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Abstract
Smooth algebraic plane quartics over algebraically closed fields of characteristic dif-
ferent than two have 28 bitangent lines. Their tropical counterparts often have infinitely
many bitangents. They are grouped into seven equivalence classes, one for each linear
system associated to an effective tropical theta characteristic on the tropical quartic.
We show such classes determine tropically convex sets and provide a complete combi-
natorial classification of such objects into 41 types (up to symmetry). The occurrence
of a given class is determined by both the combinatorial type and the metric structure
of the input tropical plane quartic. We use this result to provide explicit sign-rules to
obtain real lifts for each tropical bitangent class, and confirm that each one has either
zero or exactly four real lifts, as previously conjectured by Len and the second author.
Furthermore, such real lifts are always totally-real.
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1 Introduction

Superabundance phenomena in tropical geometry pose a challenge to addressing enu-
merative geometry questions by combinatorial means [4, 29, 36, 37]. For example,
smooth tropical plane quartic curves can have infinitely many bitangent tropical lines,
as opposed to the count of 28 bitangents to smooth algebraic plane quartic curves over
algebraically closed fields of characteristic different than two [3]. For an example with
exactly seven tropical bitangents, we refer to [11, Fig. 12b].

Basic duality between R
2 and the space of non-degenerate tropical lines in R

2

identifies each such line with (plus or minus) its unique vertex. This paper gives a
combinatorial characterization of these infinite sets of points and sheds light on this
question over real closed valued fields, such as the real Puiseux series R{{t}}, related
to Plücker’s famous count of real bitangents to real quartic curves [35].

The existence of infinitely many tropical bitangents was first shown by Baker et
al. [3] using the theory of divisors on tropical curves and their linear equivalences,
encoded by chip-firing moves [2]. Combinatorially, tropical quartic curves correspond
to metric graphs of genus three (depicted in Fig. 2). Out of all five graphs, only the
first four can be realized as skeleta of smooth tropical plane curves dual to unimodular
triangulations of the 4-dilated 2-simplex. The relevant length data of these graphs is
also linearly restricted.

Even though the tropical count is infinite, the collection of tropical bitangent lines
can be grouped together into seven equivalence classes, under perturbations that pre-
serve the tangencies [3]. These bitangent classes are polyhedral complexes in R2. To
highlight the interactions between a given tropical quartic curve � and its bitangent
classes, we can further refine the structure of each class using the subdivision of R2

induced by �. We define the shape of a tropical bitangent class to be this refined
combinatorial structure.

The symmetric groupS3 acts on bitangent classes and their shapes. Our first main
result is a complete combinatorial classification of such objects up toS3-symmetry:

Theorem 1.1 There are 41 shapes of bitangent classes to generic tropicalized plane
quartics, up to symmetry (see Fig. 6). All of them are min-tropical convex sets.

This classification only relies on the duality between tropical smooth plane quartic
curves and unimodular triangulations of the standard simplex of side length four.

Standard duality identifying a tropical line with the negative of its vertex seems
more natural, since incidence relations would be preserved [5]. With this convention,
the associated bitangent classeswould bemax-tropical convex sets.We choose to avoid
changing the sign of the vertex since the tangency points can be easily determined from
it.

All shapes in Fig. 6 are color-coded to highlight their refined combinatorial struc-
ture. Black and gray cells correspond to those missing the curve, whereas red ones lie
on it. Unfilled vertices correspond to vertices of �.

The proof of this statement is given in Sect. 4. It involves a careful analysis of
possible combinations of tangency points (up to symmetry) and the description of
local moves of the vertex of the bitangent line � that preserve tangencies. A simple
inspection shows that they are all min-tropical convex sets, most of which are not
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finitely generated. The latter contrasts with the construction of complete linear systems
on abstract tropical curves done by Haase–Musiker–Yu [14]. The difference arises
precisely due to the choice of embedding.

Whenever superabundance is observed, lifting questions arise naturally. Len and the
second author [26] proved that for generic choices, each class lifts to exactly four bitan-
gents if the classical quartic curve is defined over a non-Archimedean algebraically
closed fieldK. This fact was independently proven by Jensen and Len [20] (removing
this mild genericity constraints) by exploiting the classical connection between bitan-
gent lines and theta characteristics in the tropical setting [31, 40], and by Chan and
Jiradilok [8] in the special case where the underlying non-Archimedean skeleton of
the tropical curve is the complete graph on four vertices.

Although each bitangent class has exactly four lifts [26, Thm. 4.1], their number
can be realized in various ways and by more than one member of the given class.
Figure 6 shows which members have non-trivial lifting multiplicities (with values
one, two, or four).

By definition, the tropical theta characteristics of a tropical quartic are extremely
sensitive to the underlying metric structure on its skeleton [3, Appx.]. The same is
true for its bitangent classes. In particular, the seven shapes occurring can vary within
a single chamber in the secondary fan of the standard simplex of side-length four.
Nonetheless, the presence of a bitangent class of a fixed shape imposes restrictions on
the Newton subdivision of the quartic curve with tropicalization �. Our findings are
summarized in Corollary 4.12. Figure 19 shows the relevant cells associated to each
representative shape. Edges are color-coded to emphasize the combinatorial tangency
types.

Questions involving the realness of bitangent lines to plane quartics can be traced
back to Plücker [35]. As shown by Zeuthen [39], the answer depends on the topology
of the underlying smooth real quartic curve viewed in the real projective plane [34,
Tab. 1]. The last two columns of Table 2 show these numbers in four of the six possible
topological types. The missing three topological types (two nested ovals, one oval or
an empty curve) admit exactly four real bitangent lines each.

The fact that the number of real bitangents of a real plane quartic and the number
of complex lifts to any tropical bitangent class are always a multiple of four suggests
the question whether real lifts to a given bitangent class also come in multiples of
four. Using Tarski’s Principle [19] we can count real bitangents by lifting tropical
bitangents to a real closed filedKR, thus providing a positive answer to this question:

Theorem 1.2 [26, Conj. 5.1] Let � be a generic tropicalization of a smooth plane
quartic defined over a real closed complete non-Archimedean valued field KR. Then,
a bitangent class of a given shape has either zero or exactly four lifts to real bitangents
to a quartic curve when its real locus is near the tropical limit.

Rather than venturing for a tropical analog between real theta characteristics and real
bitangents to plane quartics [13, 22, 23], we choose an algorithmic approach which
has the potential to be used in the arithmetic setting [24, 28]. Our proof of Theorem
1.2 builds on the lifting techniques developed in [26], which we review in Sect. 5.
Table 11 provides precise necessary and sufficient conditions for the existence of real
lifts to each bitangent class in terms of the signs of relevant vertices in the Newton
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subdivision. The positivity conditions in the table are due to the presence of radicands
in the formulas for computing the initial terms of the coefficients of the classical line
lifting a given tropical bitangent.

Once the realness of a given bitangent is established, it is natural to ask whether
the tangency points are also real, i.e., if the bitangent to the real quartic curve is
totally real or not. Corollary 7.3 shows that for generic plane curves defined over KR

with smooth generic tropicalizations in R
2, any real bitangent line to them is always

totally real. Thus, new examples will only be captured by tropical geometry once the
current methods are extended to non-smooth tropical plane quartics [25] or smooth
ones embedded in higher dimensional tori. We leave this task to future work.

The rest of the paper is organized as follows. Section 2 reviews the construction
of tropical bitangents to tropical plane curves and its connection to tropical theta
characteristics.We provide a combinatorial classification of local tangencies and recall
the main techniques for lifting tropical bitangents from [26] under mild genericity
conditions. Both tools play a central role in the proofs of Theorems 1.1 and 1.2.

In Sect. 3we define bitangent classes and introduce their combinatorial refinements,
called shapes. An analysis of local moves for points on each bitangent class, discussed
in Lemma 3.2, allows us to conclude each class is a connected polyhedral complex.
Our last result characterizes unbounded cells in suitable classes. Section 4 contains
the proof of Theorem 1.1.

Section 5 discusses local lifting multiplicities both over real closed valued fields
and their algebraic closure for all bitangent classes. Theorem 5.1 determines all com-
binations of local tangency types that can arise from tropical bitangents under mild
genericity conditions. Propositions 5.2, 5.4, and Lemma 5.7 provide necessary and
sufficient local lifting conditions over KR for each tangency type with multiplicity
two. Lifting formulas in the presence of multiplicity four tangencies are provided
in Appendix A.

Section 6 contains the proof of Theorem 1.2. Section 7 confirms our lifting tech-
niques only produces totally real bitangents, which manifest the geometry behind the
genericity conditions imposed on the input smooth plane quartics. We conclude with
some open questions and directions to pursue in the future.

1.1 How to Use This Paper

For any given quartic polynomial q(x, y) defined over the field of real Puiseux series
R{{t}}, Theorem 1.2 and Table 11 provide an easy way to decide which of the seven
bitangent classes of its tropicalization � = Trop V (q) lift to the reals: it suffices to
check the positivity of appropriate products of its coefficients.

Building on [26], we can even determine which member of each bitangent class
lifts to a classical bitangent line to V (q), and howmany lifts does it have. Furthermore,
since the signs of the coefficients in q determine the topology of the real quartic curve
VR(q) close to the tropical limit bymeans of Viro’s Patchworkingmethod [16, 38], our
methods give a way of verifying Plücker’s classical Theorem in concrete examples.
We refer the reader to the Polymake extension TropicalQuarticCurves and
the database entry QuarticCurves in polyDB recently developed by Geiger and
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(4)

(3) (2)

(7)

(1)

(2) as (E) (5) as (A) 

(1) as (S) 

(3) as (W) (6) as (A) 

(4) as (E) (7) as (A) 

(5)
(6)

Fig. 1 From left to right: a tropical quartic curve � and its seven bitangent classes, together with its dual
subdivision and the relevant dual cells responsible for each class. The color code matches the S3-orbit
shape representative from Fig. 6 (permutations are listed in Table 1). The unfilled dots on � match the
locations of chips from Fig. 3

Panizzut [12] to provide a tropical proof of Plücker and Zeuthen’s count [11, Thm.1].
We illustrate this ideas in the following example. The connection to tropical theta
characteristics is discussed in Example 2.4.

Example 1.3 We consider the plane quartic curve over C{{t}} defined by

q(x, y) := 1 + 3t10x − t8y + 5t29x2 + 7t15xy − 3t28y2

+ 11t50x3 − 5t29x2y − 7t28xy2

+ 13t50y3 + 17t77x4 − 13t51x3y + 14t32x2y2

− 11t51xy3 − 17t74y4.

(1.1)

The tropical curve � = Trop V (q) and its seven tropical bitangent classes together
with its dual Newton subdivision can be seen in Fig. 1. The shape for classes (2), (3),
and (4) is only revealed after applying a non-trivial permutation, described explicitly in
Table 1. The picture shows the relevant cells in the Newton subdivision for these non-
standard bitangent classes. In this example, the shape of all seven bitangent classes
is independent of the metric structure on �, hence it only depends on the Newton
subdivision of q.

Next, we discuss how the signs si j of the coefficients ai j of q determine the existence
of real lifts of the bitangent classes of �, as predicted by Table 11 (after suitable
permutations). By construction, all lifts from shape (3) must be real, but realness for
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Table 1 Bitangent classes, their canonical shapes, the required permutations to bring a class into each
shape, and sign conditions for real-liftings

Class Shape Permutation Sign conditions

(1) (S) id s00 s22 > 0

(2) (E) τ1 ◦ τ0 s21 s31 s30 s22 < 0

(3) (W) τ0 ◦ τ1 ◦ τ0 ——

(4) (E) τ0 ◦ τ1 ◦ τ0 s12 s13 s22 s03 < 0

(5) (A) id Same as (2) and (4)

(6) (A) id Same as (1) and (4)

(7) (A) id Same as (1) and (2)

The maps τ0 and τ1 are given in Table 3

Table 2 Sample sign choices for the tropicalized quartic � in Fig. 1 giving all possible number of real
bitangents on the algebraic lift V (q̃)

Negative signs Real bitangent classes Number of real lifts Topology

— (1) and (3) 8 2 Non-nested ovals

s31 (1), (2), (3), and (7) 16 3 Ovals

s13, s31 (1), . . . , (7) 28 4 Ovals

s13, s31, s22 (3) 4 1 Oval

For each row, we indicate which bitangent classes have real lifts and the topology of the real curve VR(q̃)

near the tropical limit

the remaining shapes does depend on the choice of signs. Table 1 summarizes our
findings.

The parameters featuring in all formulas in Table 11 are determined by the vertices
of the Newton subdivision in the neighborhood of each tangency points. In particular,
for class (5) we use the parameters v = u = 2, i = j = 3, for (6) we have v = 2,
i = 3, u = j = 0, whereas for (7) we take v = i = 0, u = 2, and j = 3. Replacing
the values for each si j coming from (1.1) we certify that the class (1) is the only one
with real lifts. Thus, V (q) has a total of eight real bitangents. Furthermore, our results
place the vertex of the corresponding tropical bitangents at the black vertices of (1)
and (3).

Notice that three inequalities involving eight signs in Table 1 govern the realness of
the algebraic lifts. Thus, we can study how the total number of real bitangents varies
as we choose a different smooth plane quartic V (q̃) overR{{t}} with tropicalization �.
If all inequalities hold, the quartic curve V (q̃) has 28 real bitangents. Violating any
subset of them will lead to different numbers of classes with real lifts, namely four,
two, or one. Using Theorem 1.2, we conclude that the number of real lifts are 28, 16,
8, or 4.

Table 2 shows sign choices realizing each of these four cases, together with the
bitangent classes admitting real lifts and the topology of a real quartic curve close to
the tropical limit. The latter was certified with the combinatorial patchworking online
tool [10].
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2 Tropical Curves, Bitangent Lines, and Their Lifts

Throughout this paper we work with real closed, complete non-Archimedean valued
fields KR with valuation ring (R,M) and their algebraic closures, denoted by K. We
assume the valuation map is non-trivial and admits a splitting, which we denote by
ω �→ tω as in [27, Chap. 2]. We set t0 = 1. Our main examples will be the Puiseux
series R{{t}} and C{{t}} in the uniformizer t . By the Tarski principle [19], R{{t}} is
equivalent to the reals, so we can count real bitangents by lifting tropical bitangents
to R{{t}}. This principle has been applied to other problems in tropical geometry, see
e.g. [1, 27].

Initial forms (defined below) will be central to this work:

Definition 2.1 Given a ∈ KR, a ∈ K with val(a) = α its initial form ā is defined as
the class t−αa in the residue field ˜K := R/M.

In the sequel, a bitangent line � to V (q) will be determined by the fixed equation

� = y + m + nx, with m, n ∈ K
∗. (2.1)

Its tropicalization � will always be a non-degenerate tropical line in R2, i.e., a tripod
graph with ends of direction (−1, 0), (0,−1), and (1, 1).

Tropical curves will be defined following the max convention (for more details,
see e.g. [27]). The tropicalization of a plane curve V (q) with q ∈ K[x, y] will be
determined by the Newton subdivision of q (for an example, see Fig. 1). In turn, the
tropicalization of a curve embedded in (K∗)n by an ideal I in the Laurent polynomial
ring is the (Euclidean) closure in R

n of the image of V (I ) under the coordinatewise
negative valuation map on K

∗. Our choice of I will be determined by tropical modi-
fications or refinements of R2 along tropical bitangent lines to tropical plane curves.
For details, we refer to [30].

2.1 Tropical Bitangents

Throughout this paper, we consider smooth plane quartics V (q) defined over eitherK
or KR, where

q(x, y) :=
∑

0≤i+ j≤4
i, j≥0

ai j x
i y j . (2.2)

We assume the Newton polytope of q is the standard 2-simplex of side length four
and we let � be the associated tropical plane quartic.

We assume � is a tropical smooth plane quartic, that is, the Newton subdivision
of q is a unimodular triangulation. The skeleton �(�) of � is the subgraph obtained
by repeatedly contracting all the edges adjacent to leaves. As we mentioned in the
introduction, only four out of all five planar genus three graphs in Fig. 2 can arise as
skeletons of �. The edge lengths are also linearly constrained, as shown in [6, Thm.
5.1].
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Fig. 2 Possible skeletons for smooth plane quartics. Following the notation of [6], each graph is labeled by
a triple (lbc) of single digit numbers, where l is the number of loops, b is the number of bi-edges (pairs of
edges between adjacent vertices), and c is the number of bridges (or cut-edges). The graph (303) cannot be
realized via tropicalization in R2

Tropical bitangent lines to� were first studied byBaker et al. [3]. Theywere defined
using stable intersections between a tropical line � and �. We recall the construction:

Definition 2.2 A tropical line � is bitangent to � if any of the following conditions
holds:

(i) �∩� has two connected components, eachwith stable intersectionmultiplicity 2;
or

(ii) � ∩ � is connected and its stable intersection multiplicity is 4.

Stable intersections inR2 are determined by the fan displacement rule (see, e.g. [17]):

� ∩st � = lim
ε→0

� · (� + εv).

A generic choice of vector v ensures that � and � + εv intersect properly in R
2

whenever ε is small enough. If two tropical curves C1 and C2 intersect property and
p ∈ C1 ∩ C2, the intersection multiplicity at p is (C1 · C2)|p = |det(u1, u2)| where
u1 and u2 are the weighted directions of the edges of C1 and C2 containing p in their
relative interiors. Furthermore,

C1 · C2 =
∑

p∈C1∩C2

(C1 · C2)|p

whenever these curves intersect properly.

Remark 2.3 By construction, the symmetric group S3 on three letters records auto-
morphisms of P2 fixing the tropical line. This action extends to Z

2 and the space of
smooth tropical plane quartics and their bitangent lines. Table 3 shows the action of
two generators of S3 on both the classical and tropical worlds.

Using the theory of tropical divisors on curves (see e.g. [2]), bitangent lines to�with
tangency points P and P ′ can be identified with tropical divisors on � that are linearly
equivalent to 2P + 2P ′. More precisely, given the stable intersection D := � ∩st �,
we must find a piecewise linear function f on � that is linear outside D ∪ {P, P ′}
and such that D + div( f ) is effective and contains 2P + 2P ′. These tropical divisors
correspond to effective tropical theta characteristics [40] on the metric graph �(�),
as the following example illustrates.
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Table 3 Generators of S3 as projective, polytopal and tropical isomorphisms

Gen. Projective Lattice Tropical

τ0 x ←→ y (i, j) �→ ( j, i) X ←→ Y

τ1 x ←→ z (i, j) �→ (4 − i − j, j) X �→ −X ; Y �→ Y − X

0 0
01 1

12
2

12

12

12

23
3 3

1

1

1
1

1
10 1L

1

1 1 1

1 1
1

1

1

1
1

(4)

(5)

(6)

(7)

(2)

(3)

32

3

7

71
1.5 1.5

1
1 1

2

8.5

8.5

(1)

v

v

v v

v

v
v

v
v

v vΣ(Γ):

Fig. 3 Metric structure on the skeleton � of the tropical quartic, and its eight theta characteristics. The
dashed cycles on the chip configuration of each effective theta characteristic indicate its associated non-
zero element of H1(�,Z/2Z). Note that L0 is the single non-effective theta characteristic. The labeling
matches that of Fig. 1

Example 2.4 Figure 3 shows the skeleton �(�) of the curve discussed in Example
1.3 with its metric structure and 12 relevant points (v′

0 through v′
3) used to describe

its eight theta characteristics. The location of the points v′′
12 and v′′′

12 depends on the
metric structure on �(�). The loops γ1, γ2, and γ3 in �(�) of lengths 17, 12, and 14,
respectively, are dual to the lattice points (1, 2), (1, 1), and (2, 1) in the Newton
subdivision. Using Zharkov’s Algorithm [40], we write all theta characteristics of the
metric graph:

L0 := −v′
0 + v0 + v12 + v′

3, Lγ2 := v′
0 + v′

3,

Lγ12 := v01 + v′
3, Lγ23 := v′

0 + v23,

Lγ1 := v12 + v′
3, Lγ3 := v′

0 + v′
12,

Lγ13 := v′′
12 + v′′′

12, Lγ123 := v01 + v23,

where γI := ∑

i∈I γi for each I . The seven effective theta characteristics
Lγ1 , . . . , Lγ123 correspond to the seven bitangent classes of �. The location of the
chips on each graph of Fig. 3 indicates the pair of tangency points for some bitangent
line to �.

