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Abstract
The concept of subordination, originally introduced in the probability and stochastic
processes theories, has also appeared in analysis of evolution equations. So it is not
surprising thatwemeet it in physics of complex systems, in particularwhen study equa-
tions describing diffusion and dielectric relaxation phenomena. Grace to intuitively
understood decomposition of complex processes into their simpler and better known
components, called parent and leading processes, subordination formalism enables us
to attribute physical interpretation to integral decompositions representing plethora of
solutions to anomalous diffusion and relaxation problems. Moreover, it makes investi-
gation of properties obeyed by these solutions far easier and more effective. Using the
Laplace-Fourier transform method to solve memory-dependent evolution equations
we show that subordination can be naturally implemented in their solutions. The key
to achieve this goal is the use of operational calculus merged with the application
of the Efros theorem [1]. Adopting exclusively methods of classical mathematical
analysis we are able to derive the memory-stemmed origin of subordination and build
a bridge connecting functional analysis/operator calculus based methods of solving
the evolution equations with well established stochastic and probabilistic approaches.
With such a developed general formalism in hands we apply it to several models of
anomalous diffusion and relaxation phenomena.
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1 Introduction

Simple models of kinetic phenomena, to mention those treating about standard diffu-
sion, heat flow or dielectric relaxation, fail if one is going to apply them in order to
describe physical systems which behavior shows significant deviations from idealized
patterns. Those are exemplified by the Gaussian spreading of diffusing particles, the
heat transfer generated by Fourier’s law or the Debye exponential decay of mutually
independent polarized dipoles. Such deviations, commonly nick-named anomalies,
characterize systemswhich exhibit properties stemming frommore andmore complex
structure and no longer can be considered as composed of non-interacting constituents
placed in homogenous environments. Consequently, basic assumptions used to build
up their theoreticalmodelingmust be revisited. Among new concepts being introduced
to solve this task themain role is played bymodifications of evolution equations, some-
times proposed to be quite radical. Intuitive and physically justified approach leading
beyond the standard evolution equations is to replace the latter ones by their time non-
local generalizations expected to take into account physical consequences of the time
delay with which the system responds to external stimuli. Called “memory” effects
such phenomena are nothing strange in physics and are frequently met in continuum
mechanics,macroscopic electrodynamics and various transport phenomena.Consider-
ingmemory dependent kinetic equations and analysing their solutions we anticipate to
expandour knowledge of complex systems and to understandmuchbetter howpossible
non-local time evolution effects influence their behavior. Illustration of this approach
is provided by generalized diffusion equations in which the standard time derivatives
are replaced by their fractional counterparts. A typical example, often encountered
in studies of diffusion-like phenomena, is using the Caputo derivative involving, by
definition, convolution of the standard time differentiation and the power-like time
dependent kernel proportional to t−μ with μ > 0. So the evolution equations gov-
erned by theCaputo fractional time derivativesmay be considered as resulting from the
smearing the time derivatives with power-like memory functions. From the other side
using the Caputo fractional time derivatives is important for self-consistent stochastic
interpretation of diffusion-like phenomena considered as evolution patterns coming
from the continuous time random walk model (CTRW). Recall that CTRW describes
the motion of a diffusing object, traditionally named the walker, which jumps are nei-
ther in time nor in space regular but instead distributed stochastically in both domains.
The randomness is attributed to the sojourn of the walker staying in the point (x, t) and
contains information about the probability distributions of the jumps lenghts and the
so-called waiting times, i.e. randomly long periods of time which the walker spends
at rest at the point x [29]. Physically observed consequence of modeling anomalous
diffusion using waiting time distributions (or the memory functions) given by a single
power-like function t−μ is proportionality of the mean square value 〈x2(t)〉 of x(t)
(MSD) to the power-like function of time tμ. The exponent μ, μ ∈ (0, 2], is used
as a criterion for classification of the observed types of diffusion: for μ ∈ (0, 1) the
process is called subdiffusion, for μ = 1 it is normal diffusion, for μ ∈ (1, 2) is the
superdiffusion while for μ = 2 it bears the name of ballistic motion. Besides of the
just listed physical implications using the power-like memory kernels has deep mathe-
matical consequences which cause that stable stochastic processes and the concept of
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subordination do appear in diffusion/relaxation physics. Modern example is provided
by advanced generalizations of the standard diffusion equation based on merging the
CTRW stochastic concepts with usage the time and space-fractional derivatives coex-
isting in the same evolution equation [28, 29, 51]. This approach throws a bridge
over the probability/stochastic methods, theory of stable stochastic processes and the
Laplace-Fourier transform toolbox used to solve the evolution equations. The model
explains how to incorporate the idea of subordination, grown out from the probability
theory, into diffusion theory. It achieves this through studying processes initially gov-
erned separately by the time and space-fractional derivatives (random walks along the
time and the space lines, respectively) and à posteriori joins them into one stochas-
tic process, for comprehensive exposition see [29]. Here the power-like shape of the
memory functions, sitting as kernels in the Caputo derivatives, turns out to be deci-
sive to judge nonnegativity of obtained solutions and show the stable character of the
subordination. Among another paths to generalize diffusion equations we mention
giving up the constant character of the diffusion coefficient [67] or modeling diffusive
processes using evolution equations with more than one fractional time derivative,
including also the case of so-called distributed order fractional derivatives [20, 21,
37]. Models using the time dependent diffusion coefficient, inspired by experimental
data, have been used to explain differences in behavior of MSDs for short and long
times - relevant examples are provided by the scaled Brownian motion with diffusion
coefficient D(t) ∝ tα−1, where t ∈ R+ and α > 0, for which the MSD grows lin-
early at short times, 〈x2(t)〉 ∝ t , whereas at long times behaves as 〈x2(t)〉 ∝ tα [17,
42, 68, 69, 81]. We note that similar duality, but of different origin, occurs for the
Cattaneo-Vernotte equation (CVE) [18, 19, 82] and its generalizations [6, 7, 23, 32].
For instance, the MSD calculated for the CVE is proportional to t for short times (like
it takes place for the Brownian motion) while for long times it reads 〈x2(t)〉 ∝ t2

which is typical for the ballistic motion. The effect results directly from the fact that
CVE is governed by two time derivatives of different order which can be regarded as
a trace of the time delayed Fourier’s heat conduction law [52]. Note also that using
CVEmeans changing the type of equation from parabolic to hyperbolic one and opens
possibility to describe diffusion and heat transfer with finite propagation speed [84].

Huge amount of earlier unreachable data collected during recent few decades in
diffusion/relaxation experiments forced theorists’ community to push forward the
development of mathematical tools providing the basis for effective models. The best
among them have appeared those rooted in advanced methods of fractional calcu-
lus entangled with those coming from the probability/stochastic processes theory, in
practical applications completed next with sophisticated computer science and numer-
ical recipes. Merged together, these methods have formed a toolbox which usage has
enabled us to solve equations of anomalous diffusion and non-Debye relaxations for
a quite large number of problems [22, 33, 70, 72, 76]. However, regardless of the
progress achieved so far, some questions, among them those concerning the proper-
ties of memory functions and their influence on behavior of physical systems, still
wait for comprehensive physical and mathematical clarification. Our objective is to
touch and clarify this problem using the Efros theorem [5, 24, 25, 30, 38, 86], being
itself almost 90 years old result of classical operational calculus and integral trans-
forms theory. The usefulness, and at the same time simplicity, of the Efros theorem
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prompts us that it sheds new light on subordination and helps a lot to understand this
probabilistic concept from the mathematical analysis point of view.We do believe that
our exposition will make subordination concepts more affordable and easier to under-
stand for physicists, also for those working with experiment. We also hope that our
results will be useful to push forward physical interpretation of anomalous kinetics and
explain frequently used, but a little bit naive, statement that subordination describes
some standard evolution but governed by “internal” time in enigmatic way related to
the physical one, measured by laboratory clocks.

We consider our paper as a review but emphasize that our presentation is entirely
focused on the memory dependent evolution equations and their solutions which,
under the form of integral decompositions, do hide subordination. Exploiting solutions
written down in terms of integral decompositionswe learn how to relate experimentally
measured quantities with memory functions chosen to describe the system and how
to determine requirements which they should obey. To illustrate the methods being
used we shall concentrate ourselves on the time smeared 1 + 1-dim Fokker-Planck
(FP) equation without drift for which relevant solutions may be expressed in analytic
form. Thus the structure of the paper goes as follows: in the forthcoming Sect. 2 we
recall the formalism of memory dependent evolution equations, discuss how they are
related to the general class of Volterra equations and introduce concept of the Sonine
pair. In Sect. 3 we shall demonstrate how the Efros theorem enables one to show that
integral decompositions routinely exploited to represent solutions to the diffusion and
relaxation equations are straightforward consequences of using methods coming from
the operational calculus. Perspectives which the Efros theorem offers are quite wide
- its formulation provides us with a general scheme which allows to construct and
interpret integral decompositions for various evolution equations and shows how to
relate themwith probabilistic notions. In Sect. 4 we study conditions which, if required
from the memory functions, imply the positivity of solutions to the equations met in
studies of the anomalous diffusion. Our analysis is backgrounded in the properties of
completely monotone (CMF), Bernstein (B) and complete Bernstein (CBF) functions
and their relation to the infinitely divisible PDFs. In Sect. 5 we switch the subject
of our investigations to the non-Debye relaxations. Applying methods presented in
Sects. 3 and 4 we analyze from the subordination point of view popular relaxation
models, namely the Cole-Cole, Havriliak-Negami and Jurlewicz-Weron-Stanislavsky
ones. Section6 is devoted to summing up discussion of general properties of integral
decompositions as well as to the formulation of concluding remarks. The paper is
completed by five appendices explaining details of calculations made throughout.

