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Abstract In this paper, we study the stabilization problem of a disk beam structure with disturbance. Specif-
ically, the structure consists of a beam clamped at one end to the center of a rotating rigid disk, while the
other end is attached to a tip mass subject to a non-uniform bounded disturbance. We start the investigation by
designing the controller via the Active disturbance rejection control (ADRC) approach. The high gain extended
state observer (ESO) is first designed to estimate the disturbance, then the feedback observer-based controller
is designed to employ the estimation to cancel the disturbance effect. Furthermore, the well-posedeness of the
controlled system is proved using the semigroup theory. Using the Lyapunov method, the exponential stability
is proved. Finally, the performance of the control method is illustrated by simulation results.

Mathematics Subject Classification 70Q05 · 35D35 · 93B20 · 93D15

1 Introduction

From a practical point of view, external disturbances (e.g., temperature, wind, noise, and vibration) and inter-
nal uncertainties (e.g., unknown system parameters and model errors) are the commonly encountered factors
threatening the performance of flexible structures, which may cause various dangerous effects on the system
such as mechanical failure, and increase the control error and other undesirable effects [16,17,28,35,36]. Con-
sequently, considering control solutions for systems with uncertainties is of great importance in the industrial
control systems. Various control methods have been developed for controlling such systems, such as sliding
mode control (SMC) for nonlinear systems with disturbances [2,19], Lyapunov approach for beam systems
with boundary disturbance [22,23], internal model control for output regulation of systems with external dis-
turbance [33]. Unfortunately, most of these control approaches focus on the worst case scenario that makes
the controller rather conservative.

Since its introduction byHan [25], theActiveDisturbanceRejectionControl (ADRC) approach has become
a valid and practical control method, which attracts considerable attention due to its effectiveness against
external and internal uncertainties, as well as its practical simplicity. The basic framework of the ADRC
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approach can be summarized in its capability to online estimate the total disturbance of the system using state
observers, which are designed, specifically, to account for the class of the system model and the type of the
uncertainties as well. The estimation is, then, added to the feedback observer-based controller to enable real
time cancellation of the total disturbance at the start of each loop. With this approach, the control energy is
significantly reduced, which is confirmed bymany engineering practices [38], although the rigorous theoretical
analysis is still lacking. The numerous applications have been carried out in the last decade, [20,21] for the
disk-beam system, and [12,13,28] for the beam with tip mass system; moreover, the stabilization problems
of the wind-turbines subject to varying-frequency periodic load disturbances in [18], torsional plants with
sinusoidal uncertainties in [29], Seismically excited building structure in [34], and trajectory tracking problem
of a two-degree of freedom helicopter system in [37].

The rotating disk-beam systemwas introduced by Baillieul and Levi [4] to model someAerospace systems.
Then, Chentouf in [11], considered a rotating disk-beam-mass system which is a modified variant of that of
Bailleul and Levi in [4]. As in [11], we assume that the disk (D) rotates freely about the x-axis with a time
angular velocity and the beam (B) is clamped at the center of a disk and attached at its free end to a tip mass.
The motion of the beam is confined to a x–y plane perpendicular to the disk and all the deflections are assumed
to be parallel to the y-axis. The disk is supposed to rotate without friction. The system can be schematically
shown in Fig. 1 (Chen et al. [14]). This system arises in the study of aerospace engineering applications,
flexible robots arms and flexible marine risers. The system can be modeled as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρytt (x, t) + E I yxxxx (x, t) = ρω̄2(t)y(x, t), x ∈ (0, l), t > 0,
y(0, t) = yx (0, t) = 0, t > 0,
mytt (l, t) − E I yxxx (l, t) = u(t) + d(t), t > 0
J yxtt (l, t) + E I yxx (l, t) = r(t) + d0(t), t > 0,
d
dt

[
ω(t)(Id + ∫ l

0 ρy2(x, t)dx)
]

= T (t), t > 0,

y(x, 0) = y0(x), yt (x, 0) = y1(x), x ∈ (0, l),
ω̄(0) = ω̄0.