In [26], Len and the second author provided a classification of all tangency types
between the curves � and � into five types. Furthermore, the theta characteristics
approach allowed them to determine the precise location of the tangency points within
the stable intersection�∩st �. For non-proper intersections, the tangencies are located
in the midpoint of bounded edges where overlappings occur. Overlappings along ends
of � reflect a tangency at the adjacent vertex of �.

To simplify our case analysis in Sect. 4, we provide a refined classification of
local tangencies. Their S3-representatives are depicted to the right of Fig. 4. Our
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Table 4 Data for multiplicity two local tangencies of types (1) and (2) for each end of �

End Direction of e Direction of e∨

Diagonal (−1, 1), (1, 3), (3, 1) (1, 1), (−3, 1), (−1, 3)

Horizontal (1, 2), (−1, 2), (3, 2) (−2, 1), (2, 1), (−2, 3)

Vertical (2, 1), (2, 3), (2, −1) (−1, 2), (−3, 2), (1, 2)

Here, e is the bounded edge of � containing the tangency and e∨ denotes the corresponding dual edge in
the Newton subdivision. For type (4) only the first direction for e and e∨ in each column is allowed

I
II

III

IV
VI

V

2 or 4

2
2

4
 or 4

2

2

2

(3b)

2 4

(6b)(6a)(5b)(5a)(4)

(1) (2) (3a) (3c)

2 or 4 2

 or 4

Fig. 4 From left to right: six sectors of R2 determined by max- and min- tropical lines, and six types of
local tangencies at the marked point P . The numbers indicate the possible local intersection multiplicities
for P . Cases (3a), (3b), (3c), (6a), and (6b) are non-transverse intersections

combinatorial classification requires precise information of the edge directions in
the link of a tropical tangency. Tangencies of types (6a) and (6b) show an overlap
between a horizontal end of both � and �. The remaining two edge directions in
the star of the tangency at � are fixed: they are (1,−1) and (0, 1) for type (6a), and
(3,−1), (−2, 1) for type (6b). Table 4 shows all relevant directions involved in type
(2) and (4) tangencies occurring at each end of �. For the bitangent lines depicted
in (3b), the connected component of intersectionwith� contains both tangency points.
In our local discussion here, we only refer to the tangency point in the interior of the
horizontal bounded edge, as highlighted in the picture.

The next lemma discusses the combinatorics of proper tangencies at vertices:

Lemma 2.5 Let v be a vertex of both � and � and assume the local intersection at
v is transverse. There are two configurations (up to S3-symmetry) for which v is a
tangency point. They correspond to types (5a) and (5b) in Fig. 4. The ends of Star�(v)

have directions (1, 0), (0, 1), and (−1,−1) for (5a), and (1, 0), (2,−1), (−3, 1) for
(5b).

Proof Themin- andmax-tropical lines with vertex v divideR2 into six regions, as seen
in the right-most picture in Fig. 4. We prove the statement by a direct computation,
analyzing the locations of the three ends in the star Star�(v) of v in � with respect to
these six regions. First, assume Star�(v) is a min-tropical line. Then, the vertex v is a
tangency point of local multiplicity two.

Second, assume Star�(v) contains only one of the three ends of a min-tropical line.
Up to S3-symmetry, we may assume it has direction (1, 0) and the remaining two
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ends are located in the relative interior of the following combined regions: (I, IV),
(I,V), (I,VI), or (II,V). The latter case is not possible by the smoothness condition
on �. In the first three cases, the same condition ensures that the bounded edge of �

in I equals (−a, 1) with a = 2 or 3. Since v is a tangency, we conclude that a = 3 and
the multiplicity is four.

Finally, we claim no tangency at v can occur if the star of � at v shares no end
with a min-tropical line. Indeed, we exploit theS3-action to restrict the location of the
three ends of Star�(v) to four triples: (I, I, IV), (I, II, IV), (I, III,V), or (I, III,VI).
The last three cases are incompatible with the balancing condition and smoothness of
Star�(v). In turn, smoothness and the requirement of having intersection multiplicity
two or four at v reduces the possible (I, I, IV) configurations to three cases, with ends
(0, 1), (−1, 0), (1,−1), (0, 1) (−1, 2) and (1,−3), or (−1, 0), (−2, 1) and (3,−1),
violating either the transverse condition property or the restrictions on Starγ (v). This
concludes our proof. ��
Remark 2.6 The action ofS3 allows us to restrict the local configurations correspond-
ing to a tangency point P ofmultiplicity 4.A simple computation of localmultiplicities
determines the directions of the relevant edges of �. For cases (1), (2), (4), and (5b),
the point P is adjacent to or in the relative interior of an edge e with direction (−3, 1).
For (6b), P is a vertex of � and its two adjacent bounded edges have directions
(3,−1), (−2, 1). In these five cases, we assume P lies in the diagonal end of �.

For (3b), we assume P lies in the horizontal end of �. In this situation, the mul-
tiplicity four can only occur where the vertex of � agrees with the right-most vertex
of a bounded horizontal edge e of � and the stable intersection assigns weight three
to v and one to the other endpoint of e. Linear equivalence identifies this situation
with a multiplicity four point on the edge. There are two possibilities for Star�(v) that
determine the location of the tropical tangency points via chip-firing.

First, if Star�(v) = Star�(v), then v must be adjacent to three bounded edges of
�, with lengths λ1 ≤ λ2, λ3. The tangency points will be located on the two longest
edges, at distance (λ3 − λ1)/2 and (λ3 − λ2)/2 away from the vertex v.

On the contrary, Star�(v) = Star�(v) then the tangency points are located at v

and at the midpoint of the horizontal end of � adjacent to v. Furthermore, the three
edge directions in Star�(v) come in two possible combinations: (−1, 0), (2,−1), and
(−1, 1), or (−1, 0), (3, 1), and (−2,−1). They are related by the map τ0 ◦ τ1 ◦ τ0
from Table 3.

2.2 Lifting Tropical Bitangents

In [26], Len and the second author developed a novel effective technique for producing
bitangent lines to generic smooth plane quartics from their tropical counterparts. In
this section, we review their construction, setting up the notation and definitions for
Sects. 5 through 7, and Appendix A.

Definition 2.7 Consider a degree four bivariant polynomial q over K and let V (q)

be the associated plane quartic curve. We say (�, p, p′) is a bitangent triple to V (q)

defined over K if � is a bitangent line to V (q) with tangency points p and p′.
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We are interested in analyzing which tropical bitangents� to� with tropical tangency
points P and P ′ arise as tropicalizations of bitangent triples, and, most importantly,
how many such liftings exist.

Definition 2.8 We say� lifts overK if there exists a bitangent triple (�, p, p′) defined
over K (also called a K-bitangent triple) whose tropicalization is (�, P, P ′), i.e.,

Trop � = �, Trop p = P, and Trop p′ = P ′.

The lifting multiplicity of � equals the number of such bitangent triples.

The results in [26, Sect. 3] highlight a central feature of studying bitangent lines to
generic smooth plane curves and their lifting multiplicities through the tropical lens.
Indeed, they show that liftings can be determined by local systems of equations relative
to each tropical tangency. Furthermore, in the quartic case, each tropical tangency
provides independent and complementary information regarding the coefficients of �

in (2.1). A tangency along the horizontal end of � will determine m. The maps τ0
and τ1 from Table 3 replace m with m/n and n when the point lies in the vertical and
diagonal end of �, respectively. The situation is more delicate when the vertex of � is
the tangency point, as it occurs for cases (4) and (5a) through (6b). We postpone their
discussion to Sect. 5 (formultiplicity two tangencies) andAppendixA (formultiplicity
four).

In what follows, we review the local lifting methods from [26] when the local
tangency point P has multiplicity two and occurs in the relative interior of the hor-
izontal end of �. After a translation and rescaling of � and q, we may assume
that q ∈ R[x, y] \ MR[x, y] and P = (0, 0), so the vertex of � equals (λ, 0)
for some λ > 0. In particular, val(m) = 0, val(n) = −λ, and p ∈ R2. We write
p = (x̄, ȳ) ∈ (˜K ∗)2 for the point recording the coordinatewise initial forms of p.

The local equations for � at P give a system of three equations in three unknowns
(m, x̄, ȳ) over ˜K determined by the vanishing of the initial forms (with respect to P)
of q, � and the Wrońskian W := det(J (q, �; x, y)), that is,

q = � = W = 0, (2.3)

for q :=
∑

(i, j)∈P∨
ai j x̄

i ȳ j , � := ȳ + m, W := det(J (q, �; x̄, ȳ)).

Here, P∨ denotes the cell in the Newton subdivision of q dual to P . Notice that since
P = (0, 0) and val(n) < 0, these initial forms are nothing but the image of the three
original polynomials in ˜K [x̄, ȳ,m]. Furthermore, the class of the Wrońskian agrees
with the Wrońskian of q and �. If the system above does not have a unique solution,
tropical modifications can be used to solve for the initial forms and higher order terms
(see [26, Lem. 3.7] and references therein). The support of the local equations has to
be increased accordingly.

Each solution (m, x̄, ȳ) ∈ (˜K ∗)3 of the system from (2.3) produces a unique pair
(m, p) in R3 with the prescribed initial forms. Applying a similar method to the sec-
ond tropical tangency point and combining the outputs will determined the bitangent
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triples lifting �. Uniqueness is essential to compute the lifting multiplicities of each
(�, P, P ′) and it follows from thewell-knownmultivariate analog ofHensel’s Lemma
(see [26, Thm. 2.2] and references therein).

Lemma 2.9 (Multivariate Hensel’s Lemma) Consider f := ( f1, . . . , fn) with
fi ∈ R[x1, . . . , xn] \ MR[x1, . . . , xn] and let Jf be its Jacobian matrix. Fix a =
(a1, . . . , an) ∈ ˜Kn satisfying Jf (a) �= 0 ∈ ˜K and fi (a) = 0 for all i = 1, . . . , n.
Then, there exists a unique b = (b1, . . . , bn) ∈ Rn with fi (b) = 0, val(bi ) = 0, and
bi = ai for all i = 1, . . . , n.

In our case of interest, a = (m, x̄, ȳ) and b = (m, p). Furthermore, we can often
certify the non-vanishing of the initial form of the Jacobian by computing J (q, �,W )

instead.

Remark 2.10 (genericity constraints) Aswementioned earlier, the tropical techniques
for computing bitangents require some mild genericity conditions. In addition to the
smoothness of � and the non-degeneracy of a tropical bitangent lines to it, we further
assume the following conditions:

(i) if � contains a vertex v adjacent to three bounded edges with directions (−1, 0),
(0,−1), and (1, 1), then the shortest lengths of these three edges is unique;

(ii) V (q) has no hyperflexes;
(iii) the coefficients of q are generic enough to guarantee that if the tangencies occur

in the relative interior of the same end of �, then the local systems defined by
these two points are inconsistent.

Condition (i) allows us to determine the position of the tropical tangencies for the
line � with vertex v, thus ensuring the validity of the lifting methods for (5b) tangen-
cies developed in [26, Prop. 3.12]. Overall, these mild constraints determine which
bitangent lines to � lift to bitangent triples over K among each bitangent class.

As a consequence of the genericity conditions imposed on � and q we have:

Theorem 2.11 [26, Thm. 3.1] Assume � is a tropical bitangent to a generic tropical
smooth plane quartic �, with two distinct tangencies. Suppose � ∩� is disconnected.
Then:

(i) If these points lie in the relative interior of two distinct ends of �, the lifting multi-
plicity of � is the products of the local lifting multiplicities of the two tangencies.

(ii) If the tangency points lie in the same end of �, the lifting multiplicity of � is zero.

In Appendix A, we discuss lifting multiplicities in the presence of a multiplicity four
tropical tangency. In particular, Theorem A.4 combined with the formulas in Table 12
allows us to conclude that multiplicity four tangencies of types (5b) and (6b) both lift
with multiplicity one as seen in Fig. 6. Since we assume V (q) has no hyperflexes,
none of the other potential multiplicity four tropical tangencies will lift to a bitangent
triple.

Table 5 provides a summary for each relevant type, combining the statements
included in Appendix A with various results from [26], namely, Propositions 3.5
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Table 5 Local lifting multiplicities for each tangency type, assuming multiplicity two for all types except
for the three right-most columns

type (1) (2) (3a), (3b), or (3c) (4) (5a) (6a) (3b) (5b) (6b)

mult. 0 1 2 |det(e, e′)| 2 |det(e, e′)| 4 1 1

(for type (1)), 3.6 (for type (2)), 3.7 (for types (3a) and (3c)), 3.10 (for type (4)), 3.11
(for type (5a)), and Remark 3.8 (for type (3b) and (6a)).

Recall that in our local discussion here, for case (3b) we only refer to the tangency
point highlighted in the picture in Fig. 4. Proposition A.7 shows that, globally, the
bitangent line depicted in (3b) on the right does not lift if its multiplicity is four.
This happens precisely when the second tangency point is the vertex of the tropical
bitangent line. Proposition 6.4 studies the global lifting behavior of a bitangent line
with two type (3b) tangencies, as seen in the left of the figure. In this situation, the
two tangency points lie in the relative interior of two edges of the quartic curve.

The multiplicity formula for types (4) and (6a) involves two vectors. First, the
edge e of � carrying the tangency, and, second, the end e′ of � where the remaining
tangency occurs. Possible combinations of (e, e′) will be determined in Sect. 4 (see
Remark 4.13). In Sect. 5 we refine these techniques to address real liftings of tropical
bitangents with two tangencies.

3 Bitangent Classes, Shapes, and Their Local Properties

Aswasmentioned in Sect. 1we are interested in determining all tropical bitangent lines
� to generic tropical smooth plane quartics, denoted throughout by �. In particular,
we assume that such lines are non-degenerate in TP

2, i.e., they have a vertex v and
three ends. Thus, we may identify � with the location of its vertex v in R

2. Results
in this section are purely combinatorial: they depend solely on the duality between
� and unimodular triangulations of the standard 2-simplex of side length four. The
metric structure on the skeleton of � plays no role, and � need not be generic in the
sense of Remark 2.10.

By [3, Prop. 3.6, Defn. 3.8], linear equivalence of effective tropical theta charac-
teristics correspond to continuous translations of tropical bitangent lines that preserve
the bitangency property. This leads us to the following definition:

Definition 3.1 Given a tropical line � bitangent to a tropical smooth plane quartic �,
we define its tropical bitangent class as the connected components of the subset of
R
2 containing the vertices of all tropical bitangent lines linearly equivalent to �. The

shape of a tropical bitangent class refines each class by coloring those points belonging
to the tropical quartic �, and subdividing edges and rays of a class, accordingly.

By [3, Thm. 3.9] we know that each � admits seven bitangent classes. Shapes refine
the combinatorial structure of bitangent classes using the subdivision of R2 induced
by �.
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By Remark 2.3, the symmetric groupS3 acts on bitangent classes and their shapes.
We aim for a complete classification of all bitangent shapes, up to S3-symmetry. To
achieve this, we must first discuss how to perturb a vertex while remaining in the same
bitangent class. It suffices to focus on one tangency point at a time. A description of
such local moves is the content of the next lemma:

Lemma 3.2 Let � be a tropical bitangent to � and let P be a tangency point. The
relative position of P within � and � restricts the directions in which to move the
vertex v of� so that the corresponding translation of P remains a tangent point. They
are depicted in Fig. 5.

Proof Weproceed by a case-by-case analysis, depending on the nature of�∩� locally
around P . Up to S3-symmetry, there are six cases to consider, as seen in Fig. 4. The
corresponding localmoves for each case are depicted in Fig. 5. It is important to remark
that we are only concerned with ensuring the translation of P remains a tangency point
as we move the pair (v, P), even though the second tangency point may cease to be so
along the way. We distinguish between transverse and non-transverse intersections.

First, assume that the local intersection is transverse and P is in the relative interior
of an edge e of � and an end of �, as in the picture labeled (1) in Fig. 5. Then, we
can pick ε > 0 so that the tropical line with vertex v + w is tangent to � at a point in
e for any w in the Minkowski sum D + R≤0(1, 1), where D := D(0, ε) is an open
disc. By construction, this local move is 2-dimensional and unbounded.

Second, assume that the intersection around P is again transverse but P satisfies
one of the following conditions, corresponding to pictures (2) and (4) in the figure:

• P is a vertex of � and lies in the relative interior of an end ρ of �; or
• P is the vertex of � and lies in the relative interior of a bounded edge e of �.

In both situations, we can find ε > 0 and an (open) half disc D centered at 0 of radius ε,
so that the line � with vertex v + w is tangent to � at a point in either e or ρ for all
w ∈ D + R≤0(1, 1). The set D is obtained by intersecting D(v, ε) with a half-space
determined by either ρ or e. This local move is also 2-dimensional and unbounded.

The remaining option for a transverse intersection locally around P corresponds
to case (5), where P is also the vertex of �. If the local multiplicity is two, the
configuration is the one in (5a). In this case, we can translate this point along the
three bounded edges of � adjacent to P . The new tangency point will correspond to
a type (3) local tangency, as in Fig. 4. The local move is 1-dimensional and bounded.

On the contrary, if the local multiplicity is four, then P is adjacent to three bounded
edges of �, with directions (1, 0), (−3, 1), and (2,−1), as seen in (5b). In this sit-
uation, we have two possible local moves: one bounded 1-dimensional move along
the horizontal edge of �, and a second one corresponding to the Minkowski sum of
R≤0(1, 1) and a circular sector D bounded by the line with slope one through v and
the slope −1/3 edge of �. This second move is 2-dimensional and unbounded.

It remains to address all non-transverse intersections. First, assume we have a type
(3) local tangency along a horizontal end of �. In this situation, we can move (v, P)

along both directions (1, 0) and (−1, 0), as seen in the pictures (3a), (3b), and (3c).
The movement is 1-dimensional and locally unbounded.
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(3c) (6b)

Fig. 5 Local moves on bitangents fixing one combinatorial type of tangency. The tangency point P is
indicated by a circled black dot

Finally, assume that P is a vertex of both � and �, and that locally around P , both
curves intersect along a common horizontal end, as in (6a) and (6b) in the figure. The
exact values of the remaining directions of the star of� at P depend on the intersection
multiplicity of P .

In both cases, we can find ε > 0 and a bounded open circular sector D of D(0, ε)
so that the line with vertex v+w is tangent to � along a bounded edge of � adjacent to
P for eachw ∈ D+R≤0(1, 1). The sector D is bounded between the vector (−1,−1)
and the vectors (1,−1) for (6a), respectively, (3,−1) for (6b), corresponding to the
direction of the relevant edge of � adjacent to P .

In addition, (6a) allows for an extra move: we can translate (v, P) along a bounded
vertical segment with direction (0, 1). As it occurred with type (5b), this local move-
ment is not pure-dimensional. This concludes our proof. ��

Local moves that preserve the two tangencies are obtained by combining the local
moves determined by each tangency point separately. Lemma 3.2 has an important
topological consequence. Each point of a bitangent class admits a local dimension,
corresponding to the dimension of the local moves. Notice that whenever a local move
is bounded, its boundary is determined by a line segment. Thus:

Corollary 3.3 Bitangent classes to � are connected polyhedral complexes.

In order to combine local moves associated to tangency points lying in the same
end of �, it will be useful to compare the position of vertices of � relative to this end.
The following definition arises naturally:

Definition 3.4 Consider two vertices v, v′ of�.We say that v is smaller than v′ relative
to a weight ω ∈ R

2 if v · ω < v′ · ω. In particular, if ω = (1,−1) we say v is smaller
than v′ relative to the diagonal end of � andwrite v ≺d v′. If v ·(1,−1) = v′ ·(1,−1),
then v and v′ are aligned along the diagonal. In this case, we write v =d v′.

We end this section by discussing unboundedness of cells on bitangent shapes. To
this end, we define:

Definition 3.5 Let σ be an unbounded cell of a bitangent shape and pick ρ ∈ R
2 \ {0}.