2 Memory dependent equations: their origin and properties

The need for describing kinetic phenomena taking place in complex physical sys-
tems by using equations containing memory functions materialized in early 60’s of
the previous century when Robert Zwanzig in seminal papers [87, 88] first noted
that the formalism of instantaneous response does not work in many physically inter-
esting situations. Next he proposed and developed the selfconsistent construction of
kinetic equations respecting causality and taking into account delayed response of
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the system. The standard mechanism of encoding such delays is to replace point-like
operations, e.g. usual multiplication of functions, by integral operators taken in the
form of time convolutions of memory functions and solutions looked for. Thus it is
justified to say that such a way modified evolution equations are the time smeared
standard ones. Almost 40 years later it was Igor Sokolov [75] who shed new light
on ideas underpinning Zwanzig’s seminal works. Sokolov showed that the use of
generalized non-Markovian Fokker-Planck equations with built in memory kernels
leads to considerable progress in understanding anomalous transport and non-Debye
relaxations.

Following the spirit of [87] we write down the generalized FP equation as

∂t p(x, t) = OLp(x, t), (2.1)

where (x, t) ∈ (R × R+) and the linear operatorO acts on the time variable only. Thus
it isO which carries responsibility for the memory effects while the time independent
FP operator L influences only the x-dependence of solutions. If O is represented as
an integro-differential operator with the kernel O(t − ξ) then Eq. (2.1) becomes

∂t p(x, t) =
∫ t

0
O(t − ξ)Lp(x, ξ) dξ. (2.2)

which is typical form of the Volterra equation. For our further considerations it is
convenient to rewrite Eq. (2.2) in the form

∂t p(x, t) = d

dt

∫ t

0
M(t − ξ)Lp(x, ξ) dξ (2.3)

coming directly from the integral master equation

p(x, t) = p(x, 0) +
∫ t

0
M(t − ξ)Lp(x, ξ) dξ. (2.4)

If we take the Laplace transforms (with respect to t) of Eqs. (2.2), (2.3) and (2.4) and
(according to the convention1) symbolically write down these equations as

[z − Ô(z)L] p̂(x, z) = z[1 − M̂(z)L] p̂(x, z) = p(x, 0), (2.5)

then we see that Eqs. (2.2) – (2.4) are equivalent if in the Laplace domain Ô(z) =
zM̂(z). It implies that in the time domain O(t) = dM(t)/ dt + M(0+) where
M(0+) = limt→0+ M(t) is to be specified, cf. [22]. Looking for solutions of (2.2)-
(2.4)we are interested in the functions p(x, t)which fulfillminimal set of requirements

1 Throughout the paper the direct and inverse Laplace transforms are denoted as f̂ (z) = L [ f (t); z] and
f (t) = L−1[ f̂ (z); t], respectively, such that the Laplace coordinates are z ÷ t . Simultaneously, f̃ (κ)

means that we are taking the Fourier transform f (x) such that f̃ (κ) = F [ f (x); κ]; the Fourier coordinates
are denoted as κ ÷ x .
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needed to interpret them as probability density functions (PDFs) demanded to be nor-
malizable and nonnegative. The widely known example is the case of the memory
kernel M(t) present in Eq. (2.3) assumed to be proportional to the power-law func-
tion. Such obtained equation, for L = D∂2x , D > 0, was in details discussed in [70,
72] in the context of the CTRW approach to anomalous diffusion. From the second of
just quoted papers, cf. [72, Eq. (3.8)], we learn that the solution to this model may be
assigned the MSD 〈x2(t)〉 given by

〈x2(t)〉 =
∫
R

x2 p(x, t) dx = 2DL −1[z−1M̂(z); t],

where M̂(z) = L [M(t); z]. The Laplace image of the memory function M̂(z) deter-
mines also the remaining moments: for even n = 2m the moments 〈xn(t)〉 are
proportional to L −1{[z−1M̂(z)]m; t} while for odd n’s they vanish. At this point
we want to pay the readers’ attention that the model under consideration provides us
with an example which directly links moments with the memory function. As will be
seen from Eqs. (3.2) and (4.1) in Sects. 3 and 4 such relations appear naturally and
allow to suppose that using methods of the classical moment problem may be help-
ful to recover information concerning conditions which the memory function M(t)
should satisfy to guarantee the existence of physically meaningful p(x, t) [2, 61, 74].
The interpretation of the memory function in terms of the CTRW can be found in Ref.
[89].

Given Eq. (2.3) governed by the kernel function M(t) one may ask for a function
k(t) defined by the convolution

∫ t

0
k(t − t ′)M(t ′) dt ′ = 1, (2.6)

which, if required to be satisfied for any t > 0, is known in the theory of integral
equations as the Sonine relation [40, 41, 47, 48, 57]. Transformed to the Laplace
domain Eq. (2.6) becomes k̂(z)M̂(z) = z−1 from which

k̂(z) = [zM̂(z)]−1. (2.7)

General properties required from M(t) in order to satisfy basic requirements of the
Laplace transform theory guarantee that Eq. (2.6) defines the couple (M(t), k(t))
uniquely. Moreover, symmetry of Eq. (2.7) with respect to the interchange M(t) ↔
k(t) means that if M(t) is interpreted as a memory function then k(t) does share this
property in the following context:

If Eq. (2.6) holds then any suitable M(t) which governs Eq. (2.3) has its partner
memory function k(t) being the kernel of integro-differential equation

∫ t

0
k(t − ξ)∂ξ p(x, ξ) dξ = Lp(x, t) (2.8)
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equivalent toEq. (2.3)and known in the literature as theCaputo-Dzhrbashyan problem
[45].

Equivalence of Eqs. (2.8) and (2.3) is seen if we calculate the time derivative in
the RHS of Eq. (2.3) and next integrate the resulting equation with respect to

∫ t
0 dt

′
using the Sonine relation (2.6) twice [34, 35]. Thus it is seen how important for
completing and consistent of our scheme is the Sonine relation. From one side it
unifies in mathematical sense memory dependent effects coming from the integral
and integro-differential equations, namely Eq. (2.8) and Eq. (2.3), respectively. From
the other, physical side, it emphasizes the equivalence of memory dependent, time
smeared, response of the system (Eq. (2.8)) with the time smeared evolution law (Eq.
(2.3)).

Duality in description of the same process using either Eq. (2.3) or Eq. (2.8) was
noticed and studied in many papers treating the problem from different points of
view - e.g., i) solvability of the Cauchy problem for Eq. (2.8) studied using either
standard methods of differential equations theory [45] or abstract operator/semigroup
formalism based search for solutions of the Volterra equations, developed in [66]
and applied to diffusion problems by Emilia Bazhlekova [9–11] whose approach
has allowed to introduce and explain subordination on the basis of mathematical
analysis considerations [12–14], ii) investigations devoted to the role played by the
Sonine relation and resulting duality of memories [32, 34–36, 40, 79] and iii) efforts
oriented on understanding mutual relations between the so-called deterministic and
probability/stochastic approaches to anomalous kinetic phenomena [33, 70, 72, 77,
78].

Restricting the kinetic problem under consideration to be depending on the time
only means that the action of the FP operator reduces to multiplication by a constant
factor B. Thus we arrive at equations governing the relaxation phenomena which
provide us with another examples of non-Markovian processes [76, 78]

n(t) − 1 = −
∫ t

0
M(t − ξ)Bn(ξ) dξ, (2.9)

which differential form is

dn(t)

dt
= − d

dt

∫ t

0
M(t − ξ)Bn(ξ) dξ.

The relaxation function n(t) counts dipoles which survive depolarization during the
time (0, t) ∈ (0,∞) and if normalized evolves from n(0+) = 1 to n(∞) = 0. Using
the Sonine relation we can transform Eq. (2.9) into

∫ t

0
k(t − ξ) dξn(ξ) dξ = −Bn(t). (2.10)

It has to be marked that Eq. (2.10) enables us to write down the Laplace transform
φ̂(z) of the spectral function φ(t) = − dn(t)/ dt in terms of M̂(z)

φ̂(z) = 1 − zn̂(z) = {1 + [BM̂(z)]−1}−1. (2.11)

123



Subordination and memory dependent… 487

Looking at Eq. (2.11) from the physicists point of view we would like to note that
this equation, if taken for z = iω with ω identified as the frequency of harmonic field
used to polarize the sample, couples theoretical formulae (cf. [32, 34–36]) with phe-
nomenologicalmodels of the spectral functions φ̂(iω), namely the standard non-Debye
relaxations: the Cole-Cole, Havriliak-Negami and Jurlewicz-Weron-Stanislavsky
patterns, which are obtained as fits to experimental data.