(1)

y represents the transverse displacement of the beam from its equilibriumstate (i.e., the x-axis), all the subscripts
on yx and yt denote the derivatives with respect to the position x and the time t variables, respectively. E I > 0
is the flexural rigidity, ρ > 0 is the mass per unit length of the beam, Id is the disk’s moment of inertia, m is
the mass of the tip mass, J is the moment of inertia of the tip mass and ω̄(t) is the angular velocity of the disk.
r(t) is the boundary moment control and u(t) is the boundary control force exerting to the tip mass. d0(t) and
d(t) are the unknown non-uniformly bounded disturbances affecting the tip mass at x = l. T (t) is the torque
control applied on the disk which is chosen as T (t) = λ(ω̄(t) − ω) where λ > 0 and ω is the equilibrium
point of ω̄(t).

In this paper, the dynamical term related to the mass is not neglected, but the dynamical term J yxtt (1, t)
is so small that one can ignore it. In physical terms, this correspond to the case where the mass attached to
the flexible beam, has high density. Furthermore, we assume that the angular velocity of a disk is constant
ω̄(t) = ω and only the control is acting on the shear force of the beam. Hereupon, the system is governed by
the following linear system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρytt (x, t) + E I yxxxx (x, t) = ρω2y(x, t), x ∈ (0, l), t > 0,
y(0, t) = yx (0, t) = yxx (l, t) = 0, t > 0,
mytt (l, t) − E I yxxx (l, t) = u(t) + d(t), t > 0,
y(x, 0) = y0(x), yt (x, 0) = y1(x), x ∈ (0, l).

(2)

The unknown external disturbance satisfies the following conditions:

Assumption 1.1 The disturbance d(t) is differentiable. Moreover, there exists two positive constantsC, δ > 0
such that

|d(t)|, |ḋ(t)| ≤ Ceδt , ∀t > 0. (3)

In recent past decades, there existed many publications that contributed to dealing with beam systems with
and without disturbance. Morgul [31] proved the exponential stability for an Euler-Bernoulli beam without a
mass at the end. Laousy and Chentouf [26] have proved the exponential stability for Euler-Bernoulli flexible
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Fig. 1 Disk-beam-mass system (Chen et al.[14])

beam with tip mass, which describes the Scole model in the sense that the moment of inertia at x = l is
neglected. This result is proved in [1,8] for the non-homogeneous beam. In other hand, when mytt (l, t) = 0
and the moment of inertia is accounted for, i.e., J > 0, the exponential stability is proved, in [5] for the
homogeneous beam. Guo et al. [22] have proved the exponential stability for an Euler-Bernoulli beam with
boundary disturbance. In turn, if a tip mass is attached at the free end with the moment of inertia of the mass
is neglected, the exponential stability was proved in [28]. Chen and Jiang [12] have proved the exponential
stability for an Euler-Bernoulli beam with mass and two disturbances affecting the tip mass. The exponential
decay is proved for the rotating disk beamwithoutmass and disturbance in [30]with a constant angular velocity.
In the other case of a time-varying velocity, the exponential stability is proved in [15,27] with static boundary
controls and in [6,9] with dynamic boundary controls. Similar achievement has been reached in [10] through
the consideration of a linear direct strain controls, and in [7] by means of nonlinear controls. For a rotating disk
beamwith mass and without disturbance, Chen et al. [14] proved the exponential stability when mytt (l, t) = 0.
This result is proved by Aouragh and Segaoui [3] when J yxtt (l, t) = 0. When m = 0 and based on a constant
gain for extended state observer (ESO), Guo and Wang [20] have proposed the feedback controller for the
rotating disk-beam systemwith boundary input disturbances withω(t) variable and proved that the closed-loop
system is exponentially stable when the disturbance and the derivative of disturbance are uniformly bounded,
this assumption is avoided in [24] by proposing to estimate the uncertainties by time-varying gain ESO for
the feedback control of a coupled heat and ordinary differential system subject to boundary control matched
disturbance. This approach was used in [21] for a rotating disk beam with time-varying angular velocity.

