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Abstract We give a new, algebraically computable formula for skein modules
of closed 3-manifolds via Heegaard splittings. As an application, we prove that
skein modules of closed 3-manifolds are finite-dimensional, resolving in the
affirmative a conjecture of Witten.

1 Introduction

A fundamental invariant of an oriented 3-manifold M emerging from quantum
topology is its “Kauffman bracket skein module” Sk(M) introduced by Przy-
tycki [76] and Turaev [88]. This is the Q(A)-vector space formally spanned
by all framed links in M , modulo isotopy equivalence and the linear relations,
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which are imposed between any links agreeing outside of some oriented 3-ball,
and differing as depicted inside that ball. Despite the elementary definition,
many basic properties of skein modules are not known. The main result of the
present paper (Theorem 5.8) confirms a conjecture of Witten, and establishes
the following most fundamental property of skein modules:

Theorem 1 The skein module of any closed oriented 3-manifold has finite
dimension over Q(A).

Prior to Witten’s conjecture, skein modules of closed 3-manifolds had been
computed only for certain free quotients of S3 by finite groups [46,56], surg-
eries on trefoil knots [23,55] and a certain family of torus links [53] (see the
introduction of [50] for more details). Subsequently, Carrega [27] and Gilmer
[47] showed the skein module of the three-torus T 3 = S1 × S1 × S1 to be
9-dimensional; Gilmer and Masbaum [50] have established lower bounds for
dimensions of �g × S1 for any genus,1 and Detcherry [35] has established the
conjecture for surgeries along two-bridge and torus knots.

1.1 Tensor product formula

We do not prove Theorem 1 by directly computing the dimensions (however,
see Sect. 6.4, “Computer algebra”). Rather, Theorem 1 is one of a number of
consequences of our second main theorem, which gives a new algebraic refor-
mulation of skein modules, and brings to bear tools from the representation
theory of quantum groups and deformation quantization modules.

First let us remark that there are skein theories associated to any reductive
algebraic group G (indeed, for any ribbon category A), so we will phrase
the results in this section in that generality; the Kauffman bracket skein mod-
ule comes from G = SL2, more precisely from a standard choice of ribbon
structure on the category Repq(SL2). We use the notation SkA for statements
applying to a general braided tensor category, and the abbreviation SkG for
the case A = Repq(G) for a reductive group G.

If� is an oriented surface, the skeinmodule SkA(�×[0, 1]) = SkAlgA(�)

is a skein algebra, where the composition is given by stacking skeins on top
of each other. Similarly, if M is a 3-manifold with boundary �, then SkA(M)

is naturally a module over SkAlgA(�). We begin by upgrading the skein

1 After the present paper first appeared on the arXiv, Detcherry and Wolff proved that Gilmer
and Masbaum’s lower bound is the dimension [39].
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The finiteness conjecture for skein modules 303

algebra and skein module constructions to what we call the internal skein
algebra and internal skein module: in the case of G-skein theories these are
Uq(g)-equivariant algebras, and Uq(g)-equivariant modules over them, whose
invariant part recovers the ordinary skein algebra and skein modules respec-
tively.

For this, let us pick a closed disk embedding D ↪→ � and let �∗ = � \ D.
The internal skein algebra SkAlgintA (�∗) (see Definition 3.18) is the alge-
bra whose V -multiplicity space consists of skeins in �∗ × [0, 1] which end
at the boundary of �∗ × {0} with label V ∈ A (see Fig. 5). The usual
skein algebra arises therefore as its invariant subalgebra, SkAlgintA (�∗)inv =
HomA(1,SkAlgintA (�∗)). We define the internal skein module similarly (see
Definition 3.26).

Now suppose that M is decomposed as M = N2 ∪� N1. Our second main
theorem (Theorem 5.1) is the following simple formula for the ordinary skein
module of M in terms of the internal skeins of its constituents.

Theorem 2 The natural evaluation pairing gives an isomorphism,

SkA(M) ∼=
(
SkintA (N2) ⊗

SkAlgintA (�∗)
SkintA (N1)

)inv

.

Now let us present some important corollaries. Consider the case of a G-
skein module for q not a root of unity. In this case SkAlgintG (�∗) is an algebra
in the category Repq(G) of representations of the quantum group. This algebra
coincides with the so-called Alekseev–Grosse–Schomerus algebra [4,22,81]
which has more recently appeared in [8]. Using triviality of the Müger center
of Repq(G)we prove (see Corollary 5.2) that the relative tensor product above
is already invariant.

Corollary 1 Suppose q is not a root of unity. Then the natural evaluation
pairing gives an isomorphism,

SkG(M) ∼= SkintG (N2) ⊗
SkAlgintG (�∗)

SkintG (N1).

Wenote that, in contrast to ordinary skein algebras, the internal skein algebra
SkAlgintG (�∗) has an explicit presentation in terms of generators and relations,
so the above relative tensor product can be made quite explicit. Moreover the
internal skein algebras are smooth, and in particular their limits as q → 1
are smooth affine algebraic varieties, in contrast to the skein algebras which
develop singularities.
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Remark 1 Corollary 1 suggests a potential definition for a derived analogue of
the skein module of a 3-manifold M at generic q, namely, taking the derived
tensor product

LSk�
G(M) := SkintG (N2)

L⊗
SkAlgintG (�∗)

SkintG (N1)

The proof of Theorem 1 implies that this is a bounded chain complex whose
homology groups are finite dimensional vector spaces overQ(q). The resulting
homology groups is a skein-theoretic analogue of the sheaf-theoretic framed
Floer homology HP•

� (M) introduced by Abouzaid and Manolescu [6] (see
Sect. 6.3 for further details). A precise connection between the skein theoretic
and sheaf theoretic invariants will be established in forthcoming work of the
first and third named authors. The authors of this article intend to further study
derived skein theoretic invariants in future work.

Example Let us consider the simplest interesting example, the case G = SL2,
and � = T 2. Then the algebra SkAlgintG (�∗) coincides with the so-called
“elliptic double”Dq(G), a subalgebra of theHeisenberg double ofUq(sl2) (see
[16] and for an expanded list of relations, [17]). This is the algebra generated
by elements, a11, a

1
2, a

2
1, a

2
2, b

1
1, b

1
2, b

2
1, b

2
2, subject to the relations,

R21A1R12A2 = A2R21A1R12
R21B1RB2 = B2R21B1R
R21B1RA2 = A2R21B1R

−1
21

, and
a11a

2
2 − q2a12a

2
1 = 1,

b11b
2
2 − q2b12b

2
1 = 1.

The first three equations take place in Dq(SL2) ⊗ End(V ⊗ V ), where

A =
(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
,

A1 = A ⊗ Id, A2 = Id ⊗ A,

B1 = B ⊗ Id, B2 = Id ⊗ B,

and R = R12, R21 ∈ End(V ⊗ V ) denote the quantum R-matrix and its flip,
for the defining representation V of Uq(sl2).

The algebra Dq(G)may be regarded simultaneously as a deformation quan-
tization of the varietyG×G with its Heisenberg double Poisson structure [86],
and as a q-analogue of the algebra D(G) of differential operators on the group
G. The subalgebra of invariants in Dq(G) surjects onto the usual skein alge-
bra of the torus, via a very general procedure known as quantum Hamiltonian
reduction [9,17,91].

Typically, taking invariants does not commute with relative tensor products:
the invariants in the tensor product are not spanned by the tensor product of the
invariants in each factor. However, in certain cases, when one of the factors is
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The finiteness conjecture for skein modules 305

a cyclicmodule over the internal skein algebra, we may in fact replace internal
skein modules by ordinary skein modules in the formula (see Proposition 5.3
and Corollary 5.7).

Corollary 2 Suppose q is not a root of unity and one of the following condi-
tions is satisfied:

• N1 and N2 are handlebodies (hence define a Heegaard decomposition of
M).

• � = S2.

Then the natural evaluation pairing restricts to an isomorphism

SkG(M) ∼= SkG(N2) ⊗
SkAlgG(�)

SkG(N1).

We note that the skein algebra of S2 is one-dimensional, so the case� = S2

recovers the main theorem of [77] expressing the skein module of a connected
sum of three-manifolds as a tensor product of the skein modules. The case
of a Heegaard splitting was also considered in [72]. We would like to stress,
however, that even in these cases, where one could work directly with ordinary
skein algebras, one perhaps should not: the internal skein algebras are simply
easier to work with for both proofs and computations. In particular, it is dif-
ficult to present the skein module SkG(Hg) of the genus g handlebody as a
module for SkG(�g), while by contrast SkintG (Hg) is simply an induced mod-
ule for SkAlgintG (�g). Moreover, the failure of the classical character variety
of the handlebody to define a smooth Lagrangian means that the deformation
quantization techniques of [60] do not apply to skein algebras, while they do
perfectly well for their internal enhancements.

1.2 Proof of Theorem 1

Let us now sketch our proof of Theorem 1—and its natural generalization to
G-skein modules for any reductive group G—starting from Theorem 2. The
complete proof is given in Sect. 5.3.

A basic notion in the theory of ordinary differential equations on algebraic
varieties is that of a holonomic system—this is a system of “over-determined”
differential equations, whose space of solutions is always finite-dimensional.
The algebra of polynomial differential operators on a smooth affine algebraic
variety may be regarded as a deformation quantization of its cotangent space;
in [60], the notion of holonomicity was abstracted to hold for arbitrary defor-
mation quantizations of smooth symplectic varieties besides cotangent spaces,
and in this generality the same suite of finite-dimensionality results was estab-
lished. Because the internal skein algebras are flat deformations of smooth
algebraic varieties, we may appeal to this deep and powerful general theory.
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306 S. Gunningham et al.

Hence, given a closed 3-manifold M , we choose a Heegaard splitting
M = N1

∐
� N2, where N1 and N2 are handlebodies of genus g, and � = �g

is their common boundary. The internal skein algebra SkAlgintG (�∗) is a defor-
mation quantization (with the quantization parameter q) of the Poisson variety
G2g with respect to the Fock–Rosly Poisson structure, which is generically
symplectic.

In Theorem 3.32 we compute the handlebody modules SkintG (N1) and
SkintG (N2) over the internal skein algebra SkAlgintG (�∗) and show that they are
also deformation quantizations, now of Lagrangian subvarieties Gg ↪→ G2g

(in particular, they lie in the symplectic locus). So, SkintG (N1) and SkintG (N2)

determine holonomic deformation quantization modules over the deformation
quantization of G2g.

Appealing therefore to the theory of deformation quantization modules due
to Kashiwara and Schapira [60], we prove (see Theorem 4.6) that the rela-
tive tensor product SkintG (N2) ⊗SkAlgintG (�∗) Sk

int
G (N1) is finite-dimensional for

q = exp(h̄), where h̄ is a formal parameter, and hence for generic q. Using
Corollary 1we identify theG-skeinmodule ofM with the above relative tensor
product, and the proof is complete.

1.3 Further applications

One of the main tools in establishing Theorem 2 is a construction of the skein
TFT due to Walker [94]. Namely, (see Theorem 3.5) the assignment of a skein
module SkA(M) to a closed 3-manifold M and a skein category SkCatA(�) to
a closed 2-manifold� is a part of a topological field theory valued in categories
and their bimodules. Taking ‘free co-completions’, we obtain a TFTZA valued
instead in locally presentable categories and their functors, which was shown
in [33] to recover the factorization homology categories of [8].

It is a general feature of topological field theories that the value on S1 × X
yields the corresponding categorical dimension of the value on X . For a vec-
tor space, the categorical dimension is the ordinary dimension (an integer)
while for a category, it is the categorical trace, or zeroth Hochschild homol-
ogy (a vector space). A corollary, Lemma 5.5, is that the skein module of
� × S1 is identified with the Hochschild homology (a.k.a. categorical trace)
of SkCatA(�) (equivalently, of ZA(�)). Note that this property fails when one
replaces skein categories by skein algebras: the Kauffman bracket skein mod-
ule Sk(T 3) is 9-dimensional, whereas theHochschild homology of SkAlg(T 2)

is 5-dimensional [73,75].
Let us illustrate this perspective on two examples. Consider � = S2. Then

we give an equivalence (see Proposition 5.4) between ZA(S2) and the Müger
center of A. In particular, we identify it with the trivial category of vector
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spaces, in the case of representations of the quantum group for q not a root of
unity. Taking Hochschild homology we recover the result of [57] (see Corol-
lary 5.6).

Corollary 3 The G-skein module SkG(S2 × S1) is one-dimensional for q not
a root of unity.

Now consider � = T 2. In a forthcoming work of the first two authors with
Monica Vazirani, we compute ZSLN (T 2) using a q-analogue of the general-
ized Springer decomposition [51]. In the case G = SL2 it has the following
description.

Theorem 3 ([49]) We have a decomposition of abelian categories,

ZSL2(T
2) 
 LModDq (H)Z2

⊕
Vect

⊕
Vect

⊕
Vect

⊕
Vect.

Here LModDq (H)Z2 is the “Springer block”, where H is the maximal torus

of SL2, Dq(H)Z2 = SkAlg(T 2) is the algebra of Z2-invariants on the quan-
tum torus (see [43]), and the copies of Vect are four orthogonal “cuspidal
blocks” which are supported at each of the four singular points (±1, ±1) of
the Z2-action on H × H . Taking Hochschild homology, and recalling that
HH0(Dq(H)Z2) ∼= Q(A)5 [73,75], we recover the computation,

Sk(T 3) ∼= HH0(ZSL2(T
2)) ∼= Q(A)5 ⊕ Q(A) ⊕ Q(A) ⊕ Q(A) ⊕ Q(A),

of [27,47] in a new way. We expect it may be possible to compute Sk(� × S1)
more generally using these techniques. We discuss closely related TFTs, such
as the Crane–Yetter and Kapustin–Witten TFTs, in Sect. 6.1.