If σ + R≥0ρ ⊂ σ we say ρ is an unbounded direction for σ .
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The next lemma provides a sufficient condition for a cell to be unbounded.

Lemma 3.6 Let� be a bitangent line to � with vertex v. Assume that the two tangency
points are contained in the interior of the same end of � with direction ρ. Then, the
set v + R≥0(−ρ) is contained in the bitangent class of �. In particular, this class is
unbounded.

Proof We let P and P ′ be the tropical tangency points of � and �. Without loss of
generality, assume ρ = (−1, 0). Then, the connected component of R2 \ � bounded
by the diagonal and vertical ends does not intersect �. Thus, we can move the vertex
of � horizontally to the right arbitrarily far and each new tropical line is tangent to
� at P and P ′. All these new tropical lines have the same bitangent class as �. The
class is unbounded in the direction (1, 0). ��

Our next lemma identifies the unbounded directions for each bitangent shape with
the ends of a min-tropical line. We use it in Sect. 4 to classify shapes with unbounded
cells.

Lemma 3.7 Assume that a bitangent shape has an unbounded component σ . Then, we
conclude that the relative interior of σ lies in one of three unbounded components of
R
2\�, namely those dual to (0, 0), (4, 0), or (0, 4). Furthermore, each σ is unbounded

in a single direction: it is (−1,−1) for (0, 0), (1, 0) for (4, 0), and (0, 1) for (0, 4).

Proof By construction, σ ◦ intersects at most a single connected component ofR2 \�.
First, assume σ ◦ ⊂ �, so σ ◦ lies in an end of �. A simple inspection show that for
any v ∈ σ ◦ with |v| � 0, the tropical line with vertex v will have a multiplicity one
intersection point with another end of �, which cannot happen since v ∈ σ .

Similarly, if σ ◦ �⊂ �, we let (i, j) be the vertex dual to the unbounded two-
dimensional component of R2 \ � meeting σ and pick v ∈ σ ◦ with |v| � 0. If
(i, j) �= (0, 0), (4, 0), or (0, 4), then the tropical line with vertex v will have a
multiplicity one intersection point with an end of � in the boundary of this connected
component. This leads to a contradiction.

The second claim in the statement is a consequence of the previous claim. ByS3-
symmetry we need only analyze one case, say when (i, j) = (0, 0). In this situation,
for all v in σ ◦, the tangency points between � and the line � with vertex v must occur
along the diagonal end of �. Lemma 3.6 then implies that (−1,−1) is the unique
unbounded direction for σ . For any other direction ρ′, a line with vertex in v +R≥0ρ

′
will meet an end of � at a point of multiplicity one. ��

4 A Combinatorial Classification of Bitangent Classes

Our objective in this section is to classify the bitangent classes of � and their shapes.
The results are purely combinatorial and rely heavily on those obtained in Sect. 3.
The classification is organized by the minimal number of connected components of
� ∩ � and the properness of this intersection where � is a given member of this
class (see Table 6). Propositions 4.1, 4.2, and 4.4 determine the shapes corresponding
to each combination. Our findings are summarized in Fig. 6. Figure 19 contains the
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Fig. 6 Orbit representatives of all 41 shapes of bitangent classes to �, grouped by the dimension of its
maximal cells. The numbers above each vertex indicate lifting multiplicities over the complex numbers
(discussed in Sect. 5), whereas the red ones above edges indicate slopes. The black cells of each bitangent
class miss �, whereas the red ones lie on it. The unfilled dots are vertices of �

Table 6 Classification of the 41 bitangent shapes by the minimal number of components for � ∩ � and the
type of intersection (proper or no) for some � in the given bitangent class

Min. conn. comp. Proper Shapes

1 Yes (II)

1 No (C), (D), (L), (L′), (O), (P), (Q), (Q′), (R), (S)

2 Yes/no Rest

The shape labels refer to those in Fig. 6

relevant information on the dual subdivision to� responsible for each bitangent shape.
To simplify the exposition, the information for each subdivision can be found in the
proofs of the propositions and lemmas classifying the corresponding shapes. We start
by discussing the shapes appearing in the first two rows of Table 6:

Proposition 4.1 Let B be a bitangent class of � associated to a tropical line � where
� ∩ � has one connected component and the intersection is transverse. Then, B lies
in the S3-orbit of shape (II).

Proof Since the intersection is transverse, there is a unique tangency point of multi-
plicity four. By Remark 2.6 combined with theS3-symmetry, such tangency can only
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Fig. 7 From left to right: shape (II), cells v∨
l , v

∨
r , and (v′)∨ in the dual subdivision to � and local moves

determining this bitangent shape. The edges e and e∨ are marked in blue

arise if � has a bounded edge e with direction (3,−1). We let vl and vr be the left
and right endpoints of e as in Fig. 7. The smoothness and the degree of � determine
its dual subdivision locally around e∨: its endpoints are (0, 0) and (1, 3). In turn, this
fixes three triangles in the subdivision, as seen in the second picture from the left in the
figure, those dual to the vertices vl , vr , and a vertex v′ adjacent to vr . This subdivision
completely determines B by analyzing the local moves seen in the same figure, as we
now explain.

We start by placing the vertex v of � at vl . This gives a multiplicity four tangency
of type (6b). By Lemma 3.2, we can move v along e until we reach vr , as we see in the
third picture in Fig. 7. The vertices of all these lines will be multiplicity four tangency
points. The closure in R2 of the local moves along the relative interior of e described
by the lemma yield the unbounded set e + R≤0(1, 1).

The vertex vr corresponds to a vertex-on-vertex transverse local tangency of mul-
tiplicity 4, i.e., of type (5b). The possible local moves away from vr can be seen in the
figure. Notice that the one-dimensional local move along the horizontal edge connect-
ing vr with a vertex v′′ of � is bounded by the location of the vertex v′ connected to
vr by the edge of � with direction (2,−1). Indeed, the vertex v′′ appears to the right
of v′ by the information we have already gathered on the dual subdivision. Since there
are no further moves to make, we conclude that B corresponds to shape (II). ��
Proposition 4.2 Let B be a bitangent class of � associated to a tropical line � where
� ∩ � has one connected component which is non-transverse. Then, B lies in the
S3-orbit of a shape labeled by (C), (D), (L), (L′), (O), (P), (Q), (Q′), (R), or (S) in
Fig. 6.

Proof By construction, the vertex v of � is also a vertex of � and the intersection
� ∩ � is bounded (we have a type (3b) tangency). If � ∩ � consists of three edges,
then Star�(v) = Star�(v), as seen in Fig. 4 (3b). The line cannot be moved while
preserving the bitangency condition, so B = {v} and its shape is (C).

Otherwise, � ∩ � is a bounded edge e of �, and the stable intersection equals the
two endpoints of e. By exploiting the S3-symmetry, we may assume e is horizontal
and its leftmost vertex v0 has local multiplicity one. Furthermore, by Remark 2.6 we
may further assume that the triangle dual to v has vertices (1, 0), (1, 1), and (2, 2). In
turn, the edges e′ and e′′ of � adjacent to v must have directions (2,−1) and (−1, 1).
We let v′ and v′′ be their second endpoints, respectively. By construction, the dual
triangle to v0 has vertices (1, 0), (1, 1), and (0, i) for i = 0, . . . , 4. This information
can be seen in Fig. 8.
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Fig. 8 Dual subdivisions and partial information on the tropical curve � from Fig. 4.2. The red dots on the
top left figures are the possible points (0, i) that can be chosen to form the triangle (v0)

∨ with the red edge
joining (1, 0) and (1, 1). The (blue) triangle dual to v is labeled

To determine B, we start by analyzing the local moves around the vertex v and
how can we continue moving the vertex to generate B. The relevant information is
recorded in Fig. 9. In particular, there are only two possibilities for the triangle dual
to v′′ as shown in Fig. 8.

The edge e restricts our moves around v to the horizontal direction. If we move v

in the direction (1, 0), the first tangency point of the new line remains at the midpoint
of e, but the second one lies in the edge e′ with direction (2,−1). Our movement stops
when the vertical end of the bitangent line meets the vertex v′ of e′.

In turn, if we move v in the direction (−1, 0) the tangency points lie in e and e′′.
Notice that this second tangency point belongs to the diagonal end of �. To decide
when we stop and how we can continue moving beyond this point, we use the partial
order ≺d from Definition 3.4 to compare v0 and v′′. In turn, this will impose certain
restrictions on the dual subdivision to �. Each case is depicted in Fig. 9.

First, assume v0 ≺d v′′. By convexity of the connected component of R2 \ � dual
to (1, 1), the triangle dual to v′′ has vertices (1, 1), (1, 2), and (2, 2) (see the top-left of
Fig. 8). All values of i are possible. In this situation, the movement of v in the direction
(−1, 0) stops at a point in the relative interior of e (seen in the top-left picture in Fig. 9).
This corresponds to a new bitangent line where v′′ is a tangency point of type (2). We
cannot move past this point. This yields shape (D).

On the contrary, assume v′′ �d v0. In this situation, we can move from from v

along e until we reach v0. If v′′ =d v0 we can move beyond v0 along a ray in the
direction (−1,−1). This is due to the fact that both edges e and e′′ have the same
lattice length forcing i = 0 or 1 by the convexity of the component of R2 \ � dual to
(1, 1). This is seen in the two pictures in the top-right of Fig. 9. The resulting shapes
are (L) and (L′).

For the remaining cases, we assume v′′ ≺d v0. We let v′
0 be the other vertex of �

joined to v0 by a bounded edge whose outer-direction has a positive y-coordinate, as in
the bottom-right of Fig. 9. If v′

0 = v′′, then i = 1 and the triangle dual to v′′ has vertices
(1, 1), (0, 1), and (2, 2). Furthermore, we can move the bitangent line with vertex v0
in two directions: an unbounded movement in the direction (−1,−1) and a bounded
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Fig. 9 Relevant local moves for vertices of bitangent lines in a bitangent class from Proposition 4.2 with a
shape other than (C) depending on the relative position of v′′, v′

0, and v0 with respect to �d . The notation
for the vertices is that of Fig. 8

one along the vertical edge joining v0 with v′′. Once we reach v′′, the new tropical
bitangent has two tangency points: v′′ and themidpoint P between v0 and v′′. Next, we
can continue moving in the same vertical direction: P will remain a tangency point,
and the second tangency point will be traveling along the remaining edge adjacent
to v′′, which we call e′′′ (see the bottom-left of Fig. 9). The movement stops once
the second endpoint of e′′′ (called v′′′) lies in the horizontal end of the new line. We
conclude from this analysis that B has shape (P).

Finally, we suppose v′′ ≺d v0 and v′
0 �= v′′. This forces i = 0 or 1, as seen in the

bottom row of Fig. 8. We claim that B can have shapes (O), (Q), (Q′), (R), or (S),
depending on the value of i , the dual triangle (v′′)∨ and the relative order between v′′
and v′

0 with respect to �d . There are three possible scenarios.

Case 1— v′
0 �d v′′ and i = 1. In this situation, the local movement at v0 agrees with

that of shape (P), as seen on the bottom-right of Fig. 9. Indeed, we move along the
ray with direction (−1,−1) and upwards along the vertical edge joining v0 and v′

0
until the diagonal end of the tropical line contains v′′. Furthermore, since v′

0 �= v′′,
we get �(e′′) < 2�(e), so v′

0 ≺d v′′ and (v′′)∨ is the triangle with vertices (1, 1),
(1, 2), and (2, 2). Note that v′′ is a type (2) tangency point of this new line, so
the movement stops at a point in the relative interior of the edge v0v

′
0. This yields

shape (O).
Case 2— v′

0 �d v′′ and i = 0. It follows that (v′′)∨ is the trianglewith vertices (1, 1),
(1, 2), and (2, 2). The localmove at v0 is seen at the bottom-center picture in Fig. 9:
we move along the edge joining v0 and v′

0 allowing for an unbounded movement
in the direction (−1,−1) from any point in this segment. The movement stops
once the new line contains v′′ in its diagonal end. If v′

0 ≺d v′′, the stopping point

in the interior of the edge v0v
′
0, and B has shape (Q). If v′

0 =d v′′, the movement
stops at v′

0, and B has shape (Q′).
Case 3 — v′′ ≺d v′

0. This forces i = 0 and (v′
0)

∨ to be the triangle with vertices
(0, 0), (1, 1), and (0, 1). The vertex v0 lies in B and can be moved along the edge
v0v

′
0 and along rays with direction (−1,−1) at each point in this segment until we

reach v′
0 (as in the bottom-center of Fig. 9). From v′

0, we can furthermove along the
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vertical edge containing v′
0 until the diagonal end of the line meets v′′. If v′

0 is not
adjacent to v′′ in �, then (v′′)∨ is the triangle with vertices (1, 1), (1, 2), and (2, 2)
and themovement stops at the interior point of the vertical edge of� containing v′

0.
Thus, B has shape (R). On the contrary, if v′

0 and v′′ are adjacent in �, then (v′′)∨
is the triangle with vertices (1, 1), (2, 2), and (0, 1). The movement stops at v′′
and continues as for shape (P), as we see on the bottom-left of Fig. 9. Thus, B has
shape (S). ��

Remark 4.3 A key argument in the proof of Proposition 4.2 involves the compari-
son between the relative �d -order among various vertices in the bounded connected
component of R2 \ � dual to (1, 1). In turn, this yields an order between the lattice
lengths of certain bounded edges of � and partial knowledge of the dual subdivi-
sion to �. Following the notation of Fig. 2, we conclude that shapes (P) and (S) can
only arise when the skeleton of � is the graph (212) and we have �6 = len(e′′),
len(e) + len(e′′) ≤ �1 = 2 len(e′′).

For the remaining shapes listed in Proposition 4.2 except (C), the skeleton of �

correspond to the graph (111) in Fig. 2 and �6 = len(e′′). The partial information
on the dual subdivisions to � provided by each shape imposes different restrictions
of the lengths min {�4, �5} and �1. For example, to obtain shapes (L) and (L′) we
must have �6 = len(e′′), �1 = 3 len(e′′) and min {�4, �5} ≤ len(e). For (O), we have
min {�4, �5} ≤ len(e) − len(e′′), �6 = len(e′′), and �1 = len(e′′) + len(e). Similar
restrictions arise for shapes (D), (Q), (Q′), and (R).

For these bitangent classes described here, the associated divisor D places one chip
on each side of the central loop. The tropical semimodule R(D) associated to the
linear system |D| is a line segment [14]. We can view it in the bounded cells of B that
are either outside � or on the central loop of the graph.

Finally, if B has shape (C), then the skeleton of � is the graph (000) from Fig. 2,
with �1 ≤ �2 ≤ �3. Furthermore, the associated divisor D places one chip (�2 −�1)/2
and (�3 − �1)/2 units away from the vertex of the two largest edges, and R(D) is a
single vertex.

To conclude our classification of bitangent classes, we focus on the last row of Table 6.
All members of such classes have two distinct tangency points. In order to simplify
the exposition, we break symmetry by considering the tangencies to be either in the
diagonal or the horizontal end of �. This non-uniform convention will allow us to
simplify the lifting obstructions in Sect. 5.

Proposition 4.4 Let B be a bitangent class of � where every member intersects �

in two connected components. Then, up to S3-symmetry, B has one of the following
shapes: (A), (B), (E), (F), (G), (H), (H′), (I), (J), (K), (M), (N), (T), (T′), (T′′), (U),
(U′), (V), (W), (X), (Y), (Z), or (AA) through (HH), depicted in Fig. 6.

Proof We prove the statement by a case-by-case analysis, based on the dimension
and boundedness of the top-dimensional cells of B. To simplify the exposition, we
treat each case in five separate lemmas below. The classes with two-dimensional
top-cells are discussed in Lemmas 4.5 and 4.6. Lemmas 4.7 and 4.8 concern classes
with one-dimensional top-cells. Finally, zero-dimensional classes are the subject of
Lemma 4.9. ��
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Fig. 10 Partial dual subdivisions to � relevant for Lemma 4.5. Here, the vertex v′′
r is joined to v′

r by a
horizontal edge in �, which can only happen if (v′

r )
∨ is the first triangle in the top-right

The next two lemmas address the possible shapes of two-dimensional bitangent
classes:

Lemma 4.5 Let B be a two-dimensional bitangent class of � where every member
intersects � in two connected components. Assume B has an unbounded top-
dimensional cell. Then, up to S3-symmetry, B has one of the following six shapes:
(T), (T′), (T′′), (U), (U′), or (V), as depicted in Fig. 6.

Proof We let σ be an unbounded two-dimensional cell in B. Combining Lemma 3.7
with the action ofS3, we may assume σ lies in the chamber of R2 \ � dual to (0, 0).
Any point v ∈ σ ◦ yields a line � with two distinct type (1) tangency points along
its diagonal end, called P and P ′. Without loss of generality, we assume P ′ lies in
between v and P in this end.

We let e and e′ be the two bounded edges of � containing P and P ′, respectively.
Note that e and e′ are boundary edges of the same connected component ofR2\�. Their
dual edges e∨ and (e′)∨ are adjacent to the same vertex (i, j) in the dual subdivision
to �. Table 4 shows the three possible directions for e∨, namely, (1, 1), (3,−1), and
(1,−3), whereas (e′)∨ must have direction (−1, 1). Thus, since the edge (e′)∨ contains
(0, 0), we conclude that i = j = 1 and the second endpoint of e∨ equals (k, 4 − k)
for k = 0, 2, or 4. Both dual edges are marked by blue segments in the relevant partial
subdivisions in the top-left of Fig. 10. Since the position of e∨ is uncertain, we use a
dotted segment for it.

We let vl , vr , v
′
l , v

′
r , be the left and right vertices of e and e′, respectively. We use

the convention, vl ≺d vr to characterize left and right for the edge e since its slope is
undetermined. The position of (e′)∨ yields two options for each of the triangles (v′

l)
∨

and (v′
r )

∨ (seen on the top-right of Fig. 10). The possible triangles (v′
l)

∨ are obtained
from (v′

r )
∨ using the map τ0 from Table 3.

Our next objective is to classify the possible shapes of B. We start by focusing
our attention on the cell σ . Since v ∈ σ ◦ and P and P ′ are type (1) tangencies in the
diagonal end of�, we can move v locally in the (1, 1) direction while remaining in σ ◦.
The movement stops when we reach P ′, which becomes a type (4) tangency of the
new line. By Lemma 3.7, we conclude that B∩e′ = σ ∩e′. This set must be a segment
by the description of local moves for type (4) tangencies. The possible shapes for σ

will be completely characterized by the segment σ ∩ e′ since σ = σ ∩ e′ +R≤0(1, 1).
The set σ ∩ e′ is determined by the relative order of vl , vr , v′

r , and v′
l with respect to

the partial order �d from Definition 3.4. As we move v along e′ towards v′
l , the point

P travels along e. The movement stops either when v reaches v′
l (if v′

l �d vl ) or when
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Fig. 11 From left to right: possible realizations for the unbounded two-dimensional cell σ depending on
the relative �d -order of the vertices vl , vr , v

′
l , v

′
r of �, and local movement at v′

r when v′
r ≺d vr . The

movement along the horizontal edge v′
r v

′′
r of � is restricted by vr

the diagonal end of the new line meets vl (if vl �d v′
l ), whichever happens first. The

latter yields a stopping point in the relative interior of e if vl ≺d v′
l .

