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Abstract
A class of risk-neutral generalized Nash equilibrium problems is introduced in which
the feasible strategy set of each player is subject to a common linear elliptic partial
differential equation with random inputs. In addition, each player’s actions are taken
from a bounded, closed, and convex set on the individual strategies and a bound
constraint on the common state variable. Existence of Nash equilibria and first-order
optimality conditions are derived by exploiting higher integrability and regularity of
the random field state variables and a specially tailored constraint qualification for
GNEPs with the assumed structure. A relaxation scheme based on the Moreau-Yosida
approximation of the bound constraint is proposed,which ultimately leads to numerical
algorithms for the individual player problems as well as the GNEP as a whole. The
relaxation scheme is related to probability constraints and the viability of the proposed
numerical algorithms are demonstrated via several examples.
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1 Introduction

Whether it be a consequence of noisy measurements, estimated parameter values,
or model ambiguity, uncertainty is present in just about every mathematical model
of real-world phenomena. Whenever the uncertainty is untreatable by deterministic
quantities, it is best to assimilate it into ourmathematical models via random variables,
vectors, or elements. This allows us to find more robust solutions in the face of future
uncertainty and guard against outlier events. Since many models in engineering and
the natural sciences are defined by partial differential equations (PDEs), the inclusion
of random inputs leads us to consider parametric or random PDEs as part of our
optimization problems, cf. [9, 18, 49, 60, 62].

PDE-constrained optimization under uncertainty is a challenging area of mathe-
matical optimization with many relevant applications in the engineering sciences. It
is a growing field with many recent of contributions in theory and algorithms, see
e.g. [3, 11–14, 20, 22, 39–41, 43–45, 57, 58, 63]. However, many practical problems
require the simultaneous minimization of multiple objectives. By pitting these objec-
tives against each other, i.e., treating the problem as a noncooperative game with each
objective and separate control representing a player and its individual strategy, we nat-
urally come to study PDE-constrained Nash equilibrium problems under uncertainty.
In the deterministic setting, we mention here the pioneering works [16, 26, 51–54,
61]. It is important to note, however, that the models in these papers do not consider
bound constraints, in particular there are no state constraints. This is an important
distinction, as it makes the difference between modeling the game via a coupled PDEs
(no bound constraints) versus a variational inequality (no state constraints) versus a
quasivariational inequality (with state constraints).

As with their deterministic counterparts, it is often necessary to look for a control
that forces the state (solution of the PDE) to satisfy certain bound constraints, e.g.,
below amaximum temperature threshold or above a physical obstacle.When uncertain
inputs are involved, this problem of state constraints becomes muchmore challenging.
This is due in part to a lack of smoothness with respect to the random parameters and
missing compactness properties, which we would expect in a deterministic setting.
Moreover, though an adjoint equation solely for the state equation can be introduced,
an adjoint equation that combines the state equation as well as a multiplier for the state
constraint cannot be derived without assuming additional properties. The inclusion of
state constraints leads in fact to generalized Nash equilibrium problems in Banach
spaces. For recent work in the deterministic setting, we refer the reader to [33, 34, 37,
38] and the references therein.
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Risk-neutral PDE-constrained generalized Nash equilibrium... 1289

Summarizing the discussions above, we thus consider a class of risk-neutral PDE-
constrained GNEPs under uncertainty subject to state constraints. In an abstract sense,
this amounts to considering an N -player GNEP inwhich the i th player’s problem takes
the form

min
zi∈Zi

ad

{EP[Ji (zi , z−i , ·)] |S(zi , z−i , ω) ∈ K P-a.s. } .

Here, S(z) is the z-dependent random field solution of a linear elliptic PDE with
uncertain inputs, Zi

ad and K are closed convex sets and Ji is an appropriate convex
disutility function for player i . We will make the appropriate data assumptions below.
The term “risk-neutral” arises due to the fact that only the expected disutility is con-
sidered. Letting z be a Nash equilibrium for this problem, player i would expect zi to
be the best response to z−i on average, i.e., if the game were played repeatedly. Since
the literature is rather scarce on the treatment of state constraints in PDE-constrained
optimization under uncertainty, see e.g., [19, 23] and the recent preprint [21], we pay
special attention to the case where N = 1, as well. We comment further on the studies
[19, 23] below, which make use of probability constraints. In contrast, the abstract
results in [22] can be used for state constraints as considered in this paper. However,
these results require a different kind of constraint qualification that may be difficult to
verify in general.

The contributions of our paper are as follows:

1. We exploit existing results on elliptic regularity theory to prove higher integrability
and regularity of the random field solutions S(z).

2. Under appropriate constraint qualifications, we prove existence of solutions/
equilibria and derive optimality conditions for the optimization problem and
GNEP.

3. We extend the well-known Moreau-Yosida approach for state constraints to the
stochastic case and rigorously prove that the approximations converge to the orig-
inal GNEP.

4. The link between the Moreau-Yosida regularization technique and probability
constraints is established using concentration inequalities.

5. We propose and demonstrate the viability of numerical algorithms for the opti-
mization problem and GNEP.

The first contribution is crucial, as we need at least essential boundedness of the
random field solutions in order to use techniques of convex optimization in Banach
spaces to develop the optimality theory. In (2), we require a Slater-type condition for
the optimization problem and the strict uniform feasible response (SUFR) condition
introduced in [33] for the GNEP. The SUFR condition imposes a kind of hidden sym-
metry on the GNEP model. Although Moreau-Yosida regularization has been used
successfully in deterministic settings, the stochastic setting poses additional pitfalls.
Nevertheless, passing to the limit in the relaxation parameter is crucial for the justifi-
cation of the numerical methods in the fully continuous setting. The link to probability
constraints in (4) is interesting in its own right, since the approximating problems are
much easier to solve than a similar problem with probability conditions. In addition,
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we obtain a kind of probabilistic rate of convergence for the Moreau-Yosida relax-
ations, which is reflected in the properties of the out-of-sample controlled states in
(5); even after solving with relatively small increasing batches and modest values of
the relaxation parameter. The encouraging results in our numerical study (5) motivate
a number of future research directions.

The rest of the paper is structured as follows. In Sect. 2, we pose a number of
basic assumptions along with an analysis of the forward problem. In addition, the
optimization problems and GNEP are introduced. Following this, we derive existence
and optimality conditions in Sect. 3; using the underlying structure and basic con-
straint qualifications. Due to the low multiplier regularity in the optimality conditions
and a lack of adjoint equation in the sense that the righthand side is the sum of the
derivative of the objective with respect to the state and the Lagrange multiplier for
the state constraint, we propose a Moreau-Yosida technique in Sect. 4. This allows
us to formulate function-space-based numerical algorithms for both the optimization
problems and the GNEP in Sect. 5. The potential of the algorithms is demonstrated via
several numerical examples. In particular, we provide a brief, post-optimal analysis
using the performance of the computed controls to derive a statistic on the violation
of the state constraint.

2 Problem formulation

2.1 Notation, standing assumptions, and preliminary results

Westart by defining the necessary function spaces.We assume that the physical domain
D ⊂ Rd with d = 1, 2, or 3 is an open bounded set such that D is either a convex
polyhedron or the boundary of D, denoted by ∂D, is of class C1,1.

The triple (Ω,F ,P) denotes a complete probability space, where Ω is the sample
space of possible outcomes, F the Borel σ -alegra of Ω for a fixed topology on Ω and
P is a probability measure.

Given a real-valued Banach space (V , ‖·‖V ), Borel measure μ, and p ∈ [1,∞] we
denote the usual Lebesgue-Bochner space L p

μ(Ω; V ) of all strongly F-measurable
V -valued functions by

L p
μ(Ω; V ) = {u : Ω → V : u strongly F − measurable and ‖u‖L p

μ(Ω;V ) < ∞}

where

‖u‖L p
μ(Ω;V ) =

⎧
⎨

⎩

(∫

Ω
‖u(ω)‖p

V dμ(ω)
)1/p

, p < ∞
μ − ess sup

ω∈Ω

‖u(ω)‖V , p = ∞.

When V = R,we set L p
μ(Ω;R) = L p

μ(Ω) the usual Lebesgue space with underlying
measure μ. When the Lebesgue measure μ = L is considered, we omit the subscript
L and simply write L p(Ω). We denote by FL the σ -algebra of Lebesgue measurable
sets. We recall here that for 1 ≤ p, q ≤ ∞ such that 1/p + 1/q = 1, it is known that
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the topological dual fulfills L p
μ(Ω; V )∗ 	 Lq

μ(Ω; V ∗). If V is reflexive, then so is
L p

μ(Ω; V ) for 1 < p < ∞. For further information see [28, Chapter III].
We show in the sections below that themultipliers for the stochastic state constraints

are of very low regularity, i.e., bounded additive measures. We will need the space ba,
which we recall here for ease of reference, cf. [27, 20.27 Definition] or [17].

Definition 1 Let (Ξ,B, μ) be a σ -finite measure space. The space ba(Ξ,B, μ)

denotes the set of all real-valued set-functions τ : B → R such that

(i) sup{|τ(A)| : A ∈ B} < ∞,

(ii) τ(A ∪ B) = τ(A) + τ(B) for A, B ∈ B with A ∩ B = ∅ and
(iii) τ(A) = 0 if A ∈ B is μ-null, i.e. τ << μ.

The norm of τ ∈ ba(Ξ,B, μ) is given by |τ |(Ξ), the total variation of τ on B.

The key result for our analysis related to this space is the existence of an isometric
isomorphism between (L∞

π (Ξ))∗ and ba(Ξ,B, π), cf. [17, Thm. IV.8.16], where we
use

Ξ = Ω × D, B = F ⊗ FL, π = P × L.

Finally, we fix several notational conventions. For a (real) Banach space V we
denote the expectation of a random element X : Ω → V by

EP[X ] =
∫

Ω

X(ω) dP(ω) ∈ V .

For some nonempty subset C ⊂ V , IC : V → R ∪ {∞} represents the standard
indicator function, which satisfies IC (x) = 0 if x ∈ C and +∞ otherwise. For an
arbitrary convex set K , we define the standard convex normal cone by

NK (x) =
{ {x∗ ∈ V ∗ | 〈x∗, y − x〉 ≤ 0, ∀y ∈ K } , if x ∈ K ,

∅, otherwise.

The (set-theoretic) characteristic function associated with some subset A is denoted
by χ or χA, where χA(x) = 1 if x ∈ A and 0 otherwise. Strong convergence of a

sequence is denoted by →, weak-convergence by ⇀, and weak-*-convergence by
∗
⇀.

The closed ε-ballwith center x in somenormed space is denotedBε(x). The superscript
∗ is used to denote the adjoint operator or dual space. As usual C � D means that
C is bounded by D up to an independent constant. For two Banach spaces V and W ,
the set of all bounded linear operators from V to W will be denoted by L(V ,W ). We
use the typical convention from game theory for a vector u with N components for
emphasizing the i th component by writing u = (ui , u−i ) = (u−i , ui ).
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2.2 Risk-neutral PDE-constrained equilibrium problems

2.2.1 PDE-constrained equilibrium problems as strategic games

Asmentioned above, our results apply to both PDE-constrained optimization problems
under uncertainty as well as stochastic equilibrium problems with PDE-constraints.
Whereas the solution concept for PDE-constrained optimization is obvious, there are
several possibilities for equilibrium problems from the perspective of game theory.
The notation in this brief section is chosen to reflect the references to the game theory
literature.

We recall that a strategic game comprises a set of N players or agents, their sets of
actions Ai , and a unique preference relation for each player over all possible profiles
of actions a ∈ A :=×N

i=1 A
i . In many cases, the preference relation can be described

by the values of utility functions ui : A → R and the preferred solution concept for
noncooperative behavior is often taken to be a Nash equilibrium; cf. [47]. The latter
states that ā ∈ A is a (pure strategy) Nash equilibrium provided for all i = 1, . . . , N
we have

ui (ā) ≥ ui (ā−i , ai ) ∀ai ∈ Ai , (2.1)

see, e.g., [48] for more details. We will refer to games in which the solution concept
is a Nash equilibrium as Nash Equilibrium Problems or NEPs.

We will take an analogous perspective for our PDE-constrained equilibrium prob-
lems.However, due to the presence of state constraints, the sets of actions are set-valued
mappings Ai (a−i ) that also depend on a−i for each i . This leads to a natural extension,
first introduced byDebreu [15], see also [6]: ā ∈ A is a (generalized) Nash equilibrium
provided for all i = 1, . . . , N we have āi ∈ Ai (ā−i ) and

ui (ā) ≥ ui (ā−i , ai ) ∀ai ∈ Ai (ā−i ). (2.2)

These games are significantly more difficult from both a theoretical as well as numer-
ical perspective due to the embedded fixed point relation. We refer to games of this
type as Generalized Nash Equilibrium Problems or GNEPs.

2.2.2 Linear elliptic random PDEs

Returning now to the context of PDE-constrained optimization, we introduce a class
of linear elliptic random PDEs as our state system. Let

U := L2
P
(Ω; H1

0 (D)).

Given z ∈ L2(D), we consider the following problem: Find u ∈ U such that

EP

[∫

D
A(x, ·)∇u(x, ·) · ∇v(x, ·) dx

]

= EP

[∫

D
((B(·)z)(x) + f (x, ·))v(x, ·) dx

]

,

(2.3)
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for all test functions v ∈ U . Note that (2.3) can be equivalently written in a semi-weak
form. Let u solve (2.3). Then using v(x, ω) = χA(ω)ϕ(x) such that A ∈ F and
ϕ ∈ H1

0 (D) (or ϕ ∈ C∞
0 (D)) we have

∫

A

∫

D
A(x, ω)∇u(x, ω) · ∇ϕ(x) dxdP(ω)

=
∫

A

∫

D
((B(ω)z)(x) + f (x, ω))ϕ(x) dxdP(ω), (2.4)

for every ϕ ∈ H1
0 (D) and consequently

∫

D
A(x, ω)∇u(x, ω) · ∇ϕ(x) dx =

∫

D
((B(ω)z)(x) + f (x, ω))ϕ(x) dx, P−a.s.

(2.5)

for every ϕ ∈ H1
0 (D) . The reverse direction (from P-pointwise weak solutions to

a solution of (2.3)) can be easily adapted from the nonlinear setting in [42]. The
key components of the argument are: Prove the existence of a solution for P-a.e. ω,
demonstratemeasurability inω usingFillipov’s theorem formeasurable selections, and
obtain integrability using standard a priori estimates for elliptic PDEs. It is sometimes
more convenient to work with one form versus the other as we will see below. For
z = 0, we denote the solution of (2.3) by u f and for f ≡ 0 we set u = S(z). Hence,
any solution u of (2.3) can be written

u = S(z) + u f . (2.6)

We will demonstrate below that S(z) is a bounded linear operator in z between appro-
priate function spaces.