Basic equations (2.3), (2.8) and (2.10) are the Volterra type equations [39, 66].
They may be considered as equations which, because of permissible introduction
of “atypical” kernels M(t) and k(t), go beyond the fractional differential equations
conventionally used to describe the anomalous diffusion and relaxation phenomena
within the framework of fractional calculus approach. 2 In turn, Eqs. (2.4) and (2.9)
may be identified as master equations which govern some stochastic processes under-
lying mechanisms of anomalous kinetics [78]. Understanding properties of memory
functions M(t) or k(t) plays important role in mathematical analysis of equations
under study and, as it was mentioned earlier, provides us with links to observational
data, either to the MSD (and eventually higher moments) in the diffusion case or to
the spectral function φ̂(iω) for the case of relaxation experiments. However, if we
restrict ourselves to the experimental data only, then usually we are not able to acquire
knowledge sufficient to determine basic processes underlying physics of considered
phenomena.Wedoneed additional informationpractically available only fromdetailed
analysis of properties which the memory functions M(t) and k(t) should obey. Obvi-
ous requirements that memory functions have to be nonnegative and nonincreasing
are insufficient to judge the existence and physical applicability of solutions as well
as to find their interpretation. Some extra conditions, like the fading memory concept,
were tried to be put on the memory functions but due to the lack of mathematical
precision they did not satisfy initial expectations [3, 4]. The progress has come with
using seemingly distant methods connected by the concept of subordination - from the
one side linked with the probabilistic methodology, first of all identification of anoma-
lous kinetic phenomena with stable stochastic processes (cf. e.g. [55, 56, 76, 77, 85]
and [78, Chs. 4.1, 4.3]) and from the other side with the operator theory equipped
with ensuing functional analysis tools like resolvents [9–11]. Both approaches lead to
methods which make it possible to analyse and solve anomalous diffusion and non-
Debye relaxation problems. For probability-oriented researchers the crucial step is
using concepts of stable and infinitely divisible distributions [49] merged with subor-
dination technique of [16] and applications of the Bernstein (BF) and Stieltjes (SF)
functions theory, see [15, 73] and Appendix 1 for a brief tutorial. Investigations based
on operator methods and functional analysis tools made the integro-differential equa-
tions (2.3) and (2.8) better and better understood especially if they were governed by
kernels which Laplace images are power-like or, more generally, belong to the class
of SFs, the latter being close relatives of BFs [9–11, 33, 45, 46]. Here we would like
to pay readers’ attention to two facts:

2 To go beyond using the Riemann-Liouville and Caputo fractional derivatives is nothing new in fractional
calculus. There exists a plethora of integro-differential operators proposed to replace just mentioned "stan-
dard" historical ones - for a review see E. Capelas de Oliveira and J. A. Tenreiro Machado, A review of
definitions for fractional derivatives and integral, Mathematical Problems in Engineering 2014, article ID
238459.
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– TheOperatormethods clarify themeaning of subordination as an universal method
which enables one to find solutions to the evolution equations, or, more precisely,
to solve complicated Cauchy problems, using solutions known for their much
simplified analogues. 3

– In analysis of the Volterra-like evolution equations special care has to be paid
for the Sonine relation and the role of the SFs hidden behind it. Indeed, if one
requires that M̂(z) and k̂(z) of Eq. (2.7) belong to the same class of functions
then the overriding possibility to satisfy this requirement is to put both of them in
the Stieltjes class. Additionally, belonging to the Stieltjes class directly links the
memory functionswith the BFs and Laplace exponents, objects which characterize
PDFs relevant for infinitely divisible stochastic processes [34–36, 78].

3 Integral decompositions: how the Efros theorem hides
subordination

The standardmethod to solve either Eqs. (2.3) or (2.4), or Eqs. (2.8) – (2.10), consists of
three steps: i) adding initial conditions (for anomalous diffusionwe put p(x, 0) = δ(x)
while for the relaxation phenomena n(0+) = 1); ii) algebraization of the problem
using the Fourier-Laplace (FL) transform p(x, t) ÷ ˆ̃p(κ, z) or the Laplace transform
n(t) ÷ n̂(z) where κ ÷ x and z ÷ t are pairs of the Fourier and Laplace variables; iii)
inverting the algebraic expressions for ˆ̃p(κ, z) or n̂(z). We shall show that complet-
ing this procedure leads to the so-called integral decompositions used for almost 30
years by physicists working in the field of kinetic processes [8, 26, 55, 56, 75] and
constructing their mathematical description which at that time arose frommerging the
Langevin-type evolution equations with the CTRW approach.

Leaving aside, but not for a long time, the approach based on the probabilis-
tic/stochastic processes methods we shall focus our attention on the exposition
promoted in the Introduction, i.e., based on the study of evolution equations. To begin
with we propose the leading role in the forthcoming investigations to be played by
generalized FP equations and check if solutions p(x, t) of FP equations (2.3), (2.4) or
(2.8) may be represented as integral decompositions given by the formula

p(x, t) =
∫ ∞

0
h(x, ξ) f (ξ, t) dξ (3.1)

in which functional forms of h(x, ξ) and f (ξ, t) are to be determined from the primary
equation. The keynote for physical interpretation of Eq. (3.1) is that it separates out
the x and t dependence sitting in p(x, t) and replaces it, through a convolution type
relation, by entangling the functions h(x, ξ) and f (ξ, t) temporarily playing roles of
auxiliary objects not required to satisfy any special conditions. Under the additional
assumption that h(x, ξ) and f (ξ, t) are PDFs the convolution Eq. (3.1) reflects the
composition of independent probabilities, the so-called Bayes formula. Possibility

3 Examples may be provided by simple evolution equations (e.g. standard diffusion equation solved by the
Gaussian function) and their fractional or memory dependent counterparts, [13, 14].
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to assign p(x, t) the interpretation of a probability distribution related to the process
which emerges as composition of stochastic processes has become the crown argument
supporting the importance of the probability/stochastic approach to kinetic phenom-
ena and has opened possibility for the subordination formalism to get into the game
[26, 55]. We remark that although known and applied in practice for many years the
origin, interpretation and possible constraints, either put on constituents of integral
decompositions separately or demanded from Eq. (3.1) to be a PDF as a whole, are
still the subject of ongoing research [22, 33].

To derive Eq. (3.1) and to study its mathematical and physical content we begin
either with Eq. (2.3) or Eq. (2.8) treated as equivalent under the provision of the
Sonine relation. Assume also that the FP operator equals to D∂2x which will enable us
to present results in closed form. Taking the FL transform of Eqs. (2.3) or (2.8) we
get that ˆ̃p(κ, z) equals

ˆ̃p(κ, z) = [zM̂(z)]−1
{
[M̂(z)]−1 + Dκ2

}−1

= k̂(z) [zk̂(z) + Dκ2]−1.

(3.2)

Next, we can proceed two-fold way - either to invert first the Fourier transform κ ÷ x
or to begin with inverting the Laplace transform z ÷ t . The inverse Fourier transform
of Eq. (3.2) reads

p̂(x, z) = 1

2
z−1[k̂(z)/D]1/2 e−|x |[k̂(z)/D]1/2 , (3.3)

or, alternatively, with k̂(z) → [zM̂(z)]−1.4 These formulaewill be the basis of analysis
presented in Sect. 4 but in the context of integral decompositions it is more profitable to
find the inverse Laplace transformL −1[ ˆ̃p(κ, z); t] = p̃(κ, t) of Eq. (3.2). The Efros
theorem perfectly matches to solve this problem. Indeed, as one learns fromAppendix

2, Eq. (3.2) fits to Eqs. (8.1) and (8.3) with ˆ̃h(κ, z) = [z + Dκ2]−1, q̂(z) = zk̂(z) and
Ĝ(z) = q̂(z)/z = k̂(z) which, if needed, may be rewritten in equivalent form using
k̂(z) → [zM̂(z)]−1. According to Eqs. (8.2) and (8.4) we have

p̃(κ, t) =
∞∫

0

h̃(κ, ξ) f (ξ, t) dξ, (3.4)

which implies Eq. (3.1)

p(x, t) =
∞∫

0

h(x, ξ) f (ξ, t) dξ (3.5)

4 To calculate the Fourier transform of Eq. (3.2) one can either apply the Schwinger parametrization and
next calculate the Gaussian integral or use the formula from [65].
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with h(x, ξ) being the inverse Fourier transform of h̃(κ, ξ) which in the (κ, ξ)-space

reads ˆ̃h(κ, z) = [z + Dκ2]−1 and

f (ξ, t) = L −1
{
k̂(z) e−ξ zk̂(z); t

}
= L −1

{
[zM̂(z)]−1 e−ξ [M̂(z)]−1; t

}
. (3.6)

The above shows that the integral decompositions appear as straightforward results
of the Efros theorem. However, because of ambiguous choice of functions ĥ(x, z),
q̂(z) and Ĝ(z) the representation of p(x, t) may be given, for the same k̂(z) or M̂(z),
in different functional forms. It should be also noted that the Efros theorem scheme,
Eqs. (8.1)-(8.4), not only allows to construct the integral decomposition representation
of p(x, t) but exhibits two properties which are helpful when one looks for physical
interpretation of such obtained formulae. To support this statement notice that: i) the

choice of the function ˆ̃h(κ, z) is independent from any specific form of M̂(z) or k̂(z);
ii) any dependence of Eq. (3.1) on the functions M̂(z) or k̂(z) (implicitly hidden in
the expressions defining q̂(z) and Ĝ(z)) influences the final result only through the
function f (ξ, t). In what follows we will explain how to relate the set of à priori
chosen functions { ĥ(x, z), q̂(z), Ĝ(z) } with physical models.