Finally, let us remark that for simplicity we have restricted attention in the
introduction on the case ofG-skein modules defined over generic quantization
parameters, since it is at that generality in which Theorem 1 holds, and since
basic definitions in the root of unity case becomemore cumbersome. However,
we would like to stress that our results as formulated in the body of the paper
also provide a systematic framework for studying the root of unity case, ormore
generally when we work over some arbitrary base ring such as Z[A, A−1] in
place of a field.

In a previous work of Iordan Ganev and the latter two authors, [48], we
have formulated and proved a generalization of the “Unicity conjecture” of
Bonahon-Wong, for quantumG-character varieties of surfaces. In future work,
we intend to combine the techniques of the two papers to the study of torsion in
skein modules of 3-manifolds at root-of-unity parameters, namely by lifting
the constructions in the present paper to the relevant integral forms—those
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coming from Temperley-Lieb diagrammatics, those coming from tilting mod-
ules, and those coming from Lusztig’s divided powers quantum groups, and
small quantum groups. For example, Theorem 2, Corollary 1, Corollary 2, and
Corollary 3 all admit modifications, which involve structures such as Lusztig’s
quantum Frobenius homomorphism, which are special to the root of unity set-
ting.

1.4 Outline of the paper

In Sect. 2 we begin with the algebraic setup for the paper. We introduce some
categorical notation and recall the basics of quantum groups and quantum
moment maps. The latter notion allows us to discuss strongly equivariant
modules and we prove that the relative tensor product of strongly equivari-
ant modules lies in the Müger center (see Proposition 2.38). We finish the
section by establishing a duality between left and right strongly equivariant
modules.

Section 3 is devoted to the skein-theoretic setup. We define skein modules
and the skein category TFT for an arbitrary ribbon category and relate skein
categories to factorization homology.We then introduce internal skein algebras
and internal skein modules and compute them for surfaces (Sect. 3.6) and
handlebodies (Sect. 3.7) respectively.

In Sect. 4 we discuss deformation quantization modules in the algebraic
context. The main result there, Theorem 4.6, establishes finite-dimensionality
of the relative tensor product of two holonomic deformation quantizationmod-
ules for a generic quantization parameter following Kashiwara and Schapira
[60].

Section 5 collects all the ingredients from previous sections to prove theo-
remsmentioned in the introduction.We prove a relative tensor product formula
for skein modules (Theorem 5.1), relate the skein category of S2 to the Müger
center (Proposition 5.4) and prove finite-dimensionality of G-skein modules
of closed oriented 3-manifolds for generic parameters (Theorem 5.8).

We end the paper with Sect. 6, where we discuss how our results fit in
the context of topological field theory, character theory and instanton Floer
homology for complex groups and explain an approach for computing skein
modules using computer algebra.

2 Algebra

This section treats the algebraic ingredients of our proof—categories, quan-
tum groups, quantum Harish–Chandra category, quantum moment maps and
strongly equivariant modules.
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2.1 Categories

We begin with some categorical preliminaries that will be used throughout the
paper. In this section we work over an arbitrary commutative ring k which we
will fix later.

Definition 2.1 The bicategory Cat has:

• As its objects small k-linear categories.
• As the 1-morphisms from C toD the k-linear functors C → D.
• As the 2-morphisms natural transformations.

The bicategory Cat has a natural symmetric monoidal structure given by
the tensor product of k-linear categories.

Definition 2.2 Let C ∈ Cat be a small category. A left C-module is a functor
Cop → Vect. A right C-module is a functor C → Vect.

Remark 2.3 In the case when C is a one-object category, the above two notions
coincide with the notion of modules over the endomorphism algebra of the
object of C.

For many purposes the bicategory Cat does not have enough morphisms,
and we require the following enlargement.

Definition 2.4 The bicategory Bimod has:

• As its objects small k-linear categories.
• As the 1-morphisms from C toD the k-linear functors F : C⊗Dop → Vect
(a.k.a. “bimodules”).

• As the 2-morphisms natural transformations.

The composition of F : C ⊗ Dop → Vect and G : D ⊗ Eop → Vect is the
functor F ⊗D G : C ⊗ Eop → Vect given by the coend [21, Chapter 7.8]:

(F ⊗D G)(c, e) =
∫ d∈D

F(c, d) ⊗ G(d, e).

Explicitly, it is given by the quotient

⊕
d∈D

F(c, d) ⊗ G(d, e)/ ∼,

where for any morphism f : d ′′ → d ′ in D we mod out by the image of

F(c, d ′) ⊗ G(d ′′, e)
F( f )⊗Id−Id⊗G( f )−−−−−−−−−−−→ F(c, d ′′) ⊗ G(d ′′, e) ⊕ F(c, d ′) ⊗ G(d ′, e).
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The tensor product of k-linear categories equips Bimod with the structure
of a symmetric monoidal bicategory [36, Section 7].

A typical category in Cat will not be closed under colimits—for instance
it may not admit direct sums or cokernels of morphisms. We will therefore
make occasional use of the notion of a locally presentable category—this is
a large category closed under arbitrary colimits, and satisfying some further
set-theoretical conditions (we refer to [10] for complete definitions).

Definition 2.5 The bicategory PrL has:

• As its objects locally presentable k-linear categories.
• As the 1-morphisms from C toD the cocontinuous functors C → D.
• As the 2-morphisms the natural transformations.

The Kelly–Deligne tensor product equips PrL with the structure of a sym-
metric monoidal bicategory [15, Chapter 5].

We have symmetric monoidal functors

Cat −→ Bimod −→ PrL

defined as follows:

• The functor Cat −→ Bimod is the identity on objects and sends a functor
F : C → D to the bimodule HomD(−, F(−)) : C × Dop → Vect.

• The functor (̂−) : Bimod → PrL is the free cocompletion functor

Ĉ = Fun(Cop,Vect).

It is fully faithful and identifies Bimod with the full subcategory of PrL

spanned by categories with enough compact projectives.2

Remark 2.6 The only locally presentable categories wewill encounter are free
cocompletions of small categories.

Since (̂−) : Cat → PrL is symmetric monoidal, it sends (braided) monoidal
categories to (braided) monoidal categories. Suppose C ∈ Cat is a monoidal
category and let F,G ∈ Ĉ. Then their tensor product is given by the Day
convolution [34]

(F ⊗ G)(x) =
∫ y1,y2∈C

HomC(x, y1 ⊗ y2) ⊗ F(y1) ⊗ G(y2).

2 Recall that an object x in a locally presentable category C is compact projective if the functor
HomC(x,−) commutes with arbitrary colimits in C.
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Lemma 2.7 Suppose C ∈ Cat is a monoidal category. An algebra in Ĉ is the
same as a lax monoidal functor F : Cop → Vect.

Note also that if F : C → D is a morphism in Cat, its image F : Ĉ →
D̂ is continuous and thus has a right adjoint FR : D̂ → Ĉ. Explicitly, the
corresponding bifunctor D̂ × Cop → Vect is given by (P, x) 
→ P(F(x)).

Using the symmetricmonoidal structure onCat, Bimod and PrL, we can talk
about dualizable objects, i.e. categories C equipped with a dual category C∨
and a pair of 1-morphisms ev : C∨ ⊗C → 1 and coev : 1 → C⊗C∨ satisfying
the usual duality axioms. Given a triple (C,C∨, ev), we say ev : C∨ ⊗ C → 1
is a nondegenerate pairing if there is a coevaluation map exhibiting C∨ as the
dual of C.

Example 2.8 Suppose C ∈ Bimod. Then the pairing ev : C ⊗ Cop → Vect
given by x, y 
→ HomC(y, x) is a nondegenerate pairing in Bimod. The
corresponding coevaluation pairing is coev : Cop ⊗ C → Vect given by
x, y 
→ HomC(x, y).

As a consequence, Ĉ ⊗ Ĉop → Vect given by

F,G 
→
∫ x∈C

F(x) ⊗ G(x)

is a nondegenerate pairing in PrL.

Using the notion of a dualizable category, we may introduce the notion of
Hochschild homology.

Definition 2.9 Let C ∈ Cat be a category. Its zeroth Hochschild homology is

HH0(C) =
∫ x∈C

HomC(x, x) ∈ Vect.

Remark 2.10 Recall from Example 2.8 that every small category C is dual-
izable in Bimod. Then we may identify HH0(C) ∈ Vect as the composite
ev ◦ coev. Thus, the zeroth Hochschild homology of a category is an instance
of the general notion of a dimension of a dualizable object (see e.g. [20]).

2.2 Tensor products over categories and algebras

Suppose C ∈ Cat and let F : Cop → Vect and G : C → Vect be functors. In
other words, F is a left C-module and G is a right C-module. Now suppose the
category C comes with a distinguished object 1 ∈ C. Then F(1) is naturally a
left module for EndC(1) and G(1) is naturally a right module.
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In this section we will give some conditions for when G ⊗C F is given by
the (ordinary) relative tensor product G(1) ⊗EndC(1) F(1).

Remark 2.11 Themotivation for this section is the following. Supposewe have
an oriented surface � and a pair of oriented 3-manifolds N0 and N1 together
with isomorphisms ∂ N̆0 ∼= � ∼= ∂N1, where N̆0 refers to N0 with the opposite
orientation. In Sect. 5.1 we will show that the skein module of M = N0∪� N1
may be computed as the relative tensor product of certain functors over the
skein category of �. We would like to understand the categorical conditions
required for this tensor product to be computed as the relative tensor product
of the skein modules of N0 and N1 over the skein algebra of �.

Definition 2.12 LetC ∈ Cat be a category togetherwith a distinguished object
1 ∈ C and let F : Cop → Vect be a left C-module.

(1) We say F is generated by invariants if the morphism

F(1) ⊗ Hom(c, 1) → F(c)

s ⊗ f 
→ F( f )(s)

is surjective for every c ∈ C.
(2) We say F is cyclic if there is an element s0 ∈ F(1) such that the morphism

Hom(c, 1) → F(c)

f 
→ F( f )(s0)

is surjective for every c ∈ C. In this case we say F is generated by s0.

The definitions for right C-modules are given analogously.

Example 2.13 Suppose A is a k-algebra equipped with an action of a reductive
algebraic group G. Let C denote the category LModA(Rep(G))cp of compact
projective G-equivariant A-modules. Then we may identify the free cocom-
pletion Ĉwith the category LModA(Rep(G)) of all G-equivariant A-modules.
Under this equivalence an object M ∈ LModA(Rep(G)) corresponds to the
functor

FM = Hom(−, M) : (LModA(Rep(G))cp)op −→ Vect

Note that C is pointed by the object A itself. Then FM is generated by
invariants in the sense of Definition 2.12 if and only if M is generated as an
A-module by MG . Similarly, FM is cyclic if and only if there exists an element
s0 ∈ MG which generates M as an A-module.
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Remark 2.14 The conditions of a module for a category being generated by
invariants (respectively, being cyclic) correspond to natural skein theoretic
conditions on the module over the skein category of a surface � induced by a
3-manifold bounding � (see Sect. 3.7).

Let C ∈ Cat be a category with a distinguished object 1 ∈ C, and let

G : C → Vect, F : Cop → Vect

be right and left C-modules respectively. Associated to this data is an algebra
EndC(1) together with a right module G(1) and a left module F(1).

Note that the embedding of the distinguished object 1 into C induces a map
of relative tensor products

G(1) ⊗
EndC(1)

F(1) −→ G ⊗C F.

Proposition 2.15 Suppose F and G are generated by invariants. Then the
map

G(1) ⊗
EndC(1)

F(1) −→ G ⊗
C
F

is an isomorphism.

Proof Let A = EndC(1). Consider the diagram

HomC(−, 1) ⊗ A ⊗ F(1) HomC(−, 1) ⊗ F(1) F(−).

Since F is generated by invariants, it is a coequalizer diagram. Similarly,

G(1) ⊗ A ⊗ HomC(1, −) G(1) ⊗ HomC(1, −) G(−)

is a coequalizer diagram as well.
We have
∫ c∈C

G(1) ⊗ HomC(1, c) ⊗ HomC(c, 1) ⊗ F(1) ∼= G(1) ⊗ A ⊗ F(1).

Applying the above resolutions to F and G, we get that G ⊗C F is computed
as the colimit of

G(1) ⊗ A ⊗ A ⊗ F(1) G(1) ⊗ A ⊗ F(1)

G(1) ⊗ A ⊗ A ⊗ F(1)
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which computes

G(1) ⊗A A ⊗A F(1) ∼= G(1) ⊗A F(1). ��

2.3 Quantum groups

Let G be a connected reductive algebraic group and denote by � and �∨
its weight and coweight lattices. Let Uq(g) be Lusztig’s integral form of the
quantum group defined over Z[q, q−1] , see [68]. In particular, it has Cartan
generators Kμ for μ in the coweight lattice �∨, and divided power Serre

generators E (r)
i and F (r)

i , for each simple root αi . Fix a commutative ring k,
and a homomorphism Z[q, q−1] → k.

Definition 2.16 The categoryRepq(G) is the category of�-graded k-modules
V = ⊕λ∈�Vλ equipped with a compatible action of Uq(g), i.e. such that

Kμv = q〈λ,μ〉v for v ∈ Vλ, and such that for all v ∈ V , E (r)
i v = 0 and

F (s)
i v = 0 for all but finitely many r and s.

The braiding and ribbon element on Repq(G) depend on further data in the
ring k. For two simple roots αi , α j ∈ �we denote by αi ·α j ∈ Z the i j entry of
the symmetrized Cartanmatrix. Choose3 an integer d and a symmetric bilinear
form B : � × � → 1

dZ such that B(αi , α j ) = αi · α j . We henceforth fix a
homomorphism Z[q1/d , q−1/d ] → k, so that we obtain a symmetric bilinear
form qB : � × � → k×, satisfying qB(αi , α j ) = qαi ·α j .