Notice that vl ≺d v ≺d vr and v′
l ≺d v ≺d v′

r , so v′
l ≺d vr . By using the map τ0

we reduce our analysis to three cases, namely v′
l ≺d vl ≺d vr ≺d v′

r , v′
l ≺d vl ≺d

v′
r �d vr , or vl �d v′

l ≺d v′
r �d vr . These are precisely the three options depicted in

Fig. 11.
The convexity of the connected component of R2 \ � dual to (1, 1) ensures that

v′
r �d vr if and only if (v′

r )
∨ is the triangle with vertices (0, 0), (1, 1), and (1, 0). Thus,

v′
r is adjacent to a vertex v′′

r of � along a horizontal edge. The three possible triangles
(v′′

r )∨ are seen in the bottom-right of Fig. 10. Symmetric behavior is observed when
comparing vl and v′

l : vl �d v′
l if and only if (v′

l)
∨ is the triangle with vertices (0, 0),

(1, 1), and (0, 1).
To finish the classification of shapes for the bitangent class B, wemust analyzewhat

happens if v′
r ∈ B and/or v′

l ∈ B. By symmetry, we restrict our attention to the case
when v′

r ∈ B. There is only one possible movement beyond v′
r , and it can only occur

if v′
r ≺d vr . In this situation, can move along the horizontal edge v′

rv
′′
r : one tangency

point lies on this edge while the other one travels along the edge e towards vr . The
movement stops when the second tangency point reaches vr or when the vertex of the
new line reaches v′′

r , whichever happens first. This will be determined by the relative
order between vr and v′′

r with respect to �d .
If v′′

r �d vr , the partial information on the dual subdivision recorded so far forces
either v′′

r = vr or v′′
r to be adjacent to vr along a slope one bounded edge of B. In both

situations, the line with vertex v′′
r will be a member of B which meets � in a single

connected component. This cannot happen by our assumptions on B. We conclude
that vr ≺d v′′

r so the movement along the horizontal edge v′
rv

′′
r stops at a point in its

relative interior, as seen on the right of Fig. 11.
The above discussion confirms that we can attach a one-dimension horizontal cell

to B at v′
r if and only if v′

r ≺d vr . Symmetrically, we can attach a one-dimensional
vertical cell to B at v′

l if and only if vl ≺d v′
l .

The above analysis on the three options for the two-cell σ combined with the
restrictions to move past v′

r or v′
l whenever these vertices lie in B yields the six

possible shapes in the statement (up to S3-symmetry). This concludes our proof. ��
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Table 7 Classification of shapes of two-dimensional classes with no unbounded top-cells, following Fig. 6

e′ vs. e (1) (2) (3) (4) (5)

(1) (W) τ1(X) τ1(Y) (GG) (EE)

(2) (X) (Z) (AA) (HH) (FF)

(3) (Y) τ1(AA) (BB) (DD) (CC)

The map τ1 is described in Table 3

Lemma 4.6 Let B be a two-dimensional bitangent class of � for which every member
intersects � in two connected components. Assume all top-dimensional cells in B are
bounded. Then, up to S3-symmetry, B has one of the following twelve shapes: (W)

through (Z) and (AA) through (HH) (see Table 7).

Proof In order for all two-dimensional cells of B to be bounded, the tangency points for
each member must occur in the relative interior of two different ends of the bitangent
line. Without loss of generality, we assume they belong to the horizontal and diagonal
ones, respectively. We let e and e′ be the two bounded edges of � where these two
tangencies occur. By picking a point v in the relative interior of a two-cell σ , we
conclude that these two points are of type (1), i.e., they lie in the relative interior of e
and e′, respectively.

As in the proof of Lemma 4.5, e and e′ must lie in the boundary of the same
unbounded connected component ofR2\�. Furthermore, the dual point corresponding
to such component equals (i, 0) for i = 1, 2, or 3. The possible directions for the dual
cells e∨ and (e′)∨ are listed on Table 4. The fact that e lies to the left of e′, combined
with the directions for e∨ and e′∨ forces i = 2. Moreover, only two of the three
possible directions for e∨ and (e′)∨ can occur, namely (−2, 1) and (−2, 3) for e∨
and (1, 1) or (−1, 3) for (e′)∨. All four combinations are possible. Using the map τ1
from Table 3 we can further restrict our analysis to three of them, seen to the left of
Fig. 12.

We let v1, v2, v3, and v4 be the endpoints of e and e′, clockwise oriented. Figure 12
depicts the location of these vertices along four dotted lines: two horizontal ones
containing v1 or v2, and two slope one lines containing v3 or v4. We let P be the
parallelogram determined by these four lines. Note that the upper left corner of P
must lie in the connected component of R2 \ � dual to (2, 0) so the lines spanned by
e and e′ must intersect above this point. The intersection B ∩ P will yield a unique
two-dimensional cell. This cell will be determined by the location of e and e′, relative
to P .

There are up to five cases for the relative position of each edge, which we describe
below. Since we may assume that the slanted side of P is at least as large as the
horizontal size, the options for e′ are reduced to three. The first three cases for each
edge admit a common description. We accomplish this by writing these two edges as
v jv j+1 for j = 1, 3. For case (1), the slopes of e and e′ are not further restricted. For
all remaining cases, the edges e and e′ have directions (1, 2) and (−1, 1), respectively.

(1) The edge v jv j+1 avoids P . For j = 1, this means the bottom and left edges of P
belong to B. If j = 3, then the top and right edges of P lie in B.
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Fig. 12 From left to right: all possible partial dual subdivisions to � when all two-dimensional cells of B
are bounded, and positions of the (red) edge e = v1v2 (respectively, the (blue) edge e′ = v3v4) relative
to P

(2) v j is a vertex of P . If so, v j ∈ B and it has a ray adjacent to v j in B. This ray
includes a bounded edge of � adjacent to v j followed by an end with the same
slope. For j = 1 this end and edge have direction (−1,−1), and the bottom and
left edges of P lie in B. If j = 3, then the direction is (1, 0) and the top and left
edges of P belong to B.

(3) v j lies in the relative interior of an edge of P . If so, P ∩ v jv j+1 ⊆ B, and a ray
preceded by a bounded edge of slope 2 (for j = 1) or −1 (for j = 3) adjacent to
v j appears in B. The ray consists of a bounded edge of � followed by an end of
the same direction as in case (2).

(4) v1 is a vertex of P and e ∩ P is a segment containing v1. The description of B
around v1 is the same as in (3).

(5) v1 /∈ P and e ∩ P is a segment, not containing v1. As with (3), the intersection
P ∩ v1v2 belongs to B, but the role of v1 is now played by the lower endpoint of
this segment. No bounded edge or rays are attached to this endpoint.

The above description shows that each of these 15 combinations yields a unique shape,
which we indicate in Table 7. This concludes our proof. ��

The next two lemmas discuss bitangent classes of dimension one.

Lemma 4.7 Let B be an unbounded one-dimensional bitangent class of� where every
member intersects � in two connected components. Then, up to S3-symmetry, B has
one of seven possible shapes: (H), (H′), (I), (J), (K), (M), or (N).

Proof We let σ be an unbounded one-dimensional cell of the shape refining B and let
ρ be its unbounded direction, as in Definition 3.5. We let v be the unique vertex of σ

and set � to be the associated bitangent line. By assumption, � has two multiplicity
two tangency points, one of which is v. We let P be the second tangency point. By
Lemma 3.7, it lies in the end of � with direction −ρ and the connected component of
R
2 \ � containing σ ◦ is determined by ρ. Furthermore, σ = v + R≥0 ρ.
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Table 8 Classification of one-dimensional shapes with an unbounded top-cell by the types of local tangen-
cies for v (the vertex) and P

P-type

v-type (1) (2) (3c)

(4) —– —– (H)

(3b) (N) (I) (M) or (J)

(6a) —– (K) (H′)

′
′

( )∨

∨
e

′e
′( )∨

∨
e

ee

v
vvl re v

vvl re

eP P

Case 1:  Shape (H) Case 2:  Shape (H′)

σ σ

Fig. 13 Cases 1 and 2 from Lemma 4.7, leading to shapes (H) and (H′). The tangencies P and v are
horizontally aligned (using a black dotted line). The potential location of e∨ is marked with a dotted blue
line. One of the blue points (0, w) is a vertex of v∨

l

Lemma 3.2 restricts the tangency types of v to three cases: (4), (3b), or (6a). In
turn, P can only have tangency type (1), (2), or (3c). Since dim B = 1, out of the
nine possible combinations, only six are possible. Thus, the local tangencies for the
pair (v, P) are reduced to six combinations. The shapes associated to each pair are
listed in Table 8. They are determined by howwe can move from v away from σ while
remaining in B. Each case is explained in detail below.

Case 1— type (v, P) = ((4), (3c)). Exploiting theS3-symmetry, we assume P lies
in the horizontal end of �, as seen on the left of Fig. 13. We let e and e′ be the
edges of � containing the tangencies P and v, respectively. Since v is of type (4),
we conclude that B = σ , so B has shape (H).
Next, we infer partial information about the dual subdivision to �, which we need
for Corollary 4.12. Write vl and vr for the left and right vertices of the horizontal
edge e. By Lemma 3.7, the edge e′ of � containing v is in the boundary of the
connected component of R2 \ � dual to (4, 0). This information, combined with
Table 4 ensures the remaining vertex of (e′)∨ is (2, 1). In turn, since vr and e′ are
in the boundary of the connected component of R2 \ � dual to (2, 1), but e∨ is
not, it follows that e∨ has vertices (1, i) and (1, i + 1) with i = 0, 1, 2, as we see
in the left of Fig. 13. This edge is joined to (2, 1) and a vertex of the form (0, w)

to determine the dual triangles v∨
l and v∨

r , respectively.
Case 2 — type (v, P) = ((6a), (3c)). This case is similar to Case 1. Since v has

type (6a), exploiting the S3-symmetry we may assume P lies in the horizontal
end of v and that v∨ is the triangle with vertices (4, 0), (3, 0), and (2, 1), as we
see in the right of Fig. 13. We cannot move beyond v so the bitangent class B has
shape (H′). The data on e∨, v∨

l , and v∨
r matches Case 1.
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Case 3 — type (v, P) = ((3b), (1)). In this situation, we assume P lies on the diag-
onal end of �, and we let vr and vl be the vertices of the edge e of � containing P ,
with vl ≺d P ≺d vr .
By Lemma 3.7, v lies in the boundary of the connected component of R2 \ � dual
to (0, 0). We let e′ be the diagonal edge of � containing v and let v′ be its other
endpoint. The dual triangle v∨ must then have vertices (0, 0), (1, 0), and (0, 1).
We claim that out of the three possible dual triangles (v′)∨ depicted on the left
of Fig. 14, only one is feasible. Since the bottom two are related by the map τ0,
it suffices to analyze the first two. The second one (where v′ is adjacent to a
horizontal end of �) can be ruled out for dimension reasons. Indeed, since v′ is a
type (6a) tangency and P has type (1), we can move beyond v′ while remaining
in B if we restrict to a circular sector with center v′ and bounded by edges with
directions (1, 1) and (2, 1), as seen on the right of Fig. 14. This cannot happen
since dim B = 1. Thus, the star of v′ at � must be a min-tropical line, as depicted
in the center of the same figure.
Once Star�(v′) is determined, we let v′

t and v′
r be the vertices of � connected to

v by a vertical and horizontal edge, respectively. The combined tangency types of
v′ and P allow us to move past v′ along these two bounded edges while remaining
in B. The stopping point will be determined by the relative �d -order between vl
and v′

t , respectively v′
r and vr . We claim that v′

t ≺d vl and vr ≺d v′
r . If so, the

movement from v′ along the vertical and horizontal edges stops once the diagonal
end of the new bitangent lines reaches vl , respectively vr . These stopping points
are in the relative interior of the edges v′v′

t and v′v′
r and are diagonally aligned

with vl and vr , respectively. Thus, B has shape (N).
Since the claims are symmetric, it suffices to show vr ≺d v′

r .We do so by analyzing
the three possibilities for the triangle (v′

r )
∨ (seen in the picture). The convexity of

the connected component ofR2 \� dual to (1, 1) ensures that for all three cases we
have vr �d v′

r . Furthermore, equality holds if either vr = v′
r or vr =d v′

r and both
vertices are adjacent in �. In both situations, v′

r ∈ B and the corresponding bitan-
gent line intersects � in a connected set. This cannot happen by our assumptions
on B. Thus, in all three cases, we have vr ≺d v′

r , as we wanted.
Case 4 — type (v, P) = ((3b), (2)). This situation is very similar to Case 3, with

the exception that now P = vr or vl . The triangle v∨ is fixed as in Fig. 14. Since
dim B �= 2, there is only one option for the dual triangle to the vertex v′ adjacent
to v along a slope one edge of �. The partial dual subdivision to � is depicted
in the center of the same figure, and the star of v′ at � is a min-tropical line. By
applying the map τ0 if necessary, we may assume P = vl and we let v′

l be the
vertex of � adjacent to v′ by a horizontal bounded edge. The same reasoning as
in Case 3 confirms that we can move from v′ along this edge while remaining in
B but we must stop at a point in the relative interior of this edge since vr ≺d v′

r .
Thus, B has shape (I).

Case 5 — type (v, P) = ((3b), (3c)). We assume that P lies in the horizontal end
of �, so the star of v at � is a tropical line because (4, 0) ∈ v∨ by Lemma 3.7. We
let v′ be the vertex of � adjacent to v by a horizontal edge, and let vl and vr be the
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Fig. 14 Partial dual subdivisions and local moves for Case 3 from Lemma 4.7, leading to shape (N). Points
joined by black dotted lines are diagonally aligned. The dotted blue edges in the center correspond to the
potential locations of e∨, whereas the blue edge is (e′)∨. Imposing the condition vl =d v′ in the central
picture will give shape (I) and Case 4

left and right vertices of the horizontal edge e of � containing P . By construction,
we can move v along e until we reach v′ while remaining in B, as in Fig. 15.
It remains to analyze the local moves at v′. This will be determined by the dual
triangle (v′)∨. There are three possibilities for (v′)∨, as seen on the left of Fig. 15,
but only two up to S3-symmetry. Each of them leads to either shape (M) or (J),
as we now explain. If v′ is adjacent to a vertical bounded end of �, then the line
with vertex v′ has a type (5a) tangency at v′ (seen in the top of the figure). We
cannot move past v′ while remaining in B by the tangency point P . Thus, B has
shape (M). On the contrary, if v′ is adjacent to a vertical end of �, then v′ becomes
a type (6a) tangency and we can move v′ in the direction (−1, 0) while remaining
in B, since the second tangency point will lie in the slope −1 edge e′ adjacent
to v′. The movement stops once the diagonal end of the new line reaches the other
endpoint of e′, called v′′ in the figure. This is guaranteed because vr ≺d v′′, and
this follows since the connected component of R2 \ � dual to (2, 0) is convex and
contains both vr and v′′ in its boundary. Thus, B has shape (J).

Case 6 — type (v, P) = ((6a), (2)). We assume P lies in the diagonal end of �. By
applying the map τ0 if necessary, wemay assume v∨ has vertices (0, 0), (1, 1), and
(1, 0) as in the left of Fig. 16.We let e be the edge of� responsible for the tangency
at the vertex P . We must decide if P is the left- or right-most vertex of e (recall
that by our convention vl ≺d vr ). The two options and the local movement at v

within B are illustrated in the figure. Since dim B = 1, we must have P = vl and
we can move v beyond σ along the horizontal edge of � containing it. We let v′

r be
the other endpoint of this edge. There are three options for the dual triangle (v′

r )
∨,

depicted to the right of the figure. As was argued for Case 3, our assumptions on
B ensure that vr ≺d v′

r . This implies that the movement along this horizontal edge
that started at v′ stops at a point in its relative interior, so B has shape (K). ��

Lemma 4.8 Let B be a bounded one-dimensional bitangent class of � where every
member intersects � in two connected components. Then, up to S3-symmetry, B has
shape (E), (F), or (G).
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Fig. 15 From left to right and top to bottom: possible triangles (v′)∨, partial dual subdivisions and local
moves for Case 5 from Lemma 4.7, leading to shapes (M) and (J), respectively
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Fig. 16 Relevant data for Case 6 from Lemma 4.7 leading to shape (K): partial dual subdivisions to � and
local movement around selected members of the bitangent class, depending on the location of the tangency
P with respect to the edge e

Proof Let σ be a one-dimensional cell of B, pick a point v in its relative interior and
let � be the tropical bitangent line to � with vertex v. We let P and P ′ be its two
tangency points. Since B is bounded, Lemma 3.6 ensures that they lie in distinct ends
of �. Furthermore, since v is not a vertex of �, v ∈ σ ◦, and dim B = 1, one of the
tangencies (say P ′) must be non-transverse of types (3a) or (3c). For the same reasons,
the point P must be of tangency type (1).

We follow the same notation from the proofs of previous lemmas in this section.We
let e and e′ be the edges of � containing P and P ′, respectively, and let vl , vr , v

′
l , v

′
r

be the endpoints of e and e′, with the conventions vl ≺d vr and v′
l ≺d v′

r . By
S3-symmetry, we assume P and P ′ lie in the diagonal and horizontal ends of �,
respectively.

There are three cases to consider, depending on the tangency type of P ′ andwhether
or not vr is above the horizontal line L : v + R(1, 0). Each yields a different shape.

Case 1 — P has type (3c) and vr is above L . By construction, v lies in a connected
component ofR2 \�, unbounded in the direction (0,−1). The corresponding dual
vertex ( j, 0) must be an endpoint of e∨. The three options for the direction of e∨
listed in Table 4, the boundedness of e′ and the degree of � combined force j = 2.
This reduces the possibilities for e∨ and v∨

r to two cases, as we see on the left of
Fig. 17. In turn, (e′)∨ lies in the boundary of a different connected component of
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Fig. 17 From left to right: partial dual subdivision and bitangent classes with shapes (E) and (F) corre-
sponding to two tangency points of types (3c) and (1) for a bounded one-dimensional class, as in Lemma 4.8
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Fig. 18 From left to right: partial dual subdivision and bitangent class to � with a member having tangency
points of types (3a) and (1) as in Lemma 4.8; potential local movements depending on the relative�d -order
between vl and v′

l

R
2 \ � than vr , and the dual triangle (v′

r )
∨ is unimodular and contains both (2, 0)

and (e′)∨. Thus, the vertices of (e′)∨ are (1, i) and (1, i + 1) for i = 0, 1, or 2.
The non-transverse tangency P ′ restricts the local movement around v to the hori-
zontal direction.We canmove both left and right from v while remaining bitangent.
The tangency point P ′ is fixes throughout, while the second tangency point travels
along e towards vl and vr , respectively. Since vr lies above the horizontal line L ,
we can move v in the direction (1, 0) until the diagonal end of the bitangent line
meets vr . This is a type (2) tangency because vr /∈ L , so we cannot move beyond
this point. The movement is within the same chamber of R2 \ � containing v, as
seen in the center of Fig. 17. To decide the stopping point when moving from v

in the (−1, 0)-direction, we compare the relative �d -order between vl and v′
r . We

claim v′
r ≺d vl by the restrictions on B. If so, B = σ ⊆ R

2 \ � and so its shape
is (E).
To prove the claim, it suffices to analyze the three possibilities for the triangle
(v′

r )
∨. If vl �d v′

r , then i = 1 and v′
r =d vl . However, in this situation v′

r and vl
are adjacent in �, and the vertex v′

r ∈ B. If so, the corresponding bitangent line
would intersect � in a connected set, contradicting our hypotheses on B. Thus,
v′
r ≺d vl as we wanted to show.

Case 2 — P has type (3c) and vr is on or below L . We let P ′′ be the intersection
point between L and e. The same reasoning from Case 1 yields the same partial
dual subdivision to � and the claim v′

r ≺d vl . Thus, we can move from v in the
direction (1, 0) until the diagonal end of the new line reaches vl . However, the
movement in the direction (1, 0) stops at P ′′.
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We claim that P ′′ �= vr , as seen on the right of Fig. 17. If so, P ′′ becomes a type (4)
tangency point and we cannot move past it. This confirms that B has shape (F).
To prove our claim, we analyze the possibilities for v∨

r .
The fact that vr lies on or below L forces e′ to have direction (−1, 1) and v∨

r to be
the triangle with vertices (2, 0), (3, 0) and (3, 1). Thus, if P ′′ = vr we can move
beyond vr along a ray with direction (1, 0) while remaining in B because vr and
P ′ will be tangency points on the horizontal end of a bitangent line. This cannot
happen because B is bounded. We conclude that P ′′ �= vr , as we wanted.