In order to ensure well-defined solutions and derive higher regularity results, we
make the following additional assumptions on the problem data.

Assumption 1 In addition to the standing assumptions on D, ∂D, and
(Ω,F ,P), the following sets of assumptions will be necessary below.

(i) (Minimum Regularity) The coefficient mapping A : D × Ω → R is (L × P)-
measurable and there exist constants 0 < A < A such that

A ≤ A(x, ω) ≤ A (L × P)-a.e. (x, ω) ∈ D × Ω

The fixed bulk term f satisfies

f ∈ L∞
P

(Ω; L2(D))

(ii) (Higher Regularity) In addition to (i), A ∈ L∞
P

(Ω;C0,1(D̄)).
(iii) (Control Mapping) The control mapping B : Ω → L(L2(D)N , L2(D)) is mea-

surable and essentially bounded, i.e. B ∈ L∞
P

(Ω,L(L2(D)N , L2(D)). Moreover,

123



1294 D. B. Gahururu et al.

as a mapping from Ω to L(L2(D), H−1(D)), B is completely continuous in the
sense that for P-a.e. ω ∈ Ω we have

zk⇀z in L2(D)N �⇒ B(ω)z → B(ω)z in H−1(D).

Some remarks are in order. Assumption 1.(i) can be slightly weakened to allow for
unbounded coefficients and still obtain the existence of solutions, cf. e.g., [24]. It is also
possible to choose f and/or B(ω)z that is unbounded in ω. However, weakening these
assumptions would mean that the solutions u to (2.3) are also not bounded. The latter
property is essential for our treatment of state constraints. The Lipschitz continuity
of A(ω, ·) : D̄ → R in Assumption 1.(ii) will be used to ensure boundedness of u
in x . This along with the regularity assumption on the boundary ∂D can be slightly
weakened to the extent that we can guarantee u ∈ L∞

P×L(Ω × D), e.g., we could relax
Lipschitz to Hölder and work with u(·, ω) in W 1,p(D) with p > d. The properties in
Assumption 1.(iii) are the weakest possible for our analysis. Using Assumption 1, we
gather several essential properties of the mapping z �→ u in the following result.

Proposition 1 Let Assumption 1 hold. For any z ∈ L2(D), there exists a unique
solution u ∈ U of (2.3). Moreover, u ∈ L∞

P
(Ω; H2(D) ∩ H1

0 (D)) and the following
a priori bound holds

‖u‖L∞
P

(Ω;H2(D)∩H1
0 (D)) ≤ C

(
‖ f ‖L∞

P
(Ω;L2(D)) + ‖B(·)z‖L∞

P
(Ω;L2(D))

)
(2.7)

Here, C is independent of ω.

Proof Defining the bilinear form b : U × U → R by

b(u, v) := EP

[∫

D
A(x, ·)∇u(x, ·) · ∇v(x, ·) dx

]

and z-dependent linear form L(·; z) : U → R by

L(v; z) := EP

[∫

D
((B(·)z)(x) + f (x, ·))v(x, ·) dx

]

,

we can view (2.3), as the variational problem: Find u ∈ U such that

b(u, v) = L(v; z) ∀v ∈ U .

It readily follows from Assumption 1 that b is a U-coercive bilinear form. Then by the
Lax-Milgram Lemma there exists a unique solution u ∈ U . In light of the equivalence
to (2.5), we immediately deduce from the standard a priori bound:

‖u(·, ω)‖H1
0 (D) ≤ C1‖B(ω)z + f (·, ω)‖H−1(D) (2.8)
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that u : Ω → H1
0 (D) is P-essentially bounded. Due to the assumptions on A,C1 does

not depend on ω.
For the a priori bound (2.7), we need to consider two cases. We once again appeal

to the equivalence between (2.3) and (2.5). If ∂D is of type C1,1, then it follows from
Assumption 1 along with Friedrichs’ theorem, see e.g., [5, A12.2 Theorem], that for
P-a.e. ω ∈ Ω we have

‖u(·, ω)‖H2(D) ≤ C(ω)
(
‖u(·, ω)‖H1

0 (D) + ‖B(ω)z‖L2(D) + ‖ f (·, ω)‖L2(D)

)
.

(2.9)

Here, C(ω) = C
(
∂D, d, A, ‖A(·, ω)‖C0,1(D̄)

)
. The same estimate also holds when

∂D is nonsmooth, but D is a convex polyhedron, see Remark 1 below. The “constant”
C(ω) is indeed a bounded and measurable function in ω. This follows from the fact
that the term ‖A(·, ω)‖C0,1(D̄) is measurable, uniformly bounded away from zero, and
C(ω) is a sumof rational functions of ‖A(·, ω)‖C0,1(D̄), where it appears in a numerator
and a denominator. Continuing, for P-a.e. ω ∈ Ω , we have

‖u(ω, ·)‖H2(D)∩H1
0 (D) = max

{
‖u(ω, ·)‖H2(D), ‖u(ω, ·)‖H1

0 (D)

}

≤ ‖u(ω, ·)‖H2(D) + ‖u(ω, ·)‖H1
0 (D)

≤ C(ω)
(
‖u(ω, ·)‖H1

0 (D) + ‖B(ω)z‖L2(D)

+ ‖ f (ω, ·)‖L2(D)

)

+ C1

(
‖B(ω)z‖H−1(D) + ‖ f (ω, ·)‖H−1(D)

)
.

Furthermore, we obtain

‖u(ω, ·)‖H2(D)∩H1
0 (D) ≤ C(ω)C1

(‖B(ω)z‖H−1(D) + ‖ f (ω, ·)‖H−1(D)

)

+ C(ω)
(‖B(ω)z‖L2(D) + ‖ f (ω, ·)‖L2(D)

)

+ C1
(‖B(ω)z‖H−1(D) + ‖ f (ω, ·)‖H−1(D)

)
.

Finally, due to the Gelfand triple H1
0 (D) ↪→ L2(D) ↪→ H−1(D), we have

‖u(ω, ·)‖H2(D)∩H1
0 (D) ≤ Ĉ(ω)

(‖B(ω)z‖L2(D) + ‖ f (ω, ·)‖L2(D)

)
,

where

Ĉ(ω) := 3max {C(ω),C1,Cemb}3

andCemb is the embedding constant for L2(D) into H−1(D). Passing to theP-essential
supremum yields
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ess sup
ω∈Ω

‖u(ω, ·)‖H2(D)∩H1
0 (D) � ess sup

ω∈Ω

‖B(ω)z‖L2(D)

+ess sup
ω∈Ω

‖ f (ω, ·)‖L2(D) < ∞.

Thus, u ∈ L∞
P

(Ω; H1
0 (D) ∩ H2(D)) and (2.7) follows. ��

Remark 1 For details on the well-known regularity results for deterministic elliptic
PDEs on nonsmooth domains, we refer to [25, Thm. 3.2.1.2] and especially to [25,
Thm. 3.1.3.3, Lem. 3.1.3.2, Thm. 3.1.3.1] for the estimation bounds.

Proposition 1 justifies the decomposition in (2.6). In particular, we see that S is
a bounded linear operator and u f ∈ L∞

P
(Ω; H1

0 (D) ∩ H2(D)). We deduce several
additional properties in the following corollary.

Corollary 1 Under the hypotheses of Proposition 1 we have:

(i) As a mapping from L2(D) to Lq
P
(Ω; H1

0 (D)) with q ∈ [1,∞), S is completely
continuous, bounded, and linear.

(ii) As a mapping from L2(D) to L∞
P

(Ω; H1
0 (D)∩H2(D))), S is bounded and linear.

Proof Case (i) is a special case of [42, Prop 2.3]. In case (ii) linearity follows triv-
ially from the definition of S(z) whereas boundedness is a consequence of (2.7) and
Assumption 1.(iii). ��

We end this section by introducing a convenient P-pointwise notation that will aid
in the derivation of optimality conditions below. We define

A : Ω → L(H1
0 (D) ∩ H2(D), L2(D)) and B : Ω → L(L2(D))

to be the operators given by

〈A(ω)u, v〉 =
∫

D
A(x, ω)∇u(x) · ∇v(x) dx

for u, v ∈ H1
0 (D) ∩ H2(D) and

〈B(ω)z, v〉 =
∫

D
((B(ω)z)(x)v(x) dx,

respectively. Note that A(ω) is a linear isomorphismdue to the regularity results above.
Given A, B we can understand S(z) + u f P-pointwise as

S(z)(ω) + u f (ω) = A−1(ω)B(ω)z + A−1(ω) f (ω) (2.10)

whenever we need to work with higher regularity.
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2.2.3 A class of risk-neutral PDE-constrained optimization problems

In this section, we introduce a class of optimization problems that will serve as a
template for the individual player problems in the PDE-constrained GNEP.

Assumption 2 We assume that

(i) (Control Constraints) Zad ⊂ L2(D) is a nonempty, closed, bounded, and convex
set.

(ii) (Objective) The cost parameter ν ≥ 0, ud ∈ L2(D), T ∈ L(L2(D)), and
J : L2(D) × L2(D) → R is defined by

J (u, z) := 1

2
‖Tu − ud‖2L2(D)

+ ν

2
‖z‖2L2(D)

. (2.11)

(iii) (State Constraint) Given ψ ∈ C(Ω × D) for which there exists ε > 0 such that

ψ |∂D(ω) ≤ −ε P-a.s.,

we define the state constraint by

S(z) + u f ≥ ψ for (L × P)-a.e. (x, ω) ∈ D × Ω. (2.12)

(iv) (Feasibility) There exists z ∈ Zad such that (2.12) holds.

The boundedness in Assumption 2.(i) is only needed in the optimization setting
if ν = 0. However, it is unclear how to extend the existence proof for the GNEP,
as the latter follows from an application of the Kakutani-Fan-Glicksberg theorem,
which includes a compactness condition. It is not necessary for our analysis to restrict
ourselves to the tracking-type objective in Assumption 2.(ii). We could proceed in a
more general manner as suggested in [44] under appropriate convexity, continuity, and
growth conditions. This would require further technical assumptions that we believe
would detract from the main purpose of the text. The nonemptiness of the feasible
set in our setting is assumed in Assumption 2.(iv). Provided Zad admits a z > 0
with sufficiently large L∞(D)-norm, then the existence of a feasible point can be
guaranteed by the maximum principle in light of the regularity result in Proposition 1.

The inclusion of state constraints in PDE-constrained optimization in the form of
(2.12) is new. An alternative way of interpreting (2.12) would be to consider either

P(S(z)(x, ·) + u f (x, ·) − ψ(x, ·) ≥ 0) = 1 for L-a.e. x ∈ D

or

P(S(z)(x, ·) + u f (x, ·) − ψ(x, ·) ≥ 0 for L-a.e. x ∈ D) = 1.

From the perspective of stochastic programming, this is rather restrictive and in general
settings (beyond PDE-constrained optimization), may lead to empty feasible sets.
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1298 D. B. Gahururu et al.

Typically one remedies this by selecting a minimum probability level p ∈ (0, 1) and
considering instead:

P(S(z)(x, ·) + u f (x, ·) − ψ(x, ·) ≥ 0 for L-a.e. x ∈ D) ≥ p. (2.13)

Several recent studies have considered this perspective, see [19, 23]. However,
these approaches do not circumvent the fundamental difficulties encountered with
state constraints in regards to multiplier regularity and mesh-independent numerical
approaches. In addition, the functional

φ(z) := P(S(z)(x, ·) + u f (x, ·) − ψ(x, ·) ≥ 0 for L-a.e. x ∈ D)

is nontrivial to analyze and use in numerical algorithms. This usually requires P to
admit a log-concave density and for S(z)(x, ω) to have a very specific structure with
respect to ω. For more on probability constraints, we refer the reader to [50, 59] and
the related references therein.

We may now formulate the optimization problem

min
z∈Zad

{
EP

[
J (S(z) + u f , z)

] ∣
∣ S(z) + u f ≥ ψ for (L × P)-a.e. (x, ω) ∈ D × Ω

}
.

(2.14)

2.2.4 A class of risk-neutral PDE-constrained GNEPs

We now introduce a noncooperative game with N players by using the results of
the previous section. The individual i th player is assumed to solve the following
optimization problem

min EP

[
1

2
‖Tiu − uid‖2L2(D)

]

+ νi

2
‖zi‖2L2(D)

over (zi , u) ∈ Zi
ad × U

s.t. A(ω)u = B(ω)(zi , z−i ) + f (ω) P-a.s.

u ≥ ψ for (L × P)-a.e. (x, ω) ∈ D × Ω.

Here, the quantities Zi
ad, Ti , νi , and uid are defined analogously to those in the

standard optimization setting, where we again require Assumptions 1 and 2 for each
i = 1, . . . , N . In what follows, we denote the collective admissible set of controls by
Zad = Z1

ad × · · · × ZN
ad. The main difference for the individual player problems lies

in the definition of the control mapping B. For the sake of reference, we make the
following assumption.

Assumption 3 The operator B has the additive representation

B(ω)(zi , z−i ) = B1(ω)z1 + · · · + BN (ω)zN , P-a.s.

where Bi satisfies Assumption 1 for i = 1, . . . , N .
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In light of the assumptions, we may also formulate the PDE-constrained GNEP in
terms of the following reduced space problems.

min
zi∈Zi

ad

{
EP

[
Ji (S(zi , z−i ) + u f , (zi , z−i ))

] ∣
∣ S(zi , z−i ) + u f ≥ ψ for (L × P)-a.e.

}
.

(2.15)

3 Existence and optimality conditions

We first prove existence of optimal solutions of (2.14) and provide optimality con-
ditions. Then, by extending the arguments used in [34], we prove the existence of
generalized Nash equilibria for (2.15). Optimality conditions for a certain type of
equilibria are also derived. We will use the concept of variational equilibria, which is
strongly related to the notion of normalized equilibrium due to Rosen [56]; although
Rosen’s concept of normalized equilibrium was formulated using Lagrange multipli-
ers. This is a specific class of Nash equilibria that can in many cases be computed
numerically.

3.1 Risk-neutral PDE-constrained optimization problems

For the risk-neutral PDE-constrained optimization problems the existence and opti-
mality conditions are formulated as follows.