Using this bilinear form Lusztig [68, Chapter 32] equips Repq(G) with the
structure of a k-linear braided monoidal category. It is explained in [85] that
the additional choice of a homomorphism φ : � → Z/2 such that φ(αi ) = 0
endows Repq(G) with a ribbon structure.

Remark 2.17 By convention, we will say q is generic to mean k = Q(q1/d).
We will say q is not a root of unity to mean either that q is generic, or that
k = C and q
 �= 1 for all non-zero integers 
.

Remark 2.18 We denote by Repfdq (G) ⊂ Repq(G) the full subcategory of
modules which are finitely generated over k. For q not a root of unity the
category Repfdq (G) coincides with the full subcategory of compact projective
objects in Repq(G). Note that it is not true at roots of unity as, for example,
the trivial representation in that case is not projective.

3 Such a B exists and is unique, as soon as d is divisible by the determinant of the Cartan
matrix, so it is typical to fix that minimal choice for d , and suppress mention of B.
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Example 2.19 To fix the terminology, consider the case G = SL2. For q not
a root of unity the category Repq(SL2) has simple objects V (m), for each
m ∈ N0, the irreducible highest weight representation of Uq(sl2) of highest
weight m and of dimension m + 1. Every object of Repq(SL2) is a (possibly
infinite) direct sum of simple modules, while Repfdq (SL2) consists of finite
direct sums of simple objects. In this case, we take d = 2, and the braiding
σ : V (1) ⊗ V (1) → V (1) ⊗ V (1) is given by applying the R-matrix

R = q−1/2

⎛
⎜⎜⎝
q 0 0 0
0 1 0 0
0 q − q−1 1 0
0 0 0 q

⎞
⎟⎟⎠ ,

post-composed with the tensor flip. The category Repq(PSL2) is the full sub-
category of Repq(SL2) generated by V (m) for m even.

Recall that the Müger center ZMüg(A) of a braided monoidal category A is
the full subcategory consisting of objects x ∈ A such that for every y ∈ A the
map σy,x ◦ σx,y is the identity. We will say the Müger center of A is trivial if
every object in ZMüg(A) is a direct sum of the unit object. The following is
well-known:

Proposition 2.20 Suppose q is not a root of unity. Then the Müger center of
Repq(G) is trivial.

2.4 Braided function algebra

Fix the ground ring k and a ribbon k-linear categoryA (we assume that the unit
1 is simple). Let Aσop be the same monoidal category as A with the braiding
given by σ−1

y,x : x ⊗ y → y ⊗ x . The free cocompletion Â inherits a braided
monoidal structure from A given by the Day convolution.

Let T : A ⊗ Aσop → A be the tensor product functor. After passing to
free cocompletions it admits a right adjoint TR : A → Â ⊗ Â. The following
definition goes back to the works [69,70].

Definition 2.21 The braided function algebra F is

F = T (TR(1)) ∈ Â.
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Explicitly, we may identify F as the colimit

F ∼= colim
V,W∈A, f : V⊗W→1

V ⊗ W

∼=
∫ X∈A

X∗ ⊗ X.

Since TR is lax monoidal, F is naturally an algebra in Â. Moreover, since
T TR is a comonad, F naturally becomes a bialgebra in Â. We denote by
ε : F → 1 the counit of F.

Example 2.22 Let A = Repfdq (G) for q not a root of unity. Then the Peter–
Weyl theorem gives

F ∼=
⊕

λ∈�dom

V (λ)∗ ⊗ V (λ),

where �dom is the set of dominant weights.

Example 2.23 More concretely, letA = Repfdq (SL2). Then Oq(SL2) = F can
be presented with generators a11, a

1
2, a

2
1, a

2
2, and relations,

R21A1R12A2 = A2R21A1R12, a11a
2
2 − q2a12a

2
1 = 1.

The first equation takes place in Oq(SL2) ⊗ End(V ⊗ V ), where

A =
(
a11 a12
a21 a22

)
, A1 = A ⊗ Id, A2 = Id ⊗ A,

and V denote the defining two-dimensional representation of Uq(sl2). These
may be expanded out explicitly as:

a12a
1
1 = a11a

1
2 + (1 − q−2)a12a

2
2 a22a

1
1 = a11a

2
2

a21a
1
1 = a11a

2
1 − (1 − q−2)a22a

2
1 a22a

1
2 = q2a12a

2
2

a21a
1
2 = a12a

2
1 + (1 − q−2)(a11a

2
2 − a22a

2
2) a22a

2
1 = q−2a21a

2
2

2.5 Harish–Chandra category

LetZ(Â) be theDrinfeld center of themonoidal category Â. Since Â is braided,
we have a natural braided monoidal functor

Â ⊗ Âσop −→ Z(Â)
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Fig. 1 The field goal
transform V X∗ X

VX∗ X

given by the left and right action of Â on itself. In particular, for every pair of
objects x ∈ Â ⊗ Âσop and V ∈ Â we have a natural isomorphism

V ⊗ T (x) −→ T (x) ⊗ V .

For instance, for F = T (TR(1)) we obtain the field goal transform

τV : V ⊗ F −→ F ⊗ V .

Explicitly, in terms of the coend components X∗ ⊗ X of F, the map τV is
given by

V ⊗ X∗ ⊗ X
σV,X◦σ−1

X∗,V−−−−−−−→ X∗ ⊗ X ⊗ V,

see Fig. 1.

Definition 2.24 The Harish–Chandra category is

HC(A) = LModF(Â).

Remark 2.25 Applied to the case A = Repfdq (G), we obtain a quantum group
analogue of the category of Ug-bimodules whose diagonal action is integrable,
i.e. the category of Harish–Chandra bimodules. We refer to [82] for more on
this perspective.

Since TR(1) ∈ Â⊗Âσop is a commutative algebra, HC(A) carries a natural
monoidal structure given as follows. The field goal transform provides an
identification

τlr : LModF(Â)
∼−→ RModF(Â)

and the monoidal structure on HC(A) is given by the relative tensor product
over F.

In addition to the monoidal structure, the Harish–Chandra category pos-
sesses the following algebraic structures:
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• A monoidal functor Â → HC(A) given by the free left F-module V 
→
F ⊗ V . Equivalently, it is given by the free right F-module V ⊗ F.

• A functor coinvl : HC(A) → Â given by coinvariants on the left M 
→
1 ⊗F M . Its right adjoint trivl : Â → HC(A) is given by sending V ∈ Â

to the trivial left F-module.
• A functor coinvr : HC(A) → Â given by coinvariants on the right M 
→

M ⊗F 1. Its right adjoint trivr : Â → HC(A) is given by sending V ∈ Â

to the trivial right F-module.

Lemma 2.26 The functors trivl, trivr : Â → HC(A) are fully faithful.

Proof The counit of the adjunction coinvl � trivl is 1⊗F trivl(V ) → V which
is an isomorphism. ��

The category Â carries two HC(A)-module structures:

• The functor M ∈ HC(A), V ∈ Â 
→ M ⊗F (F ⊗ V ) ⊗F 1 equips Â with
a left HC(A)-module structure. With respect to it coinvr : HC(A) → Â

becomes a functor of left HC(A)-module categories.
• The functor V ∈ Â, M ∈ HC(A) 
→ 1 ⊗F (F ⊗ V ) ⊗F M equips Â with
a right HC(A)-module structure. With respect to it coinvl : HC(A) → Â

becomes a functor of right HC(A)-module categories.

Proposition 2.27 Suppose for V ∈ Â. The object trivr (V ) ∈ HC(A) has the
trivial left F-module structure iff V lies in the Müger center of Â.

Proof Let X ∈ A. By rigidity of A we may identify

HomÂ(X ⊗ V, X ⊗ V ) ∼= HomÂ(X∗ ⊗ X ⊗ V, V ).

Under the isomorphism the image of σV,X ◦ σX,V is the composite

X∗ ⊗ X ⊗ V
Id⊗σX,V−−−−−→ X∗ ⊗ V ⊗ X

σ−1
V,X∗⊗Id−−−−−→ V ⊗ X∗ ⊗ X

Id⊗ev−−−→ V

which coincides with the left action of F on trivr (V ). The image of Id : X ⊗
V → X ⊗ V is

X∗ ⊗ X ⊗ V
ev⊗Id−−−→ V

which coincides with the trivial left action of F.
Thus, σV,X ◦σX,V = IdX⊗V for every X ∈ A iff trivr (V ) has the trivial left

F-module structure. ��
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Corollary 2.28 For any V,W ∈ Â we have

trivl(V ) ⊗
F
trivr (W ) ∈ ZMüg(Â).

Proof Consider the object trivl(V ) ⊗F trivr (W ) ∈ HC(A). As an object of
RModF(Â) ∼= HC(A), it has a trivial right F-action, i.e. it lies in the image
of trivr . Similarly, as an object of LModF(Â) ∼= HC(A), it has a trivial left
F-action, i.e. it lies in the image of trivl . Therefore, by Proposition 2.27 it lies
in the Müger center. ��

2.6 Quantum moment maps

Recall that TR(1) is a commutative algebra in Â ⊗ Âσop and F = T (TR(1))
is its image in Â.

Definition 2.29 Let A be an algebra in Â. A quantum moment map is an
algebra map μ : F → A in Â whose adjoint TR(1) → TR(A) is a central
map.

Remark 2.30 Equivalently, the quantum moment map equation can be formu-
lated as a commutativity of the diagram

A ⊗ F
Id⊗μ

τA

A ⊗ A
m

A

F ⊗ A
μ⊗Id

A ⊗ A
m

Remark 2.31 Let us remark that there are several closely related constructions
throughout the literature going by the name “quantum moment map”. Quan-
tizations of moment maps M → g∗ on Poisson manifolds with a Hamiltonian
g-action are given by homomorphisms Ug → A. If G is a Poisson-Lie group
and G∗ its dual, one can also consider G-actions on M with a moment map
M → G∗. In this setting quantummomentmaps are given by homomorphisms
H → A, where H is the Hopf algebra quantizing G∗ [65]. In our setting we
are interested in, on the classical level, actions of Poisson-Lie groups G on
M with a moment map M → G (where the target is equipped with the so-
called Semenov-Tian-Shansky Poisson structure) and, on the quantum level,
quantum moment maps F → A, where F is an H -comodule algebra. These
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(quantum) moment maps were first considered in [91] and extensively used in
[9] to describe factorization homology of closed surfaces. We refer to [82] for
more details on this definition of quantum moment maps and how it reduces
to the previous definitions.

The following is shown in [9, Corollary 4.7].

Proposition 2.32 Suppose A ∈ Â is an algebra. The right action of HC(A)

on LModA(Â) compatible with the natural right A-module structure on
LModA(Â) is the same as the data of a quantum moment map μ : F → A.

Explicitly, suppose A ∈ Â carries a quantum moment map μ : F → A.
Given a left A-module V and a left F-module M , the action is

τlr (μ∗(V )) ⊗
F
M,

where μ∗(V ) is V considered as a left F-module via the quantum moment
map.

Quantum moment maps allow us to introduce the notion of strongly equiv-
ariant modules.

Definition 2.33 Let A ∈ Â be an algebra equipped with a quantum moment
map μ : F → A. A left A-module V is strongly equivariant if τlr (μ∗(V )) is
a trivial right F-module. We denote by

LModA(Â)str ⊂ LModA(Â)

the full subcategory of strongly equivariant modules.

Remark 2.34 Explicitly, a left A-module V is strongly equivariant if the dia-
gram

V ⊗ F

Id⊗ετV

F ⊗ V
μ⊗Id

A ⊗ V
actV

V

is commutative.

Remark 2.35 Let X be a smooth affine variety equipped with an action of a
algebraic group G. Let D(X) be the algebra of global differential operators
on X . It carries a moment map μ : Ug → D(X) given by the action vec-
tor fields. Recall that a weakly equivariant D-module on X is an object of
LModD(X)(Rep(G)). If G is connected, then strongly equivariant D-modules,
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i.e. D-modules on the stack [X/G], form a full subcategory ofweakly equivari-
ant D-modules M where the Ug-action induced by the moment map coincides
with the Ug-action coming from the G-action on M .

We will also use the following perspective on the strongly equivariant cate-
gory. Let A ∈ Â be an algebra equipped with a quantum moment map. There
is a monad on LModA(Â) given by the composition

S : LModA(Â) −→ ABiModF(Â)
coinvr−−−→ LModA(Â), (1)

where the first functor turns an A-module into an (A,F)-bimodule with the
right F-module structure coming from the quantummoment map. This monad
is idempotent, so the forgetful functor from S-algebras in LModA(Â) to
LModA(Â) is fully faithful.

Recall that Â carries a natural left HC(A)-action. The following statement
is proved in [9, Theorem 5.2].

Proposition 2.36 Let A ∈ Â be an algebra equipped with a quantum moment
map. There is an equivalence of categories

LModA(Â)str ∼= LModA(Â) ⊗
HC(A)

Â.

Remark 2.37 Oneway to see Proposition 2.36 is as follows. The relative tensor
product LModA(Â) ⊗HC(A) Â is obtained as the geometric realization of the
simplicial object

LModA(Â) LModA(Â) ⊗Â HC(A) ∼= ABiModF(Â) . . .

in PrL. Since HC(A) is rigid, this diagram admits right adjoints which satisfy
the Beck–Chevalley conditions. Therefore, by [66, Theorem 4.7.5.2] the right
adjoint to the projection

LModA(Â) −→ LModA(Â) ⊗
HC(A)

Â

is monadic and the monad is identified with the monad S introduced above.

Note that all statements about left modules have a symmetric counterpart
for right modules, so that we can define strongly equivariant right A-modules
with an equivalence

RModA(Â)str ∼= Â ⊗
HC(A)

RModA(Â).
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Proposition 2.38 For any two objects V ∈ RModA(Â)str and W ∈
LModA(Â)str we have

V ⊗
A
W ∈ ZMüg(Â).