Example 1: the Gaussian-like propagation
Our goal is to solve Eq. (3.2) using the Efros theorem. For that purpose we rename

h(x, ξ) as N (x, ξ), introduce its FL transform ˆ̃N (κ, z) accompanied by the inverse

Laplace transformL −1[ ˆ̃N (κ, z); ξ ] and call f (ξ, t) as fN (ξ, t). Then we can rewrite
Eq. (3.5) as

p̃N (κ, t) =
∫ ∞

0
L −1[ ˆ̃N (κ, z); ξ ] fN (ξ, t) dξ (3.7)

from which pN (x, t) is to be computed taking the inverse Fourier transform of

p̃N (κ, t). The assumed form of ˆ̃N (κ, z) gives

ˆ̃N (κ, z) = (z + Dκ2)−1 (3.8)

and in a natural way links it to Eq. (3.2). From Eq. (3.8) we have

z ˆ̃N (κ, z) − 1 = −Dκ2 ˆ̃N (κ, z) (3.9)

which, after inverting the Fourier κ ÷ x and the Laplace z ÷ ξ transforms (cf.[65, Eq.
(1.1.1.10.3)]), becomes

∂ξ N (x, ξ) = D∂2x N (x, ξ) (3.10)

completed with the initial condition N (x, 0) = δ(x). Equation (3.10) is the standard
diffusion equation and N (x, ξ) is nothing else than its fundamental solution

N (x, ξ) = exp[−x2/(4Dξ)]/√4πDξ, (3.11)
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i.e. the Gaussian distribution which physically describes the Gaussian spreading.
What does it mean in the context of integral decomposition (3.7)? N (x, ξ) satis-

fies equation identical as Eq. (2.3) with the memory effects formally switched off,
i.e., Eq. (2.3) with M(t − ξ) = 1. However, further conclusions should be handled
carefully. It is clear that Eq. (3.10) describes memoryless system and its fundamen-
tal solution N (x, ξ) represents a Markovian process. But there is no reason to claim
that the evolution parameter ξ governing this process is the physical time t . Our only
knowledge concerning this parameter is that it is nonnegative and appears as a partner
of the Laplace variable z ∈ C. Moreover, in expressions expected to be physically
meaningful ξ is integrated over and as such becomes a dummy variable which does
not enter description of physical effects. From the other point of view the role played
by ξ , or more precisely by the map f : t → ξ , is crucial for existence and properties of
the integral decomposition Eq. (3.7). Recall that f (ξ, t) is the only object depending,
through Eq. (3.6), on thememory functions. Having this inmindwe are free to suppose
that f (ξ, t) relates the physical time t to a variable ξ which enters the formalism as
some “internal” time-like variable whose properties are à priori unknown and may be
quite strange, e.g., its timing and flow are no longer uniformly distributed but repre-
sent random variables. If such an idea is accepted then the functions f (ξ, t)may serve
as patterns how the "internal" time-like variables, whose origin and properties come
from the memory effects, are functionally related to the physical time t measured by
laboratory clocks. Obviously, not all patterns encoded by functions f (ξ, t) are eli-
gible as mathematically and physically correct. Necessary mathematical condition is
the existence of the inverse Laplace transform which may be deducted from analytical
and asymptotic properties of the Laplace images M̂(z) and k̂(z). The minimal set of
physical requirements demanded from ad hoc introduced quantity ξ to be called "new"
time is that we have to deal with nondecreasing nonnegative valued function t → ξ

which composition rule respects causality. However, if the "new" time is allowed to be
stochastic then its properties may significantly differ from those of physical time, e.g.,
continuity of its flow may be relaxed and replaced by the so-called càdlàg condition
defining functions (in maths classified as belonging to the Skorokhod space) which are
right continuous with left limits - this allows e.g., to introduce the timing with jumps
[22]. Note that for the memoryless case, i.e., M(t) = 1 ⇔ M̂(z) = z−1, the "new"
time should reduce to that measured by laboratory clocks. Such "consistency test" we
can formulate as follows: if M(t) = 1 (equivalent to M̂(z) = z−1 and k(t) = δ(t)
and k̂(z) = 1, respectively) then f (ξ, t) = δ(ξ − t). It is easy to see that Eq. (3.6)
satisfies this test and Eq. (3.7) leads to pN (x, t) = N (x, t) as it should be.

To proceed further in our search for the meaning of integral decompositions let
us reanalyse previous steps. To get Eq. (3.7) we made two assumptions. First we
adopted the condition (3.8) which led us to Eq. (3.10) and, second, we postulated
relations between M̂(z) and auxiliary functions q̂(z) and Ĝ(z), namelywe put q̂N (z) =
[M̂(z)]−1 and ĜN (z) = [zM̂(z)]−1. Having it done we concluded that the integral
decomposition representing the solution of Eq. (2.3)may be expressed as a convolution
of Gaussian propagator and a function fN (ξ, t) which is to be computed from Eqs.
(3.6) for some M̂(z) or k̂(z) put in. If the suitable inverse Laplace transform exists
and it is integrable on [0,∞) if multiplied by the Gaussian propagator, then, because
of the uniqueness of the Laplace transform, the integral decomposition provides us,
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for the memory function given, with the solution of Eqs. (2.3) or (2.4). However, the
question concerning nonnegativity of this solution, i.e. its interpretation as a PDF,
is pending. Here the help of probabilistic/stochastic tools appears useful. We have
mentioned previously that integral decompositions which we are dealing with come
out as results of convolution-like theorems. Simultaneously, if constituents of the
integral decomposition admit interpretation as independent well-defined PDFs, then
the integral decomposition Eq. (3.7) is well-defined PDF as well and may be read out
as composition of two processes, in particular stochastic ones. Moreover, if f (ξ, t) is
an infinitely divisible PDF then we can make the previous statement much stronger
and say that f (ξ, t), called the leading process, subordinates the other process, called
the parent one. For just presented example the parent process is determined by the

shape of ˜̂h(κ, z) and for the case under study appears Gaussian. However, the choice

of ˜̂h(κ, z) is by no means unique. To look closer on this we postpone to Sect. 5 further
discussion of conditions under which subordination procedures do work and now will

focus our attention on the problem how different choices of functions ˜̂h(κ, z), q̂(z)
and Ĝ(z) influence factorization of the process into the parent and leading ones.

Example 2: the Gaussian vs Cattaneo-Vernotte propagation
To discuss this example we take k̂(z) → K̂(z) = τ z[γ̂ (z)]2 + γ̂ (z) where K̂(z) is
a "composite" memory function which forms the Sonine pair with a suitably chosen

memory function M̂(z). Next assume that: i) Eq. (3.8), i.e., ˜̂h(κ, z) = (z + Dκ2)−1,
is kept and the auxiliary functions are: ii) q̂1CV(z) = zK̂(z) = τ [zγ̂ (z)]2 + zγ̂ (z) and
iii) Ĝ1CV(z) = q̂1CV(z)/z. A little bit overloaded notation is introduced to distinguish

this example from another ones discussed later on. With ˜̂h(κ, z) = (z + Dκ2)−1 and
the substitutions ii) and iii) the inverse Laplace transform z ÷ t of Eqs. (3.2) and (8.4)
reads

p̃1CV(κ, t) = L −1

[
K̂(z)

zK̂(z) + Dκ2
; t

]
= L −1

[
γ̂ (z)[τ zγ̂ (z) + 1]

τ [zγ̂ (z)]2 + zγ̂ (z) + Dκ2 ; t
]

=
∫ ∞

0
h̃(κ, ξ) f1CV(τ ; ξ, t) dξ,

(3.12)

where h̃(κ, ξ) is the Gaussian propagator while

f1CV(τ ; ξ, t) = L −1
{
K̂(z) e−ξ zK̂(z); t

}

= L −1
{
γ̂ (z)[τ zγ̂ (z) + 1] e−ξ [τ z2γ̂ 2(z)+zγ̂ (z)]; t

}
. (3.13)

For τ = 0 the integrands of the inverse Laplace transforms in Eqs. (3.12) and (3.13)
reduce to expressions involving K̂(z) = γ̂ (z) and we arrive at the previously dis-
cussed example of Gaussian propagation. To analyze the case τ �= 0 we consider the
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generalized (time smeared) Cattaneo-Vernotte equation (GCVE)

τ

t∫

0

η(t − ζ )∂2ζ p(τ ; x, ζ ) dζ

+
t∫

0

γ (t − ζ )∂ζ p(τ ; x, ζ ) dζ = D∂2x p(τ ; x, t) (3.14)

with initial conditions p(τ ; x, 0) = δ(x) and ∂t p(τ ; x, t)|t=0 = 0 and subject to the
condition η̂(z) = [