Case 3 — P has type (3a). In this situation, both e and e′ are in the boundary of the
same connected component ofR2 \�. In addition e and e′ are also in the boundary
of connected components of this complement, unbounded in the directions (1, 1)
and (0,−1), respectively. This forces e∨ and (e′)∨ to contain vertices of the form
(k, 4 − k) and ( j, 0), respectively, with k = 0, 2, or 4 and j = 1, 2, or 3. The
restrictions on the directions of e∨ and (e′)∨ combined with the fact that these two
edges share a vertex, leaves only one option for j , namely j = 1 as we see on the
left of Fig. 18. In turn, this gives three possible locations for e∨ (drawn as blue
dotted segments).
We can move v horizontally (both left and right) while remaining in B. To decide
the stopping points, we determine the relative �d -order of the vertices vl and v′

l
respectively, vr and v′

r . We claim that v′
l ≺d vl and vr ≺d v′

r , so our movement
away from v in both directions stops at points in the relative interior of e. Thus, B
has shape (G) as seen in the center of Fig. 18.
To prove the claims, we argue by contradiction. First, assume v′

r �d vr , so v′
r ∈ B.

The convexity of the connected component ofR2\� dual to (1, 1) and the possible
realizations of v∨

r then force v′
r and vr to be equal or to be adjacent vertices of �

along a slope one edge. If so, the bitangent line to � with vertex v′
r intersects �

in a connected set, contradicting our assumption on B. Thus, vr ≺d v′
r . Second,

assume vl �d v′
l , so v′

l ∈ B. Then, the same convexity argument used above forces
the triangle (v′

l)
∨ to contain one the points (0, 0) or (0, 1) as a vertex. In both cases,

we can move from v′
l along a ray with direction (−1,−1) while remaining in B,

as the figure shows. This cannot happen since B is bounded. ��
Our final result classifies the shapes of the remaining zero-dimensional bitangent
classes:

Lemma 4.9 Let B be a zero-dimensional bitangent class for � whose unique member
intersects � in two connected components. Then, B has either shape (A) or (B).

Proof Our assumptions on B imply that the corresponding bitangent line � has two
non-transverse tangency points of type (3) (called P and P ′), each on a different end
of �. Without loss of generality, we assume them to be the horizontal and vertical
ends, respectively, and let e and e′ be the corresponding bounded edges of � realizing
these two tangencies. By construction, P is of type (3c), while P ′ can have types (3a),
(3b), or (3c).

Let vl and vr be the left and right vertices of e. Analogously, call v′
t and v′

b the top
and bottom vertices of e′. Since � ∩ � ⊂ e ∪ e′, it follows that vl and v′

b are in the
boundary of two connected components of R2 \ � unbounded in directions (−1, 0)
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and (0,−1), respectively. This fact imposes strong restrictions on the dual edges e∨
and (e′)∨. Indeed, e∨ and (e′)∨ are obtained by joining vertices (1, i) and (1, i + 1),
respectively, ( j, 1) and ( j + 1, 1), for i = 0, 1, 2 and j = 0, 1, 2.

There are three possibilities for the tangency type of P ′. In turn, this depends on
whether or not B ∩ � = ∅. In the first situation, B has shape (A), P ′ has type (3c),
and B lies in an unbounded connected component of R2 \ � containing vr and v′

t in
its boundary. Thus, such component must be dual to (2, 2), and this vertex belongs to
both v∨

r and (v′
t )

∨, as we see in Fig. 19.
In the second case, P ′ is either of type (3a) or (3b), in particular, B ∩ � ⊆ e′.

First, assume its type is (3a). If so, then P lies in the relative interior of e′ and B has
shape (B). In turn, vr and e′ lie in the boundary of the same connected component of
R
2 \ �. The information on (e′)∨ and e∨ forces this component to be dual to (2, 1),

so j = 2. The value of i is unrestricted, but (2, 1) must be a vertex of the triangle v∨
r ,

as Fig. 19 shows.
Finally, assume P ′ has type (3b), i.e., P ′ = v′

t . We argue this cannot happen by
exploiting the partial information on the dual subdivision to � we have collected so
far. Indeed, suppose that P = v′

t . Note that the open segment (vr , v′
t ) of the horizontal

end of � lies in one connected component of R2 \�. Since (2, 2) ∈ (v′
t )

∨, an analysis
of the three possibilities for the dual triangle (v′

t )
∨ ensures that vr and e′ lie in the

same connected component of R2 \ �, so j = 2 as before. This fixes (v′
t )

∨ and shows
that Star�(v′

t ) is a tropical line. This cannot happen by the horizontal alignment of vr
and v′

t . ��
Our combinatorial classification of bitangent shapes yields the following convexity

result for bitangent classes summarized in Theorem 1.1:

Corollary 4.10 The bitangent classes associated to a smooth tropical plane quartic
� are min-convex sets. Out of 41 possible S3-representatives of bitangent shapes,
only eight of them are finitely generated tropical polytopes, namely (A) through (G)

and (W).

Remark 4.11 By [14, Thm. 14 and Prop. 15], the linear systems of all effective tropical
theta characteristics on the skeleton of � are finitely generated tropical convex sets.
Corollary 4.10 highlights a fundamental difference between complete linear systems
on abstract and embedded tropical curves.

The proof of Propositions 4.1 and 4.2, and Lemmas 4.5 through 4.9 yield the following
combinatorial consequence which plays a crucial role in the lifting results discussed
in Sects. 5 and 6:

Corollary 4.12 The presence of a bitangent shape for � partially determines the dual
subdivision to �. Figure 19 summarizes our findings for chosenS3-representatives of
each shape. Restrictions for non-representative shapes arise via the maps τ0 and τ1
from Table 3.

Remark 4.13 Next, we explain the color coding in Fig. 19 (which is available on the
online version of this article). Solid black edges must be part of the given subdivision
but do not contain any tangency points. Dotted colored edges indicate potential edges,
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(A) (B) (C) (D) (E) (F) (G)

(M) (O) (P) (Q) (Q′) (R) (S)

(T), (T′), (T′′) (V) (W),(EE) (W),(GG) (W),(X),(Y) (W),(X),(Y),(Z)
(AA),. . .,(HH)

(II)

(H) (H), (H′) (I), (N) (J) (K), (U), (U′) (L) (L′)

Fig. 19 Partial dual subdivisions corresponding to all 41 bitangent classes to �

one of which must occur. The red, green and purple ones correspond to horizontal,
vertical and diagonal type (3a), (3b), or (3c) tangencies, while blue edges come from
type (1) or (2) tangencies. Pink edges are responsible for a combination of a non-proper
tangency along a bounded edge, followed by in unbounded cell of B with the same
direction.

Similarly, black vertices are always present, whereas colored vertices are either
endpoints of the corresponding optional dotted edges or they form a triangle with
an edge of the same color. Finally, colored circled black dots indicate a connected
component ofR2 \� that contains the endpoint of a type (3c) tangency (with the same
color) in its closure.

Remark 4.14 The partial dual subdivision to � induced by a singleton bitangent shape
{v} of type (C) depicted in Fig. 19 assumes � is generic in the following sense. The
minimum length among the three edges adjacent to the vertex v with Starv(�) = �

must be attained for exactly one edge. If this were not the case, the points (0, 0) and
(4, 0) should also be colored in green, since they could form a triangle with the edge
joining (1, 1) and (2, 1).

5 Lifting Tropical Bitangents

The techniques developed by Len and the second author in [26] produce concrete
formulas for lifting tropical bitangents over the fieldK. We are interested in extending
these results to real lifts, that is to compute the number of bitangent triples (�, p, p′)
associated to a fixed tropical bitangent where � is defined overKR. In this section, we
determine the local lifting multiplicities over KR as in [26]. These refined formulas
will be used in Sect. 6 to prove Theorem 1.2.
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Table 9 Combinations of unordered pairs of distinct local tangencies that arise from tropical bitangents to
generic smooth tropical plane quartics �

types (1) (2) (3a) (3b) (3c) (4) (5a) (6a)

(1) � � � � � � � �

(2) � � � � � � �

(3a) �

(3b) � �

(3c) � � � �

The boxed ones are the only ones arising from classical bitangent triples

We start by reviewing the lifting multiplicities over K for each tangency type. The
combinatorial classification developed in Sect. 4 allows us determine all possible com-
binations of local tangencies that can occur within each class by imposing restrictions
on the dual subdivision to � where a given shape can arise. Most notably, the proofs
of Propositions 4.1, 4.2, and 4.4 combined with Table 5 provide extra information
regarding which points of B admit lifting to aK-bitangent triple (�, p, p′). We record
this data by assigning this lifting multiplicity as the weight of the point in B. Its value
can be 0, 1, 2, or 4.

Here is the precise statement that justifies the weight assignment in Fig. 6 under
the genericity assumptions from Remark 2.10.

Theorem 5.1 There are24 combinations of distinct unorderedpairs of local tangencies
that arise from tropical bitangents to generic smooth tropical plane quartics (see
Table 9). Furthermore, only 14 of them lift to bitangent triples defined overK. In turn,
five out of the 24 pairs admit a multiplicity four tangency. Their types are (1), (3b),
(4), (5b), and (6b). Assuming the plane quartic has no hyperflexes, only the last two
lift to a K-bitangent triple. They are members of a bitangent class of shape (II).

The proof of the multiplicity four claim in the theorem is given in Appendix A. The
statement regarding the multiplicity two tangencies follows from Table 5 and Theo-
rem 2.11. As an example, we showwhy the unordered pair of tangency types ((2),(3b))
is never realizable over K under our genericity assumptions. The remaining non-
liftable combinations can be argued by the same methods. Indeed, Corollary 4.12 and
Remark 4.13 imply that a pair of (3b) and (2) local tangencies only occurs at cer-
tain vertices of shapes (X), (Z), (AA), and (FF) through (HH). The corresponding
bitangent lines � have two properties: first, the set � ∩ � is disconnected and, sec-
ond, the tangency points lie in the relative interior of the same end of �. Thus, by
Theorem 2.11 (ii) we conclude that � does not lift to a K-bitangent triple.

In order to address liftings overKR, we start by reviewing the lifting formulas over
K from [26]. Recall that we assume our bitangent lines � are given by an equation of
the form y + m + nx = 0, as in (2.1). By Lemma 2.9, each bitangent lift (�, p, p′)
is uniquely determined by the initial forms of m, n, and the coordinates of p and p′.
In turn, the formulas for the initial forms of the coefficients m and n of � are either
rational functions of the local equations of q at the tangency points (giving local
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lifting multiplicity one), or they involve square roots in the coefficients of these local
equations (and so the lifting multiplicity is two). In the first case, the initial forms will
automatically be real because q ∈ KR[x, y] and the resulting bitangent lift will be
defined over KR.

Thus, in order to determine lifting multiplicities over KR, we need only study
combinations of tropical bitangents corresponding to vertices of bitangent classes
with weight 2 or 4. In this situation, the local lifting formulas will involve square roots
of the local coefficients of q. This allows us to restrict our attention to local liftings
formulas for five tangency types: (3a), (3c), (5a), (4), and (6a). Each of these cases
will yield either zero or two lifts overKR. Applying these results for the higher weight
vertices of each shape will yield a total of zero or four real lifts for each bitangent
class, as stated in Theorem 1.2. Type (3b) tangencies that lift over K only occur for
shape (C). We discuss them in Proposition 6.4.

As discussed in Sect. 2.2 the local system defined by a multiplicity two tangency
point determines either m, n̄, or m/n̄ depending on the end of � containing the tan-
gency. Our formulas for certifying the realness of one of these quantities will depend
on the positivity of the product of the initial forms of certain coefficients ai j of q
and other coefficients of �. We must consider eight different combinations of tan-
gency types and ends carrying the given tangency. We list them in Table 10. Figure 20
shows the cells in the dual subdivision to � that are involved in each case, using the
same color-coding as in Fig. 19. These cells indicate the specific coefficients ai j ’s that
feature in each formula.

Throughout, we write si j for the sign of the initial form ai j ∈ R. Our next results
explain all the formulas in Table 10, starting with types (3a) and (3c):

Proposition 5.2 Assume V (q) is defined over KR. Let � be a tropical bitangent to �

with a local tangency P of type (3a) or (3c) along a horizontal (respectively, vertical)
edge e of �. Then, there are either zero or two real solutions for m (respectively, m/n)
for the local equations in (m, n, p) determined by the tropical tangency P := Trop p.

Necessary and sufficient conditions for the existence of a real solution are deter-
mined by the positivity of specific polynomials in the signs of n̄ and the four coefficients
ai j from (2.2) appearing in the dual triangles to the vertices of e (seen in Fig. 20). The
precise formulas are given in Table 10. Furthermore, whenever real solutions for m
(respectively, m/n) exist, then the sign of its initial form equals suvsu,v+1 (respectively,
suvsu+1,v). Here, (u, v) is the left-most (respectively, bottom-most) vertex of e∨.

Proof Without loss of generality we assume q ∈ R[x, y] \ MR[x, y]. The statement
and formulas when the edge e is vertical follow from those for the horizontal case
by using the map τ0 from Table 3. Thus, it suffices to prove the statement when e is
horizontal.

As Fig. 20 indicates, the dual edge e∨ in the Newton subdivision of q has vertices
(u, v) and (u, v+1). The are connected to vertices (u−1, w) and (u+1, r). We argue
for each local tangency type separately. Following the modification and re-embedding
techniques from [26], we write m = m1 + m2 with val(m) = val(m1) < val(m2).
We set m1 = au,v/au,v+1 ∈ KR as in [26, Prop. 3.7] and determine two solutions
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(u −1, w)

(u,v+1)

(w,v−1)

(r, v +1)

(u, v)

(u, v)

(u, v) (u, v)

(u, v)

(u+1,v)

(u+1,r)

(u, v)

(u, v)

(3a) and (3c)
vertical

(3a) and (3c)
horizontal

(4) diagonal    (4) horizontal

(5a) (6a) diagonal

(6a) horizontal
; ;

Fig. 20 Relevant cells in the Newton subdivision of q and their position in Z2, for each tangency type and
end of �. For cases (4), (5a), and (6a), this data can be deduced from a single vertex, labeled by (u, v)

for the initial forms of m2 using [26, Lem. 3.9]. Each one will yield a unique m2 by
Lemma 2.9.

Case (3c): After translation if necessary, we set P = (0, 0). Since P is the midpoint
of e, the vertices of e equal (−λ, 0) and (λ, 0) for some λ > 0. Furthermore, we have
val(au,v) = val(au,v+1) = 0, val(au−1,w) = val(au+1,r ) = λ and all other ai j ∈ M.
In addition, since (u, j) for j �= v, v + 1 is not in the dual cell to the vertex (−λ, 0),
it follows that val(au, j ) > λ for j �= v, v + 1.

Thus, our proposed solutions m will have the form m = m1 + m2 with val(m) =
val(m1) = 0 and val(m2) = λ. In particular, m = m1, so the sign of m agrees
with that of m1, namely suvsu,v+1. In what follows, we explain how to compute the
parameter m2.

We start by re-embedding V (q) in (K∗)3 via the ideal I = 〈q, z − y −m1〉. We let
q̃(x, z − m1) = ∑

i, j ãi j x
i z j ∈ KR[x, z] be the polynomial defining the projection

of V (I ) onto the xz-plane. Our choice of m1 fixes the valuations of four coefficients
in q̃:

val(ãu−1,0) = val(ãu+1,0) = λ, val(ãu,1) = 0, and val(ãu,0) > λ.

Furthermore, we have val(ãu,1 − (−m1)
vau,v+1) > 0, whereas

val (ãu−1,0 − au−1,w(−m1)
w) > λ, val (ãu+1,0 − au+1,r (−m1)

r ) > λ. (5.1)

As a consequence, the Newton subdivision of q̃ satisfies two combinatorial properties:

• it contains the triangle with vertices (u − 1, 0), (u + 1, 0), and (u, 1);
• the lattice point (u, 0) is not a vertex of this subdivision.

In particular, the tangency point p viewed in V (I ) has tropicalization Trop p =
(0, 0,−λ). In turn, [26, Lem. 3.9] implies that val(m2) = λ and that there are two
solutions for m2, each determined by its initial form. Their values are

m2 = ± 2

ãu,1

√

ãu−1,0 · ãu+1,0. (5.2)
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We conclude that m2 ∈ KR if, and only if, the radicand is positive. The expressions
in (5.1) yield the formula for determining the positivity of this radicand as listed in
Table 9.

Case (3a): After translation if necessary, we may assume that the leftmost vertex of
e is (0, 0) and fix (N , 0) as the vertex of � with N > 0. For any bitangent triple
(�, p, p′) lifting � we have val(m) = 0, val(n) = N , and Trop p = (N/2, 0). Our
assumption on q ensures that val(au,v) = val(au,v+1) = val(au−1,w) = 0 and all other
ai j lie inM. In addition, since the local (3a) tangency lies in the relative interior of the
edge e, we have val(au+1,r ) > N . Since any point (u+1, j)with j �= r lies outside the
triangle dual to the right-most vertex of e we conclude that val(au+1, j ) > val(au+1,r )

for all j �= r .
By Theorem 2.11 (ii), the second tangency point between � and � must be on a

non-horizontal end of �. Upon acting by S3, we may assume it is the diagonal one.
In particular, the corresponding local equations will fix the input values for n, thus
explaining the appearance of this parameter in the formulas for the (3a) entries of
Table 10.

We modify slightly the strategy for (3c) tangencies, picking m1 = au,v/au,v+1 +
m′

1 ∈ KR for some suitable m′
1 ∈ M to be determined later. This choice of m1

satisfies m1 = au,v/au,v+1 and it allows us to re-embed V (q) in (K∗)3 via the ideal
I = 〈q, z − y − m1 − nx〉.

We study Trop V (I ) through its projection to the xz-plane, i.e., by determining
relevant cells in the Newton subdivision of q̃(x, z) = q(x, z −m1 − nx). Our choice
ofm′

1 will ensure that the Newton subdivision of q̃ satisfies the same two properties as
it did for type (3c). In turn, this will give Trop p = (N/2, 0,−N/2). However, in this
new setting, the parameter n contributes to the relevant four coefficients of q̃ , namely
ãu−1,0, ãu,1, ãu+1,0, and ãu,0.

Our restrictions on the valuations of various ai, j ’s given above allow us to determine
the valuations of the first three coefficients by “cone feeding” using the monomials
xu−1yw, xu yv , xu yv+1, and xu+1yr in q, and the substitution y = z − m1 − nx . A
simple arithmetic computation reveals thatval(ãu−1,0)=val(ãu,1)=0 and val(ãu+1,0)

= N . Furthermore,

val (ãu−1,0 − au−1,w(−m1)
w) > 0, val (ãu,1 − au,v+1(−m1)

v) > 0,

and val (ãu+1,0 − au,v+1(−m1)
v(−n)) > N .

(5.3)

Notice that the parameter m′
1 is not needed to determine the initial forms of ãu−1,0,

ãu,1, and ãu+1,0 by the valuation constraints we imposed. However, it will be needed
if we want to ensure (u, 0) is not a vertex of the Newton subdivision of q̃ . To this end,
it suffices to find m′

1 ∈ M for which val(ãu,0) ≥ N . We choose this particular bound
because it is simpler to attain than the weaker sufficient condition val(ãu,0) > N/2.

By construction, the only monomials from q that can contribute terms to ãu,0 with
valuation strictly smaller than N are those of the form xu y j with j arbitrary. This
expression is the following univariate polynomial in R[m′

1]:
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f (m′
1) :=

∑

j

au, j (−1) j
(

au,v

au,v+1
+ m′

1

)j

. (5.4)

By Lemma 5.3 below and the genericity constraints on q, we know that f (m′
1) = 0

has a solution in M. This fact then yields the desired condition val(ãu,0) ≥ N .
Once the parameter m′

1 is fixed, we apply [26, Lem. 3.9] again to conclude that
the values for m2 agree with those in (5.2) since the triangle dual to the tropical
tangency (N/2,−N/2) is the same as the one for (3c) tangencies. When this radicand
is positive we will get (two) solutions m2 ∈ KR. The expressions in (5.3) yield the
desired formula in Table 10. Since the map τ0 sends n to 1/n, the role of sign(n) does
not change when moving from a horizontal (3a) tangency to a vertical one. ��
Lemma 5.3 The univariate polynomial f (m′

1) ∈ R[m′
1] from (5.4) has a root inM if

its constant coefficient is non-zero.