The aim of this paper is to eliminate the vibrations caused by the external disturbance located at the tip mass
of system (2). To this end, and since the disturbance d(t) and its derivative ḋ(t) are bounded by exponential,
we employ the ADRC approach. Indeed, we design an extended state observer (ESO) to track the disturbance
d(t), then, install the proposed control law which utilizes the generated estimation to cancel the effect of the
disturbance in real-time. Thus, stabilizing problem (2).

The paper is organized as follows. In Sect. 2, we design a controller using the ADRC approach. To this end,
we start by designing the state observer to track the boundary disturbance, then, we propose a control force
to employ the estimation generated by the ESO to eliminate the disturbance. In Sect. 3, after reformulating
the closed-loop system into an abstract evolution equation, we prove the well-posedness by the semigroup
theory. Sect. 4 is dedicated to the stability result using a suitable Lyapunov function candidate. Furthermore,

123



38 Arab. J. Math. (2023) 12:35–48

we conclude in Sect. 5 by providing simulation example to illustrate the validity of the theoretical results.
Finally, we give some concluding remarks in Sect. 6.

2 Feedback controllers via ADRC

The high gain extended state observer (ESO) is designed in this section, and the ESO objective is to estimate
the disturbance d(t) in real-time. First, we design the observer-based feedback control force of the following
form

u(t) = −αyt (l, t) + E Iβyxxxt (l, t) + v(t), (4)

where v(t) is a new control variable that will be determined later in this section, and α, β > 0 satisfy the
condition: αβ = m.

Now, by substituting the control form (4) into the third equation in (2), we obtain

βη̇(t) = d(t) − η(t) + v(t), (5)

where η is an auxiliary function, which has the following form

η(t) = −E I yxxx (l, t) + αyt (l, t). (6)

Next, to estimate the disturbance d(t) affecting the tip mass, we design the following extended state observer
for the ODE equation (5)

{
β ˙̂η(t) = −η̂(t) + v(t) + d̂(t) + (a(t) − 1)(η(t) − η̂(t)),

β
˙̂d(t) = a2(t)(η(t) − η̂(t)),

(7)

where the function a(t) is a time varying high gain function.
Furthermore, to prove the exponential stability of the closed-loop system, we assume that the high gain

function and its derivative are positive (i.e. a(t) > 0 and ȧ(t) > 0), and satisfies the following conditions

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

sup
t≥0

ȧ(t)

a(t)
= M0 < ∞,

lim
t→∞

eδt

a(t)
= 0,

lim
t→∞

|ḋ(t)|
a(t)

= 0,

(8)

where δ is the same constant in (3) and M0 is a positive constant.
It is worth mentioning that from (8), we can see that the high gain function a(t) is of exponential type.

Thus, there exists two constant θ and μ satisfying a(t) = μeθ t .
The following lemma gives the asymptotic behavior of the solutions of extended state observer (7).

Lemma 2.1 Let (η̂(t), d̂(t)), be the solution of (7). If the disturbance condition (3) as well as the high gain
function condition (8) hold, we have

lim
t→∞|η̂(t) − η(t)| = lim

t→∞|d(t) − d̂(t)| = 0, (9)

a2(t)|η̂(t) − η(t)|2 + |d(t) − d̂(t)|2 ≤ C2e−2(θ−δ)t , (10)

where δ < θ < M0, and C2 is some positive constant.

Proof Set the errors (η̃, d̃) as follows
{

η̃(t) = a(t)(η̂(t) − η(t)),
d̃(t) = d(t) − d̂(t).

(11)
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Then, the following ODEs can be easily obtained from (5) and (7)

⎧
⎪⎨

⎪⎩

˙̃η(t) = −a(t)

β
(η̃(t) + d̃(t)) + ȧ(t)

a(t)
η̃(t),

˙̃d(t) = a(t)

β
η̃(t) + ḋ(t).