Proof We have an epimorphism

V ⊗
F
W −→ V ⊗

A
W

where we consider V andW asF-modules via the quantummoment map. Due
to strong equivariance, we may identify

V ⊗
F
W ∼= trivl(V ) ⊗

F
trivr (W ),

so by Corollary 2.28 V ⊗A W is a quotient of an object in the Müger center,
therefore it lies in the Müger center itself. ��

2.7 Duality and strong equivariance

In this section we establish a duality property for the category of modules over
algebras equipped with a quantum moment map. In this section A ∈ Â is an
algebra equipped with a quantum moment map μ : F → A.

Proposition 2.39 The functor

ev : RModA(Â) ⊗ LModA(Â) → Vect

given by ev(M, N ) = HomÂ(1, M ⊗A N ) is a nondegenerate pairing in PrL.

Proof Since the unit 1 ∈ Â is compact and projective, ev is a colimit-
preserving functor. In the proof all modules and bimodules are considered
internal to Â.

Consider the functor

μ : LModA ⊗ RModA −→ LModA ⊗̂
A

RModA

∼= ABiModA.

By [8, Proposition 3.17] it admits a colimit-preserving right adjoint μR. We
may therefore define the coevaluation map to be

Vect
A−→ ABiModA

μR

−→ LModA ⊗ RModA,
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where the first functor sends a vector space V to the (A, A)-bimodule V ⊗ A.
The duality axioms follow from the commutative diagram

LModA ⊗ ABiModA
Id⊗μR

μ

LModA ⊗ RModA ⊗ LModA

μ⊗Id

A⊗ABiModA
μR

ABiModA ⊗ LModA

and similarly for RModA which in turn follow from the fact that by rigidity
TR : A → Â ⊗ Â is a functor of (A,A)-bimodule categories. ��

Wewill now construct a duality pairing for the strongly equivariant category.

Proposition 2.40 The functor

RModA(Â)str ⊗ LModA(Â)str −→ Vect

given by M, N 
→ HomÂ(1, M ⊗A N ) is a nondegenerate pairing.

Proof Let coev : Vect → LModA(Â) ⊗RModA(Â) be the coevaluation pair-
ing constructed in Proposition 2.39.

Recall the monad S : LModA(Â) → LModA(Â). Since it is given by taking
coinvariants, it is clearly colimit-preserving. In particular, it makes sense to
consider the dual monad S∨ : RModA(Â) → RModA(Â). Consider M ∈
RModA(Â) and N ∈ LModA(Â). We have a natural isomorphism

1 ⊗
F
M ⊗

A
N ∼= M ⊗

A
N ⊗

F
1

which identifies S∨ with themonad onRModA(Â)whose algebras are strongly
equivariant right A-modules.

We define the coevaluation pairing on the strongly equivariant category to
be given by the composite

Vect
coev−−→ LModA(Â) ⊗ RModA(Â)

S⊗S∨−−−→ LModA(Â)str ⊗ RModA(Â)str.

Note that since S is idempotent, it is equivalent to (S ⊗ Id) ◦ coev ∼= (Id ⊗
S∨) ◦ coev.
Using the relation ev ◦ (S∨ ⊗ Id) ∼= ev ◦ (Id ⊗ S), the duality axioms for

LModA(Â)str reduce to those for LModA(Â). ��
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3 Topology

This section treats the topological ingredients of our proof—Walker’s skein
category TFT, its relation to factorization homology, monadic reconstruction
of factorization homology, and finally reconstruction for handlebodies.

Throughout this section we fixA ∈ Cat, a ribbon category linear over some
ring k whose unit 1 ∈ A is simple. We denote by D ⊂ R2 the open unit disk
and D the standard closed disk.

3.1 The skein category TFT

A fundamental ingredient in the proof of Theorem 1 is an idea due to Kevin
Walker: we can enhance the skein module invariants of 3-manifolds to a (3,2)-
dimensional TFT in the Atiyah–Segal framework by assigning to a surface
� the “skein category” SkCat(�), and to a 3-manifold M with boundary
∂M = �̆in��out , a categorical (SkCat(�in),SkCat(�out )) “skein bimodule”
Sk(M). We recall these constructions now.

Let us sketch the definition of a skein category of a surface [33,59,94].

Definition 3.1 (Sketch. See Fig. 2 and [33, Section 4.2]) Let � be an oriented
surface.

• An A-labeling of � is the data, X , of an oriented embedding of finitely
many disjoint disks x1, . . . , xn : D → � labeled by objects V1, . . . , Vn
of A. We denote by �xi the x axis sitting inside each disk xi , and denote
�X = ∪i �xi .

• A ribbon graph has “ribbons” connecting “coupons”. As topological
spaces, ribbons and coupons are simply embedded rectangles I × I , how-
ever, we require that ribbons begin and end at either the top “outgoing”, or
bottom“incoming”, boundary interval of some coupon, or else at�×{0, 1}.

• AnA-coloring of a ribbon graph is a labelling of each ribbon by an object
ofA, and of each coupon by a morphism from the (ordered) tensor product
of incoming edges to the (ordered) tensor product of outgoing edges.

• We say that anA-colored ribbon graph � is compatible with anA-labeling
if ∂� = �X , and denote by RibA(M, X) the k-vector space with basis the
A-colored ribbon graphs on M compatible with X .

Consider the 3-ball D × I , and consider a labeling X ∪ Y with disks X =
(x1, V1), . . . , (xn, Vn) embedded inD×{0} and Y = {(y1,W1), . . . (ym,Wm)}
× {1}. Then we have a well-defined surjection,

RibA(D × I, X ∪ Y ) → HomA(V1 ⊗ · · · ⊗ Vn,W1 ⊗ · · · ⊗ Wm),
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Fig. 2 An example of a ribbon graph and its colouring. Image from [33, Section 4.2]

see [90]. We will call the kernel of this map the skein relations between X
and Y .

Definition 3.2 Let M be an oriented 3-manifold equipped with a decomposi-
tion of its boundary ∂M ∼= �̆in

∐
�out , and A-labelings Xin of �in and Xout

of �out .

• The relative A-skein module SkModA(M, Xin, Xout ) is the k-module
spanned by isotopy classes of A-colored ribbon graphs in M compati-
ble with Xin ∪ Xout , taken modulo isotopy and the skein relations between
Xin and Xout determined by any oriented ball D × I ⊂ M .4

• When ∂M = ∅ (hence ∂� = ∅), we call this the A-skein module, and
denote it by SkA(M).

Using this notion we can define the notion of a skein category of a surface.

Definition 3.3 Let � be an oriented surface. The skein category SkCatA(�)

of � has:

• As its objects, A-labelings of �.
• As the 1-morphisms from X to Y the relative A-skein module of (� ×

[0, 1], X, Y ).

The following statement immediately follows from the definitions.

Lemma 3.4 Let �̆ be the surface with the opposite orientation. Then we have
an equivalence

SkCatA(�̆) ∼= SkCatA(�)op

given by sending a labeling (V1, . . . , Vn) to (V ∗
1 , . . . , V ∗

n ) and applying the
diffeomorphism D ∼= D̆ given by the mirror reflection across the y-axis.

4 Here we assume without loss of generality that D × {0} ⊂ � × {0} and D × {1} ⊂ � × {1}.
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The following statement was proved by Walker [94].

Theorem 3.5 The assignment

• To a closed oriented surface �, the skein category SkCatA(�).
• To an oriented 3-manifold M with a decomposition of its boundary

∂M ∼= �̆in
∐

�out , the functor SkModA(M, −, −) : SkCatA(�in) ×
SkCatA(�out )

op → Vect which sends a pair of A-labelings of �in and
�out to the relative A-skein module of M.

defines a 3-dimensional TFT valued in Bimod.

Note that SkCatA(�) has a canonical object 1 ∈ SkCatA(�) given by the
empty A-labeling.

Definition 3.6 The skein algebra of � is

SkAlgA(�) = EndSkCatA(�)(1).

3.2 Examples of skein theories

In this sectionwe give examples of ribbon categories and their associated skein
theories.

Let G be a connected reductive group and fix q not a root of unity. Then
Repfdq (G) is a ribbon category (where the choice of a ribbon structure will be
implicit). So, we may consider the G-skein module

SkG(M) = SkRepfdq (G)(M)

which is a k-vector space for k = Q(q1/d) or k = C. In the cases G = SL2
and SL3 the corresponding skein module has a more familiar form as we will
explain shortly.

Let us briefly recall the definition of the Temperley–Lieb category, which in
[90] was called simply the “skein category”, and which has appeared in many
papers since.

Definition 3.7 For each non-negative integerm, fix a finite set Xm ⊂ I of car-
dinality m. Given non-negative integers m and n, a Temperley–Lieb diagram
from [m] to [n] (see e.g. see Sect. 3.2) is an isotopy class of smoothly embedded
compact 1-manifold C in I × I , such that ∂C = Xm × {0} � Xn × {1}. Given
a Temperley–Lieb diagram C , let u(C) denote its number of S1 components,
and let C ′ denote the diagram obtained by omitting the S1 components.
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Fig. 3 The composition of Temperley–Lieb diagrams from [4] to [6] and from [6] to [2], giving
a Temperley–Lieb diagram from [4] to [2]

Definition 3.8 (Sketch. See [90, Chapter XII.2]) The Temperley–Lieb cat-
egory TL has as objects the non-negative integers [n] and as Hom spaces,
the Z[A, A−1]-linear span Hom([m], [n]) of all Temperley–Lieb diagrams,
modulo linear relations C − δu(C)C ′, where δ = −A2 − A−2.

Composition of morphisms is given by vertical stacking (Fig. 3), and a
monoidal structure is given by horizontal stacking; rigidity data is given by
the cup and cap diagrams. A braiding σ is defined by setting

σ[1],[1] := := A + A−1 ,

and extending monoidally to all objects [n]. The ribbon element is defined to
be −A−3 on [1].
Remark 3.9 Let q = A2. For q not a root of unity theCauchy completion of the
Temperley–Lieb category TL is equivalent to the category Repfdq (SL2). Under
this equivalence the object [1] ∈ TL goes to the defining two-dimensional
representation. The ribbon element on Repfdq (SL2) in this case comes from a
half-ribbon element [85] as explained in [87].

Proposition 3.10 Let M be an oriented 3-manifold. Then we have an isomor-
phism of Z[A, A−1]-modules

SkTL(M) ∼= Sk(M),

where Sk(M) is the Kauffman bracket skein module. In particular, for A not
a root of unity we have an isomorphism

SkSL2(M) ∼= Sk(M).

Proof Let us define a morphism f : Sk(M) → SkTL(M) as follows. An ele-
ment of Sk(M) is represented by a closed (unoriented) ribbon s in M . We
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assign to s a Temperley–Lieb skein f (s) by choosing an orientation on s and
labelling it with the object [1] ∈ TL. The fact that this does not depend on
the choice of orientation corresponds to the statement that the object [1] ∈ TL
is self-dual with Frobenius–Schur indicator 1. Said equivalently, the defining
representation V admits a nondegenerate invariant pairing ev : V ⊗ V → Q
satisfying

ev = ev ◦ (θ ⊗ Id) ◦ σV,V .

The inverse g to f is given as follows: a TL-colored ribbon graph in M
consists of a number of ribbons each labelled by some integer [m] and a
coupon labelled by a linear combinationofTemperley–Liebdiagrams. For each
summand, i.e. for each labelling of each coupon by a single Temperley–Lieb
diagram, g assigns a framed link obtained by replacing each ribbon labelled
[m] with m parallel strands, and by connecting the incoming and outgoing
strands at each coupon using the data of the Temperley–Lieb diagram. We
extend the assignment linearly.

To check that f and g are mutually inverse, it suffices to work locally in
any ball in M (as all the relations are local). This amounts to the standard
diagrammatics for Temperley–Lieb algebras. ��

It is possible to give a diagrammatic description of G-skein modules for
other groups analogous to the Kauffman skein relations, though it becomes
more complicated. The first such description was given in [61] for G = SL3;
the construction was generalized in [30,84] to G = SLN . The following
presentation is introduced by Kuperberg [61]; we follow the description of
[84, Section 1.4]. By a web we mean an oriented ribbon graph whose coupons
are either sinks or sources.

Definition 3.11 Let M be an oriented 3-manifold. The Kuperberg skein mod-
ule SkSL3(M) is the Z[A, A−1]-module spanned by trivalent webs in M
modulo isotopy and the linear relations,

= A−1 + A2 = A + A−2 = +

= (−A3 − A−3) = A6 + 1 + A−6,
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which are imposed between anywebs agreeing outside of some oriented 3-ball,
and differing as depicted inside that ball.

Using the results of [61] it is straightforward to check that SkSL3(M) coin-
cides with the skein module for Repq(SL3) equipped with the standard ribbon
element, where q = A3.

3.3 Relation to factorization homology

Skein categories satisfy a locality property captured by factorization homology
which will allow us to connect it to the results of [8,9].

Definition 3.12 The bicategory Mfld2 has:

• As its objects, smooth oriented surfaces,
• As the 1-morphisms from S to T , all smooth oriented embeddings S ↪→ T ,
• As the 2-morphisms, isotopies of smooth oriented embeddings, themselves
considered modulo isotopies of isotopies.

The disjoint union of surfaces equips Mfld2 with the structure of a symmetric
monoidal bicategory.

Definition 3.13 The bicategory Disk2 is the full subcategory of Mfld2 whose
objects are finite disjoint unions of oriented disks.

The following important and well-known result provides the link between
topology and algebra allowing us to compute with factorization homology of
braided tensor categories.

Proposition 3.14 ([38,44,93]) The data of a ribbon tensor category A deter-
mines a functor Disk2 → Cat which we also denote by A.

