the lemma was in the p j direction, then we are in the p j
corner situation again, with A′ ∩ 	 consisting of non-overlapping fibers
in the pi and pk directions. If on the other hand the shifted fibers were in
the pk direction, then we have {D|m|M} ⊂ Div(A′), and A′ ∩ 	 contains
the diagonal boxes inherited from A as well as the added fibers disjoint
from the boxes. By Corollary 7.3, the tiling A′ ⊕ B = ZM (therefore also
A ⊕ B = ZM ) is T2-equivalent to 	 ⊕ B = ZM .

7.3 Case (DB2)

We now assume that A ⊕ B = ZM is a tiling satisfying the assumptions of
Theorem 7.1 on a D-grid 	. Additionally, we assume that

|I c| = |J c| = |Kc| = 1. (7.20)

Since pi , p j , pk are all odd, the assumption (7.20) implies that min(|I |, |J |,
|K |) ≥ 2, and in particular (7.1) holds. Let also

I c × J c × Kc = {a0}.
Lemma 7.7. Assume (DB2). Suppose that there exists a point x ∈ 	 \ A such
that Ax is contained in one of the lines 
i (x), 
 j (x), 
k(x). Then the tiling
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A ⊕ B = ZM is T2-equivalent to 	 ⊕ B = ZM. Hence the conclusion of
Theorem 7.1 holds.

Proof. Suppose that x ∈ 	\A and Ax ⊂ 
k(x). By Lemma 2.12, the pair
(A, B) has a (1,2)-cofibered structure in the pk direction. By Lemma 2.11, the
cofiber in A \ 	 can be shifted to a fiber in 	 rooted at x . This yields a new
tiling A′ ⊕ B = ZM , T2-equivalent to A⊕ B = ZM , such that A′ ∩	 contains
both the diagonal boxes {a0} ∪ (I × J × K ) and the added M-fiber. In light
of (7.1), we can apply Corollary 7.3 to conclude the proof. ��
Lemma 7.8. Assume (DB2). If (A ∩ 	)\({a0} ∪ (I × J × K )) �= ∅, then the
tiling A ⊕ B = ZM is T2-equivalent to 	 ⊕ B = ZM.

Proof. Observe first that if A ∩ 	 contains a flat corner configuration in the
sense of Lemma 4.6, then the conclusion holds. Indeed, Lemma 4.6 implies
that the point x /∈ A in the flat corner configuration satisfies the assumptions
of Lemma 7.7, which we then apply.

Suppose that there is an element a ∈ A ∩ (I c × J × K ). In order to
avoid a flat corner configuration perpendicular to the p j direction at points
x ∈ I c × {λ j a} × K , all such points must belong to A. Similarly, we must
have I c × J × {λka} ⊂ A, in order to avoid a flat corner perpendicular to the
pk direction at those points. By Lemma 4.5 and (7.1), we must in fact have
I c × J × K ⊂ A. But then the conclusion follows by Lemma 7.2. Since the
assumption (DB2) is symmetric with respect to all permutations of the indices
{i, j, k}, the same argument applies when A∩(I× J c×K ) or A∩(I× J×Kc)

is nonempty.
Assume now that a ∈ A ∩ (I c × J c × K ). Consider an M-cuboid with

one vertex at a0, another at a, and a third one at a′ ∈ I × J × K with
(a−a′, M) = M/pi p j and (a0−a, M) = D. In order to balance this cuboid,
at least one of the vertices in I c × J × K , I × J c × K , or I × J × Kc, must be
in A. But then we are in the situation from the last paragraph. Since this case
is also symmetric with respect to all permutations of {i, j, k}, we are done. ��
Lemma 7.9. Assume (DB2), and let Nk = M/pk. If M/p2k ∈ Div(A), then
�Nk |A.
Proof. Assume for contradiction that �Nk |B, and apply Lemma 4.9 to B, on
scale N = Nk . Since Nk, Nk/pk /∈ Div(B), it follows that B is Nk-fibered
in one of the pi and p j directions. However, that is impossible, given that
Div(B) ∩ {D|m|M} = {M} due to (7.1). ��

We now begin the proof of Theorem 7.1 under the assumption (DB2). By
Lemma 7.8, it suffices to consider the case when

(A ∩ 	) \ ({a0} ∪ (I × J × K )) = ∅. (7.21)
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Let x ∈ I×J c×K , so that in particular x /∈ A. Fixb ∈ B. SinceAM/p j [x] ≥ 2,
by Corollary 2.9 (ii) we have Ax,b ⊂ �(x, p2j ). Taking also into account that,
by (2.4), we must have Ax,b ⊂ Bispan(x, a0), we get

Ax,b ⊂ 
i (x) ∪ 
i (a0) ∪ 
k(x) ∪ 
k(a0).

We claim that Ax,b cannot intersect more than one of the above lines. Indeed,
by (7.1) we have

• Ax,b ∩ 
i (x) �= ∅ implies AM/p2i
[x]BM/p2i

[b] > 0, hence M/p2i pk ∈
Div(A) and M/p2i ∈ Div(B).

• Ax,b ∩ 
k(x) �= ∅ implies AM/p2k
[x]BM/p2k

[b] > 0, hence M/pi p2k ∈
Div(A) and M/p2k ∈ Div(B).

• Ax,b ∩ 
i (a0) �= ∅ implies AM/p2i pk
[x |
i (a0)]BM/p2i pk

[b] > 0, hence

M/p2i ∈ Div(A) and M/p2i pk ∈ Div(B).
• Ax,b ∩ 
k(a0) �= ∅ implies AM/pi p2k

[x |
k(a0)]BM/pi p2k
[b] > 0, hence

M/p2k ∈ Div(A) and M/pi p2k ∈ Div(B).

It is then easy to check that Ax,b cannot have nonempty intersection with any
two of the above lines, either by Lemma 4.1 or due to direct divisor conflict.

Lemma 7.10. Assume (DB2) and (7.21), and let x be as above. Then Ax,b ∩

k(a0) = ∅.
Proof. Assume for contradiction that

Ax,b ⊂ 
k(a0). (7.22)

Then M/p2k ∈ Div(A), hence by Lemma 7.9 we have �M/pk |A. We are also
assuming as part of (DB2) that �M |A. It follows that A is null with respect to
all cuboids of type (M, (1, 1, 2), 1).

Consider any such cuboid with one vertex at a0, a second one at a point
x j ∈ I c × J × Kc so that (x j − a0, M) = M/p j , and a third one at a point
z ∈ 
k(x) with (x − z, M) = M/p2k . By (7.21), none of the cuboid vertices
in the plane �(a0, p2k ) except for a0 are in A. In order to balance this cuboid,
one of the vertices zi and z j must be in A, where (zi − z, M) = M/pi and
(z j − z, M) = M/p j . However, if z j ∈ A, then M/pi p2k ∈ Div({z j }, I × J ×
K ) ⊂ Div(A), which contradicts (7.22) due to divisor conflict. It follows that
zi ∈ A.

Repeating this argument for all z ∈ 
k(x) with (x − z, M) = M/p2k , we get
that

AM/p2k
[a0] = φ(p2k ). (7.23)
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If pi < pk , then we must in fact have pi ≤ pk − 2 (since both are odd
primes), so that φ(p2k ) = pk(pk − 1) > pi pk . In this case, (7.23) contradicts
Lemma 4.3.

Assume now that pi > pk . In this case, (7.22) and (7.23) imply that

1 = 1

φ(pi p2k )
AM/pi p2k

[x |
k(a0)]BM/pi p2k
[b]

= 1

φ(pi p2k )
AM/p2k

[a0]BM/pi p2k
[b]

= 1

φ(pi )
BM/pi p2k

[b].

But when pi > pk , this is not possible without introducing M/pi or M/pi pk
as divisors of B, which would contradict (7.1). ��

Repeating Lemmas 7.9 and 7.10 with i and k interchanged, we get that for
each b ∈ B we must have one of

Ax,b ⊂ 
i (x) or Ax,b ⊂ 
k(x).

Now let x ′ ∈ (I × J × Kc) ∩ �(x, p2i ). The same analysis, with the p j and
pk directions interchanged, shows that for each b ∈ B we must have one of

Ax ′,b ⊂ 
i (x
′) or Ax ′,b ⊂ 
 j (x

′).

If Ax,b ⊂ 
k(x) and Ax ′,b′ ⊂ 
 j (x ′) for some b, b′ ∈ B, we use the same
fiber crossing argument as in the case (DB1). By Lemma 2.12, Amust contain
an M-fiber in the pk direction at distance M/p2k from x , as well as an M-
fiber in the p j direction at distance M/p2j from x ′, both of them in the plane

� := �(x, p2i ) and disjoint from each other. The same plane also contains
(p j − 1)(pk − 1) elements of I × J × K . Therefore

|� ∩ A| ≥ (p j − 1)(pk − 1) + p j + pk = p j pk + 1 > p j pk,

which contradicts Lemma 4.3.
It follows that either Ax,b ⊂ 
i (x) for all b ∈ B, or else Ax ′,b ⊂ 
i (x ′) for

all b ∈ B. An application of Lemma 7.7 concludes the proof of the theorem.

8 Corners

In this section we address the extended corner structure, defined in Defini-
tion 5.4. We will assume the following.
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Assumption (C): Assume that A ⊕ B = ZM , where M = pnii p
n j
j pnkk , |A| =

pi p j pk , and�M |A. Moreover, assume that A contains a pi extended corner in
the sense of Definition 5.4 on a D(M)-grid	, that is, there exist a, ai ∈ A∩	

with (a − ai , M) = M/pi such that

• A∩(a∗Fj ∗Fk) is M-fibered in the p j direction but not in the pk direction,
• A∩(ai ∗Fj ∗Fk) isM-fibered in the pk direction but not in the p j direction.

In particular, we may choose a, ai so that

a ∗ Fj ⊂ A, ai ∗ Fk ⊂ A,

ai ∗ Fj �⊂ A, a ∗ Fk �⊂ A.

We fix such a, ai for the rest of this section.

The following theorem is our main result for the extended corner structure.

Theorem 8.1. Assume that (C) holds with n j = nk = 2. Then the tiling
A⊕B = ZM is T2-equivalent to	⊕B = ZM via fiber shifts. ByCorollary 2.2,
both A and B satisfy (T2).

We first note that when A contains a pi corner,

{D(M)|m|M} \ Div(A) ⊆ {M/p j pk} (8.1)

Lemma 8.2. (Size-Divisor Lemma) Assume that A ⊂ ZM, and that there
exist a, ai ∈ A with (a − ai , M) = M/pi such that

a ∗ Fj ⊂ A, ai ∗ Fk ⊂ A, a ∗ Fk �⊂ A.

(In particular, this is true if (C) holds.) Suppose that �M�M/p j |A. Then we
have the following.

(i)For all ak ∈ A such that (ak−ai , M) = M/pk andAM/pi [ak |
k(a)] = 0,
we have

AM/p2j
[a] + AM/p2j

[ak] ≥ φ(p2j ),

(ii) M/p2j , M/pi p2j pk ∈ Div(A). Moreover, if AM/p2j
[a] > 0, then

M/pi p2j ∈ Div(A), and if AM/p2j
[a] < φ(p2j ), then M/p2j pk ∈ Div(A).

Proof. Under the assumptions of the lemma, A is T -null with respect to the
cuboid type T = (M, δ, 1), where δ = (1, 2, 1). Now the lemma follows
by considering all possible T cuboids with vertices at a, ai , ak and xk , where
xk /∈ A satisfies (xk − a, M) = M/pk and (xk − ak, M) = M/pi . ��
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Corollary 8.3. Assume (C). Then �N j�Nk � A.

Proof. Assume that �N j�Nk |A. By Lemma 8.2 (i), we have

|A ∩ (�(a, pnii ) ∪ �(ai , p
ni
i ))| ≥ p j + φ(p2j ) + pk + φ(p2k )

= p2j + p2k > 2p j pk

hence max{|A ∩ �(a, pnii )|, |A ∩ �(ai , p
ni
i )|} > p j pk , which contradicts

Lemma 4.3. ��
By Corollary 8.3, it suffices to consider the following sets of assumptions.

Assumption (C1): Assume that (C) holds, pk < p j , and �Nk |B.
Assumption (C2): Assume that (C) holds, pk < p j , �N j |B, and

M/p j pk /∈ Div(B). (8.2)

(In particular, (8.2) holds if either AM/p j pk [a] > 0 or AM/p j pk [ai ] > 0.)

Assumption (C3): Assume that (C) holds, pk < p j , �N j |B, and
AM/p j pk [a] = AM/p j pk [ai ] = 0.

We first prove in Sect. 8.1 that under either of the assumptions (C1) or (C2),
the conclusion of Theorem 8.1 holds. We then prove in Sect. 8.2 that if (C3)
holds, thenwemust also have�Nk |B, so thatwemay return to (C1) to complete
the proof.

8.1 Cases (C1) and (C2)

The first two cases are similar and will be considered together.

Lemma 8.4. Assume that (C1) holds with nk = 2. Then:

(i) Every element of B belongs to an Nk-fiber in B in either the p j or pk
direction (not necessarily the same for all b).

(ii) Furthermore, suppose that there is a b ∈ B that does not belong to
an Nk-fiber in the p j direction in B. Then for all x j ∈ ZM\A such that
(ai − x j , M) = M/p j we have Ax j ,b ⊂ 
k(x j ), with the product saturated
by an Nk-fiber in B in the pk direction, rooted at b, and an M-cofiber in A at
distance M/p2k from x j .

Moreover, this lemma does not require the assumption pk < p j , therefore the
same conclusions with j and k interchanged hold under the assumptions (C2)
and (C3).
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Proof. Observe that, by (8.1),

B
Nk
Nk/pi

[b] = 0 for all b ∈ B. (8.3)

Assume first that pi = 2, and suppose that there is a b0 ∈ B that does not
belong to an Nk-fiber in either the pk or the p j direction. In this case, by (8.3)
and Lemma 6.6 with N = Nk we have

Nk/pk = M/p2k ∈ Div(B). (8.4)

Let x j ∈ ZM\A with (ai − x j , M) = M/p j , and consider the saturating
set Ax j . Let a j be the element of A satisfying (a − a j , M) = M/p j , (x j −
a j , M) = M/pi . Apply Corollary 2.9 (i) to Ax j ,b0 , once with respect to a and
again with respect to a j , to get

Ax j ,b0 ⊂ 
k(x j ) ∪ 
k(ai ) ∪ 
k(a) ∪ 
k(a j ).

By (8.1), no top level divisors except possibly M/p j pk are available to con-
tribute to the product identity 〈A[x j ], B[b0]〉 = 1. Therefore, if Ax j ,b0 ∩

k(a j ) �= ∅, we must have

AM/pi p2k
[x j |
k(a j )] = AM/p2k

[a j ] > 0

which contradicts (8.4). Similarly Ax j ,b0 ∩ 
k(a) �= ∅ implies

AM/pi p j p2k
[x j |
k(a)] = AM/p2k

[a] > 0

which, again, contradicts (8.4). Next, if Ax j ,b0 ∩ 
k(ai ) �= ∅, then by (8.4)

A
Nk
Nk/p j

[x j |
k(ai )]BNk
Nk/p j

[b0] = AM/p j pk [x j |
k(ai )]BM/p j pk [b0] > 0,

(8.5)

and if Ax j ,b0 ∩ 
k(x j ) �= ∅, then

A
Nk
Nk/pk

[x j ]BNk
Nk/pk

[b0] = AM/p2k
[x j ]BM/p2k

[b0] > 0. (8.6)

By Lemma 4.1, we cannot have both (8.5) and (8.6) for a fixed b0. Hence either
Ax j ,b0 ⊂ 
k(ai ) or Ax j ,b0 ⊂ 
k(x j ). In the first case, we have

AM/p j pk [x j |
k(ai )]BM/p j pk [b0] = AM/pk [ai ]BM/p j pk [b0] = φ(p j pk);
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since AM/pk [ai ] = φ(pk), it follows that BM/p j pk [b0] = B
Nk
Nk/p j

[b0] =
φ(p j ), hence b0 belongs to an Nk-fiber in the p j direction, contradicting
the choice of b0. In the second case, we have

AM/p2k
[x j ]BM/p2k

[b0] = φ(p2k );

since M/pk ∈ Div(A), this is only possible if A and B contain a configuration
as in part (ii) of the lemma. In this case, it follows that b0 belongs to an Nk-fiber
in the pk direction, contradicting our initial choice of b0. This concludes the
proof of (i).