(12)

Thus, (9) and (10) can be easily obtained according to Theorem 2.1 and Corollary 2.1 in [28]. �	
From (9), we know that d̂(t), is the estimations of the disturbance d(t). Now, let us return to the already
designed controller (4), setting v(t) = −d̂(t) yields

u(t) = −αyt (l, t) + E Iβyxxxt (l, t) − d̂(t). (13)

Therefore, system (2) becomes the following closed-loop system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρytt (x, t) + E I yxxxx (x, t) = ρω2y(x, t), x ∈ (0, l), t > 0,
y(0, t) = yx (0, t) = yxx (l, t) = 0, t > 0,
βη̇(t) = d(t) − η(t) − d̂(t), t > 0,
η(t) = −E I yxxx (l, t) + αyt (l, t), t > 0,

˙̃η(t) = −a(t)

β
(η̃(t) + d̃(t)) + ȧ(t)

a(t)
η̃(t), t > 0,

˙̃d(t) = a(t)

β
η̃(t) + ḋ(t), t > 0.

(14)

In the following sections, we discuss the well-posedness as well as the stability of the closed-loop system (14).

3 Formulation of the problem and the well-posedness of the closed-loop system (14)

This section is dedicated to the well-posedness of the closed-loop system (14). Clearly, if the existence and
uniqueness of the (y, η) variables is established, then the (η̃, d̃)-part from system (14) (i.e. the ESO system
(12)) admits a unique solution for any given initial value, since the Local Lipschitz condition of the right
side of system (12) ensure the local existence and uniqueness of a solution for (12). Furthermore, we already
established in Lemma 2.1 the convergence of said solution, which asserts two important results; from (9)
the local solution of system (12) never blows up, so the global solution exist; also, from (10) we have the
exponential stability of system (12). Therefore, the (η̃, d̃)-part is no longer a concern and can be neglected in
the following sections.

System (14), therefore, can be reduced to the following one

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρytt (x, t) + E I yxxxx (x, t) = ρω2y(x, t), x ∈ (0, l), t > 0,
y(0, t) = yx (0, t) = yxx (l, t) = 0, t > 0,
βη̇(t) = d̃(t) − η(t), t > 0,
η(t) = −E I yxxx (l, t) + αyt (l, t), t > 0.

(15)

Let V k
0 := {y ∈ Hk(0, l)/y(0) = yx (0) = 0} be the Sobolev spaces for k ∈ {2, 3, ...}. We define the state

space as

X := V 2
0 × L2(0, l) × R,

endowed with the new inner product

〈(y1, z1, η1), (y2, z2, η2)〉 =
∫ l

0
(E I y′′

1 y′′
2 − ρω2y1y2 + ρz1z2)dx + kη1η2, (16)
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where k >
β
α
. Then, norm induced by the last inner product is equivalent to the usual one (see [27]) provided

that

|ω| <
1

l2

√
12E I

ρ
. (17)

which is supposed to be valid throughout the paper. Then, we defined an unbounded linear operator A by

A

⎡

⎣
y
z
η

⎤

⎦ =
⎡

⎣

z
− 1

ρ
(E I yxxxx (x) − ρω2y(x))

− 1
β
η

⎤

⎦ , (18)

for (y, z, η)T ∈ D(A) where

D(A) = {(y, z, η)T ∈ V 4
0 × V 2

0 × R|yxx (l) = 0, η = −E I yxxx (l) + αz(l)}. (19)

Now, we can reformulate the system (15) as a first-order evolution equation

d

dt

⎡

⎣
y
z
η

⎤

⎦ = A

⎡

⎣
y
z
η

⎤

⎦ + F(t), (20)

with the initial condition (y0, z0, η0)T = (y0(x), y1(x), η(0)T , where

F(t) =
⎡

⎣

0
0

d̃(t)
β

⎤

⎦ . (21)

The following theorem concerns the well-posedness of system.