Let us briefly recall the correspondence of data asserted in Proposition 3.14.
We denote by D ∈ Disk2 the standard unit disk with the right-handed orienta-
tion. The tensor product is defined by fixing an embedding D � D ↪→ D, the
left-to-right embedding of a pair of smaller disks along the x-axis. The braid-
ing is defined by the isotopy interchanging the embedded disks by rotating
them anti-clockwise around one another. The ribbon element is determined by
the the oriented isotopy on D rotating it through a 360 degrees turn. The con-
tent of Proposition 3.14 is that these embeddings and isotopies taken together
freely generate Disk2, so that once they are specified—hence the data of a rib-
bon braided tensor category is fixed—then the data of the functor is specified
uniquely.

The following notion is studied in [1], see also [2,5].
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Definition 3.15 The factorization homology
∫
�
A is the left Kan extension

Disk2 A Cat

Mfld2
� 
→∫

� A

.

We may analogously define factorization homology internal to PrL which

we denote by
∫ PrL

�
.

Lemma 3.16 We have an equivalence of categories

∫̂

�

A ∼=
∫ PrL

�

Â.

Proof The claim follows since the functor −̂ : Cat → PrL preserves colimits.
��

By construction we have SkCatA(D) ∼= A. Cooke has shown that
SkCatA(−) satisfies excision and thus it coincides with factorization homol-
ogy.

Theorem 3.17 ([33]) There is an equivalence of categories

SkCatA(�) ∼=
∫

�

A.

We denote

ZA(�) =
∫ PrL

�

Â ∼= ̂SkCatA(�),

where the second equivalence is provided by Theorem 3.17 and Lemma 3.16.
The functor ZA(−) was studied extensively in [8,9].

3.4 Internal skein algebras

Recall from Proposition 3.14 that D ∈ Mfld2 is naturally an algebra object.
Let Ann ⊂ R2 be the annulus obtained by removing the disk of radius 1/2
from the unit disk, both centered at the origin. It has the following algebraic
structures as an object of Ann:
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Fig. 4 The right Ann-module structure on �∗ ∈ Mfld2 comes from boundary insertions

• An algebra structure Ann
∐

Ann → Ann, where the second annulus is put
inside the first one.

• An algebra map D → Ann given by including the disk on the negative
x-axis.

• Amap Ann
∐

D → D given by inserting the disk at the origin which gives
D a left Ann-module structure.

Suppose � ∈ Mfld2 is a connected oriented surface with a chosen embed-
ding x : D ↪→ �. Denote

�∗ = � \ D,

the surface obtained by removing the disk. We have an embedding

�∗ ∐
Ann ↪→ �∗

given by retracting away the boundary and including in a copy of the annulus,
see Fig. 4. This gives �∗ ∈ Mfld2 the structure of a right Ann-module. In
particular, it is a rightD-module via the algebra mapD → Ann defined above.

On the level of skein categories we obtain a rightA-module category struc-
ture on SkCat(�∗). Let

P : A −→ SkCatA(�∗)

be the functor given by the action of A ∼= SkCatA(D) on 1 ∈ SkCatA(�∗).
Recall (see Lemma 2.7) that an algebra object in Â is the same as a lax

monoidal functor Aop → Vect.

Definition 3.18 Let � be a surface as above. The internal skein algebra of
�∗ is the functor

SkAlgintA (�∗) : Aop −→ Vect
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given by V 
→ HomSkCatA(�∗)(P(V ), 1). It has a lax monoidal structure

HomSkCatA(�∗)(P(V ), 1) ⊗ HomSkCatA(�∗)(P(W ), 1)

−→ HomSkCatA(�∗)(P(V ⊗ W ), 1)

given by stacking theW -labeled skein on top of the V -labeled skein, see Fig. 5.

Remark 3.19 UnpackingDefinition 3.18,wemaywrite the internal skein alge-
bra as a coend,

SkAlgintA (�∗) =
∫ X∈A

HomSkCatA(�∗)(P(X), 1) ⊗ X.

The formula becomes more explicit if we suppose A has a fiber functor.
In this case we may regard the objects X ∈ A as vector spaces via the fiber
functor. Applying the fiber functor to SkAlgintA (�∗) we obtain a vector space
consisting of skeins in �∗ × I which are allowed to end with some color X
at the distinguished boundary component of �∗ × {0}, and which carry an
additional label of a vector x ∈ X . The co-end relations state that a coupon
f : X → Y near the boundary can be absorbed into the boundary by acting
as a linear map X → Y .

Proposition 3.20 The internal skein algebra SkAlgintA (�∗) ∈ Â is the algebra
of Â-internal endomorphisms of the distinguished object 1 ∈ SkCatA(�∗).

Proof The action ofA on the distinguished object 1 ∈ SkCatA(�∗) is given by
P : A → SkCatA(�∗). Thus, the internal endomorphism algebra End(1) ∈ Â

is the functor Aop → Vect given by V 
→ HomSkCatA(�∗)(P(V ), 1) which is
exactly the internal skein algebra of �∗. ��
Remark 3.21 We use the term “internal skein algebra” to indicate that
SkAlgint(�∗) is an algebra internal to the monoidal category Â. By Propo-
sition 3.20 it is isomorphic to the moduli algebra A�∗ from [8, Definition
5.3].

Remark 3.22 Suppose A = TL is the Temperley–Lieb category. Let
F : TL → Vect be the monoidal functor given by the composite TL →
Repq(SL2) → Vect, where at the end we apply the obvious forgetful functor.
We denote by the same letter F : T̂L → Vect the unique colimit-preserving
extension. We may write tautologically

SkAlgintTL(�∗) ∼=
∫ [n]∈TL

HomSkCatTL(�∗)(P([n]), 1) ⊗ [n] ∈ T̂L.
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Fig. 5 The stacking of internal skeins defines an algebra structure

In particular, its underlying vector space is

F(SkAlgintTL(�∗)) ∼=
∫ [n]∈TL

HomSkCatTL(�∗)(P([n]), 1) ⊗ F([1])⊗n ∈ Vect.

We see that this is exactly the stated skein algebra introduced in [32,63]
(see also a related definition of relative skein algebras of [64]). Namely,
HomSkCatTL(�∗)(P([n]), 1) is the vector space of skeins in �∗ × [0, 1] which
have n endpoints on the boundary disk D ↪→ �∗ in�∗ ×[0, 1]; each endpoint
is labeled by a vector in F([1]) which is two-dimensional.

Remark 3.23 In particular, the above discussion produces an isomorphism
between the stated Kauffman skein algebra of a punctured surface, and the
Alekseev-Grosse-Schomerus moduli algebra. After the present paper first
appeared on the arXiv, Matthieu Faitg independently constructed such an iso-
morphism in [42]. Shortly after that, Benjamin Haïoun gave in [54] an explicit
description of the isomorphism between the internal skein algebra and the
stated skein algebra, as asserted in the preceding remark.

Remark 3.24 The skein algebraSkAlgA(�∗)of�∗ is the valueofSkAlgintA (�∗)
on 1 ∈ A, in other words its 1-multiplicity space, or subalgebra of invariants.

Let us now relate internal skein algebras to skein categories. We have a
functor

SkCatA(�∗) −→ Â

given by X 
→ HomSkCatA(�∗)(P(−), X). As for internal skein algebras, we
have a stacking morphism

HomSkCatA(�∗)(P(V ), 1) ⊗ HomSkCatA(�∗)(P(W ), X)

−→ HomSkCatA(�∗)(P(V ⊗ W ), X).
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In other words, we obtain a functor

SkCatA(�∗) −→ LModSkAlgintA (�∗)(Â).

The following statement follows from [8, Theorem 5.14].

Proposition 3.25 The functor

SkCatA(�∗) −→ LModSkAlgintA (�∗)(Â)

induces an equivalence

ZA(�∗) = ̂SkCatA(�∗) ∼= LModSkAlgintA (�∗)(Â).

Suppose now N is a compact oriented 3-manifold with ∂N ∼= �. The
relative skein module defines a functor SkModA(N , −) : SkCatA(�)op →
Vect which we can restrict to a functor SkCatA(�∗)op → Vect. Using the
equivalence ̂SkCatA(�∗) ∼= LModSkAlgintA (�∗)(Â) given by Proposition 3.25

we thus obtain a SkAlgintA (�∗)-module. Let us describe it explicitly.

Definition 3.26 Let N be a 3-manifold as above. The internal skein module
of N is the functor

SkintA (N ) : Aop −→ Vect

given by sending V 
→ SkModA(N ,P(V )). It is a left SkAlgintA (�∗)-module
via the map

HomSkCatA(�∗)(P(V ), 1) ⊗ SkModA(N ,P(W )) −→ SkModA(N ,P(V ⊗ W ))

given by composing the skeins in �∗ × [0, 1] with skeins in N .

In other words, the internal skein module is given by considering skeins in
N which allow to end on D ⊂ Ann ⊂ �∗ ⊂ � ∼= ∂N with label V ∈ A. In
particular, the ordinary skein module is recovered as

SkA(N ) ∼= SkintA (N )(1).

In a similar way, if N is a 3-manifold with ∂N ∼= �̆, using Lemma 3.4 we
define the internal skein module of N to be

V 
→ SkModA(N ,P(V ∗))

which is a right SkAlgintA (�∗)-module.
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Fig. 6 The internal skein
sV,W, f

3.5 Skein category of the annulus

We have defined the annulus as Ann = D\D, so it makes sense to consider its
internal skein algebra. Consider a pair of representations V,W ∈ A together
with a morphism f : V ⊗ W → 1. We obtain a skein

sV,W, f ∈ HomSkCatA(Ann)(P(V ⊗ W ), 1)

given by going once around the hole and applying f , see Fig. 6.
For another object X ∈ A we have a composition map

HomA(X, V ⊗ W ) ⊗ HomSkCatA(Ann)(P(V ⊗ W ), 1)

−→ HomSkCatA(Ann)(P(X), 1).

Thus, applying it to the skein sV,W, f we obtain a map

HomA(X, V ⊗ W ) −→ HomSkCatA(Ann)(P(X), 1).

It is natural in V and W , so we obtain a morphism

F =
(

colim
V,W∈A, f : V⊗W→1

V ⊗ W

)
−→ SkAlgintA (Ann).

It is easy to see that it is in fact a morphism of algebras. The following follows
from [8, Corollary 6.4].

Proposition 3.27 The map F → SkAlgintA (Ann) is an isomorphism.

Combining Propositions 3.27 and 3.25, we obtain the following statement.

Corollary 3.28 We have a natural equivalence of categories

ZA(Ann) = ŜkCatA(Ann) ∼= HC(A).
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We leave it to the reader to check that the monoidal structure on HC(A),
the monoidal functor A → HC(A) and the left HC(A)-module structure on
Â defined in Sect. 2.5 go under the above equivalence to the corresponding
algebraic structures defined on skein categories in Sect. 3.4.

Using the above description of the annulus skein category, we can compute
the skein category of a closed surface. Suppose, as before, that � is a surface
with a chosen disk embeddingD ↪→ � and�∗ = � \D. As we have observed
in Sect. 3.4, SkCatA(�∗) is naturally a right SkCatA(Ann)-module. Therefore,
combining Corollary 3.28 and Proposition 2.32 we obtain a quantum moment
map

μ : F −→ SkAlgintA (�∗). (2)

In particular, it makes sense to talk about strongly equivariant SkAlgintA (�∗)-
modules.

Proposition 3.29 We have a natural equivalence of categories

ZA(�) = ŜkCatA(�) ∼= LModSkAlgintA (�∗)(Â)str.

Proof We have a decomposition� = �∗∪AnnD. Therefore, by Theorem 3.17
we have an equivalence of categories

SkCatA(�) ∼= SkCatA(�∗) ⊗
SkCatA(Ann)

A.

Passing to free cocompletions and using Corollary 3.28 we obtain an equiv-
alence

ZA(�) ∼= ZA(�∗) ⊗
HC(A)

Â.

From Proposition 3.25 we get an equivalence

ZA(�) ∼= LModSkAlgintA (�∗)(Â) ⊗
HC(A)

Â.

The claim then follows from Proposition 2.36. ��

3.6 Skein algebras of surfaces

Let � be a closed oriented surface of genus g and let �∗ = � \ D denote
the surface obtained by removing some disk in �. Then �∗ has a “handle and
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Fig. 7 The handle-and-comb decomposition of the once-punctured genus one surface, embed-
ded on the boundary of the genus one handlebody

comb” presentation with 2g handles, see Fig. 7. Each handle determines an
embedding Ann ↪→ �∗ and hence an algebra map F → SkAlgintA (�∗). Thus,
we obtain a map

F⊗2g −→ SkAlgintA (�∗)

of objects in Â. The following is shown in [8, Theorem 5.14].

Proposition 3.30 The map

F⊗2g → SkAlgintA (�∗)

defined above is an isomorphism.

Consider the ring k = C�h̄� and let A = Repfdq (G) with q = exp(h̄). Then
SkAlgintA (�∗) can be considered as an algebra object in vector spaces. The
following claim follows from [8, Section 7.2].

Proposition 3.31 SkAlgintA (�∗) is a flat deformation quantization of G2g with
respect to the Fock–Rosly Poisson bracket [45].

Let

DA = SkAlgintA (T 2 \ D)

be the internal skein algebra in genus 1.
Writing a genus g surface as a connected sum of tori, we get an isomorphism

of algebras

D⊗g
A

∼= SkAlgintA (�∗),

where on the left we consider the braided tensor product of the algebras DA.
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3.7 Handlebody modules

Consider an embedding � ↪→ R3 and let H be its interior. So, H is a handle-
body with ∂H ∼= �. In particular, it defines a relative skein module

SkModA(H) : SkCatA(�)op −→ Vect.

As usual, we choose an embedded disk on� and set�∗ = �\D. As explained
in Definition 3.26 we can restrict SkModA(H) to SkCatA(�∗)op and obtain a
module Skint(H) for the internal skein algebra SkAlgintA (�∗) in Â. In Sect. 3.6
we gave an explicit description of SkAlgint(�∗). The goal of this section is to
compute the module Skint(H) in terms of this description.