Theorem 4 Let Assumptions 1 and 2 hold. Then (2.14) admits a solution z̄. If ν > 0,
then z̄ is unique. Moreover, if there exists a z0 ∈ Zad and a constant κ > 0 such that

S(z0) + u f − ψ > κ (3.1)

then there exists a measure μ̄ ∈ ba(Ξ,B, π) such that

(i) (Nonpositivity) μ̄ satisfies

∫

Ξ

g(x, ω) dμ̄(x, ω) ≤ 0, ∀ g ∈ L∞
π (Ξ)+.

(ii) (Complementarity) μ̄ fulfills

∫

Ξ

G(z̄)(x, ω) dμ̄(x, ω) = 0,

where

G(z) = ιA−1Bz + ιu f − ψ

and
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ι : L∞
P

(Ω; H1
0 (D) ∩ H2(D))) → L∞

π (Ξ)

is the continuous embedding.
(iii) (Subgradient Condition) The general inclusion holds

0 ∈ EP[B∗A−∗T ∗(T Sz̄ + Tu f − ud)] + ν z̄ + NZad (z̄) + B∗A−∗ι∗μ̄.

Here, the latter term must be understood

〈B∗A−∗ι∗μ̄, δz〉 =
∫

Ξ

(A−1(ω)B(ω)δz)(x) dμ̄(x, ω)

for an arbitrary test function δz ∈ L2(D).

Conversely, if there exists a pair (z̄, μ̄) such that (i)-(iii) hold, then z̄ is an optimal
solution of (2.14).

Remark 2 In this general setting, we cannot guarantee that μ̄ splits into a generalized
product of measures that would allow us to write B∗A−∗ι∗μ̄ using an expectation. We
explain this in more detail following the proof. However, the subgradient condition in
(iii) can be brought into a form slightlymore familiar to PDE-constrained optimization
by introducing an adjoint variable λ̂ that satisfies the pointwise adjoint equations

∫

D
A(x, ω)∇λ̂(x, ω) · ∇ϕ(x) dx =

∫

D
T ∗(T Sz̄ + Tu f − ud)ϕ(x) dx, P-a.s.

(3.2)

Using this term we can “unfold” the general subgradient condition into the inclusion

0 ∈ EP[B∗̂λ] + ν z̄ + NZad (z̄) + B∗A−∗ι∗μ̄

coupled to the adjoint Eq. (3.2), a state equation for Sz̄ and complementarity conditions
for the state constraint. Similarly, in some settings we may choose sufficiently regular
test functions ϕ and introduce an additional adjoint variable λ̃ to simplify the term
B∗A−∗ι∗μ̄ using

〈̃λ, Aϕ〉 =
∫

Ξ

ϕ dμ̄(x, ω).

Indeed, μ̄ defines a bounded linear functional on L∞
π (Ξ). So if A can define a linear

isomorphism between a subspace of L∞
π (Ξ) and, e.g., L2

π (Ξ), then λ̃ would be a
(very weak) solution. These two observations could potentially be used in a numerical
setting, especially if P is discrete.

Proof To prove existence, we need to argue that the feasible set is weakly sequentially
closed and F(z) := E[J (S(z) + u f , z)] is weakly sequentially lower semicontinuous
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on L2(D). Since the assumptions on J imply F is convex and the latter component
of J is deterministic and continuous, we concentrate on the properties of S and their
relation to the first argument of J .

By Assumption 2, (2.14) admits a feasible point and consequently a minimizing
sequence {zk} ⊂ Zad such that (2.12) holds. Since Zad is bounded, closed, and convex,
{zk} admits a weakly convergent subsequence {zkl }. For each l, we have

S(zkl ) + u f ≥ ψ for (L × P)-a.e. (x, ω) ∈ D × Ω.

Since S is completely continuous as amapping into L2
P
(Ω; H1

0 (D)), we have S(zkl ) →
S(z̄) strongly.Moreover, the Sobolev embedding theorem (see e.g. [2, 4.12 Theorem])
and the fact that L p(Ω; X) ↪→ Lq(Ω; Y ) if X ↪→ Y for 1 ≤ q ≤ p < ∞ plus the
equivalence of L1

P
(Ω; L1(D)) and L1

π (Ξ) (see e.g. [36, Proposition 1.2.24]) imply
that S(zkl ) → S(z̄) in L1

π (Ξ). Therefore, there exists a subsequence {zklm } such that
S(zklm ) → S(z̄) π -pointwise almost everywhere. It follows that

S(z̄) + u f ≥ ψ for (L × P)-a.e. (x, ω) ∈ D × Ω.

Continuing, the integrand J induces a superposition operator that is continuous from
the product space L2

P
(Ω; H1

0 (D))× L2(D) to L1
P
(Ω), see e.g., [44, Ex. 3.2]. Then by

combining the properties of S with this continuity result, we deduce the weak lower
semicontinuity of F . It follows from the direct method that z̄ is an optimal solution,
which is of course unique if ν > 0 as the objective would be strictly convex.

In order to derive first order optimality conditions for (2.14), we write

min
z∈Zad

{
EP

[
J (A−1Bz + u f , z)

]
| G(z) ∈ K

}

and appeal to the general Lagrangian formalism in [10, Chap. 3]. Here, we set

G(z) = ιA−1Bz + ιu f − ψ and K = L∞
π (Ξ)+,

where ι : L∞
P

(Ω; H1
0 (D) ∩ H2(D))) → L∞

π (Ξ) is the continuous embedding and
K is the convex cone of all positive essentially bounded B-measurable functions.
Note that we first use the continuous embedding of L∞

P
(Ω; H1

0 (D) ∩ H2(D)) into
L∞
P

(Ω; L∞(D)) and then the continuous embedding of L∞
P

(Ω; L∞(D)) into L∞
π (Ξ)

to define ι. The latter two spaces are not equivalent.
Since K has a nonempty interior and G is clearly convex with respect to the

partial order induced by (−K ), (3.1) is equivalent to the constraint qualification
0 ∈ int {G(Zad)−K } (and therefore Robinson’s CQ), cf. [10, Prop. 2.106]. It follows
from [10, Thm. 3.6] that

0 ∈ ∂z L(z̄, μ̄) + NZad (z̄) and μ̄ ∈ NK (G(z̄)),

where L(z, μ) = F(z) + 〈G(z), μ〉. Due to convexity, these are both necessary and
sufficient for optimality. It remains to make the conditions more explicit.
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Since K is a closed, convex cone, μ̄ ∈ NK (G(z̄)) yields assertions (i) and (ii). To
obtain the form in (iii), we first note that

F ′(z̄)(δz) = EP[(T A−1B z̄ + Tu f − ud , T A−1Bδz)] + ν(z̄, δz)

and

〈G(·), μ̄〉′(z̄; δz) = 〈ιA−1B(δz), μ̄〉.

For the objective function F , we can exploit the equivalencewith the pointwise adjoints
and write

EP[(B∗A−∗T ∗(T A−1B z̄ + Tu f − ud), δz)] + ν(z̄, δz).

Furthermore, the uniform integrability of the operators A, B, i.e. B∗, A−∗ allows us
to write via [28, Thm. 3.7.12]

F ′(z̄)δz = (EP[(B∗A−∗T ∗(T A−1B z̄ + Tu f − ud)] + ν z̄, δz). (3.3)

This concludes the proof. ��
We caution the reader that the form of the duality pairing used for the μ-multiplier

initially does not include the expectation with respect to P. However, if μ is σ -finite
and σ -additive, then by the Radon-Nikodym theorem, there exists a density ρμ such
that

μ(A × B) =
∫

A×B
ρμdπ =

∫

A×B
ρμd(L × P) =

∫

A

∫

B
ρμ dxdP.

In other words, we would have dμ = ρμd(L×P). Furthermore, The sign condition
on μ carries over to ρμ, in which case |ρμ| = −ρμ. This would indicate that ρμ ∈
L1

π (Ξ). We could then write

∫

Ξ

(A−1(ω)B(ω)δz)(x) dμ̄(x, ω) = EP[(A−1(ω)B(ω)δz, ρμ)]

by Fubini’s theorem.
Furthermore, note that [28, Theorem 3.8.1] together with [42, Lemma 2.1] ensures

that B∗ is a bounded linear operator from U into L p
P
(Ω; L2(D)). This would then

allow us to incorporate the density into the adjoint equation, which is formulated in a
very weak sense. This is essential, as otherwise the dual pairing with ρμ and the test
functions would not be defined.

3.2 Risk-neutral PDE-constrained GNEPs

In order to prove existence of at least one generalized Nash equilibrium and link
the proof to a function-space-based numerical algorithm, we restrict ourselves to a
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variational reformulation as mentioned earlier. The variational reformulation is based
on the so-called Nikaido-Isoda functionΨ : L2(D)N ×L2(D)N → R. For our GNEP
the Nikaido-Isoda function is given by

Ψ (z, v) =
N∑

i=1

EP

[
Ji (S(zi , z−i ) + u f , (zi , z−i ))

]

−EP

[
Ji (S(vi , z−i ) + u f , (vi , z−i ))

]
.

We then introduce the potentially set-valued function R̂ : Zad ⇒ Zad given by

R̂(z) = argmax
{
Ψ (z, v) | v ∈ Zad such that S(vi , v−i ) + u f ≥ ψ

}
.

This mapping acts as a collective best-response function to a strategy vector z ∈
Zad for all players simultaneously. Next, we define variational equilibria by their
characterization as fixed points of the best-response function R̂ . The nomenclature
diverges somewhat from the literature, but it should be clear in context what is meant
below.

Definition 2 A strategy vector z̄ with z̄ ∈ Zad and S(z̄i , z̄−i ) + u f ≥ ψ for (L ×
P)-a.e. (x, ω) ∈ D × Ω is a variational equilibrium if and only if z̄ ∈ R̂(z̄).

Note that for jointly convex GNEPs, every variational equilibrium is also a Nash
equilibrium [34, Theorem 3.2]. This characterization converts the proof of the exis-
tence of Nash Equilibria to a fixed point problem. The essential ingredient is the fixed
point theorem of Kakutani-Fan-Glicksberg, see e.g. [4, Corollary 17.55].

Theorem 5 Let Assumptions 1 and 3 hold. The set of variational equilibria of the
jointly convex GNEP (2.15) is weakly compact and nonempty.

Proof We proceed as in [34, Theorem 3.2], in order to apply the fixed point theorem of
Kakutani-Fan-Glicksberg on R̂. By adapting the proof to the current setting, it follows
from Theorem 4 that R̂ has nonempty and convex images.

To ensure compactness, we recast the problem in the space Xi , where Xi is L2(D)

endowed with the weak topology. Note that Xi is a real locally convex topological
space. The equivalence of weak and strong closure for convex sets in reflexive Banach
spaces implies that Zi

ad is closed in Xi . Moreover, the weak compactness of closed and
bounded convex subsets in reflexive Banach spaces implies that each set Zi

ad is convex
and compact in Xi or equivalently sequentially compact (see [65, Satz VIII.6.1(Satz
von Eberlein-Shmulyan)]). Consequently, if we take Zad = Z1

ad × · · · × ZN
ad and

X = X1×· · ·× XN , thenZad ⊂ X , whereZad is also nonempty, convex and compact
in X . Due to the latter property, the weak topology is metrizable on Zad (see [65,
Lemma VIII.6.2]).

In order to see the closedness of the graph of R̂, we introduce the set

Xad = {
v ∈ Zad such that S(vi , v−i ) + u f ≥ ψ

}
.
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Now, we consider a closed subset C ⊂ Xad and a sequence {zn}n∈N ⊂ R̂−1(C) with
zn → z̄ in X (i.e. zn⇀z̄ in L2(D)N ). For every zn we choose vn ∈ C ∩ R̂(zn). By a
slight adaptation of the arguments in the proof of Theorem 4, we can show that Xad

is sequentially compact. Hence, there exists a convergent subsequence vnk
X→ v̄ with

v̄ ∈ C .
For some arbitrary w ∈ Xad it holds that

N∑

i=1

EP

[
Ji (S(v

nk
i , znk−i ) + u f , (v

nk
i , znk−i ))

]

≤
N∑

i=1

EP

[
Ji (S(wi , z

nk−i ) + u f , (wi , z
nk−i ))

]

By adapting the proof of Theorem 4, we can argue that

N∑

i=1

EP

[
Ji (S(v̄i , z̄−i ) + u f , (v̄i , z̄−i ))

]

≤ lim inf
k→∞

N∑

i=1

EP

[
Ji (S(v

nk
i , znk−i ) + u f , (v

nk
i , znk−i ))

]

≤ lim inf
k→∞

N∑

i=1

EP

[
Ji (S(wi , z

nk−i ) + u f , (wi , z
nk−i ))

]
.

This is a consequence of the properties of the expectation, the objectives Ji and the
solution operator S. In particular, it is essential that S is completely continuous into
L1
P
(Ω; H1

0 (D)). Using again the complete continuity, we have

N∑

i=1

EP

[
Ji (S(v̄i , z̄−i ) + u f , (v̄i , z̄−i ))

]

≤ lim inf
k→∞

N∑

i=1

EP

[
Ji (S(wi , z

nk−i ) + u f , (wi , z
nk−i ))

]

≤
N∑

i=1

EP

[
Ji (S(wi , z̄−i ) + u f , (wi , z̄−i ))

]
.

It follows that v̄ ∈ R̂(z̄), which proves the sequential closedness of the graph of R̂ or
equivalently the closedness in X ( [65, TheoremB.1.2]).We now applyKakutani-Fan-
Glicksberg’s fixed point theorem. The set of Nash equilibria of the GNEP is nonempty
and compact in X and thus, weakly compact in L2(D)N . ��

The optimality conditions for a generalized Nash equilibria reads as follow. We
adapt the same notation as Theorem 4.
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Theorem 6 Let Assumptions 1 and 3 hold. If there exists a (z0i , z
0−i ) ∈ Zad and a

constant κ > 0 such that

S(z0i , z
0−i ) + u f − ψ > κ (3.4)

then there exists a measure μ̄ ∈ ba(Ξ,B, π) such that

(i) (Nonpositivity) μ̄ is an element of the polar cone of L∞
π (Ξ)+.

(ii) (Complementarity) μ̄ fulfills

∫

Ξ

G(z̄i , z̄−i )(x, ω) dμ̄(x, ω) = 0.

(iii) (Subgradient Conditions) For i = 1, . . . , N the general inclusion holds

0 ∈ EP[B∗
i A

−∗T ∗
i (Ti S(z̄i , z̄−i ) + Tiu f − uid)] + νi z̄i + NZi

ad
(z̄i ) + B∗

i (A
−∗ι∗μ̄).