Theorem 3.1 The operator A generates a C0− semigroup of contraction eAt on the space X . Hence, the
system (20) is well-posed.

Proof First, we show that A is dissipative. Let u = (y, z, η)T ∈ D(A). Thanks to k >
β
α
, we have

〈Au, u〉 =
∫ l

0
E I (zxx yxx − yxxxx z)dx − E I yxxx (l)z(l) − k

β
η2,

= −E I yxxx (l)z(l) − k

β
η2,

=
(

1

2α
− k

β

)

η2 − α

2
z2(l) − E I 2

2α
y2xxx (l) ≤ 0.

Thus, A is dissipative in X .
Next, we prove thatR(λI − A) = X , for some λ > 0. It suffices to show that for any F = ( f1, f2, f3) ∈ X ,

there exits U = (y, z, η) ∈ D(A) such that (λI − A)U = F . That is equivalent to the following system:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

z = λy − f1,
ρλz + E I yxxxx (x) − ρω2y(x) = ρ f2,
βλη + η = β f3,
η = −E I yxxx (l) + αz(l),
y(0) = yx (0) = yxx (l) = 0.

(22)

Obviously, it suffices to find y. We multiply the second equation of (22) by a test function ϕ ∈ V 2
0 . A simple

integration by parts over [0, l] yields
∫ l

0
ρ(λ2 − ω2)yϕdx +

∫ l

0
E I yxxϕxx dx + αλy(l)ϕ(l)

=
∫ l

0
ρ( f2 + λ f1)ϕdx + ϕ(l)

(
β

1 + λβ
f3 + α f1(l)

)

,

(23)
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which can be written as �(y, ϕ) = L(ϕ), where �(y, ϕ) is a continuous coercive bilinear form on V 2
0 × V 2

0
and L(ϕ) is a continuous linear form on V 2

0 . Using Theorem of Lax-Milgram, there exists a unique solution
y ∈ V 2

0 of (23). Therefore, the operator A generates a C0−semigroup of contraction eAt on the space X by
the Lumer-Philips theorem (see [32]). Moreover, F(t) is local Lipschitz continuous on R+; thus, system (20)
is well-posed. �	

4 Exponential stability

In this section, we discuss the exponential stability of the closed-loop system (15) using a suitable Lyapunov
function. Before that we introduce the following important inequalities:

Lemma 4.1 (Young’s inequality) If a, b are non negative real numbers and p, q are positive numbers satisfying
the condition 1

p + 1
q = 1, then

ab ≤ 1

ζ p
a p + ζ

q
bq , f or any ζ > 0.

Lemma 4.2 Let w(x, t) be a function where x ∈ (0, l) and t ∈ (0, ∞) which satisfy the boundary conditions
w(0, t) = wx (0, t) = 0 for t ∈ (0,∞), then we have

|w(l, t)|2 ≤ l3

3

∫ l

0
|wxx (x, t)|2dx,

|wx (l, t)|2 ≤ l
∫ l

0
|wxx (x, t)|2dx,

∫ l

0
|w(x, t)|2dx ≤ l2

∫ l

0
|wx (x, t)|2dx .

∫ l

0
|w(x, t)|2dx ≤ l4

12

∫ l

0
|wxx (x, t)|2dx .

We define the energy functional E(t) of system (15) as follows:

E(t) = 1

2

∫ l

0
ρy2t (x, t) + E I y2xx (x, t) dx − ω2

2

∫ l

0
ρy2(x, t) dx + k

2
η2(t). (24)

Now, we consider the following functionals

⎧
⎪⎨

⎪⎩

V1(t) = 1
2

∫ l
0 ρy2t (x, t) + E I y2xx (x, t) dx − ω2

2

∫ l
0 ρy2(x, t) dx,

V2(t) = k
2η

2(t),

V3(t) = χ
∫ l
0 xyx (x, t)yt (x, t) dx,

(25)

where 0 < χ < min
{
1
σ
, α

l ,
E Iρ
l3αϑ

}
, σ = max

{
12l3
3E I , l

ρ
, 1

}
, k >

β2

m , and ϑ > 0 a positive constant to be fixed

later. Then, our Lyapunov function candidate has the following form

V (t) = V1(t) + V2(t) + V3(t). (26)

Next, we show the boundedness of (26) in the following lemma.