γ̂ (z)
]2. The latter, as been shown in [32, 33], guarantees that the

smearings of the first and second order time derivatives are self-consistent. Comparing
the FL transform of the fundamental solution to Eq. (3.14) with the integrand of
the second inverse Laplace transform in Eq. (3.12) we see that they are the same.
So the integral decomposition presented in Eq. (3.12) is the solution of the GCVE,
Eq. (3.14). At this moment a little bit disturbing observation appears. According to
Eqs. (3.12) such obtained solution of GCVE is expressed in terms of the convolution
which involves the Gaussian (diffusion-like) propagator describing the infinite speed
propagation. This fact remains undisturbed by any shape of f1CV(τ ; ξ, t) and thus
seems to be shared by the integral decomposition Eq. (3.12) [33]. So what about the
case η(t − ξ) = γ (t − ξ) = δ(t − ξ), i.e., the CVE, which is known to describe the
finite speed propagation? Clarification of this perplexing situation needs step by step
analysis of the whole construction. Luckily, the helpful observation is quite simple:
if we put γ̂ (z) = 1 in Eq. (3.13) then the inverse Laplace transform to be calculated
involves the function exp [−ξ(z2 + z)] = exp[−ξ(z + 1/2)2 + ξ/4]. However, the
inverse Laplace transform of the Gaussian-like functionL −1[exp(−ξ z2); t] does not
exist, e.g. see [65, Eq. (2.2.1.4)]. This argument stops to work if we deal with functions
whose asymptotics z → ∞ reduces to products of exp [−ξ zα j ] with all α j ∈ (0, 1).
For such a case the relevant inverse Laplace transforms exist and are expressed in
terms of the Lévy stable distributions [30, 31, 62, 63]. This is realized if the memory
functions are modeled by the power-like monomials γ̂ (α; z) = zα−1, α ∈ (0, 1).
From the example discussed in Sect. 4, we will learn that the construction (and the
positivity condition) works if α ∈ (0, 1/2] but is broken for α ∈ (1/2, 1]. Such
conclusion is understood because for α ∈ (0, 1/2] the GCVE which we have begun
with is the generalized diffusion equation with two Caputo fractional time derivatives
which maximal order is 1.

Alternative result of using the Efros theorem to find the integral decomposition
relevant for Eq. (3.12) comes from writing down the latter in terms of

ˆ̃h2CV(τ ; κ, z) = τ z + 1

τ z2 + z + Dκ2 (3.15)

and substitutions z → q̂2CV(z) = zγ̂ (z) ≡ q̂N (z) and Ĝ2CV(z) = q̂2CV(z)/z ≡
ĜN (z). This time, if compared to the previously discussed case, we change the form

of ˜̂h(κ, z) but leave simple linear relations linking auxiliary and memory functions.

123



494 K. Górska, A. Horzela

This choice leads to the integral decomposition

p2CV(τ ; x, t) =
∫ ∞

0
h2CV(τ ; x, ξ) fN ′(ξ, t) dξ, (3.16)

where the new propagator h2CV(τ ; x, ξ) is the inverse FL transform of Eq. (3.15).
The function fN ′(ξ, t) = L −1{γ̂ (z) exp[−ξ zγ̂ (z)]; t}, present in Eq. (3.16), is, for
γ̂ (z) = k̂(z), the same as in the previous example devoted to Gaussian propagation.
Calculations analogous to Eqs. (3.8) - (3.10) (see Appendix 3) lead to the conclusion
that h2CV(τ ; x, ξ), satisfies the memoryless equation

τ∂2ξ h2CV(τ ; x, ξ) + ∂ξh2CV(τ ; x, ξ) = D∂2x h2CV(τ ; x, ξ) (3.17)

with initial conditions h2CV(τ ; x, 0) = δ(x) and ∂ξh2CV(τ ; x, ξ)|ξ=0 = 0. Equation
(3.17) is the CVE governed by the “new” time ξ . The solutions of CVE for general
initial conditions are known for a long time, see e.g. [80, Eq. (102) on p. 301] and
[58, Eq. (7.4.28)]. In particular, the fundamental solution h2CV(τ ; x, ξ) which we are
interested in reads

h2CV(τ ;x, ξ) = 1

2
e−ξ/(2τ)[δ(x + aξ) + δ(x − aξ)] + �

(
ξ − |x |

a

)e−ξ/(2τ)

4τa

×
[
I0

( 1

2τa

√
a2ξ2 − x2

)
+ aξ√

a2ξ2 − x2
I1

( 1

2τa

√
a2ξ2 − x2

)]
,

(3.18)

with a = (D/τ)1/2 and the standard notation been applied: δ(·) symbolizes the δ-
Dirac distribution, �(·) means the Heaviside step function while the modified Bessel
function of the first kind are marked as I0(·) or I1(·). Remark that the solution Eq.
(3.18) is localized on the bounded support aξ > |x | and has been used for many years
in studies of diffusion-like phenomena obeying the finite propagation velocity - see,
e.g., [33, 50, 59, 84].

Counterexample: the "wave-like" propagation
We remarked previously that for τ = 0 Eqs (3.12) reduce to Eq. (3.2) - this reflects
the fact that in this limit the CVE goes to the standard diffusion equation. What
is going on when we consider the limit τ → ∞ for which the CVE becomes
the wave equation? To answer this question first consider the large τ behavior of
γ̂ (z)[τ zγ̂ (z) + 1]/[τ [zγ̂ (z)]2 + zγ̂ (z) + Dκ2] but with a kept finite. If we assume
γ̂ (z) = 1, then

γ̂ (z)
τ zγ̂ (z) + 1

τ [zγ̂ (z)]2 + zγ̂ (z) + Dκ2

τ large∼ z

z2 + a2κ2 . (3.19)

This suggests to use the auxiliary function ˆ̃hW (κ, z) = z[z2+a2κ2]−1 which gives the
RHS of Eq. (3.2) if put to the LHS of Eq. (8.3) with substitutions q̂W (z) = [M̂(z)]−1/2
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and ĜW (z) = [zM̂(z)1/2]−1. Repeating the steps Eqs. (3.8) – (3.10) and using [65,
Eq. (1.1.1.10.3)] once more we find that hW(x, ξ) satisfies the wave equation

∂2¸ hW (x, ξ) = a2∂2x hW (x, ξ) (3.20)

with the initial conditions hW (x, 0) = δ(x) and ∂ξhW (x, ξ)|ξ=0 = 0. As known and
seen from Eq. (3.18) the fundamental solution of Eq. (3.20) is

hW (x, ξ) = 1

2
[δ(x + aξ) + δ(x − aξ)] . (3.21)

Thus the integral decomposition Eq. (3.1), with fW (ξ, t) given by

fW (ξ, t) = L −1
{
[zM̂(z)1/2]−1 e−ξ [M̂(z)]−1/2; t

}
(3.22)

boils down to

pW (x, t) = 1

2

∫ ∞

0
[δ(x + aξ) + δ(x − aξ)]L −1

{
[zM̂(z)1/2]−1 e−ξ [M̂(z)]−1/2; t

}
dξ

= 1

2a
L −1

{
[zM̂(z)1/2]−1 e− |x |

a [M̂(z)]−1/2; t
}

(3.23)

which for the memoryless case M̂(z) = z−1 gives

1

2a
L −1

{
z−1/2 e− |x |

a z1/2; t
}

=
exp

(
− |x |2

4a2t

)

2a
√

π t
, (3.24)

i.e. the Gaussian spreading. It explicitly contradicts the result expected from Eq.
(3.18) [33]. Inspection of the calculation indicates the mistake: the formal substitution
q̂W (z) = [M̂(z)]−1/2 = √

z is not allowed because the inverse Laplace transform
L −1[√z; t] does not exist and the Efros construction breaks down.

We end up this section with a global remark. The Efros theorem, much easier to
follow and be applied than subordination schemes coming out from operator calculus
methods, is a mathematical tool which enables us to represent solutions to the wide
class of evolution equation in the form of integral decompositions. However, similarly
to many other methods rooted in operational calculus, it leaves unsettled problems
concerning both its mathematical rigor as well as physical consequences that result
from it. Rigorous mathematics learns us that the use of operational formulae which
appear the cornerstone of our approach must be treated with care every time - the last
quoted example warns us about that. Another caution comes from physical point of
view - the quantities that determine the correctness and physical utility of the results are
to be interpreted as the memory functions. Nevertheless, in order to avoid premature
conclusions one has to remember that even subtle changes of parameters characterizing
the memory functions (for examples illustrating such situations see [22, 33]) may lead
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to incorrect statements concerning the existence of solutions obeying the probabilistic
interpretation.