Conversely, if there exists a pair (z̄, μ̄) such that (i)-(iii) hold, then z̄ is generalized
Nash equilibrium of (2.15).

Proof Similiar to the proof of Theorem 4, we work with the general Lagrangian for-
malism. We first note that z̄ ∈ R̂(z̄). This is equivalent to

z̄ ∈ arg max
v∈Zad

{
Ψ (z̄, v) | S(vi , v−i ) + u f ≥ ψ

}

= arg min
v∈Zad

{
N∑

i=1

EP

[
Ji (A−1B(vi , z̄−i ) + u f , (vi , z̄−i ))

]
| S(vi , v−i ) + u f ≥ ψ

}

In order to derive first order optimality conditions for variational equilibria of (2.15),
we recall some of the notation from the proof of Theorem 4 We again set

G(vi , v−i ) = ιA−1B(vi , v−i ) + ιu f − ψ and K = L∞
π (Ξ)+,

and define the continuous embedding ι : L∞
P

(Ω; H1
0 (D) ∩ H2(D))) → L∞

π (Ξ). In
the notation of [10], we set

Fz̄(vi , v−i ) :=
N∑

i=1

EP

[
Ji (A−1B(vi , z̄−i ) + u f , (vi , z̄−i ))

]
,

which yields the parametric Lagrangian

Lz̄(vi , v−i , μ) = Fz̄(vi , v−i ) + 〈G(vi , v−i ), μ〉 .

Since (3.4) is equivalent to the constraint qualification 0 ∈ int {G(Zad)−K }, it follows
from [10, Thm. 3.6] that

0 ∈ ∂z L z̄(z̄i , z̄−i , μ̄) + NZad (z̄i , z̄−i ) and μ̄ ∈ NK (G(z̄i , z̄−i )).
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Assertions (i) and (ii) are implied by μ̄ ∈ NK (G(z̄i , z̄−i )) since K is a closed, convex
cone. To obtain the subgradient conditions in (iii), we first note that

〈G(·), μ̄〉′(z̄; δz) = 〈ιA−1B(δz), μ̄〉.

For the objective function, it holds that

∂Fz̄(z̄i , z̄−i ) = ∂

(
N∑

i=1

EP

[
Ji (A−1B((·)i , z̄−i ) + u f , ((·)i , z̄−i ))

]
)

(z̄)

=
N∑

i=1

∂
(
EP

[
Ji (A−1B((·)i , z̄−i ) + u f , ((·)i , z̄−i ))

])
(z̄)

=
N∏

i=1

(
∂i EP

[
Ji (A−1B(·, z̄−i ) + u f , (·, z̄−i ))

])
(z̄i ). (3.5)

In order to see that the sum of the subdifferentials equals the product in (3.5), we refer
to the proof of [34, Theorem 3.7]. Analogously to (3.3), we can write

F ′̄
z(z̄i , z̄−i )δzi = (EP[(B∗

i A
−∗T ∗

i (Ti A−1B(z̄i , z̄−i ) + Tiu f − uid)] + νi z̄i , δzi ).

Moreover, [8, section 4.6] enables us to write the normal cones as

NZad (z̄i , z̄−i ) = N∏N
i=1 Z

i
ad

(z̄i , z̄−i ) =
N∏

i=1

NZi
ad

(z̄i ).

For i = 1, . . . , N , we have the componentwise subgradient condition

0 ∈ EP[B∗
i A

−∗T ∗
i (Ti S(z̄i , z̄−i ) + Tiu f − uid)] + νi z̄i + NZi

ad
(z̄i ) + B∗

i (A
−∗ι∗μ̄).

��

4 AMoreau-Yosida regularization technique

The optimality conditions derived in Theorems 4 and 6 are not suitable for the devel-
opment of algorithms. This is mainly due to the low regularity of the multiplier μ̄

for the state constraint. To remedy this issue, we propose a Moreau-Yosida (MY)
regularization technique, similar to the studies [1, 30, 31, 34].

From the perspective of risk aversion, the MY-regularization can be seen as a
measure of regret, e.g., as in [55], for the state constraint. We will also use several
concentration inequalities below, which link MY-regularization to probability con-
straints. This further justifies the viability of the approach and provides a modeling
solution for cases in which either the constraint qualification is hard to verify and/or
it is not known if a feasible point for the original problem actually exists. To the best
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of our knowledge, this is the first time that such concentration inequalities have been
used in the context of MY-regularization for infinite dimensional optimization under
uncertainty.

4.1 Approximation of the risk-neutral PDE-constrained GNEPs

More specifically, the γ -dependent regularized problem of player i in the risk-neutral
PDE-constrained GNEP (2.15) reads as

min
z∈Zi

ad

{
EP

[
Ji (S(zi , z−i ) + u f , (zi , z−i )) + γ

2
‖(ψ − (S(zi , z−i ) + u f ))+‖2L2(D)

]}
,

(4.1)

where γ > 0. The usage of MY-regularization amounts to approximating the original
GNEPby amore numerically tractableNEP.Wewill refer to this γ -dependent strategic
game as NEPγ .

4.2 Existence and optimality conditions

The existence of a Nash equilibrium for every γ > 0 follows by using almost identical
arguments to those in Theorem 5. Moreover, the first-order conditions have a similar,
but numerically more workable form. We state the following theorem for ease of
reference.

Theorem 7 Let Assumptions 1 and 3 hold. The set of variational equilibria of the
jointly convex NEPγ (4.1) is weakly compact and nonempty. If zγ ∈ Zad is a Nash
equilibrium, thenwe have the following necessary and sufficient optimality conditions:
For each i = 1, . . . , N

0 ∈ EP[B∗
i A

−∗T ∗
i (Ti S(z̄γi , z̄γ−i ) + Tiu f − uid)] + νi z̄

γ

i + NZi
ad

(z̄γi )

+EP[B∗
i (A

−∗μ̄γ )], (4.2)

where

μ̄γ = −γ (ψ − (S(z̄γi , z̄γ−i ) + u f ))+.

Corollary 7 allows us to introduce the adjoint variables λ̄
γ

i ∈ L2
P
(Ω; H1

0 (D)) for
i = 1, . . . , N and the associated adjoint equations:

∫

D
A(x, ω)∇λ̄

γ

i (x, ω) · ∇ϕ(x) dx

=
∫

D
(T ∗

i (Ti ū
γ + Tiu f − uid) + μ̄γ ))ϕ(x) dx, P-a.s. (4.3)
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ϕ ∈ H1
0 (D) and ū = S(z̄γi , z̄γ−i ). This simplifies (4.2) to

0 ∈ EP[B∗
i λ̄

γ

i ] + νi z̄
γ

i + NZi
ad

(z̄γi ).

4.3 Asymptotic considerations

We now investigate the behavior of NEPγ as γ → ∞. This is important for both
theoretical as well as numerical considerations. We closely follow the approach in
[33]. In order to ensure consistency of the relaxed problems, we will require the
fulfillment of a constraint qualification as introduced in [33].

Definition 3 We say that (2.15) satisfies the strict uniform feasible response constraint
qualification (SUFR), if there exists an ε > 0 such that for all i = 1, . . . , N and
z−i ∈ Z−i

ad there is a vi ∈ Zi
ad that satisfies

S(vi , z−i ) + u f ≥ ψ + ε P-a.s., a.e. D.

A few comments are in order. Traditional constraint qualifications such as the
existence of a Slater point or in nonlinear programming the Mangasarian-Fromovitz
constraint qualification (Robinson’s CQ in infinite dimensions) were developed for
optimization problems. They provide not only the existence of Lagrange multipliers,
but also, they indicate a certain stability of the constraint set around the optimal
solution. For example, the MFCQ gives us that the Lagrange multipliers associated
with the point in question lie in a convex, compact polytope. In Theorem 4, it was
enough to assume such a CQ without the need to adapt to the GNEP setting. However,
for issues of approximation, we will see in the following that GNEPs require a much
more robust CQ such as SUFR in order to exhibit the local stability needed to bound
the dual variables; in this case the adjoint states and the constraint multipliers. From a
game-theoretic perspective, we are requiring that each player has a feasible response
to any strategy by its competitors such that the common state constraint is strictly
uniformly fulfilled. Finally, as the current regularity assumptions on the random inputs
only provide essential boundedness, we will need more regularity of the solutions.

Assumption 8 (Higher Parametric Regularity) The set Ω is a compact Polish space.
The solution mapping S(·) + u f is a continuous affine mapping from L2(D)N into
C(Ω; H1

0 (D) ∩ H2(D)).

The need for Ω to be a compact Polish space will be evident in the following proof.
Under weaker assumptions, we have already shown that the mapping S(·) + u f is a
continuous affine mapping from L2(D)N into L∞

P
(Ω; H1

0 (D) ∩ H2(D)). The con-
tinuity assumption is actually weaker than it appears and can be guaranteed under
mild assumptions (continuity in ω) on A(x, ω), B(ω) and f (x, ω), cf. the results in
[35, Section 6]. The main idea is to reformulate the random PDE as a parametric
fixed point equation and apply classic results on parametric dependence of solutions
to fixed point equations. We now state the main result of this section.
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Theorem 9 Suppose the GNEP (2.15) satisfies the Slater condition (3.1) and SUFR.
If in addition Assumption 8 holds, then there exist sequences γn → ∞ and

– {zγn }n∈N ⊂ L2(D)N ,

– {uγn }n∈N ⊂ L2
P
(Ω; H1

0 (D) ∩ H2(D)),

– {λγn }n∈N ⊂ L2
P
(Ω; H1

0 (D) ∩ H2(D))N ,

– {ηγn }n∈N ⊂ L2(D)N ,

– {μγn }n∈N ⊂ L2
π (Ξ),

such that for each i = 1, . . . , N, (zγni , uγn , λ
γn
i , η

γn
i , μγn ) satisfies (4.2) as stated in

Corollary 7. This sequence admits a limit point

(z∗, u∗,Λ∗, η∗, ρ∗) ∈ L2(D)N × L2
P
(Ω; H1

0 (D) ∩ H2(D)) × L2(D)N × L2(D)N

×M(Ξ),

where, for all i = 1, . . . , N, we have

zγn → z∗ in L2(D)N , (4.4a)

uγn → u∗ in C(Ω; H1
0 (D) ∩ H2(D)), (4.4b)

μγn
∗
⇀ ρ∗ in L1

π (Ξ)∗ ∼= M(Ξ), i.e. ρ ∈ M(Ξ), (4.4c)

EP

[
B∗
i λ

γn
i

]
⇀Λ∗

i in L2(D), (4.4d)

η
γn
i ⇀η∗

i in L2(D). (4.4e)

Moreover, the limit point satisfies

z∗ ∈ Zad (4.5a)

u∗ = S(z∗i , z∗−i ) + u f and u∗ ≥ ψ (4.5b)
(
Λ∗

i , ϕ
) =

(
EP

[
B∗
i A

−∗T ∗
i (Ti (u

∗ + u f ) − uid)
]
, ϕ
)

+
∫

Ξ

A−1(ω)Bi (ω)ϕ dρ∗(x, ω) (4.5c)

0 = (
Λ∗

i , ϕ
)+ νi

(
z∗i , ϕ

)+ (
η∗
i , ϕ

)
and η∗

i ∈ NZi
ad

(z∗i ) (4.5d)

for an arbitrary test function ϕ ∈ L2(D). Finally, ρ∗ satisfies

〈φ, ρ∗〉 ≤ 0, ∀φ ∈ C(Ξ) : φ ≥ 0. (4.6a)

〈ψ − (u∗ + u f ), ρ
∗〉 = 0 (4.6b)

Note that (4.5c) and (4.5d) correspond to the subdifferential inclusion in Theorem 6.
For readability, we split the proof over several partial results.

Lemma 1 Under the assumptions of Theorem 9, there exists a sequence of MY param-
eters γk → ∞ such that the associated sequence of Nash equilibria {zγk }k→∞
converges weakly to a feasible strategy of the GNEP, i.e. (4.5a) and (4.5b) hold.
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Proof Fix a sequence γn → ∞ for n → ∞. Since Zad is weakly compact in L2(D)N

and zγn ∈ Zad for all γ n , there exists a subsequence, denoted by γk := γnk and some
element z∗ ∈ Zad such that zγk⇀z∗ in L2(D)N . According to SUFR, there exists an
ε > 0 and a sequence {vγk }k→∞ ⊂ Zad such that S(v

γk
i , zγk−i )+u f ≥ ψ +ε Ξ -a.s. for

all i = 1, . . . , N . By definition of Zad, {vγk }k→∞ is uniformly bounded in L2(D)N .
Then for all γk , the non-negativity of the MY-term gives us the lower bound:

EP

[
1

2
‖Ti (S(zγki , zγk−i ) + u f ) − uid‖2L2(D)

]

+ νi

2
‖zγki ‖2L2(D)

≤ EP

[
1

2
‖Ti (S(zγki , zγk−i ) + u f ) − uid‖2L2(D)

]

+ νi

2
‖zγki ‖2L2(D)

+EP

[γk

2
‖(ψ − (S(zγki , zγk−i ) + u f )+‖2L2(D)

]
.

Since S(v
γk
i , zγk−i ) + u f ≥ ψ + ε, it holds that

EP

[γk

2
‖(ψ − (S(v

γk
i , zγk−i ) + u f )+‖2L2(D)

]
= 0.

Furthermore, by definition of a Nash equilibrium we have the simple upper bound

1

2
EP

[
‖Ti (S(zγki , zγk−i ) + u f ) − uid‖2L2(D)

]
+ νi

2
‖zγki ‖2L2(D)

+EP

[γk

2
‖(ψ − (S(zγki , zγk−i ) + u f )+‖2L2(D)

]

≤ EP

[

‖1
2
Ti (S(v

γk
i , zγk−i ) + u f ) − uid‖2L2(D)

]

+ νi

2
‖vγk

i ‖2L2(D)

Using the fact that S is completely continuous into L2
π (Ξ) and each individual feasible

set is bounded, we deduce the existence of a constant M independent of i, γk such that

EP

[

‖1
2
Ti (S(v

γk
i , zγk−i ) + u f ) − uid‖2L2(D)

]

+ νi

2
‖vγk

i ‖2L2(D)
≤ M .

Combining these observations yields

EP

[
1

2
‖Ti (S(zγki , zγk−i ) + u f ) − uid‖2L2(D)

]

+ νi

2
‖zγki ‖2L2(D)

≤ M .