Proof By the Fundamental Theorem of Tropical Algebraic Geometry (see [27, Thm.
3.2.3]), it is enough to show that the tropical hypersurface defined by the tropical
polynomial trop( f ) ∈ R[m′

1] has a point in R>0. Simple algebraic manipulations
of (5.4) reveal that f (m′

1) = ∑

k bk(m
′
1)

k with

b0 :=
∑

j �=v,v+1

(−1) j au, j

(

au,v

au,v+1

)j

,

bk :=
∑

j≥k

(−1) j au, j

(

j

k

)(

au,v

au,v+1

)j−k

if k > v + 1, and

bk := (−1)v+1au,v+1

(

v

k − 1

)(

au,v

au,v+1

)v−k+1

+
∑

j≥k
j �=v,v+1

(−1)kau, j

(

j

k

)(

au,v

au,v+1

)j−k

otherwise.

In particular, we conclude that val(bk) = 0 for 1 ≤ k ≤ v+1 whereas val(bk) > 0 for
all other values of k. Thus, the tropicalization of f in the variable M ′

1 = − val(m′
1)

becomes

trop( f )(M ′
1) := max

k≥0
{− val(bk) + kM ′

1}.

An easy computation reveals that M ′
1 = − val(b0) < 0 achieves this maximum twice,

namely at k = 0, 1. Thus, f (m′
1) = 0 has a solution inKwith val(m′

1) = val(b0) > 0.

By construction, its initial form ism′
1 = −b0/b1. Since f ′(m′

1) = b1 �= 0, Lemma 2.9
ensures that m′

1 is unique and, furthermore, lies in KR. ��
As seen in Table 5, lifting formulas for type (4) and (6) tangencies depend on the
second tangency point of �. In particular, having lifting multiplicity two restricts
the direction v of the bounded edge of � responsible for the tangency. In particular,
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since |det(u, v)| = 2 we know that the end of � (with direction v) containing the
second tangency point is also responsible for the first tangency (associated to u). Such
situations manifest themselves at vertices of shapes (H), (H′), (J), (K), (L′), (Q), (Q′),
(T), (T′), (T′′), (U), or (U′). Next, we discuss real lifts to these local tangencies of
types (4) and (6a):

Proposition 5.4 Assume V (q) is defined over KR and that the vertex of � produces
a local tangency of type (4) or (6a) along the diagonal (respectively, horizontal) end
of�. Assume its local lifting multiplicity is two. Then, the local system at this tangency
determines two possible solutions for the coefficient m (respectively, n) overK. These
solutions lie in KR if, and only if, an explicit monomial in the signs of āi j and n̄
(respectively, m) is positive. The precise formula is given in Table 10.

Proof We prove the statement for the diagonal end of �. The result for the horizontal
one will be deduced by applying the map τ1 from Table 3.

By construction, the second tangency point must be of type (2) or (3c) and will lie
in the diagonal of�. In both situations, this data determines the value of n. We assume
n̄ to be in KR, since otherwise � will not be defined over KR. As usual, we place the
vertex of � at (0, 0) and take q ∈ R[x, y] \ MR[x, y]. In particular, m, n ∈ R \ M
for any lift.

We compute explicit solutions for m and the tangency point p = (x, y) with
Trop p = (0, 0) from their initial forms using the techniques from [26, Prop. 3.10]. In
the notation in Fig. 20, the system in (m, x̄, ȳ) defined by the initial forms of q, � and
theWrońskianW = W (q, �, x̄, ȳ) becomes q = � = W = 0, where � := ȳ+m+n̄ x̄ ,

q := x̄u ȳv(au,v + au+1,v+1 x̄ ȳ + δ au+1,v x̄), and W := det (Jac(q, �; x̄, ȳ)).

We set δ = 0 if (0, 0) is a type (4) tangency and δ = 1, if it has type (6a). The
monomial factor in q can be neglected when determining W . Thus,

W = n̄ au+1,v+1 x̄ − (au+1,v+1 ȳ + δ au+1,v) = 0.

Solving for x̄ inq and substituting this expression forW yields the quadratic expression

(au+1,v+1 ȳ + δ au+1,v)
2 + au,v au+1,v+1 n̄ = 0.

Its solutions are

ȳ = −δ au+1,v ± √−au,v au+1,v+1 n̄

au+1,v+1
.

Substituting these expressions in � determines a unique solution in m for each one.
This solution is real if, and only if, −au,v au+1,v+1 n̄ > 0. Computing this sign yields
the formula in Table 10.

A simple calculation shows that the initial form of the Jacobian of the local sys-
tem with respect to (m, x, y) does not vanish at our solutions (m, x̄, ȳ) since it
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equals −2 x̄2u+1 ȳ2v n̄au+1,v+1
2. Lemma 2.9 guarantees a unique solution (m, x, y)

for (q, �,W ) for each (m, ȳ, x̄). Thus, the condition to ensure local solutions over R
yields the same number of solutions over KR. ��
Remark 5.5 Proposition 5.4 is enough to address almost all liftings where one of the
tangency points is of type (6a). The only missing case corresponds to the top-left
vertex in shape (T′′), since its dual cell in the Newton subdivision of q is the triangle
with vertices (0, 0), (0, 1), and (1, 1). The formula to guarantee two real solutions
in m/n becomes − sign(n̄)s00s11 > 0. We derive it from the (diagonal) condition
in Table 10 by applying the map τ0 and noticing that (m, n) becomes (m/n, 1/n)

under this transformation.

Remark 5.6 Local tangencies of type (5a) that are liftable over K occur for three
representative shapes: (I), (L), and (M). In the first two cases, the second tangency
point has type (2) and lies on the diagonal of �. For the latter, the second tangency is
of type (3c) along a horizontal edge of �.

The local lifting condition over KR for the diagonal (5a) tangency is given in
Table 10 and can be obtained following the same arguments as in the proof of Propo-
sition 5.4. The condition for the horizontal (5a) tangency is derived from the diagonal
one by applying the map τ1. In this case, the roles of m and n are switched and the
relevant signs are those associated to the vertices (u + 1, v) and (u + 1, v + 1) in
Fig. 20.

Almost all local conditions listed in Table 10 for determining solutions over KR for
one coefficient of � require us to know the sign of the initial form of the second
coefficient of �. This data is obtained from the second tangency of �, whose tangency
type can be read off from Table 9. In particular, when this point has type (2) and lies
in the diagonal or vertical ends of �, then it uniquely determines n or m/n in KR,
respectively. Our last result in this section computes the sign of these expressions in
terms of the coefficients of q ∈ KR[x, y]:
Lemma 5.7 Assume that � has a type (2) tangency point along its diagonal (respec-
tively, horizontal or vertical) end. Let e be the edge of � producing this multiplicity
two tangency. Then, the sign of the unique solution n (respectively, m or m/n) to the
local tangency equations equals −svl svr , where vl and vr are the vertices of the cell
e∨ in the Newton subdivision of q.

Proof We prove the analogous statement when the type (2) tangency point P lies in
the horizontal end of�, since the explicit local solutions form computed in [26, Prop.
4.6] require this setting. Since the local lifting multiplicity of P is one by Table 5, we
know that m ∈ KR. We show that the sign of m becomes −svl svr if e

∨ joins vl and vr .
The statement for the diagonal and vertical ends follow by applying τ0 and τ1 since
these turn m into m/n and n, respectively.

It remains to prove the formula for sign(m). Up to translation, the cell dual to P is
the triangle with vertices (0, 0), (u, v), and (r , w), with vl − vr = (u − r , v − w). Up
to a monomial shift, we have q := ā + b̄x̄u ȳv + c̄x̄r ȳw. Thus, [26, Tab. 1] implies

m = −
(

Bu

Ar

)uw−vr

, where A = − c̄r B

ub̄
and B = − āu

c̄(u − r)
.

123



Discrete & Computational Geometry (2023) 69:597–658 639

Table 11 Real lifting sign conditions for each representative bitangent class

Shape Lifting conditions

(A) (−s1vs1,v+1)
i s0i s22 > 0 and (−su1su+1,1)

j s j0s22 > 0

(B) (−s1vs1,v+1)
i+1s0i s21 > 0 and (−s21)

j+1s31
j s1vs1,v+1s j0 > 0

(C) (−s11)
i+ j (s12)

i (s21)
j s0i s j0 > 0 and (−s21)

k+ j (s12)
k (s11)

j sk,4−ks j0 > 0.

(H), (H′) (−s1vs1,v+1)
i+1s0i s21 > 0 and s1vs1,v+1s21s40 < 0

(M) (−s1vs1,v+1)
i+1s0i s21 > 0 and s1vs1,v+1s30s31 > 0

(D) (−s10s11)
i s0i s22 > 0

(E), (F), (J) (−s1vs1,v+1)
i s0i s20 > 0

(G) (−s10s11)
i s0i sk,4−k > 0

(I), (N) s10s11s01sk,4−k < 0

(K), (T), (T′),
s00sk,4−k > 0

(T′′), (U), (U′), (V)

(L), (O), (P) s10s11s01s22 < 0

(L′), (Q), (Q′), (R), (S) s00s22 > 0

rest no conditions

Since the tangency is horizontal, we have uw − vr = ±1 and u − r = ±2. Thus,

sign(m) = (−1)r+1(ru)r sign(c̄b̄)r . (5.5)

As Table 4 shows, there are threeS3-representatives for the direction of (u−r , v−w),
namely (−2, 1), (2, 1), or (−2, 3). This gives six possible combinations for (u, v) and
(r , w):

((u, v), (r , w)) = ±((1,−1), (−1, 0)), ±((1, 1), (−1, 0)), or

±((1,−1), (−1, 2)).

Substituting these values in (5.5) yields −suvsrw = −svl svr as we wanted to show. ��

6 Real Liftings of Tropical Bitangents

Section 5 addresses local liftings over KR and provides the combinations of tan-
gency types that can occur for members of all bitangent shapes. In this section we
combine these results to prove Theorem 1.2. In particular, we provide explicit sign
constraints that characterize when a given bitangent shape has exactly four real lifts.
These conditions are stated in Table 11 and were obtained by analyzing each of the
41 S3-representatives of bitangent shapes from Fig. 6.

Throughout we assume V (q) is generic as in Remark 2.10 and defined over KR.
Members of bitangent classes with weight one will automatically lift over KR, so
we need only look at vertices with weights two or four. For each such member, we
combine the local sign conditions given in Table 10 arising for each tangency point
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and verify the system of two inequalities is either consistent or has no solution. This
proves Theorem 1.2 for bitangent classes with a single higher weight member. When
two members of a class have weight two, we show the local conditions on each vertex
agree, thus giving a global affirmative answer for the class. Our first result involves
shapes that always lift over KR:

Proposition 6.1 Bitangent shapes (II), (W), (X), (Y), (Z), or (AA) through (HH)

have four real lifts.

Proof Since all weight one members lift overKR, we only need to show the statement
holds for (II). We work with theS3-representative depicted in Fig. 6 and show that its
single weight two member has two bitangent lifts over KR. Combined with the two
real lifts for the weight one vertices, we get four real lifts in total for shape (II).

We let� be the tropical bitangent associated to the weight two vertex for this shape.
Its two tangency points have types (3a) and (2) along the horizontal and vertical ends
of �, respectively, as we see in the right-most picture in Fig. 7. The first point yields
two solutions for m ∈ K with m ∈ R, whereas the second one determines a unique
value for m/n ∈ KR. In particular, n̄ ∈ R.

We use the notation from Fig. 7 for the remaining of this proof. In order to check
the validity of the local lifting conditions given in Table 10 for the horizontal tangency
along the edge vrv′′ of � we must determine the sign of both m and n̄ and relevant
vertices in the Newton subdivision of q seen in the figure. In particular, the three
relevant parameters u, v, w are determined by v∨

r , i.e., (u, v, w) = (1, 2, 0) for the
horizontal type (3a) tangency. In turn, Proposition 5.2 provides the sign of m ∈ R: it
is s12s13.

The vertex where the tangency (2) occurs is adjacent to an edge e with direction
(−2, 1). Its dual edge e∨ has endpoints vr = (0, 0) and vl = (1, 2). Lemma 5.7
determines the sign of m/n̄ from these two vertices: it equals −s00s12. Thus,

sign(n̄) = sign

(

n̄

m

)

sign(m) = −s00(s12)
2s13 = −s00s13. (6.1)

We will have two solutions in KR for m and thus two real bitangent lifts for � if and
only if the formula in Table 10 for a horizontal type (3a) tangency holds. Replacing
the values for (u, v, w) computed earlier and sign(n̄) given in (6.1) yields the positive
expression

(−1)0+2+1(s12s13)
0+2s00s13(−s00s13) = (s00s12(s13)

2)2 = 1. ��

The remaining 28 shapes in Fig. 6 have four bitangent lifts over K, and it is possible
for none of them to be defined over KR. To prove Theorem 1.2 for these cases, we
group together shapes arising from partial dual subdivisions to � sharing similar
combinatorial properties, as we did in Sect. 5.

Next, we address those shapes listed in the second row of Table 6 excluding (C). For
all these shapes, the K-liftable bitangent members have a disconnected intersection
with �. The relevant tangency pairs are listed in Table 9.
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Proposition 6.2 Bitangent shapes (D), (L), (L′), or (O) through (S) have either zero
or four lifts over KR. Furthermore, the S3-representatives listed in Fig. 6 have four
lifts over KR if, and only if,

(−1)i (s10s11)
i s0i s22 > 0. (6.2)

Here, (0, i) is the red marked vertex in the corresponding partial Newton subdivisions
depicted in Fig. 19. In particular, i = 0 for shapes (L′), (Q), (Q′), (R), and (S),
whereas i = 1 for (L), (O), and (P). The value of i for shape (D) is not restricted.

Proof We discuss the statement for the S3-representatives depicted in Fig. 6. The
proof of Proposition 4.2 ensures that each of the two members of each bitangent
class with weight two have two distinct tangency points. For the rightmost vertex, the
corresponding line � has local (3c) and (2) type tangencies, along its horizontal and
vertical ends. By Proposition 5.2, the first point yields two values for m ∈ K with
m ∈ R, whereas the second determines a unique m/n ∈ KR.

In the notation of Fig. 20 we have (u, v, r , w) = (1, 0, 2, i) for the horizontal
type (3c) tangency. We can read this information from the labeled dual triangles in
the two possible partial dual subdivisions to � depicted in the top-left of Fig. 8. Note
that the value of w changes depending on the bitangent shape, as predicted by in the
statement. By Proposition 5.2, the sign of m equals s10s11.

As we see from Fig. 8, the edge e′ responsible for the vertical type (2) tangency has
direction (2,−1). Its dual (e′)∨ has vertices vl = (1, 0) and vr = (2, 2). Replacing
this data in the formula for the (3c) horizontal tangency in Table 10 and ignoring terms
with even powers yields expression (6.2) as the condition for having two solutions for
m in KR.

To conclude, we must show the same necessary and sufficient condition for lifting
overKR arises for the other member of the class that has weight two. We let �′ be the
corresponding tropical bitangent and let m′ and n′ be the coefficients of one of its lifts
inK. We argue for each shape separately, identifying the parameter values needed for
the corresponding lifting restrictions from Fig. 8:

(D) The local tangencies are of type (3a) and (2) and occur along the
horizontal and diagonal ends of �′. In this situation, the first point
determines two possible values for m′ in K and the second one
determines a unique solution n′ ∈ KR. The dual edge e∨ arising
from the latter has vertices v′

l = (1, 1) and v′
r = (2, 2), so the sign

of n′ is −s11s22 by Lemma 5.7. Furthermore, the values for u, v,
and w for the first tangency point agree with those given for the
line �′. Replacing this information in the formula from horizontal
(3a) tangencies in Table 10 yields (6.2).

(L) and (L′) The local tangencies are of type (5a) (respectively, (6a)) and (2).
The diagonal end of �′ is responsible for both tangencies. By
Remark 5.6 (respectively, Proposition 5.4), the first point deter-
mines two solutionsm′ ∈ K, and the second a single value n′ ∈ KR.
Since v′

l = (1, 1) and v′
r = (2, 2), we get sign(n′) = −s11s22 by

Lemma 5.7. The first tangency point has parameters u = v = 0
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for both shapes. Applying the formulas in Table 10 for (5a) and
(6a) for the diagonal end gives the conditions −s11s22s10s01 > 0
for shape (L) and s00s22 > 0 for shape (L′). Since i = 0 for shape
(L′) and i = 1 for shape (L), these two inequalities agree with
expression (6.2).

(O) The two tangencies are of type (3a) and (2), and occur along the
vertical and diagonal ends of�′. By Fig. 8, (u, v, w) = (0, 1, 1) for
the first point and the local equations determine m′/n′. The second
tangency has the same behavior as with shape (D) and it determines
a unique value for n′ with sign(n′) = −s11s22. Replacing these
values in the formula from the table yields −s01s10s11s22. This
agrees with the condition in (6.2) since i = 1.

(P) In this case, we have a vertical (3c) tangency and a type (2) one
along the horizontal end of �′. The second point contributes a
unique solution for n′ which lies inKR. By Fig. 8, the first tangency
point has associated combinatorial data (u, v, r , w) = (0, 1, 2, 1).
Table 10 gives the condition −s01s10s11s22 > 0 for having two
solutions m′/n′ in KR. This is the same as the one in (6.2) since
i = 1.

(Q) and (Q′) The two local tangencies are of types (2) and either (4) or (6a),
respectively. Both arise from intersections with the diagonal end
of �′. The relevant vertices in the dual subdivision to � for these
two points are (u, v) = (0, 0), v′

l = (1, 1), and v′
r = (2, 2). In

particular, sign(n′) = −s11s22 from Lemma 5.7. Replacing this
information in the formula for diagonal tangencies of types (4) or
(6a) from Table 10 recovers (6.2) since i = 0.

(R) The reasoning for shape (O)works for this situation as well, except
that the vertical (3a) tangency yields (u, v, w) = (0, 1, 0), and we
must set i = 0 in (6.2).

(S) The claim follows by the same arguments used for (P), with the
exception that (u, v, r , w) = (0, 1, 2, 0) for the vertical type (3c)
tangency and i = 0 in (6.2).

Thus, we conclude that either both members of the class lift twice overKR or none of
them do, and condition (6.2) characterizes when real solutions exist. ��
Next, we discuss the remaining shapes except for shape (C), which we treat later:

Proposition 6.3 Bitangent shapes (A), (B), (E) through (K), (M), (N), (T), (T′), (T′′),
(U), (U′), or (V) have either zero or four bitangent lifts over KR. The conditions for
having real lifts are given in Table 11.

Proof We use the S3-representative shapes and the associated partial Newton sub-
divisions to � summarized in Fig. 19 to determine the parameters u, v, r , w used in
the corresponding formulas from Table 10. In all cases, we have either one or two
members for each class that lift over K, with a combined lifting multiplicity of 4. We
prove the statement for each case, grouping shapes whenever the dual subdivisions to
� share some common features.
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(A) The unique member � of this bitangent class has two tangency
points, both of type (3c) along the horizontal and vertical ends.
The first point determines m, whereas the second determines
m/n. We must determine the values of the parameters u (respec-
tively, v), r , and w needed to use the formulas in Table 10. For
a concrete example, we refer to Fig. 1.
In the notation of Fig. 20, we have (u, r , w)= (1, 2, i) (v is
unknown as the dotted vertical segment in the figure indicates)
arising from the horizontal tangency. This gives the first of the
two formulas in Table 11, ensuring that the coefficient m has
two solutions in KR. In turn, for the second point we have
(v, r , w) = (1, 2, j) (u is unknown as seen in the dotted horizon-
tal segment in the figure). Replacing these values in the formula
from Table 10 yields the second formula in Table 11. If the con-
dition is satisfied, we will have two values for m/n inKR. Thus,
combining both positivity constraints ensures that the shape has
fourKR-bitangent lifts. If any of them fails, there are noKR-lifts.