We now prove (ii) in the case pi = 2. Assume that b ∈ B does not belong
to an Nk-fiber in the p j direction in B. By (i), it must belong to an Nk-fiber in
the pk direction in B, so that in particular (8.4) holds. With this in place, we
now repeat the proof of (i) until we get to Ax j ,b ⊂ 
k(ai ) or Ax j ,b ⊂ 
k(x j ).
By the assumption on b, we must be in the second case for all x j chosen as
above. This concludes the proof for pi = 2.

Assume now that pi > 2. Then part (i) of the lemma follows directly from
Lemma 4.9, (8.3) and the fact that B satisfies (6.10) with N = Nk and c = 1.
For (ii), suppose that there is a b ∈ B that does not belong to an Nk-fiber
in B in the p j direction. By (i), there is an Nk-fiber in B in the pk direction
containing b. In particular, this implies that (8.4) holds. The rest of the proof
of (ii) is the same as for the pi = 2 case. ��
Corollary 8.5. (i) Assume (C1) with nk = 2. Then the pair (A, B) has a
(1, 2)-cofibered structure in the pk direction. Moreover, for each x j ∈ ZM\A
such that (ai − x j , M) = M/p j , A has a cofiber at distance M/p2k from x j .

(ii) Assume (C2) with n j = 2, then the same conclusion holds with k and j
interchanged.

Proof. (i) Let b ∈ B. By Lemma 8.4, it suffices to prove that we cannot have
BM/p j pk [b] = φ(p j ). In fact, we will show

BM/p j pk [b] ≤ φ(pk);
moreover, this holds independently of the assumption �Nk |B. Indeed, by the
corner assumption we have AM/p j pk [xk] ≥ φ(p j ) for all xk ∈ ZM\A with
(xk − a, M) = M/pk . Hence

1 = 〈A[xk], B[b]〉 ≥ 1

φ(p j pk)
AM/p j pk [xk]BM/p j pk [b]

≥ 1

φ(pk)
BM/p j pk [b]

as required.
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(ii) By (8.2), we have BM/p j pk [b] = 0. The conclusion follows again from
Lemma 8.4. ��

The rest of the proof is the same in cases (C1) and (C2), except that p j and
pk are interchanged. Without loss of generality, we assume that (C1) holds.
By Lemma 2.11, wemay shift each of the cofibers provided byCorollary 8.5

to its respective point x j . Let A′ ⊂ ZM be the set thus obtained. Then A is
T2-equivalent to A′, we have A′ ⊕ B = ZM , and for every x j ∈ ZM\A with
(x j − ai , M) = M/p j , we have x j ∗ Fk ⊂ A′. Furthermore, A′ differs from
A only along the lines 
k(x j ) with x j as above, hence it follows from (C) that
for every a j ∈ A with (a j − ai , M) = M/p j , we also have a j ∗ Fk ⊂ A′.
Therefore ai ∗ Fj ∗ Fk ⊂ A′. By Lemma 4.3, we must in fact have

A′ ∩ �(ai , p
ni
i ) = ai ∗ Fj ∗ Fk . (8.7)

Corollary 8.6. Assume that (C1) holds with nk = 2. Then A′ ⊂ �(a, pni−1
i ),

where a is as in (C). Moreover, �p
ni
i

|A′.

Proof. By (8.7) and (C), we have |A′ ∩�(ai , p
ni−1
i )| > p j pk . The conclusion

now follows from Corollary 4.4. ��
If ni = nk = 2, we have pi ‖ |B|, hence Corollary 8.6 and Theorem 2.5

imply that A′ and B satisfy (T2). Since A and A′ are T2-equivalent, the same
is true for A. The additional arguments below are needed to prove the full
conclusion of Theorem 8.1, namely, T2-equivalence between A′ (hence A)
and 	 for ni ≥ 2. This is needed for the classification result in Theorem 3.1,
as well as for the applications in Sect. 9.

Corollary 8.7. Assume that (C1) holds with n j = nk = 2, and define A′
as above. Then the pair (A′, B) has a (1, 2)-cofibered structure in the p j
direction, with cofibers in A′ at distance M/p2j from each xk ∈ ZM\A such
that (xk − a, M) = M/pk.

Proof. By (8.7) and (C), we have {D(M)|m|M} ⊂ Div(A′). The corollary
follows by applying Lemma 4.6 to each xk . ��

We can now complete the proof under the assumption (C1). By Corol-
lary 8.6, we have �p

ni
i

| A′. This together with (8.7) implies that

A′ ⊂
⋃

z∈ai∗Fi
�(z, pnii ),
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and that for each plane �z := �(z, pnii ) with z ∈ ai ∗ Fi , we have

|A′ ∩ �z| = p j pk . (8.8)

Applying Lemma 4.8 to A′, and using (8.7), we get that each set A′ ∩�z is a
disjoint union of M-fibers in the p j and pk directions. However, we also know
that B is N j -fibered in the p j direction and Nk-fibered in the pk direction,
hence

{M/p2j , M/p2k , M/p2j p
2
k } ⊂ Div(B). (8.9)

It follows that each set A′ ∩�z must in fact be M-fibered in one of the p j and
pk directions. Assuming without loss of generality that A′ ∩ �z is M-fibered
in the p j direction for some z ∈ ai ∗Fi , and taking (8.8) and (8.9) into account,
we get

A′ ∩ �z = {u1, . . . , u pk } ∗ Fj ,

where for each ν �= ν′ we have (uν − uν′, M) ∈ {M/pk, M/p2j pk}. Using the
cofibered structure in the p j direction, and considering each uν ∗Fj as cofiber,
we apply Lemma 2.11 if necessary to reduce to the case where p j | ai − uν

for all ν. This aligns the fibers in �z to a grid u1 ∗ Fj ∗ Fk , fibered in both
directions. If we do not have pk | ai − u1 at this point, we apply Lemma 2.11
again, this time in the pk direction. Repeating this procedure in each plane,
we get that A′ is T2-equivalent to A� = 	. This ends the proof in this case.

8.2 Case (C3)

In this case, we are assuming that�N j |B andAM/p j pk [a] = AM/p j pk [ai ] = 0.
By (C), this implies that AM/pk [a] = AM/p j [ai ] = 0.

Lemma 8.8. Assume (C3) with nk = 2. Let a j ∈ A and x j ∈ ZM\A satisfy
(a j − x j , M) = M/pi and (a−a j , M) = (ai − x j , M) = M/p j . If �Nk � B,
then Ax j ⊂ 
k(ai ).

Proof. The assumptions of the lemma imply that�Nk |A. Applying Lemma 8.2
to A with j and k interchanged, we have

M/p2k , M/pi p j p
2
k ∈ Div(A), (8.10)

AM/p2k
[ai ] + AM/p2k

[a j ] ≥ φ(p2k ). (8.11)
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Let b ∈ B, and consider the saturating set Ax j ,b. Applying Corollary 2.9 (i) to
Ax j ,b, once with respect to ai and again with respect to a j , we have

Ax j ,b ⊂ 
k(x j ) ∪ 
k(ai ) ∪ 
k(a) ∪ 
k(a j ).

Using (8.1) and (8.10), we conclude that Ax j ,b ∩ 
k(x j ) = ∅ since M/pk,
M/p2k /∈ Div(B), and similarly Ax j ,b∩
k(a) = ∅ since M/pi p j , M/pi p j pk,
M/pi p j p2k /∈ Div(B).
Suppose that Ax j ,b ∩ 
k(a j ) �= ∅. By (8.1) again, this implies that

AM/pi p2k
[x j |
k(a j )]BM/pi p2k

[b] > 0,

so that AM/pi p2k
[a|
k(ai )] = AM/p2k

[ai ] = 0. By (8.11) we have AM/p2k
[a j ] =

φ(p2k ) for all (a j −a, M) = M/p j . Wewill prove this contradicts Lemma 4.3.
Indeed, we have

|A ∩ �(a, pnii )| ≥ AM [a] + AM/p j [a] +
∑

(a−a j ,M)=M/p j

AM/p2k
[a j ]

= p j + φ(p j p
2
k ).

A simple calculation shows that the last expression exceeds p j pk if and only if
pk > 1 + 1

φ(p j )
, which holds true since p j > pk ≥ 2. We therefore conclude

that Ax j ,b ⊂ 
k(ai ). ��

Proposition 8.9. (i) Assume (C3) with n j = nk = 2. Then �Nk |B.
(ii) Assume that pi = 2, and that (C3) holds with nk = 2. (In this case, we

do not need to assume that n j = 2.) Then �Nk |B.

Proof. Weprove (ii) first, since the proof in this case is immediate and straight-
forward. Assume, by contradiction, that pi = 2 and �Nk � B, so that �Nk |A.
By Lemma 8.2, (8.11) holds for all a j ∈ A with (a − a j , M) = M/p j . By
Lemma 4.3 we have

pi pk ≥ |A ∩ �(a, p
n j
j )|

≥ AM [a] + AM [ai ] + AM/pk [ai ] + AM/p2k
[ai ]

= pk + 1 + AM/p2k
[ai ].
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Since pi = 2, we get AM/p2k
[ai ] ≤ φ(pk). From (8.11) we deduce

AM/p2k
[a j ] ≥ φ(p2k ) − φ(pk), hence

|A ∩ �(a, pnii )| ≥ AM [a] + AM/p j [a] +
∑

a j :(a j−a,M)=M/p j

AM/p2k
[a j ]

≥ p j + φ(p j )(φ(p2k ) − φ(pk))

= p j + φ(p j )φ(pk)
2

We show the latter exceeds p j pk , which contradicts Lemma 4.3. Indeed, p j +
φ(p j )φ(pk)2 > p j pk if and only if φ(p j )φ(pk)2 > p jφ(pk). This, in turn,
is equivalent to pk > 2 + 1

φ(p j )
, which clearly holds true since pk ≥ 3.

We now prove (i). Assume that pi > 2, and let b ∈ B. Applying Lemma 8.4
to B with p j and pk interchanged, we get that at least one of the following
holds:

B
N j
N j/p j

[b] = φ(p j ), (8.12)

B
N j
N j/pk

[b] = φ(pk). (8.13)

Assume, by contradiction, that �Nk � B. Then �Nk |A. Let a, ai , a j , and x j
be as in Lemma 8.8. By Lemma 8.8, we have Ax j ,b ⊂ 
k(ai ), hence

1

φ(p j pk)
AM/p j pk [x j |
k(ai )]BM/p j pk [b]

+ 1

φ(p j p2k )
AM/p j p2k

[x j |
k(ai )]BM/p j p2k
[b] = 1. (8.14)

Notice that

AM/p j pk [x j |
k(ai )] = φ(pk), BM/p j pk [b] ≤ φ(pk). (8.15)

Indeed, the first part of (8.15) follows from the corner structure. For the second
part, recall from (C3) that pk < p j , so that BM/p j pk [b] > φ(pk) would imply
M/pk ∈ Div(B), contradicting divisor exclusion since the corner structure
implies M/pk ∈ Div(A).

Applying (8.15) to (8.14), we get

AM/p j p2k
[x j |
k(ai )]BM/p j p2k

[b] > 0, (8.16)
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and in particular M/p j p2k ∈ Div(B). We claim that this implies that

AM/p j p2k
[x j |
k(ai )] = AM/p2k

[ai ] = φ(p2k ). (8.17)

Indeed, suppose that (8.17) fails, then AM/p2k
[ai ] < φ(p2k ). By (8.11), we

have AM/p2k
[a j ] > 0, hence AM/p j p2k

[a] > 0. It follows that M/p j p2k ∈
Div(A) ∩ Div(B), which is a contradiction.

Lemma 8.10. Assume that (C3) holds with n j = nk = 2, but �Nk � B. Then
there is at least one b0 ∈ B for which (8.12) holds and (8.13) fails.

Proof. Suppose that the lemma is false, so that (8.13) holds for all b ∈ B. We
first prove that then

∀b ∈ B, pk | BM/p j p2k
[b]. (8.18)

Indeed, by the corner structure and (8.10) we have

M/p j , M/pk, M/p2k /∈ Div(B), (8.19)

Letb ∈ B. By (8.13), there is a pk-tuple of elements {b0 = b, b1, . . . , bpk−1}
⊂ B such that bν ∈ 	(b, M/p j pk). By (8.19), we must have (bν −bν′, M) =
M/p j pk for all ν �= ν′.
Suppose now that b′ ∈ B satisfies (b− b′, M) = M/p j p2k , then b

′ belongs
to a similar pk-tuple {b′

0 = b′, b′
1, . . . , b

′
pk−1} ⊂ B with (b′

ν − b′
ν′, M) =

M/p j pk for all ν �= ν′. By (8.19) again, we must have (bν − b′
ν′, M) =

M/p j p2k for all ν, ν′. Hence the pk-tuples associated with different elements
of B are either identical or disjoint. This proves (8.18).

Applying (8.15), (8.13), (8.17), and (8.18) to (8.14), we get that

1 = φ(pk)2

φ(p j pk)
+ φ(p2k ) · Cpk

φ(p j p2k )
= φ(pk) + Cpk

φ(p j )

for some integer C . But this implies p j = pk(C + 1), which is impossible
since p j is prime. This proves the lemma. ��

By Lemma 8.10, there exists a b0 ∈ B such that B
N j
N j/pk

[b0] < φ(pk) and

B
N j
N j/p j

[b0] = φ(p j ). In particular,

M/p2j ∈ Div(B, b0). (8.20)
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Applying (8.16) to b0, we get that M/p j p2k ∈ Div(B, b0). Finally, if b′, b′′ are
elements of B with (b0 − b′, M) = M/p2j and (b0 − b′, M) = M/p j p2k , then

(b′′ − b′, M) = M/p2j p
2
k . Therefore

M/p2j , M/p j p
2
k , M/p2j p

2
k ∈ Div(B). (8.21)

Lemma 8.11. Assume that (C3) holds with n j = nk = 2, but �Nk � B. Then

|A ∩ �(ai , p
ni
i )| = p2k . (8.22)

Proof. Using (8.17) and the fact that AM/pk [ai ] = φ(pk), we have

|A ∩ 
k(ai )| = p2k .

On the other hand, we claim that

Am[ai ] = 0 ∀m|M such that pnii |m|M, m �= M, M/pk, M/p2k . (8.23)

Indeed, we can exclude the divisors in (8.21). Furthermore, M/p j , M/p j pk /∈
Div(A, ai ) by the pi corner assumption. It remains to check that M/p2j pk /∈
Div(A, ai ). If we had an element a′ ∈ A with (ai − a′, M) = M/p2j pk , then

there would be an element ak ∈ ai ∗ Fk ⊂ A with (ak − a′, M) = M/p2j ,
which is again prohibited by (8.21).