Using the weak lower semicontinuity of the objective functions, it follows that the
bound also holds for the limit

EP

[
1

2
‖Ti (S(z∗i , z∗−i ) + u f ) − uid‖2L2(D)

]

+ νi

2
‖z∗i ‖2L2(D)

≤ lim inf
k→∞

(

EP

[
1

2
‖Ti (S(zγki , zγk−i ) + u f ) − uid‖2L2(D)

]

+ νi

2
‖zγki ‖2L2(D)

)

≤ M .
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As a result,EP

[
γk
2 ‖(ψ − (S(zγki , zγk−i ) + u f )+‖2

L2(D)

]
is bounded. This can only hold

if

EP

[
‖(ψ − (S(zγki , zγk−i ) + u f )+‖2L2(D)

]
→ 0,

since γk → ∞. Since S(zγki , zγk−i ) converges strongly to S(z∗i , z∗−i ) in L2
π (Ξ), we also

have

EP

[
‖(ψ − (S(zγki , zγk−i ) + u f )+‖2L2(D)

]
→ EP

[
‖(ψ − (S(z∗i , z∗−i ) + u f )+‖2L2(D)

]
.

We can conclude, that

EP

[
‖(ψ − (S(z∗i , z∗−i ) + u f )+‖2L2(D)

]
= 0.

Thus, z∗ ∈ Zad such that S(z∗i , z∗−i ) + u f ≥ ψ π -a.e., i.e. z∗ is a feasible strategy
vector for the GNEP. ��

We note that for feasibility of z∗, it is not necessary for ε to be positive in the
SUFR condition. In what follows, we discuss the convergence of the stationary points
individually. We start by showing that z∗ is also a generalized Nash equilibrium.

Lemma 2 Suppose the assumptions of Theorem 9 hold. Let {γk} be the sequence of
MY parameters from the proof of Lemma 1. Then there exists a subsequence {γl} with
γl := γkl → +∞ such that the weak limit point z∗ is a generalized Nash equilibrium.

Proof Define Xi = {vi ∈ Z i
ad : S(vi , z∗−i ) + u f ≥ ψ π -a.s}. Due to the SUFR

condition, Xi is non-empty. Since for all γk the associated zγk is a Nash equilibrium,
it holds that

1

2
EP

[
‖Ti (S(zγki , zγk−i ) + u f ) − uid‖2L2(D)

]
+ νi

2
‖zγki ‖2L2(D)

+EP

[γk

2
‖(ψ − (S(zγki , zγk−i ) + u f )+‖2L2(D)

]

≤ νi

2
‖vi‖2L2(D)

+ 1

2
EP

[
‖Ti (S(vi , z

γk
−i ) + u f ) − uid‖2L2(D)

]

+EP

[γk

2
‖(ψ − (S(vi , z

γk
−i ) + u f )+‖2L2(D)

]

for all vi ∈ Xi . For any vi ∈ Xi , we want to construct a strongly convergent sequence
{vγk }k→∞ so such vγk → vi in L2(D) and S(v

γk
i , zγk−i ) + u f ≥ ψ .

Due to the SUFR condition, there exists an ε > 0 and for all k, a vki ∈ Zi
ad such that

S(vki , z
γk
−i ) + u f ≥ ψ + ε, π -a.s. Clearly, {vki }k→∞ is uniformly bounded in L2(D).

Since every admissible set of each player is convex, we have that

vki (t) = tvki + (1 − t)vi (4.7)
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lies in Z i
ad for all t ∈ (0, 1). Due to the linearity of the operator A and B, it holds that

S(vki (t), z
γk
−i ) + u f = S(tvki + (1 − t)vi , z

γk
−i ) + u f

= t(S(vki , z
γk
−i ) + u f ) + (1 − t)(S(vi , z

γk
−i ) + u f )

≥ t(ψ + ε) + (1 − t)(S(vi , z
γk
−i ) + u f ). (4.8)

We know, that for P-a.e. ω ∈ Ω the solution operator S(vi , ·)(ω) + u f (ω) maps
continuously from L2(D)N−1 into H1

0 (D)∩ H2(D). Due to the Sobolev and Rellich-
Kondrachov theorem, the solution of the state equation can be continuously and
compactly embedded into the space of continuous functions over D̄ P-a.s. Thus,
S(vi , ·)(ω) + u f (ω) maps from L2(D)N−1 into C(D̄) for P-a.e. ω ∈ Ω . Combin-
ing this with the regularity assumption on the solution of the state equation, we have
S(vi , z

γk
−i ) + u f → S(vi , z∗−i ) + u f in C(Ω;C(D̄)). Then by virtue of the nature of

convergence in the C(Ω;C(D̄))-norm, we deduce the existence of a subsequence γkl ,
denoted by γl , such that

S(vi , z
γl
−i ) + u f ≥ ψ − 1/2l

on D for all k. Now, setting

tl = (1/2l)/(ε + 1/2l), (4.9)

then tl → 0 and tl ∈ (0, 1) for all l. Moreover, substituting (4.9) in (4.7) and due to
(4.8), we have

S(vi (tl), z
γl
−i ) + u f ≥ tl(ψ + ε) + (1 − tl)(S(vi , z

γl
−i ) + u f )

≥ tl(ψ + ε) + (1 − tl)(ψ − 1/2l)

= ψ + tl(ε + 1/2l) − 1/2l

= ψ.

Thus, S(vi (tl), z
γl
−i ) + u f ≥ ψ for all l. And finally, since

‖vi (tl) − vi‖L2(D) = ‖tlvli + (1 − tl)vi − vi‖L2(D)

= |tl |‖vli − vi‖L2(D)

≤ |tl |
(
‖vli‖L2(D) + ‖vi‖L2(D)

)

Passing to the limit as l → ∞ yields |tl |
(‖vli‖L2(D) + ‖vi‖L2(D)

) → 0 due to
the boundedness of {vi (tl)}l→∞ and that {tl}l→∞ is a null sequence. Thus, we
have constructed a sequence {vi (tl)}l→∞ such that vi (tl) → vi in L2(D) and
S(vi (tl), z

γl
−i ) + u f ≥ ψ . Note that vi ∈ Xi was arbitrary.
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Finally, by substitution, we have

1

2
EP

[
‖Ti (S(zγli , zγl−i ) + u f ) − uid‖2L2(D)

]
+ νi

2
‖zγli ‖2L2(D)

+EP

[γl

2
‖(ψ − (S(zγli , zγl−i ) + u f )+‖2L2(D)

]

≤ 1

2
EP

[
‖Ti (S(vi (tl), z

γl
−i ) + u f ) − uid‖2L2(D)

]
+ νi

2
‖vi (tl)‖2L2(D)

+EP

[γl

2
‖(ψ − (S(vi (tl), z

γl
−i ) + u f )+‖2L2(D)

]
.

For all i = 1, . . . , N , passing to the limit inferior yields the following inequality

1

2
EP

[
‖Ti (S(z∗i , z∗−i ) + u f ) − uid‖2L2(D)

]
+ νi

2
‖z∗i ‖2L2(D)

≤ 1

2
EP

[
‖Ti (S(vi , z

∗−i ) + u f ) − uid‖2L2(D)

]
+ νi

2
‖vi‖2L2(D)

for all vi ∈ Xi . Thus, (z∗i , z∗−i ) is a generalized Nash equilibrium. ��

Here, we see that the uniformity in the SUFR condition is crucial to prove that z∗
is in fact a Nash equilibrium. In the following result, we obtain a stronger form of
convergence to z∗. This is necessary to derive the adjoint equation in the limit.

Lemma 3 Under the assumptions of Theorem 9, (4.4a) holds.

Proof First, we choose z∗i ∈ Xi in the construction of (4.7) with t = tl as in (4.9),
then we have

v∗
i (tl) = tlv

k
i + (1 − tl)z

∗
i .

Recall that v∗
i (tl) → z∗i in L2(D) and S(v∗

i (tl), z
γl
−i ) + u f ≥ ψ for all l ∈ N. Then it

holds that

1

2
EP

[
‖Ti (S(zγli , zγl−i ) + u f ) − uid‖2L2(D)

]
+ νi

2
‖zγli ‖2L2(D)

≤ 1

2
EP

[
‖Ti (S(zγli , zγl−i ) + u f ) − uid‖2L2(D)

]
+ νi

2
‖zγli ‖2L2(D)

+EP

[γl

2
‖(ψ − (S(zγli , zγl−i ) + u f )+‖2L2(D)

]

≤ 1

2
EP

[
‖Ti (S(v∗

i (tl), z
γl
−i ) + u f ) − uid‖2L2(D)

]
+ νi

2
‖v∗

i (tl)‖2L2(D)
.

Passing to the limit superior yields
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lim sup
l→∞

1

2
EP

[
‖Ti (S(zγli , zγl−i ) + u f ) − uid‖2L2(D)

]
+ νi

2
‖zγli ‖2L2(D)

≤ lim sup
l→∞

1

2
EP

[
‖Ti (S(v∗

i (tl), z
γl
−i ) + u f ) − uid‖2L2(D)

]
+ νi

2
‖v∗

i (tl)‖2L2(D)
.

(4.10)

Due to the complete continuity of S, we have

S(zγli , zγl−i ) → S(z∗i , z∗−i ) and S(v∗
i (tl), z

γl
−i ) → S(z∗i , z∗−i ).

Then (4.10) reads as

1

2
EP

[
‖Ti (S(z∗i , z∗−i ) + u f ) − uid‖2L2(D)

]
+ νi

2
lim sup
l→∞

‖zγli ‖2L2(D)

≤ 1

2
EP

[
‖Ti (S(z∗i , z∗−i ) + u f ) − uid‖2L2(D)

]
+ νi

2
‖z∗i ‖2L2(D)

. (4.11)

This implies that

lim sup
l→∞

‖zγli ‖2L2(D)
≤ ‖z∗i ‖2L2(D)

.

Due to theweak convergence of {zγli }l∈N, it holds that lim inf
l→∞ ‖zγli ‖2

L2(D)
≥ ‖z∗i ‖2L2(D)

.

This implies

lim
l→∞ ‖zγli ‖2L2(D)

= ‖z∗i ‖2L2(D)
.

Together with the weak convergence, the assertion follows. ��
We proceed with the sequence of the state variables.

Lemma 4 Under the assumptions of Theorem 9, (4.4b) and (4.5b) hold.

Proof This directly follows from the assumption, that S(·, ·) + u f : L2(D)N →
C(Ω; H1

0 (D) ∩ H2(D)) is continuous and the fact the sequencs {zγli }l∈N converges
strongly in L2(D) for all i = 1, . . . , N . ��

We note that the continuity in Ω is not really needed to prove a norm convergence
result. Indeed since {zγli }l∈N is bounded, we still have that {uγl }l∈N is bounded in
L2
P
(Ω; H1

0 (D) ∩ H2(D)). Then uγln ⇀u∗ in L2
P
(Ω; H1

0 (D) ∩ H2(D)). By Corollary
1 we even know that uγln → u∗ in L∞

P
(Ω; H1

0 (D) ∩ H2(D)) holds.
Next, we turn our attention to the sequence of the multipliers μγ for the state

constraint. We will observe that the Slater condition is enough to obtain a bound on
μγ . Recall that μγ = −γ (ψ − (S(z̄γi , z̄γ−i ) + u f ))+.

Lemma 5 Suppose the assumptions of Theorem 9 hold. In particular, (3.1) is fulfilled.
Then we have (4.4c).

123



Risk-neutral PDE-constrained generalized Nash equilibrium... 1315

Proof We now prove the existence of a constant c0 > 0 such that

|(μγ , z)| ≤ c0 (4.12)

for any z ∈ Bε(0) ⊂ L∞
π (Ξ) and some fixed ε > 0. For the sake of readability, we

set β : L2
π (Ξ) → R+ such that

u �→ β(u) := E

[
1

2
‖(ψ − (u + u f ))+‖2L2(D)

]

.

Unless otherwise noted, (·, ·) denotes the inner product on L2
π (Ξ) throughout the

proof.
One readily shows that β is convex and continuously differentiable and therefore,

μγ = γβ ′(uγ ). Since β is convex, differentiable, and nonnegative, we obtain for any

y ∈
{
w ∈ L2

π (Ξ) : w ≥ ψ − u f π -a.e.
}

the equality

0 = γβ(y) ≥ γβ(uγ ) + (
μγ , y − uγ

) ≥ (
μγ , y − uγ

)
. (4.13)

By the assumption (3.4) there exists ε > 0 and z0 ∈ Zad such that for all v ∈
Bε(0) ⊂ L∞

π (Ξ): we have

Sz0 + u f − ψ + v ≥ 0.

Since (Ω,F ,P) is a complete probability space and the spatial domain D is bounded,
the Lebesgue spaces are nested, and it holds that v ∈ L2

π (Ξ). Furthermore, Sz0+u f ∈
L2

π (Ξ). Fixing an arbitrary v ∈ Bε(0), we have

(
μγ , v

) =
(
μγ , Sz0 + v − Szγ

)
+
(
μγ , Szγ − Sz0

)
.

Due to (4.13), we have

(
μγ , v

) ≤
(
μγ , Szγ − Sz0

)
=
(
μγ , A−1B(zγ − z0)

)
.