4 Properties of memory functions

In this section we shall focus our attention on nonnegativity of functions given by
integral decompositions of the formEqs (3.5) and (3.6).5 Tomake deeper insight to this
problem we are going to look for possibly well-defined conditions which the memory
functionsM(t) and k(t) should satisfy in order to obtain normalizable and nonnegative
solutions either to Eqs (2.3), (2.8) or GCVE. These solutions are given by pN (x, t),
p1CV(x, t) and p2CV(x, t) and in what follows denoted by a shorthand as p j (x, t),
j = N , 1CV, and 2CV. The normalization of p j (x, t)s is fulfilled automatically
because of

∫
R
p j (x, t) dx = L −1[z−1; t] = 1 for all j’s and t ≥ 0. More effort is

needed to show that p j (x, t)’s are nonnegative. We will achieve that with the help of
the Bernstein theorem which uniquely joints, by the Laplace integral, the nonnegative
function p j (x, t) with the completely monotone function (CMF) p̂ j (x, s), s > 0.
We would like to pay the readers’ attention that, due to [39, Th. 2.6], we can change
the Laplace variable z ∈ C onto s > 0. So from now all memory functions are
the Laplace integrals (being by themselves nonnegative valued functions of the real
variable) of their time dependent archetypes. Special classes of such functions, namely
the CMFs and BFs (see Appendix 1 for a brief tutorial to the subject or consult [73] for
comprehensive review of the properties and mutual relations of CMF, SF and CBF)
and their theory based on the Bernstein theorem has been shown to be very useful to
prove positivity of solutions to numerous diffusion and relaxation problems [33, 70,
72].

The first hint: completely monotone and complete Bernstein functions
Recall that the Fourier transform of ˆ̃p j (κ, s) was calculated in Sect. 3. If we introduce
q̂ j (s) = sk̂ j (s) and take into account the symmetry k̂(s) ↔ [M̂(s)]−1 Eq. (3.3) may
be rewritten as

p̂ j (x, s) = 1

2
s−1 [

q̂ j (s)/D
]1/2 e−|x |[q̂ j (s)/D]1/2 , (4.1)

where j = N , 1CV, 2CV. Nonnegativity of p̂ j (x, s) for all x is easily seen so we
will focus our attention on its nonnegativity with respect to t which must be unraveled
from properties in the Laplace domain. Because the product of CMFs is CMF (see
the property (a1) in Appendix 1) and exponentiation of minus completely Bernstein
function (CBF) is CMF (the property (a3)) then the simplest (but pay attention that
sufficient only) assumption which promises to be effective reads

√
q̂ j (s) is CBF. (4.2)

5 To judge this problem, i.e., to assign Eq. (3.5) the interpretation of the Bayes formula, has been the reason
why subordination methods do appear in studies of anomalous diffusion and non-Debye relaxations.
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Table 1 Examples of h(x, ξ)

and f (ξ, t) which enter the
integral decomposition Eq. (3.1)
discussed in Sect. 3

p(x, t) h(x, ξ) f (ξ, t)

anomalous diffusion N (x, ξ) fN (ξ, t)

CVE N (x, ξ) f1CV(τ ; ξ, t)

p2CV(τ ; x, ξ) fN (ξ, t)

From the property (a4) we learn that in such a case
√
q̂ j (s)/s belongs to the SF class,

being itself the subclass of CMF. Hence, for (4.2) satisfied, we can call p j (x, t) the
PDF. The requirement (4.2) implies that [q̂ j (s)/D]1/2 = λ−1

j (α; s) is nonnegative.
Simple example is to take M̂(α; s) = s−α , α ∈ (0, 1] which gives λ1(α; s) > 0 for
all s > 0. Then, for the power law memory functions, we obtain that s p̂1(α; x, s) is
given by the Laplace distribution.

As mentioned, the assumption (4.2) is a sufficient condition only. This means that
if (4.2) is true then p̂ j (x, s) of Eq. (4.1) is CMF and thus p j (x, t) is nonnegative.
Unluckily we must not be extrapolate (4.2) to the analogous criterion for q̂ j (s). The
property (a2), which says that the composition of CBFs is CBF, is one-sided theo-
rem only. So (4.2) does not imply the completely Bernstein character of q̂ j (s). As
an example let us take k̂(α; s) = sα−1 for which we get

√
q̂N (α; s) = sα/2 and√

q̂1CV(α; s) = (τ s2α + sα)1/2. From Table 3 it is seen that q̂N (α; s) is CBF. Simul-
taneously, in [32, Sect. IV B] it has been shown that

√
q̂1CV(α; s) is CBF as well. Now,

for α ∈ (0, 1) we know that q̂N (α; s) = sα is CBF but for q̂1CV(α; s) we must not
claim that. This is because q̂1CV (α; s) = τ s2α + sα is CBF only for α ∈ (0, 1/2] and
it is not CBF for α ∈ (1/2, 1) [32, 33]. This example warns us that the assumption
(4.2), although illustrative and helpful, does not give information enough to be critical
if one looks for (at least) sufficient conditions to be put on the memory functions M(t)
and k(t). Useful properties of the memory functions are not encoded in the square
roots of q̂ j (s), j = N ,1CV, 2CV but in the functions q̂ j (s) so we do need strongest
requirement than Eq. (4.2) is.

The second hint: infinite divisibility
To find more information about q̂ j (z) we will go back to the integral decomposition
(3.1) and look more carefully on the examples of functions h(x, ξ) and f (ξ, t) found
in Sect. 4. The first of them is either the Gaussian N (x, ξ) or the fundamental solution
to the CVE h2CV(τ ; x, ξ). Both these functions are normalized, nonnegative, and,
what is much less known, infinitely divisible. For the Gaussian (normal) distribution
relevant proofs are obvious [49]. For h2CV(τ ; x, ξ) its normalization and nonnegativity
are demonstrated in [32] while infinite divisibility can be deduced from the fact that
h2CV(τ ; x, ξ) can be derived from the central limit theorem if we consider its behavior
of |x | larger thanO(

√
t) [44]. The reduction of h2CV(τ ; x, ξ) to N (x, ξ)was presented

in [33, Sect. IIIA]. In the language of subordination we can call each of these functions
as the PDF of some parent process: once it is the Brownian motion and another time it
is the process described by the continuous persistent random walk model [32, 43, 53,
54, 83]. These PDFs represent the Markovian processes and thus do not contain any
information on the memory functions. The only objects which hide this information
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are, according to the Efros theorem, functions f j (ξ, t), j =N, 1CV, 2CV. In the Laplace
space they read

f̂ j (ξ, s) = q̂ j (s)

s
e−ξ q̂ j (s) = −s−1 d

dξ
e−ξ q̂ j (s) . (4.3)

We point out that f̂ j (ξ, s) are represented as products of q̂ j (s)/s and exp[−ξ q̂ j (s)].
If we define the function

ĝ j (ξ, u) = exp[−ξ q̂ j (s)]. (4.4)

then in the time domain, from Eq. (4.3), we have

f j (ξ, t) = − d

dξ

∫ t

0
g j (ξ, u) du. (4.5)

As presented in [22] the functions f j (ξ, t) and g j (ξ, t), are connected to direct and
parametric integral decompositions, respectively. Checking their probabilistic inter-
pretation we see that the normalization of g j (ξ, t) as well as f j (ξ, t) with respect to
ξ is fulfilled automatically while their nonnegativity comes out from the Bernstein
theorem and can be ensured by the only one requirement, namely

q̂ j (s) is CBF. (4.6)

Indeed, this condition guarantees the completely monotone character of ĝ j (ξ, s) and
f̂ j (ξ, s) and thanks to the Bernstein theorem g j (ξ, t) and f j (ξ, t) are nonnegative.
The requirement (4.6) implies also that

ĝ j (ξ, s) is infinitely divisible, (4.7)

which is seen from [73, Lemma 5.8 (or Lemma 9.2)]. So we can call ĝ j (ξ, s) the
infinitely divisible PDF. Basic information concerning infinitely divisible functions,
their connection to CMF and CBF as well as just quoted Lemmas 5.8/9.2 are given
in Appendix 4. Here we recall that according to [22] the above constitutes the suf-
ficient condition for identification the integral decomposition with the subordination
approach. In the time t domain the functions ĝ j (ξ, s) satisfy for μ = μ1 + μ2 the
relation

∫ t

0
g j (μ1ξ, η)g j (μ2ξ, t − η) dη = g j (μξ, t), (4.8)

which comes from the infinite divisibility and means the semigroup composition
property of g j (ξ, t).

Concluding this section we can state that the condition Eq. (4.6) which locate
the memory functions q̂ j (s) in the CBF class joins in a synergetic frame theo-
retical schemes stemmed from stochastic, probabilistic and mathematical analysis
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methods. Functions belonging to the CBF class entangle seemingly distant objects:
infinitely divisible stochastic processes characterized by distributions coming from the
Lévy-Khintchine formula, the Laplace exponents, the semigroup composition law, the
functions of the Pick-Nevalinna class and methods of the classical moment problem.
In our opinion understanding of their mutual relations should be treated as signposts
which guide future development of various branches of kinetic theory - to support this
hypothesis we will show how the scheme developed so far is applied to the relaxation
phenomena.