Recall the handle and comb presentation of �∗ from Sect. 3.6. Such a
presentation determines a geometric symplectic basis (a system of a and b
cycles in �∗), i.e., 2g embeddings

a1, b1, . . . , ag, bg : Ann → �∗

such that for all i = 1, . . . , n the images of the ai (respectively bi ) are pairwise
disjoint, and the intersection of ai and bi is a single disk.

Moreover, we choose this system compatible with H in the sense that the
b-cycles are contractible in H .More precisely, we require that each embedding
bi extends to a disk in H :

Ann
bi

�∗

D H

Let � denote a disk with g smaller disks removed from its interior. The
a-cycles and the b-cycles can be combined to form two embeddings

a, b : � ↪→ �

See Fig. 8.
The following properties are immediate from the construction:

• The handlebody H deformation retracts onto a copy of a(�) × I . Indeed,
one may begin by considering the manifold with corners�× I then define
� to be some smoothing of its boundary.
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Fig. 8 The surface �, the embedding a : � ↪→ � and the right Ann-module structure

• The embedding b extends over a disk in H :

�
b

�∗

D H

With this set-up in hand, we may now proceed with our computation of
the handlebody module. Note that � naturally carries the structure of a right
D-module, by inserting disks inside the “outer” annulus in �. We can choose
the embeddings a and b to be compatible with the right D-module structure
on � and �∗.

We obtain the following maps on internal skeins:

• The embeddings a, b : � ↪→ �∗ determinemaps of internal skein algebras

i(a), i(b) : SkAlgintA (�) −→ SkAlgintA (�∗)

• The embedding of � ↪→ D determines a map of algebras

ε : SkAlgintA (�) −→ SkAlgintA (D) = 1

• The composite �∗ × I ↪→ � × I ↪→ (� × I ) ��×{1} H ∼= H determines
a map of left SkAlgintA (�)-modules

SkAlgintA (�∗) −→ SkintA (H).

The main result of this section is the following:
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Theorem 3.32 There is an isomorphism of left SkAlgintA (�∗)-modules in Â:

SkintA (H) ∼= SkAlgintA (�∗) ⊗
b,SkAlgintA (�),ε

1

The proof of this theorem will occupy the rest of this section.
Since the embedding�× I ↪→ H is a deformation retract, the skein theory

of the handlebody can be understood in terms of the internal skein algebra of
a(�).

Lemma 3.33 The composite

SkAlgintA (�)
a−→ SkAlgintA (�∗) → Skint(H)

is an isomorphism of left SkAlgintA (�)-modules in Â.

In particular, the map SkAlgintA (�∗) → SkintA (H) is surjective. In other
words:

Lemma 3.34 The SkAlgintA (�∗) module SkintA (H) is cyclic, generated by the
empty skein.

The next result uses that the b-cycles are contractible in the handlebody.

Lemma 3.35 The action ofSkAlgintA (�) on the empty skein inSkintA (H) via the
inclusion of b-cycles factors through ε. In other words, there is a commutative
diagram:

SkAlgintA (�∗) SkintA (H)

SkAlgintA (�)

b

ε
1

Thus, there is a well-defined morphism of left SkAlgintA (�∗)-modules

SkAlgintA (�∗) ⊗
b,SkAlgintA (�),ε

1 → SkintA (H)

Proof This follows immediately from the fact that the b-cycle embedding

� ↪→ � ↪→ H,

factors through the inclusion of a disk. ��

123



The finiteness conjecture for skein modules 341

It remains to show that the map f is a isomorphism. To this end, recall
from Proposition 3.30 that the inclusion of both a and b cycles determines an
isomorphism in Â

SkAlgintA (�) ⊗ SkAlgintA (�)
a⊗b−−→ SkAlgintA (�∗)

Note, that this is not a morphism of algebra objects; however, it is naturally a
morphism of right SkAlgintA (b(�))-modules. Thus, we obtain the following:

Lemma 3.36 The composite

SkAlgintA (�)
a−→ SkAlgintA (�∗) ⊗

b,SkAlgintA (�)

1

is an isomorphism in Â.

Proof of Theorem 3.32 By Lemma 3.35 there is an morphism

f : SkAlgintA (�∗) ⊗
b,SkAlgintA (�),ε

1 → SkintA (H)

The inclusion of a-cycles define a commutative diagram:

SkAlgintA (�)
∼ SkintA (H)

SkAlgintA (�∗) ⊗SkAlgintA (�) 1

f

By Lemma 3.33 the horizontal arrow is an isomorphism. By Lemma 3.36, the
lower right pointing arrow is an isomorphism. It follows that the upper right
pointing arrow is an isomorphism as required. ��

4 Analysis

This section treats the analytic ingredients in our proof—completions and
localizations in the formal parameter h̄, the finite-dimensionality of localized
relative tensor products, deformation quantization modules, and the reduction
to D-modules.

4.1 Completions and localizations

Definition 4.1 Let M be a C�h̄�-module. It is h̄-complete if the map M →
M̂ = lim M/h̄nM is an isomorphism.
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Definition 4.2 Let M be a complex of C�h̄�-modules. It is cohomologically
complete if

RHom(C((h̄)), M) = 0.

Remark 4.3 The definition of cohomological completeness above agrees with
the definition in [60] due to [60, Proposition 1.6.(b)]. Let us note in passing that
without additional assumptions on h̄-torsion, cohomological completeness of
a module M does not imply h̄-completeness, nor vice versa.

Let us collect from [60] a number of statements to prove that a module is
h̄-complete/cohomologically complete.

Proposition 4.4 Let A be a h̄-complete C�h̄�-algebra without h̄-torsion such
that A/h̄ is Noetherian. Let M be an A-module.

(1) A is Noetherian [60, Theorem 1.2.5.(i)], hence an A-module M is finitely
generated over A if, and only if, it is coherent as an A-module.

(2) If M is a finitely generated A-module then M is h̄-complete [60, Theorem
1.2.5.(iii)] and cohomologically complete [60, Theorem 1.6.1].

(3) Assume M has no h̄-torsion and is h̄-complete. Then M is cohomologically
complete ([60, Corollary 1.5.7], noting that condition (b) is vacuous in our
case).

(4) Assume M is cohomologically complete, and let N be a finitely generated
right A-module. Then the derived tensor product, N ⊗L

A M is cohomolog-
ically complete [60, Proposition 1.6.5].

We will also make crucial use of the following “cohomologically complete
Nakayama” theorem,

Theorem 4.5 ([79, Theorem 0.2], see also [60, Theorem 1.6.4]) Let M be a
cohomologically complete complex of C�h̄�-modules, such that Hi (M) = 0
for i > 0, and such that H0(C⊗C�h̄� M) is finitely generated. Then H0(M) is
finitely generated as a C�h̄�-module.

4.2 DQ modules

Let X be a smooth affine Poisson scheme and L1, L2 ⊂ X be smooth
Lagrangian subschemes. Here, by a Lagrangian subscheme of a Poisson
scheme we will mean a subscheme of an open symplectic leaf which is
Lagrangian there. In addition, fix their deformation quantizations:

• Let A be a h̄-complete C�h̄�-algebra without h̄-torsion which is a defor-
mation quantization of O(X).
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• Let M1 be a cyclic left A-module without h̄-torsion which is a deformation
quantization of O(L1).

• LetM2 be a cyclic right A-modulewithout h̄-torsionwhich is a deformation
quantization of O(L2).

In our applications, A will be an internal skein algebra SkAlgint(�g) for
a surface �g, while M1 and M2 will denote the internal skein module for
the standard handlebody Hg, and its twist Hγ

g by a mapping class group, as
prescribed by a Heegaard splitting of some 3-manifold. The remainder of the
section is devoted to the proof of the following result.

Theorem 4.6 The localization

(M2 ⊗
A
M1)[h̄−1]

is a finite-dimensional C((h̄))-vector space.

The proof of Theorem 4.6 will be modeled on the proof of constructibility
of the derived Hom of holonomic DQ modules in the analytic setting, see
[60, Theorem 7.2.3]. A priori the tools of [60] apply only to the analogue of
Theorem 4.6 for analytic DQ modules and their relative tensor products. We
will therefore repeat the outline of their proof in the algebraic context, which
uses the deformation to the normal cone of L1 to reduce the question to one
about D-modules on L1. Specifically, our definition of ÂL1 below is motivated
by the analogous construction in [60, Section 7.1].

Let us begin by choosing an isomorphism of vector spaces A ∼= O(X)�h̄�.
We obtain an associative multiplication on O(X)�h̄�, which by [19, Remark
1.7] we may assume is given by a power series of bidifferential operators.
Because a differential operator can only reduce the degree of vanishing along
L1 by a finite amount, the multiplication extends to the completion O(X̂ L1) ⊃
O(X) along L1. In this way we obtain a deformation quantization Â ⊃ A of
O(X̂ L1).

Recall that the A-module M1 is cyclic, i.e. we have a surjection A → M1.
In particular, the O(X)�h̄�-module structure on O(L1)�h̄� is also given by a
bidifferential operator. Therefore, the A-module structure on M1 extends to an
Â-module structure. Define

M̂2 = M2 ⊗
A
Â

which is a finitely generated Â-module. Then

M2 ⊗
A
M1 ∼= M̂2 ⊗̂

A
M1.
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Following [60, Section 7.1], we define J ⊂ Â[h̄−1] to be the kernel of

h̄−1 Â
h̄−→ Â → O(X̂ L1) → O(L1)

and denote by ÂL1 ⊂ Â[h̄−1] the C�h̄�-subalgebra generated by J .

Proposition 4.7 The inclusion ÂL1 ⊂ Â[h̄−1] induces an equality
ÂL1[h̄−1] = Â[h̄−1].

Thus, both ÂL1 and Â areC�h̄�-lattices in Â[h̄−1]. We can therefore reduce
questions about Â-modules to questions about ÂL1-modules.

Proposition 4.8 Suppose N1 is a finitely generated left ÂL1-module without
h̄-torsion together with an isomorphism of left Â[h̄−1]-modules N1[h̄−1] ∼=
M1[h̄−1] and similarly for N2. Suppose N2/h̄ ⊗ ÂL1/h̄

N1/h̄ is a finite-

dimensional C-vector space. Then (M̂2 ⊗ Â M1)[h̄−1] is a finite-dimensional
C((h̄))-vector space.

Proof Since ÂL1 is h̄-complete and without h̄-torsion, Claim (2) of Proposi-
tion 4.4 implies it is cohomologically complete. Since N1 is finitely generated
as an ÂL1-module, Claim (1) of Proposition 4.4 implies N1 is cohomologically
complete. Since N2 is finitely generated, Claim (3) of Proposition 4.4 implies
that the derived tensor product N2 ⊗L

ÂL1
N1 is cohomologically complete.

Since M = N2 ⊗L

ÂL1
N1 is concentrated in non-positive cohomological

degrees and since

H0(C
L⊗

C�h̄�
M) = N2/h̄ ⊗

ÂL1/h̄
N1/h̄

is assumed to be finite-dimensional as a C-vector space, the cohomologically
complete Nakayama Theorem 4.5 implies that

H0(M) = N2 ⊗̂
AL1

N1

is finitely generated as a C�h̄�-module. In particular,

(M̂2 ⊗̂
A
M1)[h̄−1] ∼= (M̂2[h̄−1]) ⊗

Â[h̄−1]
(M1[h̄−1])

∼= (N2[h̄−1]) ⊗
Â[h̄−1]

(N1[h̄−1]) ∼= (N2 ⊗̂
AL1

N1)[h̄−1].

is a finite-dimensional C((h̄))-vector space. ��
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4.3 Reduction to D-modules

In this section we work near a Lagrangian to reduce questions about DQmod-
ules to questions about ordinary D-modules. First, we will need the following
lemma.

Lemma 4.9 Let L be a smooth scheme and consider the completion T̂∗L of its
cotangent bundle along the zero section. Denote by i : L ↪→ T̂∗L the natural
embedding. Then the restriction map

i∗ : H•
dR (̂T∗L) −→ H•

dR(L)

on de Rham cohomology is an isomorphism.

Proof Indeed, the claim follows from [52, Proposition II.1.1] applied to X =
Z = L and Y = T∗L . ��
Theorem 4.10 (Lagrangian neighborhood theorem) Let X be an affine sym-
plectic scheme and L ⊂ X a smooth Lagrangian subscheme. Then there is a
symplectomorphism of formal symplectic schemes X̂L

∼= T̂∗L.

Proof By [28, Lemma 5.2] we may identify X̂ L
∼= N̂L as formal schemes.

Since L is Lagrangian, we may identify N̂L ∼= T̂∗L as formal schemes. Thus,
we obtain two symplectic structures on T̂∗L: ω0 coming from the cotangent
bundle andω1 coming from X̂ L . To prove the claim, we will useMoser’s trick.

By Lemma 4.9 the restriction map H2
dR (̂T∗L) → H2

dR(L) is an isomor-
phism. Therefore, ω1 − ω0 = dα. Moreover, since ω1|L = ω0|L , we may
arrange α so that α|L = 0. Consider the family of closed 2-forms

ωt = ω0 + tdα.

By assumption L ↪→ T̂∗L is isotropic for the whole family. So, to check that
ωt is symplectic, it is enough to check that ω�

t : TL → N∗
L is an isomorphism.

But it immediately follows from the fact that L is Lagrangian with respect to
ωt and α|L = 0.

Since ωt is symplectic, we may find a time-dependent vector field vt which
satisfies Moser’s equation ιvtωt = −α and which vanishes on L . We may
integrate this vector field to an isotopy ρt which by Moser’s equation satisfies
ρ∗
t ωt = const. In particular, ρ1 is an automorphism of T̂∗L preserving L such

that ρ∗
1ω1 = ω0. ��

Let D(L1) be the C-algebra of differential operators. It admits a filtration
given by the order of the differential operator. Consider the Rees algebra which
is a graded C[h̄]-algebra and complete it in the h̄-adic topology as well as
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with respect to the order filtration. We denote the completion by D̂h̄(L1). The
algebra D̂h̄(L1) is flat over C�h̄� and we have an isomorphism

D̂h̄(L1)/h̄ ∼= O(̂T∗L1)

of Poisson algebras. In particular, D̂h̄(L1) provides a deformation quantization
of T̂∗L1.