Lemma 4.3 Let the Lyapunov function candidate V (t) be defined as in (25) and (26). If the constant velocity
satisfies ω2 < 9E I

l4ρ
, then there exist two positive constant �1 and �2, where

0 < �1(V1(t) + η2(t)) < V (t) < �2(V1(t) + η2(t)), (27)
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Proof Using Young’s inequality, we get

|V3(t)| ≤ χl
∫ l

0

1

2
y2x (x, t) + 1

2
y2t (x, t) dx .

Taking the forth inequality in Lemma 4.2 in mind, and the condition on ω as well, i.e., ω2 < 9E I
l4ρ

, we obtain

|V3(t)| ≤ χl
∫ l

0

1

2
y2x (x, t) + 1

2
y2t (x, t) dx + χ

[∫ l

0

9E I

24
y2xx (x, t) − ρω2

2
y2(x, t) dx

]

,

Using the third inequality in Lemma 4.2 provides

|V3(t)| ≤ χl
∫ l

0

l2

2
y2xx (x, t) + 1

2
y2t (x, t) dx + χ

[∫ l

0

9E I

24
y2xx (x, t) − ρω2

2
y2(x, t) dx

]

≤ χ max

{
12l3

3E I
,

l

ρ
, 1

}[∫ l

0

E I

2
y2xx (x, t) + ρ

2
y2t (x, t) dx − ρω2

2
y2(x, t) dx

]

≤ χσ V1(t), (28)

where σ = max
{
12l3
3E I , l

ρ
, 1

}
. Then, it follows directly from the last inequality (28) that

(1 − χσ)V1(t) + k

2
η2(t) < V (t) < (1 + χσ)V1(t) + k

2
η2(t).

Since χ < 1
σ
, we finally obtain

0 < �1(V1(t) + η2(t)) < V (t) < �2(V1(t) + η2(t)),

where �1 = min
{
1 − χσ, k

2

}
, �2 = max

{
1 + χσ, k

2

}
. The proof is complete. �	

Theorem 4.4 Assume condition (17) holds. If the angular velocity ω, and the control gain β satisfy the
following conditions:

ω2 <
9E I

l4ρ
, β2 < km.

Then, the closed-loop system (15) is exponentially stable.

Proof A straightforward calculation yields

V̇1(t) =
∫ l

0
[E I yxx (x, t)yxxt (x, t) + ρyt (x, t)ytt (x, t)] dx − ω2

∫ l

0
ρy(x, t)yt (x, t)dx

= −E I yxxx (l, t)yt (l, t)

= 1

2α
η2(t) − (E I )2

2α
y2xxx (l, t) − α

2
y2t (l, t), (29)

V̇2(t) = kη(t)η̇(t) = − k

β
η2(t) + k

β
η(t)d̃(t). (30)

Moreover, we have

V̇3(t) = χ

(∫ l

0
xytt (x, t)yx (x, t)dx +

∫ l

0
xyt (x, t)yxt (x, t)dx

)

= −χ
E I

ρ

∫ l

0
xyxxxx (x, t)yx (x, t)dx + χ

∫ l

0
xyt (x, t)yxt (x, t)dx

+ χω2
∫ l

0
xyx (x, t)y(x, t)dx, (31)
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where
∫ l