5 Integral decompositions: Applications to relaxation phenomena

In what followswe consider evolution equations describing the relaxation phenomena.
Such equations depend on the time only and to investigate their solutions it is enough
to study the Laplace transforms. For Eq. (2.9) that gives

n̂(z) ≡ n̂(B; z) = [zM̂(z)]−1{[M̂(z)]−1 + B}−1, (5.1)

obtained also using the second equality in Eq. (2.11). Observe that Eq. (5.1) is analo-
gous to Eq. (3.2) with the positive constant B taken instead of Dκ2. This means that
exploring the relaxation phenomena we can proceed in the same way as we did in the
case of anomalous diffusion. The only difference with respect to examples of Secs. 3
and 4 is that now in Eq. (3.1) we are dealing with h(ξ) instead of h(x, ξ) where

h(ξ) ≡ nD(B; ξ) = L −1[(z + B)−1; ξ ] = exp(−Bξ). (5.2)

For such chosen h(ξ) the relevant expression for f (ξ, t) ≡ fR(ξ, t) has the form of
Eq. (3.6) with the memory function characteristic for the relaxation pattern R being
considered. That enables us to write

nR(B; t) =
∫ ∞

0
nD(B; ξ) fR(ξ, t) dξ, (5.3)

where nD(B; ξ) is the relaxation function ofDebyemodel, inwhat follows abbreviated
by D. The exponential relaxation function nD(ξ) is uniformly decreasing, positive,
bounded (nD(0+) = 1), satisfying limξ→∞ nD(ξ) = 0 and infinitely divisible with
respect to ξ . Moreover, its Laplace transform, i.e., its characteristic function, is also
infinitely divisible with respect to s which results from applying [73, Lemma 5.8 (or
Lemma 9.2)] (see Appendix 4) completed with (B+ s)−1 = B−1 exp[− ln(1+ s/B)]
where ln(1 + s/B) is CBF as was shown in [73, Chapter 7]. Introducing the function
fR(ξ, t) by Eq. (3.6) we accept that the Sonine relation Eq. (2.7) is fulfilled also
in relaxation phenomena as it was proposed in [32, 34–36]. Consequently, we can
represent f̂ R(ξ, s) in the form of Eq. (4.3) and introduce the function ĝR(ξ, s) which
also is infinitely divisible.
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In the remaining part of this section we will study the relaxation functions nR(B; t)
of the standard relaxation models which encompass the Cole-Cole (CC), Havriliak-
Negami (HN) and Jurlewicz-Weron-Stanislavsky (JWS) patterns. To distinguish these
models in Exs. (A)-(C) we introduce the lower indices specifying each of them.

(A) Having in mind the spectral function φ̂CC (α; τ ; s) = [1 + (sτ)α]−1, α ∈ (0, 1),
of the CC relaxation we found, with the help of Eq. (2.11), the corresponding mem-
ory function M̂CC (α; s). It reads M̂CC (α; s) = s−α and gives q̂CC (α; s) = sα ≡
q̂N (α; s). Using q̂N (α; s) we can determine f̂N (α; ξ, s) connected to ĝN (α; ξ, s). It
gives

f̂N (α; ξ, s) = sα−1 e−ξsα and ĝN (α; ξ, s) = exp(−ξsα), (5.4)

see Eq. (3.6) for power-law k̂(z). Because of q̂N (α; s) for α ∈ (0, 1) is CBF then
ĝN (α; ξ, s) is infinitely divisible and Eq. (4.8) is the stability property which gives

∫ t

0
Φα(μ1ξ, u)Φα(μ2ξ, t − u) du = Φα(μξ, t) (5.5)

with Φα(ξ, t) = L −1[exp(−ξsα); t] = ξ−1/αΦα(tξ−1/α) related to the one-sided
of Lévy stable distribution Φα(σ) [49, 62, 63]. Note that the stability property (5.5)
may be used to obtain the fractional differential equation [31]. Hence, fN (α; ξ, t) =
L −1[ f̂N (α; ξ, s); t] subordinates the Debye relaxation.
(B) The HN spectral function reads φ̂HN (α, β; τ ; s) = [1 + (τ s)α]−β . From it
and Eq. (2.11) one recovers M̂HN (α, β; τ ; s) whose reciprocal is q̂HN (α, β; τ ; s) =
[M̂HN (α, β; τ ; s)]−1 = Bταβ(τ−α + sα)β − B. In Ref. [34] it has been shown that
q̂HN (α, β; τ ; s) for α, β ∈ (0, 1] is CBF. If so then ĝHN (α, β; τ ; ξ, s) obtained from
Eq. (4.4) is infinitely divisible in this range of parameters α and β. Consequently, Eq.
(5.3) means that

fHN (α, β; τ ; ξ, t) = L −1
{
q̂HN (α, β; τ ; s)

s
e−ξ q̂HN (α,β;τ ;s); t

}

subordinates the Debye relaxation. Nevertheless, it is not the only one possibility to
get nHN (α, β; τ ; t). The latter can be also represented as the integral decomposition
of the Cole-Davidson (CD) relaxation (particular case of the HN model with α = 1
characterized by the spectral function φ̂CD(β; τ ; s) = (1 + τ s)−β with β ∈ (0, 1))

nHN (α, β; τ ; t) =
∫ ∞

0
nCD(β; τα; ξ) fN (α; ξ, t) dξ, (5.6)

and fN (α; ξ, t) being the inverse Laplace transform of Eq. (5.4). The explicit form
of the CD relaxation function is given by nCD(β; τα; ξ) = �(β, ξ/τα)/�(β) with
�(a, z) = ∫ ∞

z ta−1 exp(−t) dt . As listed in [49, p. 108] this function is infinitely
divisible PDF. Calculations leading to Eq. (5.6) are based on the Efros theorem; they
are rather laborious and because of that we shift them to Appendix 5.
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Concluding this example: for theHN relaxationwe have two different subordination
mechanisms. The first one comes from the simplest adjustment of Eq. (5.3) to the
HN relaxation - it means that the HN relaxation results if the Debye relaxation is
subordinated by fHN (α, β; τ ; ξ, t). The second one, being the result of Eq. (5.6),
allows to claim that the HN relaxation appears also when fN (α; u, t) subordinates the
CD relaxation.

(C) The spectral function of the JWS model is given by φ̂JWS(α, β; τ ; s) = 1 −
(τ s)αβφ̂HN (α, β; τ ; s) [27]. Equation (2.11) enables one to calculate M̂JWS(α, β; τ ; s)
and its reciprocal q̂JWS(α, β; τ ; s). The latter equals to Bsαβ [(sα + τ−α)β − sαβ ]−1

and as was shown in Ref. [34] is CBF. Then, we can find that

f JWS(α, β; τ ; ξ, t) = L −1
{
q̂JWS(α, β; τ ; s)

s
e−ξ q̂JWS(α,β;τ ;s); t

}
.

Thus, Eq. (5.3)means that theDebye relaxation is subordinated by f JWS(α, β; τ ; ξ, s).
Analogically to Ex. (B) we can also obtain the nJWS(α, β; τ ; t) using integral decom-
position in which we replace the parent process nD(τ ; t) by nMCD(β; τα; ξ) while
fN (α; ξ, t) is kept. Namely, we have

nJWS(α, β; τ ; t) =
∫ ∞

0
nMCD(β; τα; ξ) fN (α; ξ, t) dξ, (5.7)

where the abbreviation MCD means the mirror CD relaxation [77] and

nMCD(β; τα; ξ) = 1F1
(
β; 1;−ξ/τα

)
(5.8)

with 1F1 denoting the confluent hypergeometric function of the first kind being
nonnegative for ξ ∈ R+. Moreover, we have nMCD(β; τα;+0) = 1 and
limξ→∞ nMCD(β; τα; ξ) = 0. The inverse Laplace transform of 1F1 calculated
using [64, Eq. (3.35.1.1)] gives n̂MCD(β; τα; z) = zβ−1/(τ−α + z)β which leads
to φ̂MCD(β; τα; z) = 1 − (ταz)βφ̂CD(β; τα; z). For the same reasons like in Ex. (B)
the proof of (5.7) is shifted to Appendix 5.

6 Discussion and conclusions

TheEfros theorem, originally derived as a little bit trickymathematical tool inspired by
operational calculus and used to solve integral equations, appears a versatile method
applicable to study kinetic phenomena described by the time-nonlocal evolution equa-
tions. Such type of equations we identify as modeling processes usually classified as
the memory dependent phenomena. The latter class of physical effects breaks down
the instantaneous response paradigm and for diffusion and dielectric relaxation leads
to the time behavior rules different from the Gaussian spreading or exponential decay.
We have shown that using the Efros theorem is simple and easily applicable method
which enables us to write down solutions to the time smeared evolution equations as
integral decompositions. The latter are convolutions admitting, under well understood
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Table 2 Examples of h(ξ) and f (ξ, t) in the integral decompositions (3.1) discussed in Sect. 5

n(t) h(ξ) f (ξ, t)

CC relaxation nD(τ ; ξ) fN (α; ξ, t)

HN relaxation nD(τ ; ξ) fHN (α, β; τ ; ξ, t)

nCD(β; τα; ξ) fN (α; ξ, t)

JWS relaxation nD(τ ; ξ) f JWS(α, β; τ ; ξ, t)

nMCD(β; τα; ξ) fN (α; ξ, t)

Table 3 Examples of CMF, SF, BF, and CBF

f (s) CMF SF BF CBF

sμ μ ≤ 0 μ ∈ [−1, 0] μ ∈ [0, 1] μ ∈ (0, 1)