The definition of the multiplier μγ and the operator B yield

(μγ , A−1B(zγ − z0))

=
N∑

i=1

(T ∗
i

(
Tiu

γ + Tiu f − uid

)
+ μγ − T ∗

i

(
Tiu

γ + Tiu f − uid

)
, A−1Bi (z

γ

i − z0i ))

=
N∑

i=1

(A∗λγ

i − T ∗
i Ti u

γ − T ∗
i Ti u f + T ∗

i u
i
d , A

−1Bi (z
γ

i − z0i ))
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Substituting the adjoint equation and applying the adjoint operator B∗A−∗ yields

(
μγ , v

) ≤
N∑

i=1

(A∗λ
γ
i − T ∗

i Ti u
γ − T ∗

i Ti u f + T ∗
i u

i
d , A−1Bi (z

γ
i − z0i ))

=
N∑

i=1

EP

[
(B∗

i λ
γ
i − B∗

i A
−∗(T ∗

i Ti u
γ + T ∗

i Ti u f − T ∗
i u

i
d ), zγi − z0i )L2(D)

]

=
N∑

i=1

EP

[

(B∗
i λ

γ
i , zγi − z0i )L2(D) −

(
B∗
i A

−∗(T ∗
i Ti u

γ + T ∗
i Ti u f − T ∗

i u
i
d ), zγi − z0i

)

L2(D)

]

Applying [28, Thm. 3.7.12] yields

(
μγ , z

) ≤
N∑

i=1

(EP

[
B∗
i λ

γ

i

]
, zγi − z0i )L2(D)

− EP

[(
B∗
i A

−∗(T ∗
i Ti u

γ + T ∗
i Ti u f − T ∗

i u
i
d), z

γ

i − z0i

)

L2(D)

]

Using 0 = νi z
γ

i + EP

[
B∗
i λ

γ

i

]+ η
γ

i and the fact, that z0i ∈ Zi
ad yields

N∑

i=1

(
EP

[
B∗
i λ

γ

i

]
, zγi − z0i

)

L2(D)

−
N∑

i=1

EP

[(
B∗
i A

−∗(T ∗
i Ti u

γ + T ∗
i Ti u f − T ∗

i u
i
d), z

γ

i − z0i

)

L2(D)

]

=
N∑

i=1

(
−νi z

γ

i − η
γ

i , zγi − z0i

)

L2(D)

−
N∑

i=1

EP

[(
B∗
i A

−∗(T ∗
i Ti u

γ + T ∗
i Ti u f − T ∗

i u
i
d), z

γ

i − z0i

)

L2(D)

]

≤
N∑

i=1

(
−νi z

γ

i , zγi − z0i

)

L2(D)

−
N∑

i=1

EP

[(
B∗
i A

−∗(T ∗
i Ti u

γ + T ∗
i Ti u f − T ∗

i u
i
d), z

γ

i − z0i

)

L2(D)

]

≤ c0 < ∞.

Here, the existence of c0 is guaranteed, since the mappings

u(z) �→ EP

[
1

2
‖Tiu(z) + Tiu f − uid‖2L2(D)

]

and zi �→ νi

2
‖zi‖2L2(D)

are continuously differentiable with uniformly bounded gradients on Zad for all i =
1, . . . , N . This proves (4.12), since z was arbitrary. Using the fact that the L1-norm
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is positively homogeneous, subadditive and continuous, it follows from the Fenchel-
Moreau theorem that the L1-norm is equivalent to the bidual norm

‖μγ ‖L1
π (Ξ) = 1

ε
sup

{〈
μγ , z

〉

L1
π (Ξ)×L∞

π (Ξ)
: z ∈ Bε(0)

}

= 1

ε
sup

{(
μγ , z

)

L2
π (Ξ)

: z ∈ Bε(0)
}

≤ 1

ε
c0 < ∞.

It follows that the sequence {μγ }γ→∞ is bounded in L1
π (Ξ). Therefore, by [17, The-

orem IV.6.2] or [7, Corollary 2.4.3], we can extract a subsequence {μγl }l∈N which is
weak∗ convergent to some regular countably additive Borel measure ρ ∈ M(Ξ). ��

Next, we discuss the limit of the adjoint equation. We start by investigating the
behavior of the expectation of the adjoint states. This leads to the derivation of a
limiting adjoint state Λ∗.

Lemma 6 Under the assumptions of Theorem 9, for all i = 1, . . . , N, (4.4d) holds.

Proof We start by constructing a specific test function. Let φ be the solution of the
operator equation

A(ω)φ = Bi (ω)ϕ P-a.e. ω ∈ Ω

for ϕ ∈ L2(D). Then by the assumptions, φ ∈ L∞
P

(Ω; H1
0 (D) ∩ H2(D)) and, by

Assumption 8, φ ∈ C(Ω; H1
0 (D) ∩ H2(D)) holds. Using the adjoint state as a test

function, we have

(
A∗(ω)λ

γl
i (ω), φ(ω)

) = (
λ

γl
i (ω), A(ω)φ(ω)

)

= (
λ

γl
i (ω), Bi (ω)ϕ

)

= (
Bi (ω)∗λγl

i (ω), ϕ
)

(4.14)

Then due to the Cauchy-Schwarz inequality and Hölder-inequality, respectively, we
obtain

(
A∗(ω)λ

γ

i (ω), φ(ω)
) =

(
T ∗
i Ti (u

γ (ω) + u f (ω)) − T ∗
i u

i
d , φ(ω)

)
+ (μγ (ω), φ(ω))L2(D)

=
(
T ∗
i Ti (u

γ (ω) + u f (ω)) − T ∗
i u

i
d , φ(ω)

)

+ 〈μγ (ω), φ(ω)〉L1(D)×L∞(D)

≤ ‖T ∗
i Ti (u

γ (ω) + u f (ω)) − T ∗
i u

i
d‖L2(D)‖φ(ω)‖L2(D)

+ ‖μγ (ω)‖L1(D)‖φ(ω)‖L∞(D).
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Due to the continuous embedding of H2(D)∩H1
0 (D) into L2(D) and L∞(D), respec-

tively, we have

(
A∗(ω)λ

γ

i (ω), φ(ω)
)

≤ C1‖φ(ω)‖H2(D)∩H1
0 (D)

(
‖T ∗

i Ti (u
γ (ω) + u f (ω)) − T ∗

i u
i
d‖L2(D) + ‖μγ (ω)‖L1(D)

)

(4.15)

By the assumptions on the operators A and B, there exists C2 ∈ L∞
P

(Ω) such that

‖φ(ω)‖H2(D)∩H1
0 (D) ≤ C2(ω)‖ϕ‖L2(D).

Now, combining the latter with (4.15) and (4.14), we obtain

(
Bi (ω)∗λγ

i (ω), ϕ
) ≤ C1‖φ(ω)‖H2(D)∩H1

0 (D)

(‖T ∗
i Ti (u

γ (ω) + u f (ω))

−T ∗
i u

i
d‖L2(D) + ‖μγ (ω)‖L1(D)

)

≤ C1C2(ω)‖ϕ‖L2(D)

(‖T ∗
i Ti (u

γ (ω) + u f (ω))

−T ∗
i u

i
d‖L2(D) + ‖μγ (ω)‖L1(D)

)

≤ C1C2(ω)‖ϕ‖L2(D) (C3(ω) + C4(ω))

for all ϕ ∈ L2(D). Here, C3 ∈ L∞
P

(Ω) and C4 ∈ L1
P
(Ω). The existence of C4

follows from the uniform bound on μγ in the L1
π (Ξ)-norm. Taking the expectation

and applying Fubini’s theorem yield

(
EP

[
B∗
i λ

γ

i

]
, ϕ
) ≤ EP [C1C2C3 + C1C2C4] ‖ϕ‖L2(D) < ∞

for all ϕ ∈ L2(D). In other words, the sequence {EP

[
B∗
i λ

γ

i

]}γ→∞ is bounded in
L2(D). Thus, there exists a weakly convergent subsequence {EP

[
B∗
i λ

γl
i

]}l∈N and a
Λ∗

i ∈ L2(D) such that EP

[
B∗
i λ

γl
i

]
⇀Λ∗

i in L2(D). ��
Remark 3 The adjoint state plays an important role in numericalmethods. In particular,
P is often replaced by an empirical measure PN , which is associated with an i.i.d.
random sample of size N . Therefore the quantity

1

N

N∑

n=1

B∗
i (ωn)λ

γl
i (ωn)

is of practical interest. By the (Kolmogorov) strong law of large numbers, we have

1

N

N∑

n=1

(B∗
i (ωn)λ

γl
i (ωn), ϕ)L2(D) → (EP[B∗

i λ
γl
i ], ϕ)L2(D)
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with probability 1 as N → +∞ for any ϕ ∈ L2(D). For readability, set

XN ,l := 1

N

N∑

n=1

B∗
i (ωn)λ

γl
i (ωn)

and recall that almost sure convergence implies convergence in probability. Then for
fixed l ∈ N and any ε > 0, there exists Nl,ε ∈ N such that

P
(∣
∣(XN ,l , ϕ)L2(D) − (EP[B∗

i λ
γl
i ], ϕ)L2(D)

∣
∣ > ε

)
<

1

2l
∀N ≥ Nl,ε.

On the other hand, the previous lemma gives us EP

[
B∗
i λ

γl
i

]
⇀Λ∗

i in L2(D) as
l → +∞. It follows that for any ϕ ∈ L2(D) we have

∣
∣(XN ,l , ϕ)L2(D) − (Λ∗, ϕ)L2(D)

∣
∣

≤ ∣
∣(XN ,l , ϕ)L2(D) − (EP[B∗

i λ
γl
i ], ϕ)L2(D)

∣
∣

+ ∣
∣(EP[B∗

i λ
γl
i ], ϕ)L2(D) − (Λ∗, ϕ)L2(D)

∣
∣ .

This means that the set of all events for which

∣
∣(XN ,l , ϕ)L2(D) − (Λ∗, ϕ)L2(D)

∣
∣ > 3ε/2

is contained in the set of all events for which

∣
∣(XN ,l , ϕ)L2(D) − (EP[B∗

i λ
γl
i ], ϕ)L2(D)

∣
∣ > 3ε/2 − ∣

∣(EP[B∗
i λ

γl
i ], ϕ)L2(D) − (Λ∗, ϕ)L2(D)

∣
∣ .

Therefore, fix ϕ ∈ L2(D) and ε > 0, and choose l such that

∣
∣(EP[B∗

i λ
γl
i ], ϕ)L2(D) − (Λ∗, ϕ)L2(D)

∣
∣ < ε/2,

Then for all ε, there exists an l such that

P
(∣
∣(XNl,ε,l , ϕ)L2(D) − (Λ∗, ϕ)L2(D)

∣
∣ > 3ε/2

)
< 2−l .

Thus, the diagonal sequence of sample averages of the adjoint variables weakly con-
verges in probability to the limiting adjoint variable Λ∗. For a fully discrete scheme
using a finite element discretization of the underlying deterministic state spaces, in
which error estimates for the deterministic adjoint variables were available, we could
derive a similar statement. This is part of the justification for the update heuristic in
our algorithm and, in general, for any related numerical algorithm in which the sample
sizes gradually increase with the MY-parameters.

Next, we turn our attention on the adjoint equation in the limit.

Lemma 7 Under the assumptions of Theorem 9, (4.5c) holds.
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1320 D. B. Gahururu et al.

Proof As in the previous proof, we start by constructing a specific test function. In
this case, let w be the solution of the operator equation

A(ω)w = Bi (ω)ϕ P-a.e. ω ∈ Ω

for all ϕ ∈ L2(D), then we know that w ∈ C(Ω; H1
0 (D) ∩ H2(D)) holds. It follows

that

(
A∗(ω)λ

γl
i (ω),w(ω)

) = (
Bi (ω)∗λγl

i (ω), ϕ
)

Taking the expectation on both sides yields

(
EP

[
B∗
i λ

γl
i

]
, ϕ
) = EP

[(
T ∗
i Ti (u

γl + u f ) − T ∗
i u

i
d , w

)]
+ EP

[
(μγl , w)

]

We know that μγl⇀∗ρ∗ inM(Ξ). The right hand side reads as

EP

[(
T ∗
i Ti (u

γl + u f ) − T ∗
i u

i
d , w

)]
+ 〈

μγl , w
〉

M(Ξ),C(Ξ)
.

Passing to the limit l → ∞ yields

(
Λ∗

i , ϕ
) = EP

[(
T ∗
i Ti (u

∗ + u f ) − T ∗
i u

i
d , w

)]
+
∫

Ξ

w(x, ω) dρ∗(x, ω)

= EP

[(
T ∗
i Ti (u

∗ + u f ) − T ∗
i u

i
d , A

−1Biϕ
)]

+
∫

Ξ

A−1(ω)Bi (ω)ϕ dρ∗(x, ω)

= EP

[(
B∗
i A

−∗T ∗
i (Ti (u

∗ + u f ) − uid ), ϕ
)]

+
∫

Ξ

A−1(ω)Bi (ω)ϕ dρ∗(x, ω)

for all ϕ ∈ L2(D). ��
Next, we turn to the sequence {ηγ }γ→∞ ⊂ NZi

ad
(zγi ).

Lemma 8 Under the assumptions of Theorem 9, (4.4e) and (4.5d) hold.

Proof Due (4.2), we can write

η
γl
i = −EP

[
B∗
i λ

γl
i

]− νi z
γl
i .

Then the boundedness of the sequence {ηγl
i }l∈N in L2(D) directly follows from

‖ηγl
i ‖L2(D) = ‖ − EP

[
B∗
i λ

γl
i

]− νi z
γl
i ‖L2(D)

≤ ‖EP

[
B∗
i λ

γl
i

] ‖L2(D) + ‖νi zγli ‖L2(D) < ∞.

Thus, there exists a η∗
i ∈ L2(D) and a subsequence {ηγln

i }n∈N such that the assertion
holds. ��
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Finally, we derive the complementarity system for the multiplier ρ∗.

Lemma 9 Under the assumptions of Theorem 9, (4.6a) and (4.6b) hold.

Proof As used several times above, there exists a subsequence of MY parameters
γl → +∞ along which the multipliers {μγl } converge weak∗ in M(Ξ) to some
ρ∗ ∈ M(Ξ). For each fixed l we have π -a.s.:

μγl = −γl(ψ − (S(z̄γli , z̄γl−i ) + u f ))+ ≤ 0.

Therefore, for any non-negative test function φ ∈ C(Ξ), we have

〈φ,μγl 〉 =
∫

Ω

∫

D
φμγldπ ≤ 0.

By definition, 〈φ,μγl 〉 → 〈φ, ρ∗〉 as l → +∞. Hence, ρ∗ is a negatively signed
measure. Moreover, setting

φl := ψ − (S(z̄γli , z̄γl−i ) + u f ),

which is continuous and converges strongly in C(Ξ) (by assumption) to

φ∗ := ψ − (S(z̄∗i , z̄∗−i ) + u f ) ≤ 0,

we have

〈φ∗, ρ∗〉 ≥ 0.

Furthermore, for each l, we have 〈φl , μ
γl 〉 ≤ 0 and 〈φl , μ

γl 〉 → 〈φ∗, ρ∗〉. Whence we
have the complementarity condition. ��

This completes the derivation of Theorem 9.

4.4 Probability constraints andMoreau-Yosida regularization

In this final theoretical section, we wish to draw the link between Moreau-Yosida
regularization and probability constraints. We do so only for the the risk-neutral PDE-
constrained optimization problem (2.14), as the treatment of the GNEP would require
further technical assumptions and somewhat obfuscate our main point. The main tools
are basic concentration inequalities from probability theory. We recall again the γ -
dependent optimization problem:

min
z∈Zad

{
EP

[
J (S(z) + u f , z) + γ

2
‖(ψ − (S(z) + u f ))+‖2L2(D)

]}
, (4.16)
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where γ > 0. We note that yet another way of formulating the original state constraint
is

P

(
‖(ψ − (S(z) + u f ))+‖2L2(D)

≤ 0
)

= 1.