By (8.23), all elements of A in the plane �(ai , p
ni
i ) must in fact lie on the

line 
k(ai ), so that

|A ∩ �(ai , p
ni
i )| = |A ∩ 
k(ai )| = p2k

as claimed. ��
Lemma 8.12. Assume that (C3) holds with n j = nk = 2, but �Nk � B.
Let ak ∈ A, xk ∈ ZM \ A with (ak − xk, M) = M/pi , (ai − ak, M) =
(a − xk, M) = M/pk. Then for b0 as above,

Axk ,b0 ⊂ 
 j (xk).

Proof. Applying Corollary 2.9 (i) to Axk ,b0 , once with respect to a and again
with respect to ak , we get

Axk ,b0 ⊂ 
 j (xk) ∪ 
 j (ai ) ∪ 
 j (a) ∪ 
 j (ak).
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Observe first that Axk ,b0 ∩ (
 j (ak) ∪ 
 j (ai )) = ∅, for otherwise, by (8.1) we
would have either AM/p2j

[ai ] > 0 or AM/p2j
[ak] > 0; both are not allowed due

to (8.21).
Next, we claim that we cannot have both Axk ,b0 ∩ 
 j (a) �= ∅ and Axk ,b0 ∩


 j (xk) �= ∅. Indeed, the former implies AM/p j pk [xk |
 j (a)]BM/p j pk [b0] > 0
and the latter impliesAM/p2j

[xk]BM/p2j
[b0] > 0; having both would contradict

Lemma 4.1.
Suppose that Axk ,b0 ⊂ 
 j (a). Then

1 = 1

φ(p j pk)
AM/p j pk [xk |
 j (a)]BM/p j pk [b0]

+ 1

φ(p2j pk)
AM/p2j pk

[xk |
 j (a)]BM/p2j pk
[b0]. (8.24)

We chose b0 so that BM/p j pk [b0] < φ(pk). By the corner assump-
tion, AM/p j pk [xk |
 j (a)] = φ(p j ). We also have AM/p2j pk

[xk |
 j (a)] =
AM/p2j

[a] = 0, by (8.21). Therefore the right side of (8.24) is strictly less

than 1
φ(p j pk)

φ(p j )φ(pk) = 1, a contradiction. The lemma follows. ��

We now complete the proof of the proposition. Recall from (C3) that

AM/pk [a] = AM/p j pk [a] = 0. (8.25)

Let xk ∈ ZM\A with (xk − a, M) = M/pk . By (8.25), we have xk /∈ A, and
it follows from Lemma 8.12 that Axk ,b0 ⊂ 
 j (xk). Since M/p j ∈ Div(A) and
M/p2j ∈ Div(B) by (8.20), this implies that

AM/p2j
[xk]BM/p2j

[b0] = φ(p2j ),

with

AM/p2j
[xk] = p j (8.26)

and BM/p2j
[b0] = φ(p j ). In particular, |A ∩ 
 j (xk)| ≥ p j . Taking also (8.25)

into account, we see that |A∩
 j (xk)| = p j for each xk as above. This together
with a ∗ Fj ⊂ A yields |A ∩ (�(a, pnii ))| ≥ p j pk . By Lemma 4.3, we must
in fact have

|A ∩ (�(a, pnii ))| = p j pk > p2k .
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On the other hand, by (8.22) we have |A ∩ �(ai , p
ni
i )| = p2k . It follows that

�p
ni
i

� A, since otherwise the number of elements of A in both planes would

be the same.
It remains to prove that we must also have �p

ni
i

� B, which provides the

final contradiction. Indeed, we use the following

1

φ(p j )
AM/p j [a] = 1

p j
AM/p2j

[xk] = 1

φ(p2k )
AM/p2k

[ai ]

= 1

φ(pk)
AM/pk [ai ] = 1,

where the first and last part follow from the corner structure, the second part
from (8.26), and the third part from (8.17). It is easy to see that this config-
uration implies that {pni−1

i ‖ m|M} ⊂ Div(A). This means that for every
b ∈ B

|B ∩ (�(b, pni−1
i ))| = |B ∩ (�(b, pnii ))|,

hence �p
ni
i

� B. This gives the desired contradiction and ends the proof of the

proposition. ��
Proposition 8.9 implies that (C1) holds, and we can now follow the rest of

the proof for that case.

9 Fibered grids

Throughout most of this section we will work under the following assumption.

Assumption (F): We have A ⊕ B = ZM , where M = p2i p
2
j p

2
k is odd. Fur-

thermore, |A| = |B| = pi p j pk , �M |A, and A is fibered on D(M)-grids.

LetI be the set of elements of A that belong to anM-fiber in the pi direction,
that is,

I = {a ∈ A | AM/pi [a] = φ(pi )}.

The sets J andK are defined similarly. The assumption (F) implies that every
element of A belongs to an M-fiber in some direction, hence A = I ∪J ∪K.
We emphasize that this does not have to be a disjoint union and that it is
possible for an element of A to belong to two or three of these sets.

Our main result on fibered grids is the following theorem.

Theorem 9.1. Assume that (F) holds.
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(I) If I ∩ J ∩ K �= ∅, then the tiling A ⊕ B = ZM is T2-equivalent to
	 ⊕ B = ZM, where 	 := 	(0, D(M)). By Corollary 2.2, both A and B
satisfy (T2).

(II) Assume that I∩J ∩K = ∅. Then, after a permutation of the i, j, k indices
if necessary, the following holds.

(IIa) At least one of the sets I,J ,K is empty.Without loss of the generality,
we may assume that I = ∅, so that A ⊂ J ∪ K.
(IIb) If A ⊂ J or A ⊂ K, then A is M-fibered in the p j or pk direction,
respectively. Consequently, the conditions of Theorem 2.6 are satisfied in
that direction. By Corollary 2.7, both A and B satisfy (T2).
(II c) Suppose that I = ∅, and that J \K and K\J are both nonempty.

• If�pi |A, then, after interchanging A and B, the conditions of Theorem 2.6
are satisfied in the pi direction. ByCorollary 2.7, both A and B satisfy (T2).

• If �p2i
|A, then A ⊂ �(a, pi ) for any a ∈ A. By Theorem 2.5, both A and

B satisfy (T2).

The proof of Theorem 9.1 is organized as follows. We will consider the
following sets of assumptions.

Assumption (F’): We have A⊕ B = ZM , where M = p2i p
2
j p

2
k . (Note that M

is not required to be odd). Furthermore, |A| = |B| = pi p j pk , �M |A, and A
is fibered on D(M)-grids.

Assumption (F1): We have A ⊕ B = ZM , where M = p2i p
2
j p

2
k is odd.

Furthermore, |A| = |B| = pi p j pk , �M |A, A is fibered on D(M)-grids, and
I,J ,K are pairwise disjoint.

Assumption (F2): We have A ⊕ B = ZM , where M = p2i p
2
j p

2
k is odd.

Furthermore, |A| = |B| = pi p j pk , �M |A, A is fibered on D(M)-grids,
I ∩ J ∩ K = ∅, and J ∩ K �= ∅.
Assumption (F3): We have A ⊕ B = ZM , where M = p2i p

2
j p

2
k is odd.

Furthermore, |A| = |B| = pi p j pk , �M |A, A is fibered on D(M)-grids,
I = ∅, J \K �= ∅, and K\J �= ∅.

We prove part (I) of Theorem 9.1 in Corollary 9.6; in fact, this part holds
under the weaker assumption (F’). Assume now that I ∩ J ∩ K = ∅. In that
case, we first prove part (II a) of Theorem 9.1. While the conclusion is the
same, the methods of proof will be very different, so that it is preferable to
split this part into two results.

Proposition 9.2. Assume that (F1) holds. Then one of the sets I,J ,K is
empty.

Proposition 9.3. Assume that (F2) holds. Then I = ∅.
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Relabeling the primes if necessary, we may assume that I = ∅ in the case
(F1) as well. If A is M-fibered in one of the p j or pk directions, then (II b)
holds, and we are done. It remains to consider the case covered in (F3). The
following result completes the proof of the theorem.

Proposition 9.4. Assume (F3). Then the conclusion (II c) of Theorem 9.1
holds.

We briefly discuss the notation used in this section. For N |M , we will use
I
N , J

N , K
N to denote the N -boxes associated with I, J , K. We continue to

write

Fi = {0, M/pi , . . . , (pi − 1)M/pi },

with Fj , Fk defined similarly. Recall also that

Mi = M/p2i , Mj = M/p2j , Mk = M/p2k .

Note that Mi = p2j p
2
k has only two distinct prime factors, and similarly for

Mj , Mk . In particular, all Mν-cuboids are 2-dimensional for ν ∈ {i, j, k}, and
all conclusions of Lemma 4.7 apply on that scale. Thus, if �Mi |A, then A
mod Mi is a linear combination of Mi -fibers in the p j and pk directions, with
non-negative integer coefficients. In particular, if �Mi |A and

A
Mi
Mi

[x] ∈ {0, c0} ∀x ∈ ZM ,

then A is Mi -fibered in one of the p j and pk directions on every D(Mi )-grid.
Similar statements holdwith A replaced by B, aswell as for other permutations
of the indices i, j, k.

9.1 Intersections of I,J ,K

It is possible for any of the sets I,J andK to intersect the others. Furthermore,
given a D(M)-grid 	, A ∩ 	 can contain fibers in some direction without
necessarily being fibered in that direction. For example, consider the set

A0 = Fi ∗ [
(Fj ∗ a) ∪ (Fk ∗ a)

]
. (9.1)

Then a ∈ I ∩J ∩K, but A0 is not fibered in either the p j or the pk direction.
Nonetheless, the condition (F) places significant limits on the ways in which

I,J ,K may intersect, as provided by the following structure lemma. In fact,
the weaker condition (F’) is sufficient for this purpose.
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Lemma 9.5. Assume (F’), and suppose that a ∈ J ∩ K for some a ∈ A. Let
D = D(M).

(i) Suppose that A ∩ 	(a, D) is M-fibered in at least one of the p j and pk
directions. (In particular, this holds if a /∈ I.) Then

A ∩ �(a, p2i ) = a ∗ Fj ∗ Fk .

(ii) If A∩	(a, D) is M-fibered in the pi direction (so that a ∈ I ∩J ∩K),
then A0 ⊂ A ∩ 	(a, D), where A0 is the set in (9.1).

Proof. (i) Assume, without loss of generality, that A ∩ 	(a, D) is M-fibered
in the pk direction. Since a ∈ J , we have a ∗ Fj ⊂ A, and the fibering
assumption implies that a ∗ Fj ∗ Fk ⊂ A. The set a ∗ Fj ∗ Fk is contained
in the plane �(a, p2i ) and has cardinality p j pk . By Lemma 4.3, there are no
other elements of A in that plane.

If a /∈ I, then by (F’) the grid 	(a, D) must be fibered in at least one of the
other two directions, so that the above statement applies.

Part (ii) is obvious. ��
Corollary 9.6. Assume (F’), and suppose that I ∩J ∩K �= ∅. Then the tiling
A ⊕ B = ZM is T2-equivalent to 	(a, D(M)) ⊕ B = ZM. Consequently, A
and B satisfy (T2).

Proof. Let a ∈ I∩J ∩K. Without loss of generality, we may assume that A∩
	(a, D(M)) is M-fibered in the pi direction. It follows that {D(M)|m|M} ⊂
Div(A), and, by Lemma 9.5 (ii), we have A0 ⊂ A.

For every a jk ∈ A with (a − a jk, M) = M/p j pk , we have a jk ∗ Fi ⊂ A.
Suppose now that there is a z ∈ ZM\A with (a − z, M) = M/p j pk . By
Lemma 4.6, we have Az ⊂ 
i (z), so that the pair (A, B) has a (1,2)-cofibered
structure in the pi direction with the cofiber in A at distance M/p2i from z.
For each such z, we apply Lemma 2.11 to shift the cofiber, obtaining a new
set A′ with A′ ⊕ B = ZM such that z ∗ Fi ⊂ A′ and A′ is T2-equivalent to A.
After all such shifts have been performed, we see that A is T2-equivalent to
	(a, D(M)). ��

9.2 Toolbox for fibered grids

We start by pointing out a special case when Theorem 9.1 is very easy to prove.

Lemma 9.7. Let A ⊕ B = ZM, where M = p2i p
2
j p

2
k . If �M divides both A

and B, then at least one of the sets A and B is M-fibered in some direction.
By Corollary 2.7, both A and B satisfy (T2).
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Proof. Each of the differences M/pi , M/p j , M/pk can belong to at most one
of Div(A) and Div(B). By pigeonholing, at least one of Div(A) and Div(B)

must avoid at least two of these differences. Assume without loss of generality
that M/pi , M/p j /∈ Div(A). By the assumptions of the lemma, we also have
�M |A. Applying Lemma 4.9 (ii) to A, we get that A is M-fibered in the pk
direction, as claimed. ��

Next,wediscuss cyclotomicdivisibility. Since Fi(X) = (XM−1)/(XM/pi−
1), we have

�s |Fi ⇔ p2i |s|M, (9.2)

and similarly for Fj and Fk . In particular,

2∏

αi=1

�M/p
αi
i

(X)

2∏

α j=1

�
M/p

α j
j

(X)

∣∣∣K(X), (9.3)

and similarly for other permutations of the indices i, j, k.

Lemma 9.8. Assume (F’). For each αk ∈ {1, 2}, we have

�M/p
αk
k

|A ⇔ �M/p
αk
k

|K.

In particular, if �M/p
αk
k

� A for some αk ∈ {1, 2}, then K �= ∅. Similar
conclusions hold for other permutations of the indices i, j, k.

Proof. The lemma follows immediately from (9.3) if I,J ,K are mutually
disjoint, since then we have A(X) = I(X) + J (X) + K(X). In the general
case, we need a mild workaround as follows.

Write A(X) = I ′(X) + J ′(X) + K′(X), where the sets I ′,J ′,K′ are
pairwise disjoint and I ′,J ′,K′ are M-fibered in the pi , p j , and pk direction,
respectively. This can be done by splitting upZM into pairwise disjoint D(M)-
grids 	τ and adding A∩	τ to one of I ′,J ′,K′, according to the direction in
which A ∩ 	τ is M-fibered. (If A ∩ 	τ is fibered in more than one direction,
choose one arbitrarily and add A ∩ 	τ to the corresponding set.)

It follows from (9.3) that �M/p
αk
k

|A if and only if �M/p
αk
k

|K′. To pass from
K′ to K, we write K(X) = K′(X) + Ki (X) + K j (X), where Ki ⊂ I ′ and
K j ⊂ J ′. By Lemma 9.5, Ki is a union of pairwise disjoint sets of the form
a ∗ Fi ∗ Fk , where a ∈ A. In particular, by (9.3) we have �M/p

αk
k

|Ki (X).

Applying the same argument to K j , we see that �M/p
αk
k

|K′ if and only if

�M/p
αk
k

|K, and the lemma follows. ��
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We finish with two counting lemmas.

Lemma 9.9. Let A ⊕ B = ZM , M = p2i p
2
j p

2
k , |A| = |B| = pi p j pk. Then

{m/pα
k : α ∈ {0, 1, 2},m ∈ {M, M/pi , M/p j , M/pi p j }} ∩ Div(B) �= {M}. (9.4)

Proof. Suppose that (9.4) fails. It follows that anyM/pi p j p2k -gridmay contain
at most one element of B. Since ZM is a disjoint union of pi p j such grids,
it follows that |B| ≤ M/pi p j p2k , contradicting our assumption that |B| =
M/pi p j pk . ��
Lemma 9.10. Assume that (F’) holds.