Proposition 4.11 There is an isomorphism of algebras

D̂h̄(L1) ∼= Â

lifting a symplectomorphism T̂∗L1 ∼= X̂ L1 .

Proof By [19, Theorem 1.8] (which is valid for formal symplectic varieties as
well) deformation quantizations Â of T̂∗L1 are classified by their periods

Per( Â) ∈ h̄H2
dR (̂T∗L1)�h̄�.

If B is a deformation quantization of T̂∗L1 which admits a module quan-
tizing L1 ⊂ T̂∗L1, by [13, Theorem 1.1.4, Lemma 5.3.5] we have

i∗Per(B) = −h̄c1(KL1)/2,

where c1(KL1) ∈ H2
dR(L1) is the first Chern class of the canonical bundle of

L1.
The algebras D̂h̄(L1) and Â are each deformation quantizations of T̂∗L1.

The D̂h̄(L1)-module O(L1)�h̄� and the Â-module M1 are each deformation
quantizations of the Lagrangian L1 ⊂ T̂∗L1. Hence, we have

i∗Per( Â) = −h̄c1(KL1)/2 = i∗Per(D̂h̄(L1)).

By Lemma 4.9 this implies that Per( Â) = Per(D̂h̄(L1)). Therefore, the two
deformation quantizations are isomorphic. ��

Unpacking the definitions, the lattice

ÂL1 ⊂ D̂h̄(L1)[h̄−1]

is generated by functions f and ṽ = h̄−1v for vector fields v. Therefore, we
obtain an isomorphism

ÂL1/h̄ ∼= D(L1).
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Remark 4.12 Note that ÂL1/h̄ ∼= D(L1) is noncommutative while Â/h̄ ∼=
O(̂T∗L1) is commutative. These are two different ways to take the h̄ → 0
limit of the algebra Â[h̄−1].
Proposition 4.13 In the setup of Section 3.2, there is an ÂL1-lattice N2 in the
Â[h̄−1]-module M̂2[h̄−1] such that the D(L1)-module N2/h̄ is holonomic.

Remark 4.14 In fact, as mentioned in [60, Lemma 7.1.12], the holonomicity
of N2/h̄ is independent of the choice of lattice. However, we will only need a
single such choice.

Remark 4.15 Let us remark that Proposition 4.13 is essentially a special case
of [60, Proposition 7.1.16]: the proofs in loc. cit are entirely algebraic in nature,
and use only standard homological properties of D-modules and DQ-modules
which hold as well in the algebraic setting as in the analytic. Because we
are only interested in the case when the support of M̂2 is Lagrangian, the
argument can be somewhat simplified, but otherwise applies nearly verbatim
in our setting.

We will require the following lemma concerning duality of Â-modules,
which is the analog of [60, Proposition 2.3.11] in our setting (see also [58,
Theorem 2.6.6 & D.4.3]).

Lemma 4.16 The cohomology of the complex of Â-modules

RHom Âop(M̂2, Â
op)

is concentrated in degree d = dim(X)/2. Moreover, we have an isomorphism
of Âop-modules

M̂2 ∼= Extd
Â
(M ′, Â),

where M ′ is the finitely generated Â-module defined by

M ′ = Extd
Âop(M̂2, Â

op).

Proof The proof of this statement found in [60, Proposition 2.3.11] applies
essentially verbatim in our situation, after replacing the sheaf ofC�h̄�-algebras
AX with the C�h̄�-algebra Â. The key ingredient is that the corresponding
statements are true at the classical level (i.e. taking h̄ = 0), which one can
see by taking a Koszul resolution (locally) for O(L2) as a O(X)-module, and
completing at L1. ��
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Proof of Proposition 4.13 Note that the results of Lemma 4.16 remain true
after inverting h̄, as localization is exact. Thus we can write

M̂2[h̄−1] ∼= Extd
Â[h̄−1](M

′[h̄−1], Â[h̄−1]),

The argument now runs in parallel to the second paragraph of the proof of
[60, Proposition 7.1.16] (the reduction in the first paragraph is taken care of
by Lemma 4.16).

Choosing an ÂL1-lattice N ′ of M ′[h̄−1], we obtain a right ÂL1-module

N ′′ := Extd
ÂL1

(N ′, ÂL1),

such that N ′′[h̄−1] ∼= M̂2[h̄−1]. In particular, we have a morphism N ′′ →
M̂2[h̄−1] andwe define N2 to be the image,which is an ÂL1-lattice of M̂2[h̄−1].
In particular, we have a surjection N ′′/h̄ → N2/h̄ of D(L1)-modules, so

the claim follows once we show that N ′′/h̄ is holonomic (as holonomicity
is preserved by quotients). But N ′′/h̄ naturally embeds as a submodule of
ExtdD(L1)

(N ′/h̄,D(L1)) which is holonomic by [58, Theorem 2.6.7], and thus
N ′′/h̄ is also holonomic as required. ��

We can now finish the proof of the main theorem of the section.

Proof of Theorem 4.6 By Proposition 4.13 choose ÂL1-lattices N1 and N2 for
M1 and M̂2 respectively such that N ′

1 = N1/h̄ and N2/h̄ are holonomicD(L1)-
modules. Consider the left D(L1)-module N ′

2 = RHomD(L1)op(N2/h̄,D(L1))

which is also holonomic by [58, Corollary 2.6.8]. By [58, Lemma 2.6.13] we
have

N2/h̄ ⊗L

D(L1)
N1/h̄ ∼= RHomD(L1)(N

′
2, N

′
1).

Applying [58, Corollary 2.6.15], by preservation of holonomicity ( [58, The-
orem 3.2.3]) this is a bounded complex with finite-dimensional cohomology.
Therefore, by Proposition 4.8 (M̂2⊗ Â M1)[h̄−1] is a finite-dimensionalC((h̄))-
vector space. ��

5 Applications

This section brings together the ingredients from the preceding three sections,
to prove our main results.
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5.1 Relative tensor product

Our first goal is to prove the tensor product formula for the skein module of a
3-manifold.

Let � be a connected closed oriented surface and N1, N2 are oriented 3-
manifolds with boundary such that ∂N1 ∼= � and ∂N2 ∼= �̆ and let

M = N2 ∪� N1.

Choose a disk embedding D ↪→ � and let �∗ = � \ D. Let A denote
SkAlgintA (�∗), equipped with its quantum moment map (2).

Theorem 5.1 There is an isomorphism

SkA(M) ∼= HomÂ

(
1,SkintA (N2) ⊗

A
SkintA (N1)

)
.

Proof Let

SkModA(N1) : SkCatA(�)op → Vect, SkModA(N2) : SkCatA(�) → Vect

be the relative skein modules for N1 and N2. By the TFT property (see Theo-
rem 3.5) we have

SkA(M) ∼= SkModA(N2) ⊗
SkCatA(�)

SkModA(N1).

By Example 2.8 the relative tensor product defines a nondegenerate pairing
between ̂SkCatA(�) = Fun(SkCatA(�)op,Vect) andFun(SkCatA(�),Vect).
By Proposition 2.40 the functor

X1, X2 
→ HomÂ(1, X2 ⊗
A
X1)

defines a nondegenerate pairing between LModA(Â)str and RModA(Â)str. In
particular, it is enough to restrict all modules from � to �∗.

By definition the internal skein modules SkintA (N1) and SkintA (N2) are the
images of SkModA(N1) and SkModA(N2) under the functors

̂SkCatA(�∗) → LModA(Â), ̂SkCatA(�∗)op → RModA(Â)

which send P(V ) 
→ A ⊗ V and P(V ) 
→ V ∗ ⊗ A respectively.
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The claim is reduced to the commutativity of the diagram

̂SkCatA(�∗)op ⊗ ̂SkCatA(�∗)

Vect

RModA(Â) ⊗ LModA(Â)

It is enough to check it on the generating objectsP(V ),P(W ) for V,W ∈ A.
Their image under the evaluation pairing on ̂SkCatA(�∗) is

HomSkCatA(�∗)(P(V ),P(W )) ∼= HomÂ(V,PRP(W ))

∼= HomÂ(V, A ⊗ W ).

Similarly, their image under the evaluation pairing on LModA(Â) is

HomÂ(1, (V ∗ ⊗ A) ⊗
A

(A ⊗ W )) ∼= HomÂ(1, V ∗ ⊗ A ⊗ W )

which is equivalent to the previous pairing using rigidity of A. ��
In the case when Â has a trivial Müger center, the claim simplifies.

Corollary 5.2 Suppose Â has a trivial Müger center. Then there is an isomor-
phism

SkA(M) ∼= SkintA (N2) ⊗
A
SkintA (N1) ∈ ZMüg(Â) ∼= Vect.

Proof Indeed, by Proposition 2.38

SkintA (N2) ⊗
A
SkintA (N1) ∈ ZMüg(Â) ∼= Vect

since both internal skein modules are strongly equivariant. The claim then
follows follows from Theorem 5.1 since the unit object of A is simple. ��

In the case of a Heegaard splitting, the relative tensor product formula
simplifies.
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Proposition 5.3 Suppose N1, N2 are handlebodies. Then there is an isomor-
phism

SkA(M) ∼= SkA(N2) ⊗
SkAlgA(�)

SkA(N1).

Proof As before, by the TFT property (Theorem 3.5) we have

SkA(M) ∼= SkModA(N2) ⊗
SkCatA(�)

SkModA(N1).

By Lemma 3.34 the handlebody skeinmodules are cyclic. In particular, they
are generated by invariants. The claim then follows from Proposition 2.15. ��

5.2 Skein category of the sphere

In this section we compute the skein category of S2.

Proposition 5.4 The free cocompletion of the skein category SkCatA(S2) is
equivalent to the Müger center ZMüg(Â).

Proof Choose a disk embedding D ↪→ S2 and let D
out = S2 − D. Then by

Proposition 3.29 we may identify

ZA(S2) ∼= LModSkAlgintA (Dout)(Â)str.

The internal skein algebra SkAlgintA (Dout) is obtained by monadic reconstruc-
tion from the forgetful functor SkCatA(Dout) → A = SkCatA(Dout) which
is the identity. Therefore, SkAlgintA (Dout) ∼= 1. The quantum moment map
μ : F → 1 is the map SkAlgintA (Ann) → SkAlgintA (Dout) obtained by embed-
ding Ann ↪→ D

out. This embedding sends the skein sV,W, f (see Fig. 6) to a
simple skein connecting V and W via f . Thus, the moment map in this case
is simply the counit ε : F → 1.

Thus,

ZA(S2) ∼= LMod1(Â)str.

An objectM ∈ Â is a strongly equivariant 1-module iff trivr (M) has the trivial
left F-module structure. By Proposition 2.27 it is equivalent to the condition
that M lies in the Müger center of Â. ��

Recall from Definition 2.9 the notion of the zeroth Hochschild homology
of a category.

123



352 S. Gunningham et al.

Lemma 5.5 Let � be a closed oriented surface. Then

SkA(� × S1) ∼= HH0(SkCatA(�)).

Proof Considering the cylinder � × [0, 1] as a bordism �
∐

�̆ → ∅, the
relative skein module provides an evaluation pairing

ev : SkCatA(�) ⊗ SkCatA(�̆) −→ Vect.

Similarly, considering the same cylinder as a bordism ∅ → �̆
∐

� we obtain
a coevaluation pairing

coev : SkCatA(�̆) ⊗ SkCatA(�) −→ Vect.

Thus, SkA(� × S1) is given by the categorical dimension of SkCatA(�)

which by Remark 2.10 coincides with the zeroth Hochschild homology. ��
Let us nowpresent some corollaries of the computation of the skein category

of the sphere.

Corollary 5.6 For q not a root of unity the G-skein module SkG(S2 × S1) is
one-dimensional.

Proof For q not a root of unity the Müger center of Repq(G) is trivial (see
Proposition 2.20), i.e.

ZMüg(Repq(G)) ∼= Vect.

Therefore, by Proposition 5.4 we get SkCatG(S2) ∼= Vect for q not a root of
unity. Thus, by Lemma 5.5 SkG(S2 × S1) is one-dimensional. ��
Corollary 5.7 Let N1 and N2 be 3-manifolds. For q not a root of unity we
have

SkG(N2�N1) ∼= SkG(N2) ⊗ SkG(N1).

Proof Let B3 be the three-ball and denote N ′
1 = N1 \ B3 and N ′

2 = N2 \ B3.
By the TFT property (Theorem 3.5) we have

SkG(N2�N1) ∼= SkModG(N ′
2) ⊗SkCatG(S2) SkModG(N ′

1).
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By Propositions 5.4 and 2.20 ̂SkCatG(S2) ∼= Vect. In particular, any
SkCatG(S2)-module is generated by invariants. Thus, by Proposition 2.15 we
get

SkG(N2�N1) ∼= SkG(N ′
2) ⊗ SkG(N ′

1).

The skein module SkG(B3) is isomorphic to the skein algebra SkAlgG(D),
which is one-dimensional. Therefore, applying the above formula for N2 = S3

we get

SkG(N1) ∼= SkG(N ′
1).

Thus,

SkG(N2�N1) ∼= SkG(N2) ⊗ SkG(N1)

as required. ��

5.3 Finite-dimensionality

The goal of this section is to prove that the skein module of closed ori-
ented 3-manifold is finite-dimensional for generic values of the quantization
parameter. Recall that Repfdq (G) as a ribbon category is defined over the ring
k = Z[q1/d , q−1/d ]) for some integer d.