0
xyt (x, t)yxt (x, t)dx = l

2
y2t (l, t) − 1

2

∫ l

0
y2t (x, t)dx, (32)

similarly,
∫ l

0
xyx (x, t)y(x, t)dx = l

2
y2(l, t) − 1

2

∫ l

0
y2(x, t)dx, (33)

also,
∫ l

0
xyxxxx (x, t)yx (x, t)dx =xyx (x, t)yxxx (x, t)|l0 −

∫ l

0
yxxx (x, t) (yx (x, t) + xyxx (x, t)) dx

=xyx (x, t)yxxx (x, t)|l0 − yxx (x, t)yx (x, t)|l0 +
∫ l

0
y2xx (x, t)dx

− x

2
y2xx (x, t)|l0 + 1

2

∫ l

0
y2xx (x, t)dx

= lyx (l, t)yxxx (l, t) + 3

2

∫ l

0
y2xx (x, t)dx . (34)

Reporting (32), (33), and (34) into (31) yields

V̇3(t) = χl

2
y2t (l, t) − χ

E Il

ρ
yx (l, t)yxxx (l, t) − 3χ

2

E I

ρ

∫ l

0
y2xx (x, t)dx − χ

2

∫ l

0
y2t (x, t)dx

+ χω2l

2
y2(l, t) − χω2

2

∫ l

0
y2(x, t)dx . (35)

Using Lemma 4.1 and the second inequality in 4.2, we get

χ
E Il

ρ
yx (l, t)yxxx (l, t) ≤ χ E I

2ρϑ

∫ l

0
y2xx (x, t)dx + χϑ E Il3

2ρ
y2xxx (l, t). (36)

where ϑ > 0 is a positive constant. Thus, reporting (36) into (35) yields

V̇3(t) ≤ χl

2
y2t (l, t) + χ E I

2ρϑ

∫ l

0
y2xx (x, t)dx + χϑ E Il3

2ρ
y2xxx (l, t) − 3χ

2

E I

ρ

∫ l

0
y2xx (x, t)dx

− χ

2

∫ l

0
y2t (x, t)dx + χω2l

2
y2(l, t) − χω2

2

∫ l

0
y2(x, t)dx . (37)

Obviously, a direct calculation yields

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t). (38)

Therefore, from (29),(30) and (37), we see that (38) becomes

V̇ (t) ≤ −
[

k

β
− 1

2α

]

η2(t) − E I

2

[
E I

α
− χϑl3

ρ

]

y2xxx (l, t) −
[
α

2
− χl

2

]

y2t (l, t)

+ χ E I

2ρϑ

∫ l

0
y2xx (x, t)dx − 3χ

2

E I

ρ

∫ l

0
y2xx (x, t)dx − χ

2

∫ l

0
y2t (x, t)dx

+ χω2l

2
y2(l, t) − χω2

2

∫ l

0
y2(x, t)dx + k

β
η(t)d̃(t). (39)

According to the first inequality in Lemma 4.2 and Young’s inequality, we further have

χω2l

2
y2(l, t) ≤ χω2l4

6

∫ l

0
y2xx (x, t)dx, (40)
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k

β
η(t)d̃(t) ≤ k

2β
η2(t) + k

2β
d̃2(t). (41)

Thus, estimate (39) becomes

V̇ (t) ≤ −
[

k

2β
− 1

2α

]

η2(t) − E I

2

[
E I

α
− χϑl3

ρ

]

y2xxx (l) −
[
α

2
− χl

2

]

y2t (l, t)

+ k

2β
d̃2(t) − χ

2ρ

[

3E I − ω2ρl4

3
− E I

ϑ

] ∫ l

0
y2xx (x, t)dx − χ

2

∫ l

0
y2t (x, t)dx

− χω2

2

∫ l

0
y2(x, t)dx . (42)

Taking into account the condition ω2 < 9E I
l4ρ

, we can choose ϑ in order to have

3E I − ω2ρl4

3
− E I

ϑ
> 0.

Since k >
β2

m , 0 < χ < min
{

α
l ,

E Iρ
l3αϑ

}
, it holds that

k

2β
− 1

2α
> 0,

E I

α
− χϑl3

ρ
≥ 0,

α

2
− χl

2
≥ 0.