(i) Let ak ∈ K and �k := �(ak, p
αi
i ) for some αi ∈ {1, 2}. Suppose that

|A ∩ �k | = p j pk and I ∩ �k = ∅. Then A ∩ �k ⊂ K.

(ii) Let ai ∈ I and �i := �(ai , pi ). Suppose that

|A ∩ �i | = p j pk (9.5)

and A ∩ �i ⊂ I ∪ K. Then pi < p j .

The same conclusions hold with j and k interchanged.

Proof. (i) Suppose first that J ∩ K ∩ �k �= ∅, and let a ∈ J ∩ K ∩ �k .
Then a /∈ I. By Lemma 9.5 (i), we have A ∩ �k = a ∗ Fj ∗ Fk , so that
A ∩ �k ⊂ J ∩ K.
Assume now thatJ ∩K∩�k = ∅. Since ak ∈ K, there exists a nonnegative

integer c j and a positive integer ck such that

p j pk = |A ∩ �k | = c j p j + ck pk .

This clearly implies c j = 0 and ck = p j , thus proving J ∩ �k = ∅.
(ii) Assume first

I ∩ J ∩ K ∩ �i �= ∅, (9.6)

and let a ∈ I∩J ∩K∩�i . Denote	0 = 	(a, D(M)). By assumption, A∩	0
is M-fibered in the pν direction for some ν ∈ {i, j, k}. Suppose that the latter
holds with ν = j . Since a∗Fk ⊂ A∩	0, in fact we have a∗Fk ∗Fj ⊂ A∩	0.
But a ∗ Fi is also contained in A ∩ 	0, hence

|A ∩ �i | ≥ |A ∩ 	0| ≥ p j pk + pi − 1 > p j pk,

thus contradicting (9.5). Interchanging j and k, the same argument shows
A ∩ 	0 cannot be M-fibered in the pk direction.
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It follows that A∩	0 is M-fibered in the pi direction. Since (a ∗ Fj )∪ (a ∗
Fk) ⊂ A ∩ 	0, the set A ∩ 	0 must contain a structure as in (9.1). By (9.5)

p j pk = |A ∩ �i | ≥ |A ∩ 	0| > pi pk,

which is what we wanted to show.
For the rest of the proof we assume (9.6) fails. We show that A∩ �i can be

written (not necessarily uniquely) as a disjoint union of M-fibers in the pi and
pk directions. Indeed, if I ∩�i andK∩�i are disjoint, we are done. Assume
now that

I ∩ K ∩ 	 �= ∅, (9.7)

for some D(M)-grid 	 ⊂ �i . From the failure of (9.6), we deduce that A∩	

is M-fibered in the pν direction, with either ν = i or ν = k. By Lemma 9.5 (i),
I ∩K ∩ 	 is a union of pairwise disjoint cosets of Fi ∗ Fk . We write all such
cosets as unions ofM-fibers in the pi direction. Then, we add all the remaining
M-fibers in the pi and pk directions in A ∩ 	, disjoint from I ∩ K ∩ 	 and
from each other. Since	 is an arbitrary grid satisfying (9.7), the claim follows.

Since A ∩ �i can be written a disjoint union of M-fibers in the pi and pk
directions, there must exist a positive integer ci and a nonnegative integer ck
such that

p j pk = |A ∩ �i | = ci pi + ck pk .

It follows that ci = c′
i pk for some positive integer c′

i . But then p j = c′
i pi +ck ,

so that p j > pi as claimed. ��

9.3 Fibering on lower scales

Lemma 9.11. Assume that (F) holds.

(i) Let 	 := 	(a0, D(Ni )) for some a0 ∈ I. If I ∩ J ∩ 	 = ∅ and A is
Ni -fibered on 	, it cannot be fibered in the p j direction.

(ii) If �Ni |B and

{M/p j , M/pk, M/pi p j , M/pi pk} ∩ Div(B) = ∅, (9.8)

then B must be Ni -fibered in the pi direction. Note in particular that if
{D(M)|m|M} ⊂ Div(A), then (9.8) holds.

Proof. (i) Assume, by contradiction, that A is Ni -fibered in the p j direction on

	. Then A
Ni
Ni

[a] = pi and A
Ni
Ni/p j

[a] = piφ(p j ) for all a ∈ I ∩ 	, meaning
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thatI∩	 is alsoM-fibered in the p j direction. This contradicts the assumption
that I ∩ J ∩ 	 is empty.

(ii) By (9.8), we have B
Ni
Ni/p j

[b] = B
Ni
Ni/pk

[b] = 0 for all b ∈ B. It follows
from Lemma 4.9 (ii) that B is Ni -fibered in the pi direction. ��

ByLemma 9.8, if�Nk |A, then�Nk |K.We consider the question ofwhether,
in these circumstances, K is permitted to have an unfibered grid on a lower
scale.

Lemma 9.12. Assume that (F) holds. Suppose that�Nk |A and that there exists
a D(Nk)-grid on which K is not fibered. Then:

• {D(M)|m|M} ∪ {M/p2k , M/pi p j p2k } ⊂ Div(A),

• there exists an x ∈ ZM such that K
Nk
Nk/pk

[x] = φ(p2k ).

Proof. Assume that �Nk |A. By Lemma 9.8, we have �Nk |K. ConsiderK as a
multiset in ZNk with constant multiplicity pk . We claim that ifK is not fibered
on a D(Nk)-grid 	, it must satisfy the conclusion of either Lemma 6.3 or
Lemma 6.4 with N = Nk on that grid. Indeed, if this is not the case, then we
must have

{m : D(Nk)|m|Nk} ⊂ DivNk (K).

But then, for every D(Nk)|m|Nk there exist a, a′ ∈ K (depending on m) such
that (a − a′, Nk) = m. Since K

Nk
Nk

[a] = K
Nk
Nk

[a′] = φ(pk), we have

{
m/pα

k : α ∈ {0, 1, 2},m ∈ {M, M/pi , M/p j , M/pi p j }
} ⊂ Div(K).

The latter contradicts Lemma 9.9.
On the other hand, suppose that K ∈ M(ZNk ) has at least p j + 1 distinct

points in some plane �(x, p2i ) in ZNk , each of multiplicity pk . Then |A ∩
�(x, p2i )| ≥ (p j +1)pk inZM , contradicting Lemma 4.3. The same argument
applies with i and j interchanged.

Among the structures described in Lemmas 6.3 and 6.4 with N = Nk , the
only ones that avoid configurations as in the last paragraph are as follows.

• K ∩ 	 has the pk full plane structure as in Lemma 6.3, so that for some
x ∈ ZM we have K

Nk
Nk/pk

[x] = φ(p2k ) and K
Nk
Nk/pi p j

[x] = pkφ(pi p j ).
• K ∩ 	 has a pi or p j corner structure as in Lemma 6.4 (i).
• K ∩ 	 has a pi or p j almost corner structure as in Lemma 6.4 (ii), so that
(possibly after a permutation of i and j) there exist x1, x2, x3, x4 ∈ ZM

such that (xν − xν′, Nk) = Nk/pi for ν �= ν′, KNk
Nk/pk

[x1] = K
Nk
Nk/pk

[x2] =
φ(p2k ) and K

Nk
Nk/p j

[x3] = K
Nk
Nk/p j

[x4] = pkφ(p j ).
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We address the second case, the first and third case being similar. Indeed, a
pi corner structure in K on the Nk scale means that there exist a, a′ ∈ K with
(a − a′, Nk) = Nk/pi so that

K
Nk
Nk/pk

[a] = KM/p2k
[a] = φ(p2k ) (9.9)

and

K
Nk
Nk/p j

[a′] = KM/p j [a′] + KM/p j pk [a′] = pkφ(p j ). (9.10)

Now consider K on scale M . We have (a − a′, M) ∈ {M/pi , M/pi pk}, with
the fiber chain in (9.9) attached to a. By (9.10) and the fact that a′ ∈ K, we
also have a′ ∗ Fj ∗ Fk ⊂ K. Hence the conclusions of the lemma hold with
x = a. ��
Corollary 9.13. Assume (F). If �Nk |A and pk > minν pν , then K is Nk-
fibered on each D(Nk)-grid in one of the pi and p j directions. In particular,
K ⊂ I ∪ J .

Proof. Assume without loss of generality that pi = minν pν . By Lemma 9.8,
we have �Nk |A if and only if �Nk |K. By Lemma 9.12, if there exists a
D(Nk)-grid on which K is unfibered, then there must exist x ∈ ZM such
that K

Nk
Nk/pk

[x] = φ(p2k ), thus

|A ∩ �(x, p2j )| ≥ K
Nk
Nk/pk

[x] = φ(p2k )

> pi pk,

which contradicts Lemma 4.3. ThusKmust be fibered on all D(Nk)-grids. On
the other hand, by the same argument as above,K cannot be Nk-fibered in the
pk direction on any D(Nk)-grid. ��

9.4 Proof of Proposition 9.2

In this section, we are assuming (F1), whichwe state here again for the reader’s
convenience.

Assumption (F1). We have A ⊕ B = ZM , where M = p2i p
2
j p

2
k is odd.

Furthermore, |A| = |B| = pi p j pk , �M |A, A is fibered on D(M)-grids, and

I,J ,K are pairwise disjoint. (9.11)
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We must prove that at least one of the sets I,J or K has to be empty. To
this end we assume the contrary, i.e.,

I,J ,K �= ∅, (9.12)

and prove by contradiction that (9.12) cannot hold. We may assume, without
loss of generality, that

pi < p j < pk . (9.13)

By Corollary 9.13, this implies that �N j and �Nk cannot divide A, so that

�N j�Nk |B. (9.14)

We start with a cyclotomic divisibility result.

Proposition 9.14. Assume that (F1), (9.12), and (9.14) hold. Then �Ni � A.

Proof. The proof is divided into several steps. In each of the following claims,
the assumptions of the proposition are assumed to hold.

Claim 1. If �Ni |A, then I is Ni -fibered in the pi direction, so that for every
ai ∈ I,

IM [ai ] + IM/pi [ai ] + IM/p2i
[ai ] = p2i . (9.15)

��
Proof. It suffices to prove that I is Ni -fibered on each D(Ni )-grid. Once we
know that, Lemma 9.11 (i) together with (9.11) implies that the Ni -fibering
must be in the pi direction, and the claim follows.

Assume, by contradiction, that there exists a D(Ni )-grid over which I is
not fibered. By Lemma 9.12,

{D(M)|m|M} ∪ {M/p2i , M/p2i p j pk} ⊂ Div(A) (9.16)

and there exists x0 ∈ ZM with

I
Ni
Ni/pi

[x0] = φ(p2i ). (9.17)

The proof of Lemma 9.12 implies further that I ∩	(x0, D(Ni )) must contain
one of the structures described in Lemmas 6.3 and 6.4 with N = Ni . Addition-
ally, (9.14) and Lemma 9.11 (ii) imply that B is N j -fibered in the p j direction
and Nk-fibered in the pk direction, hence

M/p2j , M/p2k , M/p2j p
2
k ∈ Div(B). (9.18)
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We claim that

I
Ni
Ni

[x0] = 0. (9.19)

Suppose this is not true, then

AM [x0] + AM/pi [x0] + AM/p2i
[x0] = p2i . (9.20)

Let a j ∈ J and ak ∈ K. Recall from Lemma 2.11 that the fibering in B
allows one to shift the fibers rooted at a j and ak by distance M/p2j and M/p2k ,
respectively. Let x j , xk ∈ ZM with

(aν − xν, M) = M/p2ν and p2ν |x0 − xν for ν ∈ { j, k}.

Let A′ be the set obtained by shifting the fibers rooted at a j and ak to x j and
xk respectively, so that x j ∗ Fj , xk ∗ Fk ⊂ A′. By Lemma 2.11, A′ ⊕ B = ZM
and A′ is T2-equivalent to A.

Let a1, a2 ∈ 
i (x0) be the points with p2i |a1 − x j , p2i |a2 − xk . By (9.20),

i (x0) ⊂ A∩ A′. It follows from (9.18) that we cannot have M/p2k ∈ Div(A′),
hence (a1 − x j , M) = M/pk . Similarly, (a2 − xk, M) = M/p j . But now
M/p2i p j , M/p2i pk ∈ Div(A′), hence M/p2i p j , M/p2i pk /∈ Div(B). Together
with (9.16), this contradicts Lemma 9.9. This proves (9.19).

We therefore conclude thatI∩	(x0, D(Ni )) has either a full plane structure
(Lemma 6.3) or an almost corner structure (Lemma 6.4 (ii)). In either one of
these cases, there exists a point

a∗
i ∈ I ∩ 	(x0, D(M)) (9.21)

such that for each ν ∈ { j, k}, A∩(a∗
i ∗Fi ∗Fν) isM-fibered in the pi direction,

but is not M-fibered in the pν direction.
Let a j ∈ J , and let x j ∈ 
 j (a j ) be the point such that p2j |x0 − x j . We

consider two cases.

(a) If it is possible to choose a j so that x j ∈ a j ∗ Fj , we fix that choice, and
let A′ := A.

(b) Otherwise, let A′ be the set obtained from A by shifting the fiber a j ∗ Fj to
x j if necessary, so that x j ∗ Fj ⊂ A′. By Lemma 2.11, A′ ⊕ B = ZM and
A′ is T2-equivalent to A. Since we are not in case (a), A′ ∩ (x j ∗ Fi ∗ Fj )

contains no other M-fibers in the p j direction.

We show that either x j ∈ 	(x0, D(M)) or

M/p2i pk /∈ Div(B). (9.22)

123



The Coven–Meyerowitz tiling conditions 441

• Suppose that pi |x0 − x j . If (x0 − x j , M) ∈ {M, M/pi , M/pk, M/pi pk},
then clearly x j ∈ 	(x0, D(M)). If on the other hand (x0 − x j , M) ∈
{M/p2k , M/pi p2k }, then by (9.21), there exists a fiber a ∗ Fi ⊂ I with a ∈
	(x0, D(M)) and p2i |a − x j . Then M/p2k ∈ Div(a, x j ∗ Fj ) ⊂ Div(A′),
contradicting (9.18).

• Assume now that pi � x0 − x j . If (x0 − x j , M) = M/p2i pk , then by
(9.17) together with the fact that pi ≥ 3, there must be an a ∈ A with
(a − x0, M) = M/p2i and (a − x j , M) = M/p2i pk , proving (9.22) since
x j ∈ A′. Otherwise, we have (x0 − x j , M) = M/p2i p

2
k , but then by (9.17),

there must be a ∈ A with (a− x0, M) = M/p2i and (a− x j , M) = M/p2k ,
contradicting (9.18).

Suppose now that x j ∈ 	(x0, D(M)). We claim that, in this case, A′ con-
tains a pk extended corner structure consisting of the fiber in x j ∗Fi ∗Fj in the
p j direction and at least one fiber in a∗

i ∗ Fi ∗ Fj in the pi direction. Indeed,
by (9.21) and (9.11), we have

	(x j , D(M)) ∩ (J ∪ K) = ∅.

In particular, we must be in case (b) above, and A ∩ (x j ∗ Fi ∗ Fj ) = x j ∗ Fj .
This, togetherwith the choice of a∗

i , proves that the conditions ofDefinition 5.4
(ii) hold.

In that case, however, we proved in Theorem 8.1 that A′ (therefore A)
is T2-equivalent to a D(M)-grid. It follows that A satisfies (T2), therefore
A ⊕ B� = ZM , where �pν |B� for all ν ∈ {i, j, k}. This contradicts (9.16),
since clearly M/p2i ∈ Div(B�).