Ideally, we would use the L∞(D)-norm as opposed to the L2(D)-norm, since the
latter allows strong violation of the constraint on small subsets of positive measure for
the weaker constraint

P

(
‖(ψ − (S(z) + u f ))+‖2L2(D)

≤ ε
)

= 1,

for ε > 0, but arbitrarily small. However, in order to derive a result of the type in the
following theorem with the L∞(D)-norm, we would need a careful analysis similar
to [32]. This goes beyond the scope of the current paper.

Proposition 2 Let zγ be the unique minimizer of (4.16). Then for any ε > 0, we have

P

(
‖(ψ − (S(zγ ) + u f ))+‖2L2(D)

< ε
)

≥ 1 − 2α

γ ε
,

where α = EP [J (S(z), z)] and z is the unique minimizer of (2.14).

Proof Using Markov’s inequality, we have

P

(
‖(ψ − (S(zγ ) + u f ))+‖2L2(D)

≥ ε
)

≤
EP

[
‖(ψ − (S(zγ ) + u f ))+‖2

L2(D)

]

ε
.

We use zγ to obtain a simpler upper bound. By definition of zγ , it holds that

EP

[
J (S(zγ ) + u f , zγ )

]+ γ

2
EP

[
‖(ψ − (S(zγ ) + u f ))+‖2L2(D)

]

≤ EP

[
J (S(v) + u f , v)

]+ γ

2
EP

[
‖(ψ − (S(v) + u f ))+‖2L2(D)

]
.

for all v ∈ Zad. In particular, we obtain the bound

EP

[
J (S(zγ ) + u f , zγ )

]+ γ

2
EP

[
‖(ψ − (S(zγ ) + u f ))+‖2L2(D)

]
≤ EP

[
J (S(v) + u f , v)

]
.

for all v ∈ Zad such that S(v) + u f ≥ ψ for (L× P)-a.e. (x, ω) ∈ D × Ω . Using the
minimizer z of (2.14) leads to

γ

2
EP

[
‖(ψ − (S(zγ ) + u f ))+‖2L2(D)

]
≤ EP

[
J (S(z) + u f , z)

]− EP

[
J (S(zγ ) + u f , zγ )

]

︸ ︷︷ ︸
≥0

≤ EP

[
J (S(z) + u f , z)

] =: α.
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From this we obtain EP

[
‖(ψ − (S(zγ ) + u f ))+‖2

L2(D)

]
≤ 2α

γ
. Then returning to

Markov’s inequality, we now have

P

(
‖(ψ − (S(zγ ) + u f ))+‖2L2(D)

≥ ε
)

≤ 2α

γ ε
.

Finally, the complementary event is given by

P

(
‖(ψ − (S(zγ ) + u f ))+‖2L2(D)

< ε
)

≥ 1 − 2α

γ ε
. (4.17)

��

Remark 4 Using the analysis from the previous sections, we know that there exists a
sequence γn → +∞ such that the random variable

Xn := ‖(ψ − (S(zγn ) + u f ))+‖2L2(D)

converges strongly in L1(Ω,F ,P) to

X∗ := ‖(ψ − (S(z∗) + u f ))+‖2L2(D)
.

Since z∗ is feasible, the state constraint holds and X∗ ≡ 0. Therefore, there exists a
subsequence γk := γnk along which Xk := Xnk converges almost surely to 0; and
consequently in distribution as well. For each k, we can set εk = 1/

√
γk and treat

Yk := εk as a degenerate random variable, which clearly converges in distribution
to 0. It follows from Slutsky’s theorem that Xk + Yk converges in distribution to
‖(ψ − (S(z∗) + u f ))+‖2

L2(D)
, i.e., 0 and since

P

(
‖(ψ − (S(zγ ) + u f ))+‖2L2(D)

< ε
)

≤ P

(
‖(ψ − (S(zγ ) + u f ))+‖2L2(D)

≤ ε
)

,

the Portmanteau lemma yields

P

(
‖(ψ − (S(z∗) + u f ))+‖2L2(D)

≤ 0
)

≥

lim sup
k→+∞

P

(
‖(ψ − (S(zγk ) + u f ))+‖2L2(D)

− εk ≤ 0
)

≥ lim sup
k→∞

1 − 2α√
γk

= 1.

In this sense, Proposition 2 provides us with a probabilistic rate of convergence from
Moreau-Yosida to feasibility for the original problem.We observe in the out-of-sample
experiments in Sect. 5 almost exactly this behavior, i.e., for γk = 1000, the percent of
out-of-sample states is between one and three percent.
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5 Numerical experiments

In this final section, we provide a numerical study to indicate how stochastic
PDE-constrained optimization problems subject to pointwise state constraints and
PDE-constrained GNEPs under uncertainty might best be solved. To the best of our
knowledge, this is the first attempt to solve such problems numerically. As a result,
the focus will be on the numerical solution of the individual optimization problems.
For the GNEP, a Krasnoselskii-Mann-type alternating method is employed in which
the dueling agents use the solver from Sect. 5.1.

5.1 Solving the individual problems

The basic idea behind this algorithm derives from the success of semismooth Newton
methods for solving deterministic PDE-constrained optimization problems subject
to state constraints using Moreau-Yosida regularization and path-following for the
parameter updates; see e.g., [30, 31]. Indeed, given γ > 0 and an iid sample of size
M , we can replace the underlying probability distributionwith the associated empirical
probability measure PM and consider

min
z∈Zad

{
1

M

M∑

m=1

[

J (S(z)(ωm) + u f (ω
m), z)

+γ

2
‖(ψ(ωm) − (S(z)(ωm) + u f (ω

m)))+‖2L2(D)

]}

. (5.1)

This is now a deterministic problem. In order to solve (5.1) with a semismooth Newton
solver, we rewrite the first order optimality system as a single nonsmooth equation in
z.

zγ,M = ProjZad

[

− 1

νM

M∑

m=1

B∗(ωm)λ
γ
m

]

, (5.2)

where for each m = 1, . . . , M , λγ
m ∈ H1

0 (D) solves

∫

D
A(x, ωm)∇λ

γ
m(x) · ∇ϕ(x) dx =

∫

D
(T ∗(Tuγ

m + Tu f (ω
m) − ud) + μ

γ
m))ϕ(x) dx,

(5.3)

for all ϕ ∈ H1
0 (D), uγ

m = S(zγ,M )(ωm) ∈ H1
0 (D) solves

∫

D
A(x, ωm)∇uγ

m(x) · ∇ϕ(x) dx =
∫

D
(B(ωm)zγ,M )(x)ϕ(x) dx, (5.4)
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with the same test functions ϕ, and

μ
γ
m = −γ (ψ(ωm) − (uγ

m + u f (ω
m)))+.

The fixed random terms u f (ω
m) are defined analogously to uγ

m . For readability, we
denote the mapping z �→ B∗λγ as Λ(z) or Λ(z, ω) to indicate the dependence on ω.
Moreover, we set

Fγ

M (z) := z − ProjZad

[

− 1

νM

M∑

m=1

Λ(z, ωm)

]

.

In the current setting, Fγ

M : L2(D) → L2(D) admits a Newton derivative Gγ

M (z) of
the form

Gγ

M (z)dz =
[

I + 1

νM

M∑

m=1

G [Λ(z, ωm)
]
Λ′(z, ωm)

]

dz,

where G is the Newton derivative of the projection operator. This allows us to apply a
semismooth Newton method in L2(D) [29, 64], which is known to be locally super-
linearly convergent for each M and γ > 0.

However, since γ must be taken to +∞, such an algorithm would not be compu-
tationally efficient if M were chosen large for comparatively small γ . If M were to
remain fixed, then we could use a strategy as in [1, 30, 31]. On the other hand, M
should be ideally as large as possible or also treated as a parameter going to +∞. To
remedy this issue, we set a maximum allowable sample size Mmax > 0 and penalty
parameter γmax > 0 and, starting with M0 ∈ N and γ0 > 0, we add samples to Mk

every time γk passes a certain threshold. For our numerical experiments, we consider
a heuristic, which is motivated by the previous section; in particular the convergence
statements in the fully continuous setting along with Remarks 3 and 4. A full conver-
gence analysis linking sampling, approximation and smoothing error goes beyond the
scope of this paper. The full algorithm is given in Algorithm 1. A few comments are
in order.

The operatorGγk
Mk

(zkl ) is not explicitly given. Thus, it is necessary to use an iterative

method to solve for theNewton stepsdzkl , forwhichweuse the tolerancetol
newt ≥ 0.

Sincewe are using a semismoothNewton iteration for pointwise bound constraints, the
components of dzkl are fixed on the estimated active sets for each l and we only need to
solve the linear systems on the potentially smaller inactive set. Here, it is important to
note that each evaluation of Gγk

Mk
(zkl )dz

k
l requires the solution of the forward equation

and two adjoint equations for every sample mk = 1, . . . , Mk . In our implementation,
we employ a preconditioned conjugate gradient method. Therefore, the computational
complexity of each Hessian-vector product involved must also be multiplied by Mk

and take into account the cost of applying the preconditioner. Similarly, the evaluation
of the residual Fγ

Mk
(zkl ) requires a forward and adjoint solve for each sample. For our

numerical examples, we use a direct solver for the linear elliptic PDEs.
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Due to these facts, we suggest starting with a relatively small M0 and increasing
slowly with γk . Moreover, we suggest a relatively large tolres0 > 0 and ρres close to
1. In step 13: of Algorithm 1, we simply set γk+1 = φ(γk) = γk + 1. More aggressive
strategies may be possible, but empirical evidence suggests that this is not necessary
and may even cause the Newton iteration to cycle. Finally, in step 15: of Algorithm 1,
we link the increases of the sample sizes Mk to γk . For our implementation, we start
with γ0 and M0 and increase Mk by 10 every time γk is divisible by 100. This is merely
a heuristic and other strategies are possible.

Algorithm 1: SSN for Stochastic PDE-Constrained Optimization with State Con-
straints

1: Input (Data): ud ∈ L2(D); ν > 0; a, b ∈ L∞(D) a < b; ψ ∈ C(Ξ);
f ∈ L∞

P
(Ω; L2(D))

2: Input (Parameters): k := 0, γ0 > 0, γmax ≥ γ0 > 0, M0 ∈ N, Mmax ≥ M0,
φ : R+ → R+, tolres

0 > 0, ρres ∈ (0, 1), tolnewt ≥ 0
3: Input (Initial Values): z0 ∈ L2(D), dz0 ≡ 0 ∈ L2(D)

4: while γk < γmax do
5: Set l := 0
6: Set zkl := zk
7: while ‖Fγk

Mk
(zkl )‖ > tolresk do

8: Find dzkl ∈ L2(D) such that

‖Gγk
Mk

(zkl )dz
k
l + Fγk

Mk
(zkl )‖L2(D) ≤ tolnewt (5.5)

9: Set zkl+1 := zkl + dzkl
10: Set l := l + 1
11: end while
12: Set zk+1 = zkl
13: Set γk+1 = φ(γk)

14: if “penalty-to-sample threshold’ then
15: Choose Mk+1 such that Mk ≤ Mk+1 ≤ Mmax
16: else
17: Set Mk+1 := Mk

18: end if
19: Set tolresk+1 = ρtolresk
20: Set k := k + 1
21: end while

5.2 Example: risk-neutral PDE-constrained optimization

In order to demonstrate the viability of the algorithm, we consider a model problem
based on [43, Ex. 6.1, Ex. 6.2] and [35, Sec. 7.2]. Here, we set ν = 10−3, D = (0, 1),
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ũ(x) = sin(50.0 ∗ x/π), and consider the optimal control problem

minimize
z∈L2(D)

1

2
EP

[
‖u − ũd‖2L2(D)

]
+ ν

2
‖z‖2L2(D)

over z ∈ L2(D) (5.6)

where z ∈ Zad := {
w ∈ L2(D) |−0.75 ≤ w(x) ≤ 0.75 a.e. x ∈ D

}
and the solution

of the random PDE u = u(z) ∈ L∞(Ω,F ,P; H1(D)) solves the weak form of

−ν(ω)∂xxu(ω, x) = f (ω, x) + z(x) (ω, x) ∈ Ω × D, (5.7a)

u(ω, 0) = d0(ω), u(ω, 1) = d1(ω) ω ∈ Ω. (5.7b)

In addition, we impose the state constraint

P({ω ∈ Ω | u(ω, x) ≥ 0, for L-a.e. x ∈ D }) = 1.

Furthermore, we suppose that

ν(ω) := max(0.05, ξ1(ω)), f (ω, x) := 2ξ2(ω) − 1

10

d0(ω) := 0.75 + 2ξ3(ω) − 1

1000
d1(ω) := 0.5 + ξ4(ω)

1000
,

with random variables ξi : Ω → R, i = 1, 2, 3, 4, such that the supports ξi , i =
1, 2, 3, 4, are [0, 1]. We assume here that each of these random variables is uniformly
distributed. Following the usual change of variables, the forward problem (5.7) can be
understood as

−ν(ξ)∂xxu(ξ, x) = f (ξ, x) + z(x) (ξ, x) ∈ Ξ × D, (5.8a)

u(ξ, 0) = d0(ξ), u(ξ, 1) = d1(ξ) ξ ∈ Ξ. (5.8b)

with Ξ = [0, 1]4, endowed with the associated uniform density. We define ξ :=
(ξ1, . . . , ξ4) ∈ Ξ . Since (5.8) is linear, we can use the superposition principle to lift
the boundary conditions into the righthand side of (5.8). This allows us to transform
the problem into the function space setting used throughout the paper.