Theorem 5.8 Let M be a closed oriented 3-manifold. The G-skein module
SkG(M) is a finite-dimensional Q(q1/d)-vector space.

Proof The dimension of the Q(q1/d)-vector space SkG(M) ⊗Z[q1/d ,q−1/d ]
Q(q1/d) coincides with the dimension of the C((h̄))-vector space
SkG(M) ⊗Z[q1/d ,q−1/d ] C((h̄)), where q = exp(h̄). Denote by Repfdh̄ (G) the
category of representations of the quantum group over k = C�h̄�, where each
representation is a free k-module of finite rank. From now on we will drop the
subscript Repfdh̄ (G) from our notations for skein modules and skein categories.

Choose a Heegaard splitting of M . Then we get a closed oriented surface �

of genus g, a handlebody H such that ∂H ∼= � and an orientation-preserving
diffeomorphism σ : � → �, so that

M ∼= H̆
∐
�

H.

Choose a disk embedding D ↪→ � and let �∗ = � \ D. Without loss of
generality we may assume that σ restricts to an orientation-preserving diffeo-
morphism of �∗.
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Let Skint(H) be the internal skein module of H , which is a strongly equiv-
ariant left SkAlgint(�∗)-module in Â.

Thediffeomorphismσ : �∗ → �∗ defines an automorphismofSkAlgint(�∗)
(denoted by the same letter). Let Skint(H̆) be the internal skein module of H̆ ,
which is a strongly equivariant right SkAlgint(�∗)-module in Â. By Corol-
lary 5.2 we obtain an isomorphism

Sk(M)[h̄−1] ∼= σ(Skint(H̆)) ⊗
SkAlgint(�∗)

Skint(H)[h̄−1].

We will now apply the results of Sect. 4. As a Poisson scheme we take
X = G2g with the Fock–Rosly Poisson structure. Note that by [48, Theorem
2.14, Proposition 4.3] the open symplectic leaf of X is given by μ−1(G∗),
where the moment map μ : G2g → G is given by

μ(x1, y1, . . . , xg, yg) =
∏
i

[xi , yi ]

and G∗ ⊂ G is the big Bruhat cell.
By Proposition 3.31 SkAlgint(�∗) is a flat deformation quantization of

O(X). As an object of Reph̄(G), we may identify

SkAlgint(�∗) ∼= Oh̄(G)⊗2g.

Since Reph̄(G) is semisimple, we may identify

Oh̄(G) ∼=
⊕
V

V ∗ ⊗ V,

where V ranges over isomorphism classes of simple objects of Reph̄(G). Since
each V is free of finite rank as a k-module, we conclude that Oh̄(G) is h̄-
complete and has no h̄-torsion. In a similar way, SkAlgint(�∗) is h̄-complete
and has no h̄-torsion.

ByTheorem3.32Skint(H) ∼= (Oh̄(G))⊗g . In particular, it is h̄-complete and
without h̄-torsion. Moreover, it is a deformation quantization of L1 = Gg ⊂
G2g. The image of L1 under the moment map is 1 ∈ G, so L1 is contained in
the open symplectic leaf of G2g. As L1 is coisotropic and half-dimensional, it
is Lagrangian. In a similar way, L2 = σ(Gg) is also Lagrangian. We conclude
that

σ(Skint(H̆)) ⊗
SkAlgint(�∗)

Skint(H)[h̄−1]

is a finite-dimensional C((h̄))-vector space using Theorem 4.6. ��
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Corollary 5.9 The Kauffman bracket skein module Sk(M) is a finite-
dimensional Q(A)-vector space.

Proof By Proposition 3.10 we may identify Sk(M) ∼= SkSL2(M) as Q(A)-
modules, where q = A2. The claim then follows from Theorem 5.8. ��

6 Discussion

In this section we collect some remarks about how our results fit in the context
of topological field theory, character theory and instanton Floer homology for
complex groups. We then discuss an approach for the computation of skein
modules using computer algebra.

6.1 Topological field theory

In this paper we have used Walker’s skein 3-2 TFT for A a ribbon category to
decomposeA-skein modules on 3-manifolds in terms of a Heegaard splitting.
Let us mention some related topological field theories.

(1) Walker’s skein TFT for an arbitrary ribbon category is not defined on gen-
eral 4-manifolds (however, the main result of this paper, Theorem 5.8, is
that it is defined on 4-manifolds of the form S1 × M3). If we takeA to be a
modular tensor category, the theory becomes the Crane–Yetter–Kauffman
TFT [31]. In fact, in the modular case the TFT is invertible, i.e. it assigns
nonzero numbers to closed 4-manifolds, lines to closed 3-manifolds and so
on. For example, one may take the modular tensor category associated to
the quantum group Uqg at a root of unity. In that setting, the 4-dimensional
Crane–Yetter–Kauffman TFT carries a boundary theory given by the 3-
dimensional Witten–Reshetikhin–Turaev TFT, a mathematical incarnation
ofChern–Simons theory for the compact formofG. It seems natural to view
Walker’s TFT associated to the ribbon category Repq(G) with q generic
in the context of analytically continued Chern-Simons theory as discussed
in [95].

(2) Thework [18] constructs a 3-2-1-0 TFT for an arbitrary rigid braided tensor
category. It is conjectured there that for semi-simple ribbon categories
their construction coincides withWalker’s 3-2 TFT. This conjecture is now
proved at the level of surfaces in [33]. However it still remains to compare
the functors defined in [18] via invocation of the cobordism hypothesis with
the concrete formulas from relative skein modules, and it also remains to
exhibit Walker’s skein category approach as defining a fully local 3-2-1-0
TFT (in which case one might hope to invoke the uniqueness statement in
the cobordismhypothesis).We expect that the techniques of blob homology
[74] and the β version of factorization homology [3] might be useful to
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construct such an extension. We regard these as interesting directions of
future inquiry. Note that an arbitrary ribbon category is not 4-dualizable, so
it does not define a fully extended 4-dimensional TFT. To see this, consider
the case A = Repfdq (SL2). Then SkCatSL2(T

2) is not 2-dualizable since
SkAlg(T 2) ∼= HomSkCatSL2 (T 2)(1, 1) is infinite-dimensional.

(3) Onemay also consider the derived version of the TFT defined in [18] which
to a point assigns a version of the derived category of representations of
the quantum group. We believe that it is still 3-dualizable, so it should
assign complexes to closed 3-manifolds which one may view as “derived
skein modules”. However, we expect that for generic q the derived skein
modules are unbounded complexes (i.e. infinite-dimensional), as opposed
to the non-derived version.

(4) Compactifying the 3-2-1-0 TFT for Repq(G) on the circle, we obtain a
2-1-0 TFT which assigns to the point HCq(G), the monoidal category
of q-Harish–Chandra bimodules (we refer to this as the q-G-character
theory). This theory has a degeneration (the G-character theory) where
we replace HCq(G) by HC(G), the monoidal category of Harish–Chandra
bimodules. The derived version of this TFT was studied in [14,26]. See
Sect. 6.2 below for further details.

(5) Kapustin and Witten [62] have studied a topological twist (first described
by Marcus in [71]) which is parametrized by a number t ∈ CP1 of the
4d N = 4 supersymmetric Yang–Mills theory (for a compact form of a
complex simple simply-connected group G) with complexified coupling
constant τ . They have shown that the corresponding topological field theory
only depends on a combination of t and τ

� = τ + τ

2
+ τ − τ

2

(
t − t−1

t + t−1

)
∈ CP1

and that the S-duality in the Yang–Mills theory after the twist is related to
the geometric Langlands duality. We refer to [41] for a study of the spaces
of classical solutions in this topological field theory from the perspective
of derived algebraic geometry. We expect that for generic � the space of
states on a 3-manifold M in this TFT is related to the derived G-skein
module for q = exp

(
π i

�rG

)
, where rG is the lacing number (the ratio of

the norm squared of the long root to that of the short root).
(6) Vafa andWitten [92] have studied another topological twist (first described

by Yamron in [96]) of the N = 4 supersymmetric 4d Yang–Mills theory.
The restriction of theVafa–WittenTFTand the t = 0Kapustin–WittenTFT
to 3-manifolds coincide (see [83, Section 5.3] and [40, Example 4.32]), so
the previous remark applies to the Vafa–Witten theory as well.
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6.2 Character theory

It was shown in [14] that the assignment of the derived category of G-Harish–
Chandra bimodules to a point defines an oriented 2-1-0 TFT which to a closed
2-manifold � assigns the Borel–Moore homology of the G-character stack.
By the remarks in Item 4 above one may thus consider the skein module
SkG(� × S1) as a q-deformation of the zeroth Borel-Moore homology of
LocG(�). It is natural to apply the same methods to study both invariants.

An interesting feature of theG-character theory (respectively q-G-character
theory) is that it admits an additional continuous parameter, arising from the
spectrum of the commutative algebra U(g)G (respectively Oq(G)G) acting on
Harish–Chandra bimodules. For example, fixing the generalized eigenvalues in
the character theory to 0 ∈ h/W = Spec(U(g)G) gives a theory (the unipotent
character theory) which assigns the finite Hecke category to a point and the
category of Lusztig’s unipotent character sheaves to a circle. Studying the q-
analogue of these objects is an interesting area for further study (see [49] for
a discussion of q-character sheaves).

The theories obtained by fixing the eigenvalues in the character theory
appear to enjoy an extra degree of finiteness. One indicator of this is given
by the truncated 2-sided cell fusion categories of [12,67] (note that fusion
categories define 3-2-1-0 TFTs [37]). Understanding the character theory as
a family over this space of parameters is the subject of an ongoing project of
the first author with David Ben-Zvi. An appropriate q-analogue of these ideas
suggests that one can compute the dimensions of the skein modules for mani-
folds of the form � × S1 using the 3-manifold invariants associated to certain
fusion categories. It would be interesting to compare these predictions with
the lower bounds for the dimensions of such skein modules given by Gilmer
and Masbaum [50].

6.3 Complexified instanton Floer homology

Let � be a closed oriented surface. Then the skein algebra SkAlg(�) is a
deformation quantization of the Goldman (equivalently, Atiyah–Bott or Fock–
Rosly) Poisson structure on the character variety LocSL2

(�) [11,89], so that
SkAlg(�)|A=−1 ∼= O(LocSL2

(�)). In a similar way, we may view the skein
category SkCat(�) as a deformation quantization of the 0-shifted symplectic
structure [80] on the character stack LocSL2(�), so that ̂SkCat(�)|A=−1 ∼=
QCoh(LocSL2(�)).

Now consider a Heegaard splitting M = N2 ∪� N1 of a closed oriented
3-manifold. The character stack LocSL2(M) in this case has a (−1)-shifted
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symplectic structure and the restriction maps

LocSL2(N1),LocSL2(N2) −→ LocG(�)

are 0-shifted Lagrangian, so that we have a derived Lagrangian intersection

LocSL2(M) ∼= LocSL2(N2) ×LocSL2 (�) LocSL2(N1).

It was shown by Bullock [24] and Przytycki and Sikora [78] that the A =
−1 specialization of the skein module Sk(M) is isomorphic to the algebra
of functions O(LocSL2(M)) on the character variety (equivalently, character
stack). Passing to the derived level, we may view the derived skein module as
a BV quantization [29, Section 7] of the (−1)-shifted symplectic structure on
the character stack LocSL2(M).

One model of such a BV quantization is constructed by Ben-Bassat, Brav,
Bussi and Joyce [7] given the choice of orientation of LocSL2(M) (which is
automatic in our context). Namely, using their results one may construct a
perverse sheaf P•(M) on the classical stack t0(LocSL2(M)). We expect that
the hypercohomology of this perverse sheaf is closely related to derived skein
modules (in fact, we expect such a relationship to hold for any G).

A version of this approach was realized by Abouzaid and Manolescu [6].
Namely, they consider a subset LocirrSL2

(�) ⊂ LocSL2
(�) of irreducible local

systems, which is a complex symplectic manifold. The image of the charac-
ter varieties of handlebodies LocSL2

(L1) and LocSL2
(L2) in LocSL2

(�) then
define Lagrangian subvarieties L1, L2 ⊂ LocirrSL2

(�), so that

LocirrSL2
(M) ∼= L2 ∩ L1.

Given two Lagrangians L1, L2 in a complex symplectic manifold X , Bussi
[25] has constructed a perverse sheaf on t0(L2 ×X L1) = L2 ∩ L1 which is
equivalent to the perverse sheaf of [7] on the derived Lagrangian intersection
L2 ×X L1. Using these results Abouzaid and Manolescu have constructed a
perverse sheaf P•(M) onLocirrSL2

(M)which they have shown is independent of
the Heegaard splitting of M . The relationship between the hypercohomologies
of P•(M) and P•(M) may thus be viewed as an SL(2,C)-version of the
Atiyah–Floer conjecture.

Abouzaid and Manolescu also define a framed version HP•
� (M) of their

construction, corresponding to the derived intersection of Lagrangians inside
the representation variety of the punctured surface. In forthcoming work of
the first and third named authors, we will establish an equivalence between
HP�(M) and the derived tensor product of internal skeinmodules as explained
in Remark 1.
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6.4 Computer algebra

Computers perform remarkablywell as algebraists. As topologists, less so. The
essential “3-dimensionality” in the definition of skein modules makes it very
difficult to use computer algebra to study them: computer algebra packages
are well equipped to work in one dimension—that is, to computing with non-
commutative associative algebras and their modules, bimodules, etc, but how
does one program into a computer a vector space spanned by links in a 3-
manifold?

The relative tensor product formula of Corollary 1 provides a relatively
straightforward and elementary algebraic “one-dimensional” algorithm for
computing skein modules, as well as a theoretical proof that said algorithm
terminates. To illustrate this and in order to generate new conjectures about
skein modules and their dimensions, we have written a program in MAGMA
to implement this algorithm. We have uploaded the source code here: http://
www.maths.ed.ac.uk/~djordan/skeins.
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