(B) We have two tangency points; a horizontal (3c) one with
(u, r , w) = (1, 1, i) (v is unknown) and a vertical (3a) one with
(u, v, w) = (2, 1, j). By Proposition 5.2, the first point deter-
mines two values for m ∈ K with m ∈ R of sign s1vs1,v+1. The
second one determines two solutions form/n ∈ Kwithm/n̄ ∈ R

of sign s21s31. Thus, n̄ ∈ R and its sign is s1vs1,v+1s21s31. Sub-
stituting these values in the conditions for real liftings in Table 10
and eliminating factors with even exponents yield the two posi-
tivity conditions listed in Table 11.

(E), (F), and (J) Bothweight-two vertices in each of these bitangent shapes have a
horizontal (3c) tangencywith (u, r , w) = (1, 0, i) and adiagonal
tangency (of type (2), (4), or (6a)). The second tangency has local
lifting multiplicity one and the local equations provide a unique
value for n, therefore in KR. The parameter values for the (3c)
tangency are the same for bothmembers, and they are determined
from Figs. 17 and 15, respectively. The local equations yield two
solutions for m ∈ K for each member. Thus, the condition to
have bitangent lifts in KR is the same for both members of the
bitangent shape, since the formula in Table 10 only depends on
u, v, w, and r . Eliminating factors with even exponents yields
the expected inequality from Table 11.

(G) As we see from the first two pictures in Fig. 18, members asso-
ciated to a weight-two vertex of this shape have a horizontal (3a)
tangency with (u, v, w) = (1, 0, i) combined with a diagonal
type (2) tangency with vl = (1, 1) and vr = (k, 4− k), for some
k = 0, 2, or 4. By Lemma 5.7, the unique value of n obtained
from the type (2) tangency lies inKR and sign(n̄) = −s11sk,4−k .
Thus, the condition for lifting each member overKR is the same
and it is obtained directly from the formula in Table 10.
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(H) and (H′) Aswe see in Fig. 13, the weight-four member has two horizontal
tangencies; one of type (3c) with (u, r , w) = (1, 1, i) and one of
types (4) or (6a), respectively, with (u, v) = (2, 0). By Propo-
sition 5.2, the first point yields two solutions for m ∈ K with
m ∈ R of sign s1vs1,v+1 (v is unknown). The second tangency
point produces two values for n ∈ K. Replacing the combinato-
rial data and the sign ofm into the formulas provided in Table 10
yields the two positivity conditions in Table 11.

(I) and (N) The rightmost weight-two member � of both shapes has a
horizontal (3a) tangency with (u, v, w) = (1, 0, 1) and a diag-
onal (2) tangency with vl = (1, 1) and vr = (k, 4 − k) for
k = 0, 2, or 4. These values are obtained from Fig. 14. By
Lemma 5.7, the type (2) point determines a unique solution
for n ∈ KR with sign(n̄) = −s11sk,4−k . Replacing this data
into the lifting conditions for the (3a) horizontal tangency yields
−s10s11s01sk,4−k > 0. To derive the statement we must show
that this condition also arises for the other weight-two member
of the class, labeled�′. We check this for each of the two shapes
separately.
If the class has shape (I) (respectively, (N)) the tangency points
of �′ are of types (2) and (5a) (respectively, vertical (3a)). The
former occurs along the diagonal end of �′ with vl = (1, 1) and
vr = (k, 4 − k) for k = 0, 2, or 4 (the same values as for �).
Therefore, the sign of n′ arising from �′ agrees with the one for
n̄ from �.
For both shapes, the second tangency point of �′ determines
two solutions for m′ and the required data for the corresponding
lifting conditions in Table 10 is (u, v) = (0, 0) for shape (I)
and (u, v, w) = (0, 1, 1) for shape (N). A simply substitution
recovers the positivity constraint obtained earlier for �.

(K) By Fig. 16, the rightmost weight-two member � has tangencies
of type (3a) and (2) along the horizontal and diagonal ends. The
first point determines two values form and (u, v, w) = (1, 0, 0).
The second point has associated vertices vl = (1, 1) and vr =
(k, 4 − k) with k = 0, 2, 4 in the dual subdivision to � and
yields a unique solution for n ∈ KR with sign(n̄) = −s11sk,4−k

by Lemma 5.7. Replacing this data on the corresponding lifting
conditions on Table 10 for the first point yields s00sk,4−k > 0.
We have to check the other weight-two member of this class
(called �′) has the same constraint for lifting over KR. The tan-
gency points of �′ are of type (6a) with (u, v) = (0, 0) and
of type (2). The latter occurs along the diagonal end of �′ and
has the same associated vertices vl and vr as �. In particular,
the latter point determines a unique n′ ∈ KR with initial form
of the same sign as the one for �. Replacing this into the for-
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mula for diagonal type (6a) tangencies from Table 10 recovers
s00sk,4−k > 0, as we wanted.

(M) In this case, the weight-four member has one horizontal (3c) tan-
gencywith (u, r , w) = (1, 1, i), which determines two solutions
inm withm ∈ R of sign s1vs1,v+1 by Proposition 5.2. The value
of r corresponds to the marked vertex in Fig. 15. This second
tangency has type (5a) with (u, v) = (2, 0) and yields two solu-
tions for n. Replacing this information in the two relevant lifting
formulas from Table 10 gives the two expressions in Table 11.

(T), (T′), and (T′′) The combinatorial information necessary to determine the con-
straints for this case can be recovered from Figs. 10 and 11. We
show that each weight-two vertex of these shapes yield the same
constraint.
We start with the two vertices of (T). They have diagonal tangen-
cies of types (4) and (2). The latter contributes a unique value for
n ∈ KR with sign(n̄) = −s11sk,4−k , where k = 0, 2, or 4. The
other tangency point fixes two values for m and (u, v) = (0, 0)
for both members. The lifting conditions for both vertices of (T)

arising from the corresponding formula in Table 10 is the same,
namely s00sk,4−k > 0. Next, we look at the rightmost member
of (T′), which has a diagonal (6a) tangency with (u, v) = (0, 0)
and a diagonal type (2) tangency giving sign(n̄) = −s11sk,4−k .
Replacing this information in the appropriate formula from the
same table recovers s00sk,4−k > 0. Finally, we look at the left-
most member of (T′′). Applying τ0 turns this member into the
rightmostmember of a classwith the same shape.ByRemark5.5,
the lifting condition is invariant under τ0, thus, it is also valid for
the leftmost vertex of shape (T′′).

(U), (U′), and (V) As Fig. 19 shows, the combinatorial data for the rightmost
vertex with weight two agrees with the analogous member of
shape (K). Thus, the lifting conditions overKR for this vertex is
s00sk,4−k > 0. We must check the same inequality arises from
the other weight-two member of each shape.
For shapes (U) and (U′), the tangencies occur along the diagonal
end of the line and they match those corresponding to the left-
most vertex of shapes (T) and (T′′), respectively. Thus, the lifting
conditions for thismember are also s00sk,4−k > 0. For shape (V),
the tangencies are of type (2) along the diagonal end of a line and
of type (3a) along the vertical end, with (u, v, w) = (0, 1, 0).
The parameters are obtained from Figs. 10 and 11 after applying
themap τ0. The first tangency gives a unique solution for n inKR

with sign(n̄) = −s11sk,4−k . Substituting this the lifting formulas
for m from the vertical (3a) tangency yields s00sk,4−k > 0. ��

We conclude by discussing the real-lifting conditions for shape (C). Up to transla-
tion, we place this class at (0,0). The Newton subdivision of q ∈ KR[x, y] depicted in
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Fig. 19. (C) has three coloredmarked vertices: (0, i), ( j, 0), (k, 4−k). They determine
the endpoints of the three edges adjacent to (0, 0) in �.

We let λ1, λ2, λ3 be the length of the vertical, horizontal and diagonal edges of
� adjacent to (0, 0). By Remark 2.10, we assume λ1 < λ2 ≤ λ3. This assumption
ensures that j = 1, 2, or 3. Our next result provides the real-lifting conditions for this
representative shape, adapting the ideas seen in proof of Proposition 5.2 for a type
(3a) tangency.

Proposition 6.4 Consider the S3-representative bitangent class of shape (C) dis-
cussed above. Then, this class has either none or exactly four bitangent lifts overKR.
The conditions for having real lifts depend on the marked vertices (0, i), ( j, 0), and
(k, 4 − k):

(−s11)
i+ j (s12)

i (s21)
j s0i s j0 > 0 and (−s21)

k+ j (s12)
k(s11)

j sk,4−ks j0 > 0.

Proof We let (�, p, p′) be one of the four bitangent lifts of the class overK. A simple
computation of the divisor associated to � in the skeleton of � places the two tropical
tangency points in � at Trop p = ((λ1 − λ2)/2, 0) and Trop p′ = ((λ3 − λ1)/2,
(λ3 − λ1)/2).

By construction, val(a11) = val(a12) = val(a21) < val(alr ) for all other (l, r) in the
support of q. Thus, after scaling q by 1/a12 if necessary, we may assume q ∈ R[x, y]
with a12 = 1 and val(a11) = val(a21) = 0 < val(ars). Furthermore,

val(a0i ) = λ2, val(a j0) = λ1, and val(ak,4−k) = λ3. (6.3)

In addition, val(a0,p) > λ2 if p �= i , val(ap,0) > λ1 if p �= j , and val(ap,4−p) > λ3
if p �= k.

The coefficients of � will have the form m = m1 + m2 and n = n1 + n2 with
m1, n1 ∈ KR satisfying val(m) = val(m1) = 0 < val(m2) and val(n) = val(n1) =
0 < val(n2). Lemma 6.5 below provides an explicit formula for m1 and n1 in KR

with m1 = a11 and n1 = a21. Once m1 and n1 are determined, there will be two
independent solutions for m2, n2 ∈ K. Each of them will be fixed by its initial form.

Following [26, Prop. 3.12], we use m1 and n1 to re-embed V (q) in K
3 via the

ideal I := 〈q, z − y − m1 − n1x〉 ⊂ KR[x, y, z]. Our choice of m1 and n1
guarantees that viewed in K

3, the tangency points have tropicalizations Trop p =
(−(λ2 − λ1)/2, 0,−(λ1 + λ2)/2) and Trop p′ = ((λ3 − λ1)/2, (λ3 − λ1)/2,−λ1).

After projecting to the xz-plane, these two points are vertices of Trop V (q̃) where
q̃(x, z) = q(x, z − m1 − n1x). By Lemma 6.5, their dual triangles in the Newton
subdivision of q̃ satisfy the requirements of [26, Lem. 3.9]. Moreover, the projection
ofTrop V (〈�, z−y−m1−n1x〉) to the xz-plane has vertex ((λ3−λ2)/2,−(λ1+λ2)/2).
This gives two independent values for m2 and n2 satisfying val(m2) = (λ1 + λ2)/2,
val(n2) = (λ3 + λ1)/2, with

m2 = ± 2

ã11

√

ã00 ã20 and n2 = ± 2

ã21

√

ã20 ã40. (6.4)
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The formula for m2 can be obtained from [26, Tab. 1]. The one for n2 is obtained in
the same way, after acting by τ0.

Thus, m2, n2 ∈ KR if, and only if, the two radicands in (6.4) are positive. The
explicit values for ã00, ã20, and ã40 depend on i , j , and k, and are listed in Lemma 6.5
below. The formulas in Table 11 are obtained from these positivity constraints after
replacing each slr by slr s12, to free ourselves from the simplifying assumption
a12=1. ��
Lemma 6.5 Let q ∈ R[x, y] and � be as in Proposition 6.4 with a12 = 1. Then, there
exists m1, n1 ∈ KR of valuation zero, with m1 = a11 and n1 = a21, for which the
coefficients ãlr of q̃(x, z) = q(x, z − m1 − n1x) satisfy:

(i) val(ã00) = λ2, val(ã40) = λ3, ã00 = a0i (−a11)i , and ã40 = ak,4−k(−a21)4−k;
(ii) val(ã11) = val(ã21) = 0, ã11 = −a11, and ã21 = −a21;
(iii) val(ã10) > (λ1 + λ2)/2, val(ã30) > (λ3 + λ1)/2, val(ã20) = λ1, and

ã20 = a20 if j = 2, or ã20 = −a j0(a21/a11)
2− j if j = 1, 3. (6.5)

Proof We follow the techniques developed in the proof of [26, Prop. 3.7]. The con-
ditions in the statement will guarantee that the Newton subdivision of q̃ has specific
triangles involving (1, 1), (1, 2) and the points (0, 0), (2, 0), and (4, 0) in the x-axis,
as seen in [26, Fig. 17]. In what follows, we give explicit formulas for m1 and n1.
To simplify notation, we write them as m1 = a11 + m′

1 and n1 = a21 + n′
1, with

val(m′
1), val(n

′
1) > 0. This is the same approach that we used for determining local

lifting conditions for type (3a) tangencies in the proof of Proposition 5.2.
The “cone feeding” process allows us to determine the expected valuations of all

coefficients ãlr where (l, r) is in the trapezoid with vertices (0, 0), (1, 1), (2, 1), and
(4, 0). The claims for ã00 and ã40 in item (i) follow from (6.3) since a0,i and ak,4−k have
the lowest valuation among all a0r and ar ,4−r , respectively. Similar reasoning yields
the conditions in (ii). The parameters m′

1 and n′
1 play no role in ensuring (i) and (ii)

hold. To finish, we must show the claims in (iii). We do so by picking appropriate
values for m′

1 and n′
1.

We first focus on ã10 and ã30. We collect those alr yielding contributing summands
for these coefficients with the potential of having valuation < λ2 and λ3, respectively.
This yields (r , l) = (1, 1), (1, 2), (1, 0) for ã10, and (r , l) = (1, 2), (2, 1), (0, 3), and
(3, 0) for ã30. This process determines two univariate polynomials in m′

1 and n′
1:

{

f := (m′
1)

2 + a11m′
1 + a10,

g := −a03(n′
1)

3 + (1 − 3a03a21)((n′
1)

2 + a21n′
1) + (a30 − a03a321).

(6.6)

Picking m′
1 and n′

1 to be roots of f and g with positive valuation, would ensure
val(ã10) ≥ λ2, val(ã30) ≥ λ3. These inequalities imply those in (iii) sinceλ3, λ2 > λ1.

In order to choose the appropriate roots of f and g, we notice that their valuation
and initial forms are determined by the initial forms of f and g in (6.6): m′

1 and n′
1

must be solutions to f = g = 0 in R. An analysis using (max) tropical polynomials
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confirms the existence of solutions with the desired properties. We analyze each equa-
tion separately and invoke Lemma 2.9 to lift the input solutions of f = 0 and g = 0
to solutions (m′

1, n
′
1) over KR.

The restrictions on the valuations of the coefficients of q ensures that M =
− val(a10) < 0 lies in the (max) tropical hypersurface determined by trop( f ), so
f admits a solution m′

1 with val(m1) = val(a10) > 0. Furthermore, the initial form

m′
1 solves a10 + a11 m′

1 = 0. Since f ′(m′
1) �= 0, we can lift m′

1 to a unique solution
of f (m′

1) = 0 in KR.
The analysis for g is very similar, except that we need to separate two cases since

the constant term of g could be zero inwhich casewe pick n′
1 = 0. This choice satisfies

our desired properties. Note that g(0) = 0 can only occur if val(a03) = val(a03). This
forces j �= 3 by our restrictions on the valuations of the coefficients of q.

On the contrary, if g(0) �= 0, then N = − val (a3,0 − a03a321) < 0 lies in the (max)
tropical hypersurface determined by trop(g), so g has a solution n′

1 with val(n′
1) =

−N > 0. Its initial form n′
1 solves a21n

′
1 + a3,0 − a03a321 = 0. Again, as g′(n′

1) �= 0,
we can find a unique solution to g(n′

1) = 0 in KR with the given properties.
To conclude, we must verify that our choice for (m′

1, n
′
1) with val(m′

1) = val(a10)
and val(n′

1) = val(a3,0 − a03a321) ensures val(ã20) = λ1. As before, we write the
contributions of arl to ã20 producing summands with potential valuations ≤ λ1. They
come from (r , l) = (1, 1), (2, 1), (1, 2), and (2, 0). This gives the expression

h := a11n
′
1 + a21m

′
1 + 2n′

1m
′
1 − a20(| j − 2| − 1),

since val(a20) ≥ λ1 and equality holds if, and only if, j = 2. Combining the informa-
tion already collected for m′

1 and n′
1 with the three choices for j yields val(h) = λ1,

thus val(ã20) = λ1. In all cases, the minimum valuation among all summands of h
is achieved exactly once. We compute ã20 from this unique term and obtain (6.5), as
desired. ��

7 Tropical Totally Real Bitangents Classes

Themachinery developed in [26] by Len and the second author to determine bitangents
to generic smooth plane quartics from their tropical counterparts produces all bitangent
triples to a given� from the local equations at the tropical tangent points. In particular,
these techniques allow us to decide when the tangency points lie in (KR)2. Our main
result in this section shows that this occurs whenever � is defined over KR:

Theorem 7.1 Fix a generic quartic polynomial q ∈ KR[x, y] with � = Trop V (q)

smooth and generic, and let � be a tropical bitangent to �. Assume (�, p, p′) is a
bitangent lift of �. Then, if � is defined over KR, so are p and p′.

Proof To prove the statement we analyze solutions for local lifting equations for �

and � at the two tropical tangency points. Appendix A discusses this result in the
presence of a multiplicity four tropical tangency. Thus, we focus on the case where
Trop p �= Trop p′.
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Themethods developed in [26, Sect. 4] determine (�, p, p′) by computing the initial
formsm, n̄ of the coefficients of � and the coordinates of p = (x̄, ȳ) and p′ = (r , s) as
solutions to the systems q = � = W = 0 at both Trop p and Trop p′. As we discussed
in Sect. 5, each system determines either p or p′ and one of m, n̄, or m/n̄, depending
on the location of the tropical tangency point in �. The formulas from [26, Tab. 1]
express these solutions as rational functions in the initial forms ai j and their radicands.

Furthermore, radicands appear only in the presence of local multiplicity two, as we
saw when proving the validity of the formulas in Table 10. These radicands feature
in the solutions for all three unknowns of each local system: either m, n̄ or m/n̄ and
both entries in p, respectively p′. Thus, the local solutions are real if and only if the
initial of the relevant coefficient (or ratio of coefficients) of � is real. Since the local
systems are independent and Lemma 2.9 applies to both KR and K, we conclude that
� is defined over KR if and only if the whole triple (�, p, p′) is. ��

We provide an example to illustrate the close resemblance among the explicit
solution formulas for all three unknowns of our local systems, complementing our
discussion in the proof of Proposition 5.4.

Example 7.2 We fix a bitangent � to a tropical plane quartic Trop V (q) with q ∈
KR[x, y] generic, and let (�, p, p′) be a bitangent triple associated to �. We assume
the vertex of � is the tangency point Trop p and has tangency type (5a) with (u, v) =
(0, 0), following the notation of Fig. 20. To fix ideas, we place the second tangency
point Trop p′ along the diagonal end of �, thus it determines n and p′. Our first
tropical tangency point will fix m and p. Assuming both m, n ∈ KR, we will show
that p ∈ (K∗

R
)2.

By Lemma 2.9, it suffices to check p = (x̄, ȳ) ∈ R
2. Our local system in (m, x̄, ȳ)

becomes q = � = W = 0 with

q := a10 x̄ + a01 ȳ + a11 x̄ ȳ, � := ȳ + m + n̄ x̄,

W := (a10 + a11 ȳ) − n̄(a01 + a11 x̄).

We view a10, a01, a11, and n̄ as parameters and use Singular [9] to compute elim-
ination ideals of the ideal I = 〈q, �,W 〉 in a polynomial ring in m, x̄ , and ȳ with
coefficients in the quotient fieldR(a10, a01, a11, n̄). Eliminating x̄ and ȳ from I yields
a quadratic equation in m:

a11
2m2 − 2a11(a10 + a01n̄)m + (a10

2 − 2a10a01n̄ + a01
2n̄2) = 0,

which we use to solve for m. The radicand expression’s sign for both solutions is
s10s01 sign(n̄). Similarly, eliminating m and ȳ from I produces a quadratic equation
in x̄ :

a11
2n̄ x̄2 + 2 a01a11n̄ x̄ + (a01

2n̄ − a01a10) = 0.
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The sign of the radicand for both solutions is again s10s01 sign(n̄). Finally, eliminating
m and x̄ yields the quadratic equation

a11
2 ȳ2 + 2a10a11 ȳ + (a10

2 − a01a10n̄) = 0

in ȳ. The sign of the radicand for each solution ȳ is the same as before. From this it
follows that if m ∈ R then x̄ and ȳ are also in R, as we wanted.