We are therefore left with (9.22). By the same argument with p j and pk
interchanged, we must also have M/p2i p j /∈ Div(B). Together with (9.16),
this again contradicts Lemma 9.9. ��
Claim 2. If �Ni |A, then �Mi � A, and therefore �Mi |B.
Proof. By Lemma 9.8, if �Mi |A, then �Mi |I. Since Mi has only 2 distinct
prime divisors, we may apply Lemma 4.7 on the scale Mi . We conclude that
every element of I belongs to either an Mi -fiber in the p j direction, in which
case we have |A ∩ �(ai , p2k )| ≥ p2i p j , or to an Mi -fiber in the pk direction,
in which case we have |A∩�(ai , p2j )| ≥ p2i pk . Since both bounds contradict
Lemma 4.3, we deduce �Mi |B, and the lemma follows. ��

The next claim is a direct consequence of Claim 2, (9.15), and Lemma 4.7.

Claim 3. If �Ni |A, then B
Mi
Mi

[y] ∈ {0, 1} for all y ∈ ZM . Moreover, for every
b ∈ B, either

B
Mi
Mi/p j

[b′] = φ(p j ) for all b
′ ∈ B ∩ 	(b, D(Mi )), (9.23)
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and, since pi = minν pν ,

M/pi p j , M/p2i p j ∈ Div(B), (9.24)

or

B
Mi
Mi/pk

[b′] = φ(pk) for all b
′ ∈ B ∩ 	(b, D(Mi )) (9.25)

and

M/pi pk, M/p2i pk ∈ Div(B). (9.26)

Claim 4. If �Ni |A, then for all ai ∈ I we have I
Mi
Mi/p j

[ai ] = I
Mi
Mi/pk

[ai ] = 0.

Proof. If there exist b1, b2 ∈ B such that (9.23) holds with b′ = b1 and (9.25)
holds with b′ = b2, then the claim follows from (9.24) and (9.26). Assume
therefore that (9.23) holds for all b ∈ B, and, consequently, I

Mi
Mi/p j

[ai ] = 0
for all ai ∈ I.

Assume, by contradiction, that I
Mi
Mi/pk

[ai ] > 0 for some ai ∈ I. It follows
from (9.15) that

M/pi , M/pk, M/p2i , M/pi pk, M/p2i pk ∈ Div(A). (9.27)

We claim that

M/p j pk /∈ Div(B). (9.28)

Assuming this, we prove Claim 4 as follows. By (9.12), (9.27), and (9.28), we
have Nk/pi , Nk/p j /∈ DivNk (B). By (9.14) and Lemma 4.9 (ii), B must be
Nk-fibered in the pk direction, so that

B
Nk
Nk/pk

[b] = φ(pk) ∀b ∈ B.

Let ak ∈ K. Since ai satisfies (9.15), we may assume (moving ai to a
different point in the same fiber chain if necessary) that

p2i |ak − ai . (9.29)

Then the pair (A, B) has a (1,2)-cofibered structure, with ak ∗ Fk as a cofiber.
Let x ′

k ∈ 
k(ak) be the point such that p2k |ai − x ′
k . If pk |ak − x ′

k , we note that
x ′
k ∈ A, and let A′ := A. If on the other hand (ak − x ′

k, M) = M/p2k , we use
Lemma 2.11 to shift ak ∗ Fk to x ′

k , obtaining a new set A′ such that x ′
k ∈ A′,

A′ ⊕ B = ZM , and A′ is T2-equivalent to A.
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By (9.24) and (9.29), we must have (ai − x ′
k, M) = M/p2j , so that M/p2j ∈

Div(A′). In particular, M/p2j /∈ Div(B). On the other hand, we also have
�N j |B, and

B
N j
N j/pk

[b] = B
N j
N j/p j

[b] = 0 for all b ∈ B.

By Lemma 4.9, B must be N j -fibered in the pi direction, so that B
N j
N j/pi

[b] =
φ(pi ) for every b ∈ B. Together with (9.12), this means that every grid
	(b, M/pi p j ) with b ∈ B contains exactly pi points of B. On the other
hand, the assumption that (9.23) holds for all b ∈ B implies that every such
grid contains exactly p j points of B. This contradiction proves the claim,
assuming (9.28).

We now prove (9.28). Assume, by contradiction, that b, b′ ∈ B with (b −
b′, M) = M/p j pk . Let y, y′ ∈ ZM\B with (b − y, M) = (b′ − y′, M) =
M/pk , (b − y′, M) = (b′ − y, M) = M/p j , and consider the saturating set
By,ai . Applying Corollary 2.9 (i) to By , once with respect to b and again with
respect to b′, we get

By,ai ⊂ 
i (b) ∪ 
i (y) ∪ 
i (b
′) ∪ 
i (y

′).

If By,ai ∩ (
i (y) ∪ 
i (y′)) is nonempty, then {M/pi pk, M/p2i pk} ∩ Div(B)

must be nonempty, while if By,ai ∩ (
i (b) ∪ 
i (b′)) is nonempty, then
{M/pi , M/p2i } ∩ Div(B) must be nonempty. Both of these contradict (9.27).

��

Claim 5. If �Ni |A and M/p j pk /∈ Div(B), then there must exist b j , bk ∈ B
such that (9.23) holds with b = b j and (9.25) holds with b = bk .

Proof. Assume, by contradiction, that the conclusion is false. Without loss of
generality, we may assume that (9.23) holds for all b ∈ B.

Since M/p j pk /∈ Div(B), we have B
N j
N j/pk

[b] = 0 for all b ∈ B. By (9.14)
and Lemma 4.9, B must be fibered on D(N j )-grids, so that for every b ∈ B
either

B
N j
N j/p j

[b] = φ(p j ), (9.30)

or

B
N j
N j/pi

[b] = B
M
M/pi p j

[b] = φ(pi ). (9.31)
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Suppose that there exists b0 ∈ B satisfying (9.30). Applying (9.23) to all
b′ ∈ B with (b0 − b′, M) = M/p2j , we get

|B ∩ �(b0, p
2
k )| ≥ p2j > pi p j ,

which contradicts Lemma 4.3.
Hence (9.31) must hold for all b ∈ B, so that B is a union of disjoint N j -

fibers in the pi direction, each of cardinality pi . On the other hand, by Claim
3 and (9.23), for any b ∈ B we have

B
N j/p2i
N j/p2i

[b] = B
Mi/p j
Mi/p j

[b]
= 1 + B

Mi
Mi/p j

[b]
= 1 + φ(p j ) = p j .

This implies that p j is divisible by pi , which is obviously false. ��
Claim 6. If M/p j pk /∈ Div(B), then �Ni � A.

Proof. Assume, by contradiction, that M/p j pk /∈ Div(B) and �Ni |A. Then
the conclusions of Claims 1–5 apply. By Claim 5, we may find b j , bk such that
(9.23) holds with b = b j and (9.25) holds with b = bk . We fix these elements
for the duration of the proof.

We claim that

M/p2j , M/p2k ∈ Div(B). (9.32)

We prove the first part of (9.32), the second part being identical with p j and
pk interchanged.
As in the proof of Claim 5, we use (9.14) and the assumption thatM/p j pk /∈

Div(B) to conclude that either (9.30) or (9.31) holds for every b ∈ B. Suppose
that (9.31) holds for b = b j . Then B ∩ 	(b j , D(N j )) is a union of disjoint
N j -fibers in the pi direction, and the same argument as in the proof of Claim 5
implies that p j is divisible by pi , which is obviously false. Thus (9.30) holds
with b = b j , and in particular M/p2j ∈ Div(B).

With (9.32) in place, we complete the proof as follows. Fix a j ∈ J and
ai ∈ I such that p2i |a j − ai . (This is possible by (9.15).) Taking (9.24), (9.26)
and (9.32) into account, we see that

(ai − a j , M) ∈ {M/p2j p
2
k , M/p2j pk}.

Suppose first that (ai − a j , M) = M/p2j p
2
k = p2i . By (9.15) again, we must

in fact have 1, pi , p2i ∈ Div(A). We deduce that Mi/p2j p
2
k /∈ DivMi (B), and,

123



The Coven–Meyerowitz tiling conditions 445

therefore, one of B ⊂ b ∗ p jZ or B ⊂ b ∗ pkZ must hold for any fixed b ∈ B.
That, however, contradicts (9.32).

We are therefore left with

(ai − a j , M) = M/p2j pk . (9.33)

We claim that in this case �Mj � A. Indeed, otherwise �Mj |A and, by

Lemma 9.8, we have �Mj |J . Notice that by (9.32), J
Mj
M j

[x] ∈ {0, p j } for
all x ∈ ZM . By Lemma 4.7, a j belongs to an Mj -fiber in the pν direction,
with either ν = i or ν = k. Assume first that a j belongs to an Mj -fiber in the
pk direction. This means that for every y ∈ ZM with (y − a j , M) = M/pk
we have J

Mj
M j

[y] = p j , with J ∩
 j (y) consisting of a single M-fiber in the p j

direction. By (9.33), there must be y0 with (y0 − a j , M) = M/pk , such that
ai ∈ 
 j (y0). Let a′

j ∈ J ∩ 
 j (y0). Let also a′
i ∈ 
i (ai ) ⊂ A be the element

such that p2i |a′
i − a′

j . We also have p2k |a′
i − a′

j , and, by (9.33), p j � a′
i − a′

j ,

Hence (a′
i − a′

j , M) = M/p2j , which contradicts (9.32).
It follows that a j must belong to an Mj -fiber in the pi direction. By the

same argument as above, for every y ∈ ZM with (y − a j , M) = M/pi , we

have J
Mj
M j

[y] = p j . We get |A ∩ �(a j , p2k )| ≥ pi p j , and by Lemma 4.3, we
have

|A ∩ �(a j , p
2
k )| = pi p j . (9.34)

Therefore

|A ∩ �(a j , pk)| ≥ |A ∩ �(a j , p
2
k )| + |A ∩ �(ai , p

2
k )|

> pi p j ,

where the latter inequality follows from the fact that 
i (ai ) ⊂ A, as follows
from Claim 1. By Corollary 4.4 we have �p2k

|A. Combining the latter with
(9.34), we conclude

|A ∩ �(ai , p
2
k )| = |A ∩ �(a j , p

2
k )| = pi p j > |
i (ai )| = p2i .

This means that there must be at least one element a ∈ A ∩ �(ai , p2k ) which
does not belong to 
i (ai ). The latter is not possible, because Div(a, 
i (ai )) ⊂
Div(A) would cause a divisor conflict with either (9.24) or (9.32). This con-
tradiction gives �Mj |B.

Note that by (9.12) M/p j /∈ Div(B), thus B ′ = {b mod N j : b ∈ B} ⊂
ZN j is a set (and not a multiset). By (9.14), we have �N j�Mj |B and therefore
�N j�Mj |B ′. ByExample (1) at the end of Section 2.6 appliedwithM replaced
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by N j , B ′ is T -null with respect to the cuboid type T = (N j , (1, 0, 1), 1).
Since each individual cuboid of type T is in fact contained in a 2-dimensional
D(Mj )-grid inZN j , this implies that�Mj |(B ′∩	)(X), for any such grid	. By
Lemma4.7 (ii), B ′∩	 is N j -fibered in either the pi or pk direction on each such
grid. However, since M/p j , M/p j pk /∈ Div(B), we get N j/pk /∈ DivN j (B

′).
Hence B ′, and therefore B, is N j -fibered in the pi direction. As already proved
in Claim 5, the latter is not allowed. The claim follows. ��

Claim 6 proves Proposition 9.14 in the case whenM/p j pk /∈ Div(B). From
here on, we will therefore assume that

M/p j pk ∈ Div(B). (9.35)

Claim 7. If �Ni |A and (9.35) holds, then �Mi/p j�Mi/pk |B.
Proof. Assume, by contradiction, that �Mi/p j |A. Let ai ∈ I, and let xk ∈ ZM

with (ai − xk, M) = M/pk . By Claim 4, we have A
Mi
Mi

[xk] = 0. Furthermore,
(9.15) and the assumption that M/p j pk /∈ Div(A) imply that

A
Mi/p j
Mi/p j

[xk] = A
Mi
Mi

[xk] +
∑

x ′
k :(xk−x ′

k ,M)=M/p j

A
Mi
Mi

[x ′
k] = 0.

Considering all Mi/p j cuboids with vertices at ai and xk , we see that for every
x j ∈ ZM with (ai − x j , M) = M/p2j we have

A
Mi/p j
Mi/p j

[x j ] ≥ p2i ,

thus

|A ∩ �(ai , p
2
k )| ≥ p j p

2
i > pi p j ,

contradicting Lemma 4.3. Since this argument is symmetric with respect to j
and k, the claim follows. ��

Claim 8. If �Ni |A and (9.35) holds, then B is Mi -fibered in both of the p j
and pk directions, so that for all b ∈ B we have

1

φ(p j )
B
Mi
Mi/p j

[b] = 1

φ(pk)
B
Mi
Mi/pk

[b] = 1. (9.36)

Proof. By Claims 2 and 7, we have �Mi�Mi/pk |B. Therefore B is null with
respect to all cuboids of type (Mi , δ, 1), where δ = (0, 1, δk) with δk ∈ {1, 2}.
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Suppose that for some b0 ∈ B we have B
Mi
Mi/p j

[b0] < φ(p j ). Fix y j ∈ ZM

such that (b0 − y j , M) = M/p j and B
Mi
Mi

[y j ] = 0, and consider all cuboids as
above with vertices at b0 and y j . In order to balance these cuboids, we must

have B
Mi
Mi

[y] = 1 for all y ∈ ZM with (b0 − y, M) ∈ {M/pk, M/p2k }. But
now we get |B ∩ �(b0, p2j )| ≥ p2k > pi pk , which contradicts Lemma 4.3.
Since this argument is symmetric in j and k, the claim follows. ��

Claim 9. If �Ni |A and (9.35) holds, then for all b ∈ B we have B
N j
N j/pi

[b] =
φ(pi ).

Proof. Assume, by contradiction, that there exists b0 ∈ B with B
N j
N j/pi

[b0] <

φ(pi ). Since pk > p j and M/pk ∈ Div(A), we must also have B
N j
N j/pk

[b0] <

φ(pk). Let yi , yk ∈ ZM with (b0 − yi , N j ) = N j/pi , (b0 − yk, N j ) = N j/pk
and such that B

N j
N j

[yi ] = B
N j
N j

[yk] = 0. Recall that �N j |B, and consider
all N j cuboids with vertices at b, yi and yk . We get that for every z with
(z − b0, N j ) = N j/p j , we have

B
N j
N j

[z] + B
N j
N j/pi pk

[z] ≥ 1. (9.37)

But by Claim 8, we also have

|B ∩ �(b, p j )| ≥ p j pk ∀b ∈ B.

Applying this to all b ∈ B contributing to (9.37), and summing over z with
(z − b0, N j ) = N j/p j , we get |B| ≥ p j · (p j pk) > pi p j pk , a contradiction.

��

Claim 10. If (9.35) holds, then �Ni � A.

Proof. Assume, for contradiction, that (9.35) holds and �Ni |A. By Claim 8,
B must satisfy (9.36), and in particular

B
Mi
Mi/p j

[b] = φ(p j ) for all b ∈ B.

By Claim 9,

B
N j
N j/pi

[b] = BM/pi p j [b] = φ(pi ) for all b ∈ B.