Therefore, adding the term δ1ω
2ρ

2

∫ l
0 y2(x, t)dx to (42), using estimate (27), and setting δ1 = min

{
k
2β − 1

2α ,
χ

E Iρ[
3E I − ω2ρl4

3 − E I
ϑ

]
,

χ
ρ

}
and ν = δ1

�2
yields

V̇ (t) ≤ −δ1

[

η2(t) + 1

2

∫ l

0
E I y2xx (x, t)dx + 1

2

∫ l

0
ρy2t (x, t)dx − ω2ρ

2

∫ l

0
y2(x, t)dx

]

+ k

2β
d̃2(t)

≤ −δ1
[
η2(t) + V1(t)

] + k

2β
d̃2(t)

≤ −νV (t) + k

2β
d̃2(t), (43)

Now, from estimates (43), (10), and according to Gronwall’s inequality, we obtain

V (t) ≤ kC2

2β

∫ t

0
e−ν(t−s)e−2(θ−δ)s ds

+ e−νt V (0)

≤ kC2

2β

1

2(θ − δ) − ν

[
e−2(θ−δ)t − e−νt

]

+ e−νt V (0)

≤ δ′
0 max

{
e−2(θ−δ)t , e−νt

}
+ e−νt V (0), (44)

where δ′
0 = kC2

2β
1

|2(θ−δ)−ν| . Set

ν1 = min |ν, 2(θ − δ)|,
δ0 = V (0) + kC2

2β

1

|2(θ − δ) − ν| .
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Hence,

V (t) ≤ δ0e−ν1t .

Moreover, it is evident that the energy function E(t) from (24) satisfies

�′
1(V1(t) + η2) ≤ E(t) ≤ �′

2(V1(t) + η2), (45)

where �′
1 = min

{
1, k

2

}
and �′

2 = max
{
1, k

2

}
; thus, using (27), (44), and (45) yields

E(t) ≤ �′
2

�1
δ0e

−ν1t .

This ends the proof. �	

5 Numerical simulation

In this section, we present some numerical simulations for system (2) using finite difference method in time
and space for the space-time domain [0, 1] × [0, 10]. Here, we subdivided the spatial interval into N =
10 subintervals and the temporal interval into M = 30000 subintervals. The parameters, the initial data,
disturbance and the time varying high gain function are chosen as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ = 1, E I = 1, ω = −2, α = 2, β = 1,
y(x, 0) = 0.2(−3x2 + 2x3),
yt (x, 0) = −0.2(−3x2 + 2x3),

d(t) = t2
60 exp(0.08(t − 1)),

a(t) = 2 exp(0.2t).

From Fig. 2, we can see that without control (i.e. α = β = 0) the displacement y(x, t) is not stabilized.
Examining Fig. 3, we can notice that the vibration of the system is greatly suppressed when the developed
control is applied to the system. From Fig. 4, we can observe that the disturbance d(t) and its estimation d̂(t)
are almost the same only after 4s. Consequently, the estimation d̂(t) can be used to track the disturbance d(t)
very fast.
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,t
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0.5
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t

10861 420

Fig. 2 Displacement y(x, t) without control
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Fig. 3 Displacement y(x, t) with control
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Fig. 4 Disturbance d(t), estimation d̂(t), and error d̃(t) = d(t) − d̂(t)
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6 Concluding remarks

In this paper, we studied the stabilization problem of a uniformly rotating disk-beam-mass system with a
boundary disturbance. TheADRCapproachwas used to design the controller,where the extended state observer
(ESO)was, first, constructed to estimate the disturbance, then, the control force uses these estimations to online
cancel the disturbance effect. The well-posedness of the system is proved using the semigroup theory. Finally,
we showed that the closed-loop system is exponentially stable by the Lyapunov method.

An interesting research problem would be the extension of the results presented in this paper to the time-
varying angular velocity case and the non-uniform beam case. It would be, also, interesting to study the
exponential stabilization for the system when the moment of inertia is accounted for. These will be the subject
of future works.
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