Remark 5 (Feasibility) In such settings as considered here, the ability to guarantee the
nonnegativity of the state with at least one feasible control relies on three factors: 1.
whether the maximum principle can be applied (a.s.), 2. whether the random inputs f ,
d0, and d1 give rise to nonnegative solutions when solving the differential equations
for each of these terms separately (a.s.), 3. the width of the bilateral bounds on z. If,
for instance d0, d1 are nonnegative, but f is bounded and negative on some portions
of D with positive probability, then with sufficiently wide bounds on the control z, the
righthand side can be made positive almost surely. This is admittedly not ideal. It is,
however, much weaker than standard assumptions in two-stage stochastic program-
ming such as complete or relatively complete recourse, which would require such a
property for all feasible z.
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5.2.1 Discretization and implementation

The pointwise forward problem and the control space are discretized using piecewise
finite elements on a uniform mesh with parameter h = 1/(28 − 1). We use a standard
Monte Carlo approximation for the random inputs ξ1, . . . , ξ4 ∈ [0, 1]. We initialize
the algorithm by choosing: γ0 = 1, γmax = 104, M0 = 200, tolres

0 = 10−2, ρres =
0.9997, tolnewt = 10−8, z0 ≡ 0. Once the penalty to sample threshold is reached,
Mk is increased by 10 samples. As mentioned above, the discrete PDEs are solved via
a direct solver and the Newton steps are calculated using a preconditioned conjugate
gradients method (for the linear equation on the inactive set). As a preconditioner we
use the localizedmassmatrix for the inactive set. In the current implementation, we use
the �2-norm of the residual in the stopping criterion. Alternatively, one could use the
proper discrete Rieszmaps (i.e. the inversemassmatrix) to first obtain a representation
of the discrete solution in the finite-dimensional subspace and then use the discrete L2-
norm. This would be especially important in a nested grid or AFEM approach in future
numerical studies. For the nonsmooth operator in the adjoint equations, we utilize a
mass-lumping approach to obtain the discrete operators. Otherwise, the differential
operators and identity operators give rise to the usual stiffness and mass matrices
subject to the random inputs. We have observed that a heuristic damping strategy
in which we take zk+1 = zk + tdampdk with tdamp ∈ (0, 1), where zk is the current
iteration and dk is the full Newton step, adds significant robustness to the method. For
our experiments, we set tdamp = 0.1. Though this has a clear effect on the local rate
of convergence, the wildly varying ξ -dependent states appear to make this necessary.

5.2.2 Performance of the algorithm

The performance of the algorithm can be seen in Fig. 1, where we plot the total number
of PCG iterations per γ -update (k) and the total number of Newton iterations needed
to reach γ = 1000. The number of PCG iterations remains relatively stable (between
200 and 400), whereas the number of Newton iterations per γ -update appears to be
trending downward. As mentioned above, robust convergence of the inner Newton
iteration was ensured using a heuristic damping step with factor 0.1. Nevertheless,
the number of iterations trends downwards as γ increases. We also note that both
the CG algorithm and inner loop used inexact solves throughout. Since we employed
a relatively rough initial stopping tolerance and a small batch of samples (despite
increasing by 10 everytime (γk mod 100) = 0) the algorithm consistently produces
a solution z that performs exactly as expected in light of the model (risk neutral
objective) and theory (especially Remark 4). This is qualitatively illustrated in Fig.
2, where we observed that only 0.6% of the out-of-sample states violated the bound
constraint. Due to the presence of the random viscosity term in the forward problem,
the L∞-norm of the sampled states can vary significantly. Finally, and perhaps due to
the previous fact, we noticed that smaller batches sizes, e.g., on the order of 10, led to
a failure of the Newton solver for γ near 1000.
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Fig. 1 (left) Total PCG iterations per outer iteration k. (right) Total Newton iterations per outer iteration k

Fig. 2 (left) Optimal solution z up to γ = 1000. (right) Controlled states using z for 2000 out of sample
instances of ξ

5.3 Solving the risk-netural PDE-constrained GNEP

5.3.1 A general algorithm

As mentioned earlier, we employ a fixed point strategy to solve a two-player, risk-
netural PDE-constrained GNEP. The fixed point iteration is derived from a standard
Krasnoselskii-Mann iteration. We introduce the mappings T i (z j ) i �= j , where

T 1(z2) := argmin
z1∈Z1

ad

{
EP

[
J1(S(z1, z2) + u f , (z1, z2))

] |P(S(z1, z2) + u f ≥ ψ) = 1
}
.

and T 2(z1) is defined analogously. The fixed point iteration is based on the following
outer iteration:

1. Given (zold1 , zold2 ) ∈ L2(D) × L2(D).
2. The first player determines ẑ1 = T 1(zold2 ) and reveals this to the second player.
3. The second player then determines ẑ2 = T 2(̂z1) and reveals this to the first player.
4. The first player now determines w1 = T 1(̂z2).
5. Choosing λ ∈ (0, 1], the first player now updates their strategy by setting znew1 :=

(1 − λ)zold1 + λw1. The second player is assumed to choose znew2 = T 2(znew1 ).
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Obviously, (1)–(5) represents an ideal setting as the state constraint needs to be treated
by a Moreau-Yosida approximation. In this context, we denote the γ -dependent map-
ping in steps (2)–(4) by T i

γ . The full algorithm is depicted in Algorithm 2. Note that
λ = 1 would correspond to a Gauss-Seidel iteration and λ > 1 to successive over-
relation. As the evaluation of the T-mappings requires an iterative solver in practice,
we suggest to initialize the nonlinear solvers by using zold1 is used in (2), zold2 in (3),
ẑ1 in (4), and ẑ2 in (5).

Many of the inputs in Algorithm 2 are either self-explanatory or play the same role
as in Algorithm 1. Here, we introduce tolkm0 > 0 and ρkm ∈ (0, 1], which allow
us to successively reduce the tolerance used in the Krasnoselkskii-Mann iteration as
γk (and consequently Mk) increase. We suppress the fact that certain fixed data and
parameter values need to be passed to the Tγ -operators throughout the inner iterations.

It is again possible to adapt the tolerance used in the PCG solver for the Newton
steps, but empirical evidence indicates that this value should be rather small (order at
least 1e-6). Though the structure of Algorithm 2 is very similar to that of Algorithm 1,
it is important to note that each evaluation of T i

γk
is associated with a semismooth

Newton solve for the current γk and sample of size Mk .

Remark 6 For each fixed γk and Mk , the algorithm is basically a Krasnoselskii-Mann
iteration with inexact evaluations of the fixed point mapping. As such, convergence
can be guaranteed if the latter can be shown to be nonexpansive. Such an analysis goes
beyond the scope of the paper. Given the underlying individual problems are strongly
convex, this property is most likely linked to the modulus of strong convexity of the
individual cost functions.

Remark 7 Gauss-Seidel iterations (using λ = 1 above) have been considered in the
context of GNEPs and NEPs in a number of texts, e.g., [33, 34], for more than two
players. A similar adaptation using the Krasnoselskii-Mann-type approach for more
than two players is therefore conceivable.

5.3.2 Examples

We wish to study the performance of the algorithm for two example GNEPs. The
individual problems build on the model class used in Sect. 5.2. We start with an
essentially symmetric game inwhich only the desired states ud,i differ and the controls
z1, z2 are fully amenable in the sense that B1 = B2 is the identity on L2(D). As a
second example we set

B1z1 = χ[0, 12 )z1 and B2z2 = χ[ 12 ,1)z2.

In both examples, we set ud,1 = sin(50x/π) and ud,2 = cos(50x/π). In the case
where B1, B2 are trivial, we take the bounds to be a1 = a2 = −1 and b1 = b2 = 1,
whereas in the second example with restricted control action, we set a1 = a2 = −3/4
and b1 = b2 = 3/4. These choices were made to try to force larger active sets, which
ensure that we are solving a truly nonsmooth equation.
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Algorithm 2: A Fixed Point Iteration for a Stochastic PDE-Constrained GNEP

1: Input (Data): (ud,1, ud,2) ∈ L2(D)2, (ν1, ν2) ∈ R
2++, (ai , bi ) ∈ L∞(D)2 ai < bi i = 1, 2,

ψ ∈ C(Ξ), f ∈ L∞
P

(Ω; L2(D))

2: Input (Parameters): k := 0, λ ∈ (0, 1], γ0 > 0, γmax ≥ γ0 > 0, M0 ∈ N, Mmax ≥ M0,
φ : R+ → R+, tolkm0 > 0, ρkm ∈ (0, 1], tolnwt0 > 0, ρnwt ∈ (0, 1], tolnewt ≥ 0

3: Input (Initial Values): (z0,1, z0,2) ∈ L2(D)2, (dz0,1, dz0,2) ≡ 0 ∈ L2(D)2

4: (Initialize): Set
ẑ1,1 = T 1

γk
(z0,2), ẑ1,2 = T 2

γk
(̂z1,1), w1,1 = T 1

γk
(̂z1,2)

5: Set z1,1 = (1 − λ)z0,1 + λw1,1, z1,2 = T 2
γk

(z1,1), and k := k + 1
6: while γk ≤ γmax do
7: Set l := 0
8: Set zkl,1 := zk,1 and zkl,2 := zk,2
9: Set

ẑkl+1,1 = T 1
γk

(zkl,2) ẑkl+1,2 = T 2
γk

(̂zkl+1,1) wk
l+1,1 = T 1

γk
(̂zkl+1,2)

Set zkl+1,1 = (1 − λ)zkl,1 + λwk
l+1,1, z

k
l+1,2 = T 2

γk
(zkl+1,1), and l := l + 1

10: while ‖zkl,1 − zkl−1,1‖L2(D) > tolkmk do
11: Set

ẑkl+1,1 = T 1
γk

(zkl,2) ẑkl+1,2 = T 2
γk

(̂zkl+1,1) wk
l+1,1 = T 1

γk
(̂zkl+1,2)

Set zkl+1,1 = (1 − λ)zkl,1 + λwk
l+1,1, z

k
l+1,2 = T 2

γk
(zkl+1,1), and l := l + 1

12: end while
13: Set zk+1,1 = zkl,1 and zk+1,2 = zkl,2
14: Set γk+1 = φ(γk )

15: if “penalty-to-sample threshold’ then
16: Choose Mk+1 ≥ min(Mk , Mmax)

17: else
18: Set Mk+1 := Mk
19: end if
20: Set tolkmk+1 = ρkmtolkmk
21: Set k := k + 1
22: end while

Given these assumptions, the template for the individual problems has the form

minimize
z∈L2(D)

1

2
EP

[
‖u − ũd,i‖2L2(D)

]
+ νi

2
‖zi‖2L2(D)

over zi ∈ L2(D) (5.9)

where z ∈ Zi
ad := {

w ∈ L2(D) |ai ≤ w(x) ≤ bi a.e. x ∈ D
}
and the solution of the

random PDE u = u(z) ∈ L∞(Ω,F ,P; H1(D)) solves the weak form of

− ν(ω)∂xxu(ω, x) = f (ω, x) + (B1z1)(x) + (B2z2)(x) (ω, x) ∈ Ω × D,

(5.10a)

u(ω, 0) = d0(ω), u(ω, 1) = d1(ω) ω ∈ Ω. (5.10b)

As before, we impose the state constraint

P({ω ∈ Ω | u(ω, x) ≥ 0, for L-a.e. x ∈ D }) = 1,

123



1332 D. B. Gahururu et al.

Fig. 3 Equilibrium controls z1 (left) and z2 (right) for B1 = B2 = idL2(D)

where we set D = (0, 1). The uncertainties are chosen as in Sect. 5.2.

5.3.3 Discretization and implementation

The discretization, sampling, γ -update strategy, and tolerance reduction for the New-
ton iterations are the same as in Sect. 5.2.1. We fixed λ = 0.5. Though further
experiments demonstrated that successive over relaxation, i.e., λ > 1, does in fact
work, the number of Krasnoselskii-Mann iterations remained roughly the same. The
inner KM-iterations stopped once the discrete L2(D)-norm of znew1 − zold1 reached a
tolerance of 1e-3.

5.3.4 Performance of the Algorithm

We have already investigated the performance of the sample-average based semis-
mooth Newton solver in Sect. 5.2.2. As expected, the algorithm performs reliably in
the GNEP setting, where it is called hundreds of times without failing to converge.
The behavior of Algorithm 2 for the full control action is depicted in Figs. 3 and 4. For
the second example, in which the controls are restricted to subsets of D, we point the
reader to Figs. 5 and 6. In both cases, we observe non-trivial active sets for the equilib-
rium controls. In either case, the fixed point iteration requires a moderate number of
iterations for the first few γ . This then rapidly tapers off as γk and Mk increased. The
performance of the equilibrium controls is also demonstrated in Figs. 4 and 6. These
plots correspond to an estimated violation (in the sense of the L∞-norm) of the state
constraints of 1.5% and 0.6% respectively. This is well within the usual tolerance of
95% often used for probability constraints.

6 Conclusions and outlook

In this paper, we proved existence of solutions/equilibria and derive optimality con-
ditions for both stochastic PDE-constrained optimization and equilibrium problems
subject to state constraints. For our analysis, higher regularity of the random states
was proven using a priori estimates for deterministic elliptic PDE. This allowed us
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Fig. 4 (left) Number of Krasnoselskii-Mann iterations versus γ -updates k. (right) Controlled states using
Nash equilibrium (z1, z2) for 2000 out of sample instances of ξ . B1 = B2 = idL2(D)

Fig. 5 Equilibrium controls z1 (left) and z2 (right) for B1 = χ[0,0.5], B2 = χ[0.5,1]

Fig. 6 (left) Number of Krasnoselskii-Mann iterations versus γ -updates k. (right) Controlled states using
Nash equilibrium (z1, z2) for 2000 out of sample instances of ξ for B1 = χ[0,0.5], B2 = χ[0.5,1]

to make use of the existing optimality theory for convex optimization problems. In
the case of GNEPs, a GNEP-specific constraint qualification was crucial for the
development of a relaxation approach on which both the theory and our numeri-
cal methods could be built. We saw that this condition is fundamentally different
than the classical constraint qualifications from nonlinear programming such as the
Mangasarian-Fromowitz CQ, which was originally introduced in [46]. Nevertheless,
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the low regularity of the Lagrange multipliers still makes passing to the limit highly
nontrivial.

After rigorously passing to the limit in the smoothing parameter,weprovided further
insight into the approximation technique using results on concentration inequalities
and asymptotic statistics. Finally, we suggested two algorithms; the first for solving
risk-neutral PDE-constrained optimization problems subject to state constraints and
the second for the extension to GNEPs.

The algorithms performed well and the statistical properties of the solutions are
comparable with what one would require of probability constraints; though our
approach is much easier to treat theoretically and numerically. At least for a fixed
sample, the optimization solver is known to converge locally superlinearly. A full
convergence analysis linking sampling, adaptive finite elements, smoothing, and con-
vergence of these algorithms (as least in a probabilistic sense) will be a future direction
of research. The convergence of the GNEP solver is much more delicate and will
require a fine analysis of the nonexpansivity of the underlying fixed point mapping.
We postulate here that this is linked to the modulus of strong convexity of the under-
lying problems.
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