As in the proof of Claim 6, these two properties imply that p j is divisible by
pi , which is false. ��
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Claim 10 concludes the proof of Proposition 9.14. ��
By Proposition 9.14, it remains to prove Proposition 9.2 under the assump-

tion that

∏

ν∈{i, j,k}
�M/pν |B. (9.38)

Lemma 9.15. Assume (F1) and (9.38). Then at least one of the sets I,J , or
K must be empty.

Proof. Assume, by contradiction, that (9.12) holds. By (9.38), �Ni |B. Since
pi = minν pν and M/p j , M/pk /∈ Div(B), we must have

1

φ(p j )
B
Ni
Ni/p j

[b], 1

φ(pk)
B
Ni
Ni/pk

[b] < 1 for all b ∈ B,

and, in particular, B cannot be Ni -fibered in either the p j or the pk direction
on any D(Ni )-grid. By Lemma 4.9, it follows that M/p2i ∈ Div(B).

Suppose first that �Mi |A, so that �Mi |I. We have I
Mi
Mi

[x] ∈ {0, pi } for all
x ∈ ZM , and Ni/pi /∈ DivNi (A). By Lemma 4.7, I must be Mi -fibered in
one of the p j and pk directions, on each D(Mi )-grid. In particular, for a given
ai ∈ I, we have either

I
Mi
Mi

[y] = pi , for all y ∈ ZM with (y − ai , M) = M/p j , (9.39)

or

I
Mi
Mi

[y] = pi , for all y ∈ ZM with (y − ai , M) = M/pk . (9.40)

Assume that there exists ai ∈ I satisfying (9.39), and fix such an element. It
follows that |I ∩ �(ai , p2k )| ≥ pi p j . By Lemma 4.3, the last inequality holds
as equality, i.e.,

|I ∩ �(ai , p
2
k )| = pi p j and so A ∩ �(ai , p

2
k ) ⊂ I. (9.41)

We now consider two cases.

• If �p2k
|A, then (9.41) implies A ⊂ �(ai , pk). But since K is nonempty,

we may find ak ∈ K ⊂ �(ai , pk). It follows that there must exist a′
k ∈

(ak ∗ Fk)∩�(ai , p2k ). By (9.41) we have a
′
k ∈ I, thus contradicting (9.11).

• If �pk |A, then

|A ∩ �(a, pk)| = pi p j for all a ∈ A. (9.42)
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Evidently, the latter implies that (9.39) must hold for all a′
i ∈ I. Indeed,

otherwise therewould be a′
i ∈ I satisfying (9.40), and so |A∩�(a′

i , pk)| ≥
pi pk . But now (9.13) implies |A ∩ �(a′

i , pk)| > pi p j , which contradicts
(9.42). Hence (9.39) holds for all ai ∈ I. Consequently (9.41) holds for all
ai ∈ I.
Let ak ∈ K. If I ∩ �(ak, pk) is nonempty, then (9.41) and (9.42) imply
that A ∩ �(ak, pk) is contained in I. In particular we would have ak ∈ I,
thus contradicting (9.11). Hence A ∩ �(ak, pk) ⊂ J ∪ K. Lemma 9.10
(ii) implies now that pi > pk , contradicting (9.13).

We note that the complementary case, in which (9.40) holds for all ai ∈ I,
is proved in the exact same way, interchanging j and k. The only difference
between the two cases is that in the analogous subcase �p j |A, we do not
require the argument showing (9.40) holds for all ai ∈ I.

We conclude that �Mi � A, hence �Ni�Mi |B. This implies that B is T -
null with respect to the cuboid type T = (Ni , δ, T ), where δ = (0, 1, 1) and
T (X) = 1. (See the first of the two examples at the end of Sect. 2.6, with
M replaced by Ni .) Since M/pi /∈ Div(B), we have B

T [y] ∈ {0, 1} for all
y ∈ ZM . Note that T is a 2-dimensional cuboid type, so that for every b ∈ B
we either have

B
T [y j ] = BM [y j ] + BM/pi [y j ] = 1 for all y j ∈ ZM

with (b − y j , M) = M/p j ,

or

B
T [yk] = BM [yk] + BM/pi [yk] = 1 for all yk ∈ ZM with (b − yk, M) = M/pk .

As pi = minν pν , the former implies M/p j ∈ Div(B), and the latter implies
M/pk ∈ Div(B), both contradicting (9.12). ��

9.5 Proof of Proposition 9.3

In this section, we will prove that I = ∅ under the following conditions.

Assumption (F2). We have A ⊕ B = ZM , where M = p2i p
2
j p

2
k is odd.

Furthermore, |A| = |B| = pi p j pk , �M |A, A is fibered on D(M)-grids,
J ∩ K �= ∅, and

I ∩ J ∩ K = ∅. (9.43)

Let a ∈ J ∩ K. By Lemma 9.5 (i), we have

a ∗ Fj ∗ Fk = A ∩ �(a, p2i ), (9.44)
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and in particular

{M/p j , M/pk, M/p j pk} ⊂ Div(A). (9.45)

We first prove Proposition 9.3 under the assumption that �p2i
|A.

Lemma 9.16. Assume (F2), and let a ∈ J ∩ K. If �p2i
|A, then

A ⊂ �(a, pi ). (9.46)

Proof. The assumption �p2i
|A, together with (9.44), implies that |A ∩

�(a, pi )| = pi p j pk = |A|. ��
Corollary 9.17. Assume that (F2) holds, and that �p2i

|A. Then I = ∅.
Proof. Let a ∈ J ∩ K. Suppose, by contradiction, that I is nonempty. By
(9.46), there must exist an element ai ∈ I ∩ �(a, p2i ). It follows from (9.44)
that ai ∈ a ∗ Fj ∗ Fk . But then ai ∈ I ∩ J ∩ K, contradicting (9.43). ��

In the rest of this section, it remains to consider the following case.

Assumption (F2’). Assume that (F2) holds, and that

�p2i
� A. (9.47)

Lemma 9.18. Assume (F2’). Then:

(i) We have �pi |A. Moreover,

A ∩ �(a, pi ) = A ∩ �(a, p2i ) ∀a ∈ J ∩ K, (9.48)

|A ∩ �(x ′, pi )| = p j pk ∀x ′ ∈ ZM . (9.49)

(ii) Let a ∈ J ∩K. For every x ∈ ZM \ A with (a − x, M) = M/pi , we have

Ax ⊂ �(a, p2i ). (9.50)

Proof. Since |A| = pi p j pk , exactly one of �pi and �p2i
must divide A. By

(9.47), we must in fact have �pi |A. Let a ∈ J ∩ K. Then

p j pk ≥ |A ∩ �(a, pi )| ≥ |A ∩ �(a, p2i )| = p j pk, (9.51)

by (9.44). Hence the above must hold with equality, which proves (9.48). It
also follows that for any x ′ ∈ ZM , we must have |A ∩ �(x ′, pi )| = p j pk , so
that (9.49) holds. This proves (i).
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Next, let a, x be as in (ii). By (9.51) again, we have

A ∩ �(a, pi ) ⊂ �(a, p2i ). (9.52)

Let b ∈ B. Applying Corollary 2.9 (i) to Ax,b, from (2.5) we get Ax,b ⊂
�(a, p2i ) ∪ �(x, p2i ). Now (9.50) follows directly from (9.52). ��
Lemma 9.19. Assume (F2’). Then:

(i) For every b ∈ B, and for every y ∈ ZM with (b− y, M) = M/pi , we have

BM [y] + BM/p j [y] + BM/pk [y] + BM/p j pk [y] = 1. (9.53)

(ii) For all d with p2i |d|(M/p j pk), we have �d |B. Additionally,
{M/pi , M/pi p j , M/pi pk, M/pi p j pk} ∩ Div(B) �= ∅. (9.54)

Proof. Fix b ∈ B, and write N jk = M/p j pk for short. Let a ∈ J ∩ K, and
let x ∈ ZM \ A with (a − x, M) = M/pi .

By (2.1), (9.44), and (9.50), we have

1 = 1

φ(pi )
AM/pi [x |�(a, p2i )] BM/pi [b]

+ 1

φ(pi p j )
AM/pi p j [x |�(a, p2i )] BM/pi p j [b]

+ 1

φ(pi pk)
AM/pi pk [x |�(a, p2i )] BM/pi pk [b]

+ 1

φ(pi p j pk)
AM/pi p j pk [x |�(a, p2i )] BM/pi p j pk [b]

= 1

φ(pi )
(BM/pi [b] + BM/pi p j [b] + BM/pi pk [b] + BM/pi p j pk [b])

= 1

φ(pi )

∑

y:(y−b,M)=M/pi

B
N jk
N jk

[y].

On the other hand, by (9.45) and divisor exclusion, any N jk-grid may contain

at most one element of B, so that B
N jk
N jk

[y] ≤ 1 for all y ∈ ZM . Therefore

B
N jk
N jk

[y] = 1 for all y such that (y − b, M) = M/pi ,

which is (9.53). We also note that the first equation in the above calculation
implies (9.54).
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Finally, let d �= p2i and p2i |d|(M/p j pk), and consider any d-cuboid with
one vertex at a ∈ J ∩ K. By (9.44), we have A

d
d [a] ≥ p j pk . However, we

also have |A ∩ �(a, pi )| = p j pk by the third claim in the lemma, so that
A
d
d ′ [a] = 0 for all d ′ < d with D(d)|d ′. It follows that the cuboid cannot be

balanced. Therefore �d � A, which proves (ii). ��
Lemma 9.20. Assume (F2’). Then I ∩ (J ∪ K) = ∅.
Proof. Suppose that the conclusion fails. Without loss of generality, we may
assume that I ∩ K �= ∅. Taking into account that J ∩ K �= ∅, we have from
(9.45)

M/pi , M/p j , M/pk, M/pi pk, M/p j pk ∈ Div(A)

so that (9.54) reduces to {M/pi p j , M/pi p j pk} ∩Div(B) �= ∅, and (9.53) to
BM/p j [y] + BM/p j pk [y] = 1 for all y with (y − b, M) = M/pi .

This means we must have

pi < p j , (9.55)

otherwise one must introduce M/pi or M/pi pk as differences in B.
Wenow repeat the sameprocedurewith i and j interchanged. Leta′ ∈ I∩K.

We note that A∩ 	(a′, D(M)) cannot be M-fibered in the p j direction, since
thatwould contradict (9.43). It follows fromLemma9.5 (i) thata′∗Fi∗Fk ⊂ A,
and, together with Lemma 4.3, this implies that

a′ ∗ Fi ∗ Fk = A ∩ �(a′, p2j ). (9.56)

Let x ′ ∈ ZM\A satisfy (a′ − x ′, M) = M/p j . As in the proof of Lemma 9.18,
by Corollary 2.9 (i) we have

Ax ′ ⊂ �(a′, p2j ) ∪ �(x ′, p2j ).

Assume, by contradiction, that there exists a b ∈ B such that Ax ′,b ⊂
�(a′, p2j ). Repeating the proof of Lemma 9.19 with that b, we get the ana-
logues of (9.53) and (9.54) with i and j interchanged. The same argument as
in the proof of (9.55) shows then that p j < pi , a contradiction.

It follows that Ax ′ ∩ �(x ′, p2j ) �= ∅, and, in particular, |A ∩ �(a′, p j )| >

pi pk . By Corollary 4.4, A ⊂ �(a′, p j ). In particular, J ⊂ �(a′, p j ), with
each fiber in J containing a point in A ∩ �(a′, p2j ). But by (9.56), any such
point would belong to I ∩ J ∩ K, contradicting (9.43). ��
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Lemma 9.21. Assume (F2’). If I �= ∅, then �Ni � A.

Proof. By Lemma 9.8, it suffices to prove that �Ni � I. Let ai ∈ I. By
Corollary 9.20, we have ai /∈ J and ai /∈ K, so that there must exist x j , xk ∈
ZM\A with (ai − x j , Ni ) = Ni/p j , (ai − xk, Ni ) = Ni/pk and such that

I
Ni
Ni

[x j ] = I
Ni
Ni

[xk] = 0.
Consider the Ni cuboid with one face containing vertices at ai , x j and xk ,

and the other face in�(a, pi ), where a ∈ J ∩K. In order for this cuboid to be
balanced, I∩�(a, pi )must be nonempty, and in particular I∩�(a, p2i ) �= ∅.
But this together with (9.44) contradicts (9.43). ��
Lemma 9.22. Assume (F2’). If pi = minν pν , then I = ∅.
Proof. Assume by contradiction that I �= ∅. By Lemma 9.21, �Ni � A, hence
�Ni |B. By assumption we have M/pi ∈ Div(A), so that B

Ni
Ni

[y] ∈ {0, 1} for
all y ∈ ZM . By (9.47), �p2i

|B. Hence �pi � B, and in particular B cannot
be Ni -fibered in the pi direction. It follows that there must exist b0 ∈ B and
y ∈ ZM with (b0 − y, Ni ) = Ni/pi and B

Ni
Ni

[y] = 0.

In order to simplify notation, we shall denote βν = B
Ni
Ni/pν

[b0] for ν ∈
{ j, k}. By (9.53) we must have

β j + βk + 1 ≤ |B ∩ 	(b0, D(M))| ≤ pi (9.57)

thus

βν ≤ (pi − 1)/2 for some ν ∈ { j, k}. (9.58)

In addition, considering all Ni cuboids with vertices at b0 and y such that the
vertices at distance Ni/p j and Ni/pk from b0 do not belong to B, we see that

B
Ni
Ni/p j pk

[y] ≥ (p j − β j − 1)(pk − βk − 1).

Now, if β j = 1 then βk ≤ pi − 2 and so

(p j − β j − 1)(pk − βk − 1) ≥ (p j − 2)(pk − pi + 1)

≥ (pk − pi + 1)pi
> pi

which contradicts (9.53). We may therefore assume βν ≥ 2 for ν = j, k. In
this case, however, assuming (9.58) for ν = k, applying (9.57) and the fact
that p j − pi ≥ 2, we have
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(p j − β j − 1)(pk − βk − 1) = (p j − pi + pi − β j − 1)(pk − βk − 1)

≥ (p j − pi + βk)(pk − βk − 1)

≥ 4(pi − (pi − 1)/2 − 1)

= 2pi − 2

The latter exceeds pi whenever pi > 2. Since M is odd, again we get a
contradiction to (9.53) and the lemma follows. ��

Lemma 9.22 proves Proposition 9.3, assuming that (F2’) holds and that pi
is the smallest prime. From now on, we will therefore assume that

pi > min
ν

pν. (9.59)

The rest of the proof will be split into the following cases:

• Assume (F2’), (9.59), and �N j�Nk |A. This case is addressed in Lemma
9.23 and Corollary 9.24.

• Assume (F2’), (9.59), and (interchanging j and k if necessary) �N j � A,
�Nk � B. This case is addressed in Lemmas 9.27, 9.28, and 9.29.

• Assume (F2’), (9.59), and�N j�Nk |B. This case is addressed inLemma9.30,
Corollary 9.31, and Lemma 9.32.

Lemma 9.23. Assume (F2’) and (9.59). If pk < pi < p j and �Nk |A, then
K ⊂ J .

Proof. We first claim thatK is Nk-fibered on each D(Nk)-grid in one of the p j
and pk directions. Indeed, ifK were not Nk-fibered on some D(Nk)-grid, then
it would follow fromLemma 9.12 that {D(M)|m|M} ⊂ Div(A); however, that
is not compatible with (9.54). Furthermore, by Lemma 9.20 and Lemma 9.11
(i),K cannot be Nk-fibered in the pi direction on any D(Nk)-grid. This proves
the claim.