After passing to the tropical limit, we can use these methods to study totally real lifts
of tropical bitangents to smooth plane quartics, that is, real bitangents lines where
the tangency points are also real. More precisely, Theorem 7.1 has the following
consequence:

Corollary 7.3 Real lifts of bitangents to generic smooth tropical plane quartics are
also totally real.

An alternative proof of Corollary 7.3 can be given using Klein’s formula from [21]
relating the number I of real inflection points and the number B of real but not totally
real bitangents of a curve of degree d:

I + 2B = d(d − 2). (7.1)

By [7, Thm. 5.7], any real lift of a generic smooth tropical curve of degree d has
d(d − 2) real inflection points. Thus, from Klein’s formula (7.1) it follows that there
are no real bitangents which are not totally real. This result gives rise to the following
question:

Question 7.4 What do tropicalizations of quartics with real, but not totally real bitan-
gents look like? Can we determine their skeletons?

From Theorem 7.1 we can conclude that they cannot be smooth tropical quartics
in R

2. We suspect that they come from faithfully embeddings producing a tropical
quartic on a tropical two-dimensional linear space of a higher-dimensional space Rn .
The study of tropical plane curves on these alternative tropical 2-dimensional linear
spaces, their moduli spaces and their properties is an active topic of research in tropical
geometry [15]. We believe that an answer to Question 7.4 will require us to extend
the tropical lifting techniques beyond the smoothness and genericity constraints from
Remark 2.10, in the spirit of [25]. We leave this task for further research.
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Appendix A. Multiplicity Four Local Tangencies

In this section we compute bitangent lifts (�, p, p′) in the presence of tropical tangen-
cies of multiplicity four, clarifying some small inaccuracies in part of the proof of [26,
Thm. 4.1]. We are primarily interested in transverse intersections of multiplicity four
at a vertex of �, which we set as P . In this situation, Trop p = Trop p′ = P . Since
we assume V (q) has no hyperflexes, we have p �= p′.

Tropical tangencies of multiplicity four at a vertex of � appear on bitangent classes
of shape (II) on the closure of its two-dimensional cell. They come in various types.
This includes the weight one vertices of (II), whose local types are (6b) and (5b). At
the end of this section we discuss the missing multiplicity four tangencies listed in
Table 9: those corresponding to types (4) and (3b).

We start by discussing the first two cases. To match our computations with that of
[26, Thm. 4.1] we use S3-symmetry and work with the image of (II) under the map
τ0◦τ1◦τ0. In particular,we are interested in the vertices of a bounded edge ofTrop V (q)

with direction (4, 1). We call them vl and vr . Their dual triangles in the Newton subdi-
vision of q have vertices {(1, 0), (0, 3), (0, 4)} and {(1, 0), (1, 1), (0, 4)}, respectively.
We indicate them as v∨

l and v∨
r at the center of Fig. 21. We let �l and �r be the cor-

responding bitangents. The local equations for q around vl and vr become

ql(x, y) = ax + by3 + cy4 and qr (x, y) = ax + b′xy + cy4. (A.1)

We let p = (x̄, ȳ) and p′ = (r , s) be the initial forms of p and p′. Even though p �= p′,
it is a priori possible that p = p′. Our first two lemmas give necessary conditions for
�l and �r to lift to a classical bitangent line �. In addition, they provide tests to rule
out p = p′.

Lemma A.1 If (�, p, p′) is a bitangent triple with Trop � = �l , then m, n̄ ∈ ˜K ∗ satisfy

(m, n̄) =
(

b̄

4c̄
,
4āc̄2

b̄3

)

or (m, n̄) =
(

− b̄

8c̄
,
8āc̄2

b̄3

)

. (A.2)

Furthermore, if p = p′, then the first option must occur.

Proof As usual, we assume q(x, y) lies in R[x, y] \ MR[x, y], and vl = (0, 0). In
particular, this implies that a, b, c,m, n ∈ R. The local equations at vl are given by
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the vanishing of

ql := ā x̄ + b̄ ȳ3 + c̄ ȳ4, � := ȳ + m + n̄ x̄,

Wl := det (Jac(ql , �)) = ā − n̄ ȳ2(3b̄ + 4c̄ ȳ). (A.3)

Wewish to find necessary and sufficient conditions inm, n̄ ∈ ˜K ∗ that guarantee two
solutions x̄ (counted with multiplicity).We use � to eliminate ȳ from the system (A.3),
by setting ȳ = −m − n̄ x̄ . This leads to an ideal I in ˜K [m±, n̄±][x̄±] generated by the
following two polynomials:

ql
′ = c̄n̄4 x̄4 + n̄3(4c̄ m − b̄)x̄3 + 3mn̄2(2c̄ m n̄2 − b̄)x̄2

+ (4c̄ m3n̄ − 3b̄ m2n̄ + ā)x̄ + m3(c̄ m − b̄),

Wl
′ = 4c̄n̄4 x̄3 + 3n̄3(4c̄ m − b̄)x̄2 + 6m n̄2(2c̄ m n̄2 − b̄)x̄ + (4c̄ m3n̄ − 3b̄ m2n̄ + ā).

Simple manipulations of ql ′ and Wl
′
in Sage produce new elements in I of lower

degree in x̄1. In particular, we obtained the following polynomials in I :

fl := 12ān̄4(4c̄ m − b̄)
(

2n̄(2b̄2c̄ m n̄ + b̄3n̄ − 6āc̄2)x̄ + (b̄2m n̄ + āc̄)
)

,

gl = (3b̄2n̄3)x̄2 + 6n̄(b̄2m n̄ − 2āc̄)x̄ + (3b̄2m2n̄ + 4āc̄ m − āb̄).

Since p and p′ are tangencies points and (m, n̄) ∈ (˜K ∗)2, the ideal I cannot contain a
non-trivial linear polynomial in x̄ . Thus, fl must be the zero polynomial. This happens
if and only if either m = b̄/4c̄ (and n̄ is free), or

2b̄2c̄mn̄ + b̄3n̄ − 6āc̄2 = b̄2mn̄ + āc̄ = 0.

The last systemadmits a unique joint solution, namely the second option listed in (A.2).
When m = b̄/4c̄, the following combination of Wl and gl , evaluated accordingly,
yields

(

(2b̄2c̄n̄2 x̄ − b̄3n̄ + 8āc̄2)Wl − b̄4gl
)

|m=b̄/4c̄ = 128(b̄3n̄ − 4āc̄2)āc̄3 x̄ = 0.

Since x̄ �= 0, this implies n̄ = 4āc̄2/b̄3, as (A.2) indicates. Since p = p′ if and only
if x̄ is a double root of gl , we conclude that the discriminant of gl in the variable x̄
must vanish. A direct computation gives

(−12ān̄2)−1�(gl) = b̄2(16c̄m − b̄)n̄ − 12āc̄2.

After checking both options from (A.2) we see that �(gl) vanishes only for the first
one. ��
1 SageMath, the Sage Mathematics Software System (2016). http://www.sagemath.org
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Lemma A.2 If (�, p, p′) is a bitangent triple and Trop � = �r , then m, n̄ ∈ ˜K ∗ satisfy

(m, n̄) =
(

− ā

b′ ,−
b′3

4ā2c̄2

)

or

(

ā
7 ± 4

√
2 i

9b′ , b′3 7 ∓ 4
√
2 i

108ā2c̄

)

. (A.4)

Furthermore, if p = p′, then the first pair cannot occur.

Proof We follow the same strategy as in the proof of Lemma A.1, with vr = (0, 0)
and q ∈ R[x, y] \ MR[x, y], so all a, b′, c,m and n lie in R. In this case,

qr = ā x̄+b′ x̄ ȳ+ c̄ ȳ4, � := ȳ+m+ n̄ x̄, Wr = (ā+b′ ȳ)− n̄(b′ x̄+4c̄ ȳ3). (A.5)

We substitute ȳ = −m − n̄ x̄ in both qr andWr and obtain the ideal Ir = 〈qr ′,Wr
′〉 in

˜K [m±, n̄±][x̄±]. Algebraic manipulations yield two polynomials in Ir of low-degree
in x̄ :

fr := −2m
(

n̄(c̄(9b̄2m2 + 10āb̄m + 9ā2)n̄ − 2b̄3)x̄

+ c̄m(9b̄2m2 − 2āb̄m − 3ā2)n̄ + b̄2(ā − b̄m)
)

,

gr := (2b̄n̄2)x̄2 + n̄(b̄m − 3ā)x̄ + m(ā − b̄m).

Since � is a bitangent, I has no non-trivial linear polynomials. Thus fr = 0, so both
its coefficients in R[m±, n̄±] must vanish. Call them A1 and A0, depending on the
degree of x̄ . A simple algebraic manipulation gives

A0 − mA1 = −(b′m + ā)(12āc̄mn̄ − b′2) = 0.

Assuming m = −ā/b̄ and solving A0 = A1 = 0 for n̄ gives the first option in (A.4).

In turn, setting n̄ = b′2/(12āc̄m) and substituting this expression in both A0 and A1
yields a single non-monomial factor thatmust vanish. This is precisely the discriminant
�(gr ) = 9b′2m2 − 14āb′m + 9ā2. Replacing the two roots of �(gr ) back into the
expression for n̄ gives the second option in (A.4).

Finally, a direct computation gives �(gr )(−ā/b′,−b′3/(4ā2c̄2)) = 32ā2 �= 0.
Thus, this solution in m, n̄ is not valid whenever p = p′. ��
The next proposition provides explicit formulas to lift the bitangent classes associated
to vl and vr to unique bitangent triples (�, p, p′) satisfying p �= p′. Each lifting is
unique, as was stated in [26, Thm. 4.1].

Proposition A.3 Assume V (q) has no hyperflexes. Then, the tropical bitangents �l

and�r each lift uniquely to classical bitangent triples (�, p, p′)with p �= p′. Table 12
gives explicit formulas for the tuple of initial forms m, n̄, p, and p′ in each case.

Proof Lemmas A.1 and A.2 yield unique potential values for (m, n̄) where p �= p′.
We substitute each value in the three equations from (A.3), respectively (A.5), and
solve for x̄, ȳ. We obtain two distinct solutions in (x̄, ȳ), each corresponding to p
and p′. They can be seen in Table 12.
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Table 12 Formulas for the initial forms of triples (�, p, p′) lifting �l and �r

Trop � m n̄ x̄ ȳ r s

�l − b̄c̄

8

8āc̄2

b̄3
b̄4(3 + 2

√
3)

64āc̄3
− b̄(1 + √

3)

4c̄

b̄4(3 − 2
√
3)

64āc̄3
− b̄(1 − √

3)

4c̄

�r − ā

b′
b′3
4ā2c̄

4ā3c̄(1 + √
2)

b′4 −
√
2 ā

b′
4ā3c̄(1 − √

2)

b′4

√
2 ā

b′

To conclude we use Lemma 2.9 to show that these initial forms lift uniquely to a
triple (�, p, p′) with q(p) = �(p) = W (p) = q(p′) = �(p′) = W (p′) = 0. We use
q = ql or qr and W = Wl or Wr depending on the location of the tropical bitangent
line.

A Sage computation shows that the initial forms of the Jacobians (m, n̄, x̄, ȳ, r , s)
for the local systems at vl and vr are Laurent monomials in the coefficients of (A.1),

namely −9
√
3 ā3b̄2/c̄ and 128

√
2 ā5c̄/b′2. These expressions are units in ˜K , so we

have unique lifts from the six initial forms to the data (�, p, p′). ��
Our next result shows that no bitangent lift (�, p, p′) of �l or �r has p = p′

under the genericity conditions from Remark 2.10. This rules out the overlooked case
in the proof of [26, Thm. 4.1]. Even though this situation can be discarded using the
classical count of bitangents to smooth plane quartics, we provide an independent
combinatorial proof.

Theorem A.4 Assume V (q) has no hyperflexes. Fix a bitangent triple (�, p, p′) where
Trop � is either �l or �r . Then, p �= p′.

Proof We argue by contradiction. We assume q ∈ R[x, y] \ MR[x, y] and we let
v = (0, 0) be the vertex of the tropical line. The proof for both v = vl or vr is the
same, so we argue for both vertices simultaneously. By Lemmas A.1 and A.2 we have
a unique choice for (m, n̄) that is compatible with p = p′. Replacing these values in
(A.3) and (A.5) yields

(m, n̄, p)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

b̄

4c̄
,
4āc̄2

b̄3
,

b̄4

16āc̄3
,− b̄

2c̄

)

for �l ,

(

ā (7 ± 4
√
2 i)

9b′ ,
b′3(7 ∓ 4

√
2 i)

108ā2c̄
,
4(43 ± 13

√
2 i)

27ā3b′4c̄
,− (4 ± √

2 i)

3āb′

)

for �r .

We write p = (r , s) and p′ = (r ′, s′). Since p �= p′ both lie in �, we have r �= r ′ and
s �= s′. We fix N � max {val(r − r ′), val(s − s′)} and re-embed V (q) and V (�) via
the ideals

I := 〈q, x ′ − (x − r − ε1), y
′ − (y − s − ε2)〉,

I� := 〈�, x ′ − (x − r − ε1), y
′ − (y − s − ε2)〉,
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3 3
le Trop q∼ e Trop q∼

∨v

l
∨vr

∨v r
∨v

r
∨v

rvlv
rv

??? ??? ???

Λ′Λ′

Fig. 21 From left to right: Trop V (�̃), Trop V (q̃) and Newton subdivision of q̃ when p = p′ and the
tangency Trop p = Trop p′ is vl or vr

where ε1, ε2 are two suitable parameters inK of valuation N . This transformation cor-
responds to performing tropical modifications ofR2 alongmax {X , 0} andmax {Y , 0}.

Wewrite q̃(x ′, y′) := q(x ′+r+ε1, y′+s+ε2) and �̃(x ′, y′) := y′+m′+nx ′ where
m′ := m + s + ε2 + n(r + ε1). The two tangency points become p1 := (−ε1,−ε2),
p′
1 := (r ′−r−ε1, s′−s−ε2). Note that val(m′) > val(m), Trop p1 = (−N ,−N ) and

Trop p′
1 = (val(r ′−r), val(s′−s)) both lie in (R<0)

2. Our choice ε1, ε2 is determined
by two conditions: q̃(0, 0) �= 0 and p1, p′

1 ∈ (K∗)2. Both can be attained for generic
ε1, ε2 ∈ R \ M of valuation N .

Figure 21 shows the relevant pieces of the Newton subdivisions of q̃ , q, and the
tropical curves �′ := Trop V (q̃) and �′ := Trop V (�̃). We can certify this by con-
firming that the expected valuations of x ′, y′, and (y′)4 for vl (respectively, x ′, x ′y′, y′
and (y′)4 for vr ) are attained, whereas the valuation of the constant term is higher than
expected. Furthermore, the initial forms of ã10 and ã01 in both cases depend only on
p and the coefficients of q.

By construction, the tropical tangency points Trop p1 and Trop p′
1 of�

′ are distinct
and belong to the slope-one edge e of�′ adjacent to v. We let v′ be the second endpoint
of e. The location of the vertex of�′ is uncertain, but it must lie inR≤0(1, 1)+Trop p1.
We analyze two cases, depending on the positions of v′ and Trop p1.

First, assume both Trop p1 and Trop p′
1 lie in the relative interior of e. Then, the

local equations for q̃, �̃ and their Wrońskian at both points would yield n′ = ã10/ã01,
and ε2 + ε1ã10/ã01 = 0, contradicting our genericity assumptions on the parameters
ε1, ε2.

Finally, assume Trop p1 = v′ and consider the fiber over v′ of the tropicaliza-
tion map trop : V (q̃) → R

2. By [33, Cor. 4.2], this fiber is Zariski dense in V (q̃).
Furthermore, q̃v′ ∈ ˜K [x ′, y′] vanishes along initial forms of all points in the fiber.
Thus, we pick a point u = (r ′′, s′′) in the fiber with r ′′ �= −ε1 and s′′ �= −ε2. We
modify along max {X ′,−N } and max {Y ′,−N } followed by a re-embedding using
x ′′ = x ′ − r ′′ − ε′

1, y
′′ = y′ − s′′ − ε′

2 for generic parameters ε′
1, ε

′
2 of valuation > N .

This has a simple effect on the projection to the (x ′′, y′′)-plane: it prolongs the edge
e in the (−1,−1) direction while leaving Trop p1 and Trop p′

1 fixed. The result then
follows from the earlier case analyzed above. ��

Finally, by combining Proposition A.3 and Theorem A.4 we conclude that the
bitangents�l and�r both lift with multiplicity one, as was asserted in [26, Thm. 4.1].

Corollary A.5 The bitangent �l and �r have lifting multiplicity one.
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The techniques discussed above can be used to study multiplicity four tangencies of
types (4) and (3b). The first situation arises for members of a shape (II) bitangent class
inside the bounded edge in the boundary of its two-cell. We show:

Proposition A.6 Assume a bitangent line � to � has a local tangency of type (4) and
multiplicity four. Then, � does not lift to a bitangent triple for V (q).

Proof We argue by contradiction andwrite (�, p, p′) for the bitangent triple associated
to �. Up toS3-symmetry, we may assume the bitangent class of � has shape (II). As
usual, we set v = (0, 0) to be the vertex of � and fix q ∈ R[x, y] \ MR[x, y]. We
let e be the edge of � containing v in its relative interior. As Fig. 19 shows, e∨ has
endpoints (0, 0) and (1, 3). The local system at (0, 0) is defined by the vanish of the
equations

qv = ā + b̄x̄ ȳ3, � := ȳ + m + n̄ x̄, Wv = −3b̄n̄ x̄ ȳ2 + b̄ ȳ3.

Substituting the value for ȳ obtained from � = 0 into the other two equations yields
an ideal I ⊂ ˜K [m±, n̄±][x̄±] with two generators with a multiplicity two solution
at x̄ . Algebraic manipulations as those used in the proof of Lemma A.1 produce a non-
zero linear polynomial in I , namely h = (48āb̄2mn̄5)x̄ + 12āb̄2m2n̄2. This cannot
happen. ��

To conclude, we discuss tangencies of type (3b) of multiplicity four outside shape (C).
Assume � is a bitangent line with vertex v and � ∩ � is a bounded horizontal edge e
with rightmost vertex v with stable intersection multiplicity four. This situation arises
for the valency two vertices of weight zero of bitangent classes with shape (D), (L),
(L′), or (O) through (S). Either by chip-firing on the stable intersection between �

and � or by analyzing the tangencies for members in a neighborhood of � we can
conclude that � has two multiplicity two tangencies, namely,the midpoint and the
rightmost vertex of e. As Fig. 19 shows, the local equation for q(x, y) at v becomes
qv(x, y) = ax + bxy + cx2y2. Our final result discusses possible lifts of �.

Proposition A.7 Let � be a bitangent triple to � that realizes a local tangency of type
(3b) at v with two tangencies: one at v and one in the relative interior of the adjacent
bounded horizontal edge. Then, � cannot be lifted to a bitangent triple.

Proof We argue by contradiction, and fix a bitangent lift (�, p, p′) of�with Trop p =
v. We set p = (x̄, ȳ). As usual, we assume q ∈ R[x, y] \ MR[x, y] and v = (0, 0).
Thus, val(a) = val(b) = val(c) = val(m) = val(n) = 0. Using the local equations
for the tangency along the relative interior of the horizontal bounded edge we conclude
that m = ā/b̄. An algebraic manipulation of the local equations at v (in the variables
x̄ , ȳ, and n̄) using the same techniques as those in the proof of Lemma A.1 implies
n̄ = ā2c̄/b̄3. Replacing this value in the class of qv and Wv in ˜K [x̄±, ȳ±] yields an
inconsistent system of equations for x̄ , namely āc̄x̄ + 2b̄2 = 2āc̄x̄ + 3b̄2 = 0. Thus,
� cannot be lifted over K. ��
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