Recall from Lemma 9.18 (i) that for any a0 ∈ A,

|A ∩ �(a0, pi )| = p j pk . (9.60)

If K is Nk-fibered in the p j direction on some D(Nk)-grid 	 j , then for every
ak ∈ K ∩ 	 j we have

K
Nk
Nk/p j

[ak] = pkφ(p j ), (9.61)

so that ak ∈ J ∩ K. By (9.60), A ∩ �(ak, pi ) = ak ∗ Fj ∗ Fk is fibered in
both directions, and in particular �(ak, pi ) contains no elements of A outside
of 	 j .
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Assume now that there exists a′
k ∈ K such that K is Nk-fibered in the pk

direction on 	k := 	(a′
k, D(Nk)). Then

K
Nk
Nk/pk

[a′] = pkφ(pk) for all a
′ ∈ K ∩ �(a′

k, pi ), (9.62)

so that

AM [a′] + AM/pk [a′] + AM/p2k
[a′] = p2k for all a

′ ∈ K ∩ �(a′
k, pi ).

(9.63)

Fix a′
k ∈ K satisfying (9.62) and (9.63). We first claim that

I ∩ �(a′
k, pi ) = ∅. (9.64)

Indeed, suppose that (9.64) fails, and let ai ∈ I ∩ �(a′
k, p

2
i ). Since K ∩ 	k is

Nk-fibered in the pk direction, by Lemma 9.20 we must have ai /∈ 	k , so that
ai must be at distance M/p2j from the fiber chain in the pk direction rooted at
a′
k . We can now extend (9.45) to

M/p j , M/pk, M/p j pk, M/p2j , M/p2k , M/p2j p
2
k , M/p2j pk ∈ Div(A),

(9.65)

where all the differences that do not appear in (9.45), come from the interaction
between ai and 
k(a′

k).
By (9.65), we see that for every b ∈ B

|B ∩ �(b, p2i )| ≤ 1 + BM/p j p2k
[b]

≤ pk .

But, since ZM has only p2i residue classes modulo p2i , it follows that

pi p j pk = |B| ≤ p2i pk,

so that p j ≤ pi , contradicting the assumption that (9.64) fails.
It, therefore, follows that A∩�(a′

k, pi ) ⊂ J ∪K. By (9.60) andLemma9.10
(i), we have A∩�(a′

k, pi ) ⊂ K. But since all a′ ∈ K∩�(a′
k, pi ) satisfy (9.62)

and (9.63), we get

p j pk = cp2k

for some positive integer c. The latter implies pk divides p j , which is not
allowed. This completes the proof of the lemma. ��
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Corollary 9.24. Assume (F2’) and (9.59). Assume further that �N j�Nk |A
and that pk < p j . Then I = ∅, and A is M-fibered in the pk direction.

Proof. By (9.59), we have pk = minν pν . We first apply Corollary 9.13, with
j and k interchanged. Since�N j |A and p j �= minν pν , we get thatJ ⊂ I∪K.
However, by Lemma 9.20 we have I ∩ J = ∅, so that we must in fact have
J ⊂ K.

Assume, by contradiction, that I is nonempty. We first prove that this
implies

pi < p j . (9.66)

Let ai ∈ I. Observe that �(ai , pi ) cannot contain any elements a′ ∈ J , since
any such element would be associated with a grid a′ ∗ Fj ∗ Fk ⊂ A. This
together with Lemma 9.20 would imply

|A ∩ �(ai , pi )| ≥ |ai ∗ Fi | + |a′ ∗ Fj ∗ Fk | > p j pk,

contradicting (9.60).We getJ ∩�(ai , pi ) = ∅. Hence A∩�(ai , pi ) ⊂ I∪K,
and (9.66) follows from Lemma 9.10 (ii).

Applying Lemma 9.23, we see that K ⊂ J . This, together with the first
part of the proof, implies K = J . Hence any element ak ∈ K is associated
with a grid ak ∗ Fj ∗ Fk ⊂ A, and as shown above, such grids cannot intersect
�(ai , pi ). Therefore A ∩ �(ai , pi ) must be contained in I. That, however, is
clearly false since p j pk = |A ∩ �(ai , pi )| cannot be a multiple of pi . This
contradiction concludes the proof. ��

Before we move on to the next two cases, we need two lemmas on the
fibering properties of B.

Lemma 9.25. Assume (F2). If �Nk |B, then B is Nk-fibered on each D(Nk)-
grid, either in the pk direction or in the pi direction. The same is true with j
and k interchanged.

Proof. Suppose that �Nk |B. By (9.45), we have B
Nk
Nk/p j

[b] = 0 and B
Nk
Nk

[b] =
1 for all b ∈ B. Since M is odd, the lemma follows from Lemma 4.9. ��
Lemma 9.26. Assume (F2’). If I �= ∅ and B is Ni -fibered on a D(Ni )-grid,
then it must be fibered in the pi direction on that grid.

Proof. We argue by contradiction. Let 	0 := 	(b, D(Ni )) for some b ∈ B,
and assume that B ∩ 	0 is Ni -fibered in one of the other directions, say p j .
Let also 	 := 	(b, D(M)). By (9.53), we have

|B ∩ 	| = pi . (9.67)
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On the other hand, the Ni -fibering assumptionmeans that B∩	0 can be divided
into mutually disjoint Ni -fibers in the p j direction, each one of cardinality p j ,
and each one either entirely contained in 	 or disjoint from it. This implies
that p j divides |B ∩ 	|. That, however, contradicts (9.67). ��

Next, we consider the case�N j � A, �Nk � B. This case will be split further,
according to whether p j or pk is the smallest prime.

Lemma 9.27. Assume (F2’) and (9.59). Assume further that �N j � A, �Nk �

B, and p j = minν pν . Then K ⊆ J . In addition, if I �= ∅, then:
• B is N j -fibered in the p j direction,
• |A ∩ �(a′, pi )| = p j pk for any a′ ∈ A,
• pi < pk.

Proof. We first note that the claim K ⊆ J follows from Corollary 9.13 and
Lemma 9.20, while the second bullet point follows fromLemma 9.18 (i). Next,
let ai ∈ I. Then I∩�(ai , pi ) is nonempty and, by Lemma 9.20, disjoint from
J ∪ K = J . By Lemma 9.10 (ii) with j and k interchanged, it follows that
pi < pk .
It remains to prove the first point. We have �N j |B, hence by Lemma 9.25,

B is N j -fibered on each D(N j )-grid in one of the pi and p j directions. Since

p j < pi , it follows that B
N j
N j/pi

[b] < φ(pi ) for all b ∈ B, hence B must be
N j -fibered in the p j direction. ��
Lemma 9.28. Assume (F2’) and (9.59). Assume further that �N j � A, �Nk �

B, and p j = minν pν , Then I = ∅, and A is M-fibered in the p j direction.

Proof. Assume, by contradiction, that I �= ∅. By Lemma 9.21, �Ni |B.
Assume first that Ni/pi /∈ Div(B). By Lemma 4.9, B is fibered on D(Ni )-

grids in one of the p j and pk direction. That, however, contradicts Lemma9.26.
Suppose now that b, b′ ∈ B with (b − b′, Ni ) = Ni/pi . By Lemma 9.27,

B is N j -fibered in the p j direction. This together with (9.53) implies that
|B ∩�(b, pk)| > pi p j . By Corollary 4.4, we have �p2k

|B, hence �pk |A. The
latter, in turn, implies

|A ∩ �(a′, pk)| = pi p j ∀a′ ∈ A. (9.68)

On the other hand, let a ∈ J ∩K with a ∗ Fj ∗ Fk ⊂ A as provided by (9.44).
Then

|A ∩ �(a, pk)| ≥ p j pk > pi p j ,

where at the last step we used Lemma 9.27 again. This contradicts (9.68).
This proves that I = ∅. By the second claim in Lemma 9.27, we have

K ⊆ J , hence A is M-fibered in the p j direction. ��
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Lemma 9.29. Assume (F2’) and (9.59). Assume further that �N j � A, �Nk �

B, and pk = minν pν . Then I = ∅ andK ⊆ J . Consequently, A is M-fibered
in the p j direction.

Proof. The proof splits between two cases.

Case 1: pk < pi < p j . In this case, by Lemma 9.23 we have K ⊆ J .
Assume, by contradiction, that I is nonempty, and let ai ∈ I. By Lemma 9.18
(i), we have |A ∩ �(ai , pi )| = p j pk . By Lemma 9.10 (ii) with j and k
interchanged, it follows that pk > pi , contradicting our assumption. Therefore
I = ∅.

Case 2: pk < p j < pi .We first note that if I is nonempty, thenB
N j
N j/pi

[b] <

φ(pi ) for all b ∈ B. Since �N j |B, by Lemma 9.25

B must be N j -fibered in the p j direction. (9.69)

Next, we follow the first part of the proof of Lemma 9.23. (This part does
not use the Lemma 9.23 assumption that pi < p j .) By the same argument as
there, K must be Nk-fibered on every D(Nk)-grid in either the p j or the pk
direction, and for every ak ∈ K we have one of the following:

• (9.61) holds, hence ak ∈ J ∩ K and ak ∗ Fj ∗ Fk = A ∩ �(ak, pi ),
• (9.62) and (9.63) hold for all a′ ∈ K ∩ 	(ak, D(Nk)).

If (9.61) holds for all a′ ∈ K, then K ⊆ J , and it follows by the same
argument as in Case 1 that I = ∅.

We now prove that the second case is impossible. Indeed, assume by con-
tradiction that there exists ak ∈ K such that (9.62) and (9.63) hold for all
a′ ∈ K ∩ 	(ak, D(Nk)). We first claim that

I ∩ �(ak, pi ) = ∅. (9.70)

Indeed, if (9.70) fails, we continue as in the proof of Lemma 9.23 and find an
element ai ∈ I at distance M/p2j from the fiber chain through ak . But (9.69)

implies M/p2j ∈ Div(B), which is a contradiction. Hence (9.70) holds.
By (9.49), we have |A ∩ �(ak, pi )| = p j pk . It follows from (9.70) and

Lemma 9.10 (i) that A ∩ �(ak, pi ) ⊂ K. As in the proof of Lemma 9.23, all
elements of A in �(ak, pi ) must satisfy (9.62). Hence

p j pk = |A ∩ �(ak, pi )| = cp2k ,

for some positive integer c, so that pk divides p j , a contradiction. This com-
pletes the proof of the lemma. ��

We now address the case in which �Nν |B for ν ∈ { j, k}.

123



The Coven–Meyerowitz tiling conditions 459

Lemma 9.30. Assume (F2’) and (9.59). Assume further that B is Nk-fibered
in the pk direction, M/p2j ∈ Div(B), and that I �= ∅. Then for all ai ∈ I we
have K ∩ �(ai , pi ) = ∅.
Proof. Assume, by contradiction, that ai ∈ I andK∩�(ai , pi ) �= ∅. Replac-
ing ai by a different element of ai ∗ Fi if necessary, we may further assume
that p2i |ai − ak for some ak ∈ K ∩ �(ai , pi ). Moreover, it follows from the
fibering assumption on B that the pair (A, B) has a (1,2)-cofibered structure
in the pk direction, with the cofiber in A rooted at ak .

Suppose that (ai − ak, M) = M/p j p2k . Applying Lemma 2.11, we could
then shift the cofiber ak ∗Fk in the pk direction, obtaining a new T2-equivalent
tiling A′⊕B = ZM in which the shifted cofiber a′

k∗Fk satisfies (ai −ak, M) =
M/p j . We claim that A′ contains a p j extended corner structure. Indeed, by
Lemma 9.20 we have	(ai , D(M))∩(J ∪K) = ∅. Hence A∩(ai ∗Fi ∗Fk) is
M-fibered in the pi direction but not in the pk direction, and A∩ (a′

k ∗ Fi ∗ Fk)
must be empty, so that A′ ∩ (a′

k ∗ Fi ∗ Fk) = a′
k ∗ Fk . This proves the claim.

However, Theorem 8.1 now implies that �p2i
|A, contradicting (F2’).

Since M/p2k ∈ Div(B) by the fibering assumption, we are now left with
(ai − ak, M) = M/p2j p

2
k . But then, by the same fiber-shifting argument as

above, we get a T2-equivalent tiling A′′ ⊕ B = ZM , where M/p2j ∈ Div(A′′).
This contradicts the assumption that M/p2j ∈ Div(B). ��
Corollary 9.31. Assume (F2’) and (9.59). If B is Nν-fibered in the pν direction
for both ν = j and ν = k, then I = ∅.
Proof. By the fibering assumption,

M/p2j , M/p2k ∈ Div(B).

Suppose that I �= ∅, and let ai ∈ I. It follows from Lemma 9.30 that J and
K are both disjoint from �(ai , pi ). Therefore A ∩ �(ai , pi ) ⊂ I, and, in
particular, pi divides |A ∩ �(ai , pi )|. But this contradicts (9.49). ��
Lemma 9.32. Assume (F2’) and (9.59). Assume further that�N j�Nk |B. Then
I = ∅.
Proof. Suppose that I �= ∅. Without loss of generality, we may assume that
pk = minν pν . By Lemma 9.25, B is Nk-fibered on D(Nk)-grids in one of the
pi and pk directions. However, B cannot be Nk-fibered in the pi direction on
any D(Nk)-grid, since the assumptions that I �= ∅ and pk < pi imply that
B
Nk
Nk/pi

[b] < φ(pi ) for all b ∈ B. Hence

B must be Nk-fibered in the pk direction. (9.71)
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By the same argument as above, if p j < pi , then B must also be N j -fibered
in the p j direction, and an application of Corollary 9.31 concludes the proof.

It remains to consider the case when

pk < pi < p j .

We claim that in this case,

M/pi pk ∈ Div(B). (9.72)

Indeed, sinceK �= ∅, the failure of (9.72)would imply that Ni/pk /∈ DivNi (B).
Since I �= ∅, Lemma 9.21 implies �Ni |B. It would then follow from
Lemma4.9 that B is Ni -fibered on D(Ni )-grids.ByLemma9.26, B can only be
Ni -fibered in the pi direction. In particular,�pi |B, contradicting Lemma 9.18
(i).

Let b1, b2 ∈ B with

(b1 − b2, M) = M/pi pk . (9.73)

By (9.53), one may find b3, . . . , bpi ∈ B satisfying (bν − bν′, M) ∈
{M/pi pk, M/pi p j , M/pi p j pk} for all ν ∈ {1, . . . , pi } with ν �= ν′.

By Lemma 9.25, B is N j -fibered on each D(N j )-grid in one of the pi and
p j directions. On the other hand, we have

pi = |B ∩ 	(b1, D(M))| ≥ B
N j
N j/pi

[b1] + B
M
M/pi pk [b1]

≥ B
N j
N j/pi

[b1] + 1,

where the first equality follows from (9.45) and from (9.53) applied to
b2, . . . , bpi , and the last inequality follows from (9.73). In particular,

B
N j
N j/pi

[b1] < φ(pi ), so that B cannot be N j -fibered in the pi direction on
the grid 	 := 	(b1, D(N j )). It follows that B is N j -fibered in the p j direc-
tion on 	.

Taking also (9.71) into account, we see that

|B ∩ �(bν, p
2
i )| ≥ p j pk for all ν ∈ {1, 2, . . . , pi }. (9.74)

Since |B| = pi p j pk , (9.74) must in fact hold with equality for each ν, and

B ⊂ �(b1, pi ). (9.75)
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Now, let b ∈ B be arbitrary. We claim that

M/pi pk ∈ Div(B ∩ 	(b, D(Ni ))) (9.76)

To prove this, we start by arguing as in the proof of (9.72) that if (9.76) fails,
then B is Ni -fibered in the pi direction on	(b, D(Ni )). However, if that were
the case, then we would have M/p2i ∈ Div(B), contradicting (9.75).

We further note that by (9.75), B ∩ 	(b, D(Ni )) = B ∩ 	(b, D(M)), so
that in fact we have

M/pi pk ∈ Div(B ∩ 	(b, D(M)) ∀b ∈ B.

With this in place, we repeat the argument starting with (9.73) to prove that B
is N j -fibered in the p j direction on all D(N j )-grids.

It follows that B is Nν-fibered in the pν direction for both ν = j and ν = k.
By Corollary 9.31, we have I = ∅ as claimed. ��

9.6 Proof of Proposition 9.4

In this section, we are working under the following assumption.

Assumption (F3): We have A ⊕ B = ZM , where M = p2i p
2
j p

2
k is odd.

Furthermore, |A| = |B| = pi p j pk , �M |A, A is fibered on D(M)-grids,
I = ∅, and

the sets J \ K and K \ J are nonempty. (9.77)

The proof below works regardless of whether J and K are disjoint or not.
If J ∩ K �= ∅, then (since I = ∅) any element a ∈ J ∩ K must satisfy the
conditions of Lemma 9.5 (i), so that

A ∩ �(a, p2i ) = a ∗ Fj ∗ Fk .

It follows that the set J \ K is M-fibered in the p j direction, and K \ J is
M-fibered in the pk direction.
We begin with the case when at least one of �Mj and �Mk divides A.

Lemma 9.33. Assume (F3), and that �Mk |A. Then

�p2j
|A. (9.78)
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Furthermore,K is Mk-fibered in the p j direction, so that for every ak ∈ K we
have

K
Mk
Mk/p j

[ak] = pk · φ(p j ). (9.79)

and

A ∩ �(ak, p
2
i ) ⊂ 	(ak, p

2
i p j ). (9.80)

The same holds with pk and p j interchanged.

Proof. Notice first that the fibering statement holds trivially for all ak ∈ K∩J .
Let now L := K \ J , with the corresponding N -boxes L

N for N |M . The
assumption �Mk |A implies, by (9.3), that �Mk |L. By Lemma 4.7, L mod Mk
is a disjoint union of Mk-fibers in the pi and p j direction. Hence, any element
a0 ∈ L which does not belong to an Mk-fiber in the p j direction must satisfy

L
Mk
Mk/pi

[a0] = pk · φ(pi ) (9.81)

and |A ∩ �(a0, p2j )| ≥ pi pk . By Lemma 4.3,

|A ∩ �(a0, p
2
j )| = pi pk,

in particular

A ∩ �(a0, p
2
j ) ⊂ L and J ∩ �(a0, p

2
j ) = ∅. (9.82)

We first prove (9.78). Indeed, assume for contradiction that �p j |A. Then
|A ∩ �(a, p j )| = pi pk for all a ∈ A. (9.83)

Let a j ∈ J , and consider the plane system �(a j , p j ). These planes cannot
contain any elements a ∈ L satisfying (9.81), since any such element would
belong to anMk-fiber in the pi direction inL, of cardinality pi pk and contained
in�(a j , p j ), and this would leave no room for the additional element a j /∈ L.

Thus every element of A ∩ �(a j , p j ) must either belong to J , or else it
must be an element of L belonging to an Mk-fiber in the p j direction in L, of
cardinality p j pk . Since the two sets are disjoint, (9.83) implies that

pi pk = |A ∩ �(a, p j )| = c1 p j + c2 p j pk,

where c1, c2 are nonnegative integers. But then p j divides either pi or pk , a
contradiction.
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Therefore�p2j
|A. Suppose now that there actually exists an element a0 ∈ L

such that (9.81) holds. Then A ⊂ �(a0, p j ). Since J is nonempty, it follows
that J must intersect�(a0, p2j ), contradicting (9.82). This proves the fibering
conclusion of the lemma. ��
Lemma 9.34. Assume (F3). The following holds true:

(i) If �p2i
�Mk |A, then A ⊂ �(a, pi ) for any a ∈ A (hence A is contained in

a coset of piZM).
(ii) If �pi |A, then |A ∩ �(a, pi )| = p j pk for all a ∈ A. Moreover, for every

a ∈ A we have either A ∩ �(a, pi ) ⊂ J or A ∩ �(a, pi ) ⊂ K.

Proof. For part (i), by Lemma 9.33 every ak ∈ K satisfies (9.79). By
Lemma 4.3,

|A ∩ �(ak, p
2
i )| = p j pk , hence A ∩ �(ak, p

2
i ) ⊂ K. (9.84)

If �p2i
|A, then A ⊂ �(ak, pi ). This proves the first part of the lemma.

For part (ii), assume that�pi |A. Then |A∩�(a, pi )| = p j pk for all a ∈ A.
The second part follows from Lemma 9.10 (i) with αi = 1. ��
Lemma 9.35. Assume (F3) and

�pi�Mk |A. (9.85)

Then �N j � A.

Proof. Assume, by contradiction, that �N j |A. By (9.77) and Corollary 9.13,
we must have p j = minν pν . We first claim that

if �N j |A, then J must be N j -fibered on D(N j )-grids. (9.86)

Indeed, suppose that (9.86) fails. By Lemma 9.12, we have

{D(M)|m|M} ⊂ Div(A). (9.87)

Applying Corollary 9.13 and (9.77) again in the pk direction, we get �Nk |B.
By (9.87) and Lemma 9.11 (ii), B is Nk-fibered in the pk direction, implying
a (1,2)-cofibered structure for (A, B) with all fibers in K as cofibers.

Fix ak ∈ K, and recall that it must satisfy (9.79). This produces a family of
M-fibers in the pk direction, all contained in A∩�(ak, p2i ). UsingLemma2.11
to shift and align these fibers if necessary, we get a T2-equivalent set A′ such
that A′ ⊕ B = ZM and ak ∗ Fj ∗ Fk ⊂ A′. By T2-equivalence, �pi |A′, and
by Lemma 4.3,

ak ∗ Fj ∗ Fk = A′ ∩ �(ak, p
2
i ). (9.88)

123



464 I. Łaba, I. Londner

Since I = ∅, ak cannot belong to an M-fiber in the pi direction, and
in particular there exists an x ∈ ZM\A with (ak − x, M) = M/pi . We
have A′

x ⊂ �(ak, p2i ) ∪ �(x, p2i ). However, if A′
x ∩ �(x, p2i ) �= ∅, then

|A′ ∩ �(x, p2i )| > 0. By Corollary 4.4 and (9.84), we have �p2i
|A′, which

contradicts the fact that �pi |A′.
Thus A′

x ⊂ �(ak, p2i ), and by (9.88), for any b ∈ B we have

1 =
∑

m∈{1,p j ,pk ,p j pk}

1

φ(mpi )
A

′
M/mpi [x |�(ak, p

2
i )]BM/mpi [b].

Hence {D(M)|m|M}∩Div(B) is nontrivial, contradicting (9.87). This proves
(9.86).

By (9.77), we may find a j ∈ J \ K. It follows from Lemma 9.11 (i) that
A ∩ 	(a j , D(N j )) can only be N j -fibered in the p j direction. Recall from
Lemma 9.34 that |A ∩ �(a j , pi )| = p j pk and A ∩ �(a j , pi ) ⊂ J \ K. But
the fibering in J \ K implies that

p j pk = c · p2j ,

thus p j must divide pk , which is clearly false. The lemma follows. ��
Lemma 9.36. Assume (F3) and (9.85). Then �Mk/pi |A.
Proof. Denote N = Mk/pi , and write

A(X) = J (X) − (J ∩ K)(X) + K(X).

By Lemma 9.5 (i) and (9.2), �N divides both J and J ∩K. Hence it suffices
to prove that �N |K.

Let ak ∈ K. By Lemma 9.33, we have K
Mk
Mk

[ak] = K
Mk
Mk

[x j ] = pk for all

x j ∈ ZM with (ak − x j , M) = M/p j . In particular, |K∩�(ak, p2i )| = p j pk ,
and, since �pi |A, there are no other elements of A in �(ak, pi ). It follows
that, for any x j as above,

K
N
N [ak] = K

N
N [x j ] = pk . (9.89)

We need to prove that K
N
N [�] = 0 for every N -cuboid �. It suffices to

check this under the assumption that at least one vertex of � belongs to K, so
that two of its vertices are at points ak and x j as above. The other two vertices
are at x, x ′ ∈ ZM with

(ak − x, N ) = (x j − x ′, N ) = N/pi and (x − x ′, N ) = N/p j .
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By (9.89), the cuboid face containing ak and x j is balanced. Consider now the
face containing x and x ′. By Lemma 9.34 (ii) we need to consider two cases.
If A ∩ �(x, pi ) ⊂ J , then this face must be balanced on the scale N , since
�N |J . Otherwise, we must have A ∩ �(x, pi ) ⊂ K, and then by the same
argument as above, either K

N
N [x] = K

N
N [x ′] = pk or K

N
N [x] = K

N
N [x ′] = 0.

In both cases, the cuboid is balanced, which proves the lemma. ��
Lemma 9.37. Assume (F3) and (9.85). Then

�d |B ∀d ∈ {N j , Nk, M/p j pk, M/p2j pk, M/p j p
2
k }.

Proof. For d = N j , this follows from Lemma 9.35.
Assume, by contradiction, that �Nk |A. By Lemma 9.8, we must have

�Nk |K. As in the proof of Lemma 9.36, we have |K∩ �(ak, p2i )| = p j pk for
all ak ∈ K, with each line 
k(x) for x ∈ ak ∗ Fj containing an M-fiber in the
pk direction. In particular,

|K ∩ 
k(ak)| = pk ∀ak ∈ K. (9.90)

On the other hand, let a′
k ∈ K \J . Then �Nk |K implies one of the following:

• K is not fibered on	(a′
k, D(Nk)). By Lemma 9.12, there exists an x ∈ ZM

such that K
Nk
Nk/pk

[x] = φ(p2k ).
• K is Nk-fibered on	(a′

k, D(Nk)). ByLemma 9.11 (i), it can only be fibered
in the pk direction.

Both of these are clearly incompatible with (9.90). This proves that �Nk |B.
To prove that �M/p j pk � A, let ak ∈ K\J , and consider M/p j pk-cuboids

with vertices at ak and x ∈ 
k(ak) with (x − ak, M) = M/p2k . By (9.80) and

Lemma 9.34 (ii), we have A
M/p j pk
M/p j pk

[v] = 0 for any cuboid vertex v other than
ak and x . Varying x as above, we see that in order for all such cuboids to be
balanced we must have

|A ∩ �(ak, p
2
i )| = pkA

M/p j pk
M/p j pk

[ak].

But this is not possible, since the left side is equal to p j pk and the right side
is divisible by p2k . The same argument, with the cuboids collapsed further to
scale M/p2j pk , proves that �M/p2j pk

� A.

Finally, we prove that �Mk/p j � A. Consider any Mk/p j -cuboid with one

vertex at ak ∈ K\J . By the same argument as above, we haveA
Mk/p j
Mk/p j

[v] = 0
for all vertices v �= ak , hence the cuboid cannot be balanced. ��
Lemma 9.38. Assume (F3) and (9.85). Then the conditions of Theorem 2.6
are satisfied in the pi direction, after interchanging A and B.
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Proof. By assumption, �p2i
|B. We need to verify that for every d such that

pnii |d|M and �d � B, we have

�d/pα
i
|A, α ∈ {1, 2}. (9.91)

By Lemma 9.37, it remains to check (9.91) for d ∈ {M, Mj , Mk}.
• For d = M , (9.91) follows from Lemma 9.8 since I = ∅.
• For d = Mk , we have �Mk/pi�p2j

|A by Lemmas 9.33 and 9.36.

• For d = Mj , if �Mj |B, there is nothing to prove. If on the other hand
�Mj |A, then Lemma 9.33 and Lemma 9.36 holdwith j and k interchanged,
and so (9.91) also holds in this case.

��
This resolves the case �Mk |A. The case �Mj |A is similar, with j and k

interchanged. It remains to prove Proposition 9.4 under the assumption that

�Mν � A for ν ∈ { j, k}. (9.92)

Without loss of generality, we may also assume that

pk > p j . (9.93)

By Corollary 9.13, this implies that �Nk�Mk |B. It follows that B is T -null
with respect to the cuboid type T = (Nk, δ, 1), where δ = (1, 1, 0). Since
cuboids of this type are 2-dimensional, it follows by Lemma 4.7 that for every
b ∈ B at least one of the following holds:

BM [y] + BM/pk [y] = 1 for every y ∈ ZM with (b − y, M) = M/p j ,

(9.94)

BM [y] + BM/pk [y] = 1 for every y ∈ ZM with (b − y, M) = M/pi .

(9.95)

In particular, this implies that

{D(M)|m|M} ∩ Div(B) �= ∅. (9.96)

Lemma 9.39. Assume (F3), (9.92), and (9.93). Then �pi |A and �N j � A.

Proof. We start with the second part. Assume for contradiction that �N j |A.
By Lemma 9.12 applied to p j , (9.96), and Lemma 9.11 (i), the set J \Kmust
be N j -fibered in the p j direction. Let a j ∈ J \K. We now consider two cases.
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• Suppose that�pi |A. By Lemma 9.34 (ii), we have A∩�(a j , pi ) ⊂ J \K
and |A ∩ �(a j , pi )| = p j pk . But then the fibering of J \ K implies that
p j pk is divisible by p2j , a contradiction.

• Assume now that �p2i
|A. Let A′ be a translate of A such that a j ∈ A′

pi .

By the cyclotomic divisibility assumption, we have |A′
pi | = p j pk . On the

other hand, by the fibering properties of A,

p j pk = |A′
pi | = c j p

2
j + ck pk, c j > 0.

Thus c j = pkc′
j and p j = c′

j p
2
j + ck with c′

j > 0, a contradiction.

Therefore �N j � A. By (9.92), we have �N j�Mj |B. Applying the same
argument as in (9.94), (9.95) to p j instead of pk , we get that every b ∈ B must
satisfy at least one of

BM [y] + BM/p j [y] = 1 for every y ∈ ZM with (b − y, M) = M/pk,

BM [y] + BM/p j [y] = 1 for every y ∈ ZM with (b − y, M) = M/pi .

(9.97)

But since pk > p j , if the former holds for some b ∈ B, we must have
M/pk ∈ Div(B), which is not allowed. Thus (9.97) holds for all b ∈ B.
Hence the assumptions of Lemma 4.2 hold for B, with m = M/pi p j and
s = p2i . It follows that �p2i

|B, and therefore �pi |A. ��
Lemma 9.40. Assume (F3), (9.92), and (9.93). Then the conditions of Theo-
rem 2.6 are satisfied in the pi direction, after interchanging A and B.

Proof. We verify the conditions of Theorem 2.6. By (9.92) and Lemma 9.39,
we have �d |B for d ∈ {p2i , Mj , Mk, N j }. Next, we claim that

�d |B for d ∈ {M/p j pk, M/p2j pk, M/p j p
2
k }. (9.98)

Since (9.97) holds for all b ∈ B, we may write B as

B(X) = Bi (X) + Q(X)(XM/p j − 1)

for some polynomial Q(X), where Bi is M-fibered in the pi direction. By
(9.2), we have �d |Bi for all p2i |d. Using also that �d |(XM/p j − 1) for all
d|M/p j , we get (9.98).

Finally, since�M |A, we need to prove that�M/pα
i
|A for α ∈ {1, 2}. Indeed,

since I is empty, this follows from Lemma 9.8. ��
This concludes the proof of Proposition 9.4.
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