(s + b)μ, b > 0 μ ≤ 0 μ ∈ [−1, 0] μ ∈ [0, 1] μ ∈ (0, 1)

physical requirements, consistent probabilistic interpretation in terms of processes
governed by some probabilistic/stochastic rules. Presented approach explains how
starting from deterministic evolution equations, like the integral (master) or integro-
differential ones, we arrive at the area of statistical physics ruled by the probability and
stochastic mechanisms. These links are by no means restricted to formal similarities
and observations. Significance and deep meaning of the Efros theorem is determined
by the fact that expressions it provides, if merged with subordination schemes and
stochastic approach, open possibility to identify physical quantities, the memory func-
tions in the case, with objects of purely probabilistic origin like the infinitely divisible
processes, subordinators and Laplace exponents are. This way revealed relations shed
new light on mutual connections between memory functions and subordinators as we
can expect their applicability formemory functionsmuch general than commonly used
as kernels of fractional derivatives. In this context our approach goes beyond the subor-
dination scheme introduced in the framework of functional analysis/operator calculus
approach focused on rigorous solving the Cauchy problem for fractional diffusion-
like equations and showing nonnegativity of relevant solutions [12–14]. Considering
physical interpretation of our approach we see that links to the memory or spectral
functions equip subordination with a meaning more general than ad hoc introduced
non-measurable, and thus physically vague, "internal" time.Noveltyworthy for further
studies is paying attention to the fact that choosing factorization of the integral decom-
positions we select the splitting of the process into the parent and leading ones. Such
procedure is by no means unique. Solvable examples show that the parent and leading
processes may be different for the same PDF assumed to represent the experimental
data. Mathematically it is quite clear, also physically is not unexpected - physical pro-
cesses looking the same at first glance in fact may be rooted in different primary laws.
In Tables 1 and 2 we recall dualities of integral decompositions found and discussed
in Secs. 3 and 5. Note also that separating out the parent and leading processes we
restricted ourselves to simple models dependent on a single memory function. How-
ever, we are convinced that the methods presented so far will work also for much

123



Subordination and memory dependent… 503

complicated models involving larger number of memory functions or governed by
"nested" processes. Such situations seem to be typical situation for various transport
and relaxation phenomena taking place in complex systems.

Our last remark is that the subordination interpretation of the integral decomposition
(3.1) flows out from the Efros theorem under the strong requirement that the compo-
nents of integral decomposition (3.1), i.e. f (ξ, t) and h(x, ξ) (in diffusion) or h(ξ)

(in relaxation) are normalizable and nonnegative. Both these properties are ensured
if, according to (4.6), the memory functions q̂(s)’s are CBF. Although it means only
a sufficient condition such statement has far going implications - grace to it we can
interpret any suitable memory function as the characteristic (Laplace-Lévy) exponent
related to some nonnegative stochastic process U (ξ) such that its PDF ĝ(ξ, s)

ĝ(ξ, s) = 〈e−sU (ξ)〉 = e−ξ q̂(s), ξ > 0

is infinitely divisible and satisfies the semigroup property (4.8).
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Appendices

Completely monotone, Stieltjes, Bernstein, and completely Bernstein
functions - a brief tutorial [71, 73]

The completelymonotone functions (CMFs) are special class of nonnegative functions
G(s) of a nonnegative argument whose all derivatives exist for s > 0 and alternate,
i.e., (−1)n G(n)(s) ≥ 0, n = 0, 1, . . ., where G(n)(s) = dn G(s)/ dsn . According to
the Bernstein theorem [73] we can connect in a unique way the CMF and nonnegative
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functions: s ∈ [0,∞) → G(s) ∈ CMF iff

G(s) =
∫ ∞

0
exp(−st) g(t)dt (7.1)

and if g(t) ≥ 0 for all t ∈ [0,∞).
Among the important properties of CMFs we have

(a1) the product of two CMFs is also CMF.

Note that Eq. (7.1) is the real-valued Laplace integral of a nonnegative function g(t)
and in order to deal with the Laplace transform its argument has to be complex. Hence,
G(s) and the Laplace transform of g(t), denoted as ĝ(z) are different objects: the first
of them is real function of s > 0 while the second is complex valued and depends on
z ∈ C\R−. Knowledge of analytic continuation of G(s) → ĝ(z) is important because
these are special analytic properties of ĝ(z) (known as Herglotz conditions, [2, 15])
which determine, e.g., according to Theorem 2.6 of Ref. [39] quoted as Theorem
of Ref. [60], conditions under which ĝ(z) is representable as the Laplace transform
of a nonnegative measure defined on positive semiaxis. In majority of probabilistic
applications we may restrict considerations to the real variable s and treat ĝ(s) as the
real function G(s) but to find the inverse Laplace transform of ĝ(z) we must have the
variable z complex.

The next class of functions needed in our considerations is that of complete Bern-
stein functions (CBF) [71, 73]: c(s) is CBF, s > 0, if c(s)/s is the Laplace transform
of CMF restricted to the positive semiaxis, or, equivalently, in the same way restricted
Stieltjes transform of a positive function named also the Stieltjes function (SF). Note
that all SFs are completely monotone i.e., SFs are subclass of CMF.

The following properties of CBF will be used in what follows:

(a2) the composition of CBFs is CBF;
(a3) the composition of CMF and CBF is another CMF;
(a4) if c(s) is CBF then c(s)/s is SF.

CBFs forma subclass of theBernstein functions (BF). These are defined as nonnegative
functions whose derivative is CMF [71, 73]: h(s) > 0 is BF if

(−1)n−1 h(n)(s) ≥ 0, n = 1, 2, . . . .

The example which illustrates similarities and differences between CMF, SF, BF,
and CBF is the power function. This is presented in Table 3.

The Efros theorem

The Efros theorem [5, 24, 25, 30, 38, 86] generalizes the convolution (Borel) theorem
for the Laplace transform. It states as follows:

Theorem 1 If Ĝ(z) and q̂(z) are analytic functions, and

L [h(x, ξ); z] = ĥ(x, z) (8.1)
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as well as

L [ f (ξ, t); z] =
∫ ∞

0
f (ξ, t) e−zt dt = Ĝ(z) e−ξ q̂(z), (8.2)

then

Ĝ(z)ĥ(x, q̂(z)) =
∫ ∞

0

[∫ ∞

0
h(x, ξ) f (ξ, t) dξ

]
e−zt dt . (8.3)

From the Efros theorem it appears that

L −1
[
Ĝ(z)ĥ(x, q̂(z)); t

]
=

∫ ∞

0
h(x, ξ) f (ξ, t) dξ. (8.4)

Derivation of Eq. (3.17) from Eq. (3.15)

Let us observe that Eq. (3.15) means that ˜̂h2CV(τ ; κ, z) satisfies the algebraical
equation:

τ [z2 ˜̂h2CV(τ ; κ, z) − z] + [z ˜̂h2CV(τ ; κ, z) − 1]
= −Dκ2 ˜̂h2CV(τ ; κ, z).

Thereafter, we take its inverse Laplace transform in which we used [65, Eq. (1.1.1.10)]
this is L −1[zn f̂ (z) − ∑n−1

k=0 f (k)(0)zn−k−1; t] = f (n)(t) where f (n)(t) means
its n derivative over t . Because the initial condition in the Fourier domain reads
h̃2CV(τ ; x, 0) = 1 and (dh̃2CV(τ ; x, t)/dt)t=0 = 0 then we have

L −1[z2 ˜̂h2CV(τ ; κ, z) − z] = ∂2t h̃2CV(τ ; κ, t) and

L −1[z ˜̂h2CV(τ ; κ, z) − 1] = ∂t h̃2CV(τ ; κ, t). (9.1)

Having in mind that F−1[−κ2 f̃ (κ); x] = ∂2x f (x) and F−1[h̃2CV(τ ; κ, t); x] =
h2CV(τ ; x, t) we obtain Eq. (3.17).

The relation between the infinitely divisible distributions and the
Bernstein-class functions: BF as well as CBF

The relation between the CBF and infinitely divisible function is expressed by [73,
Lemma 5.8 (or Lemma 9.2)]. It says that the measure g on [0,∞) is infinitely divisible
iffL [g; λ] = exp[− f (λ)] where f is BF (or CBF).
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Duality of integral decompositions

To show the passage between Eqs. (46) and (49) observe that for the HN model
q̂(s) located in f̂ (ξ, t) = L −1{q̂(s) exp[−ξ q̂(s)]/s; t} reads q̂HN (α, β; τ ; s) =
Bταβ(τ−α + sα)β − B. It gives

fHN (α, β; τ ; ξ, t) = B eξ B L −1
{[ταβ

s
(τ−α + sα)β − 1

s

]

× exp[−ξ Bταβ(τ−α + sα)β ]; t
}
. (11.1)

The term nD(B; ξ) = exp(−Bξ) in Eq. (46) is canceled by exp(Bξ) from
fHN (α, β; τ ; ξ, t). Thus, Eq. (46) reads

nHN (α, β; τ, t) =
∫ ∞

0
nD(B; ξ) fHN (α, β; τ ; ξ, t) dξ

= B
∫ ∞

0
L −1

{[ταβ

s
(τ−α + sα)β − 1

s

]

× exp[−ξ Bταβ(τ−α + sα)]; t
}
dξ. (11.2)

The inverse Laplace transformL −1[−, ·] in the integrand of (11.2) can be calculated
by employing the Efros theorem in which we take Ĝ2(s) = s−1 and q̂2(s) = τ−α +sα

L −1
{[ταβ

s
(τ−α + sα)β − 1

s

]
e−ξ Bταβ(τ−α+sα); t

}
dξ

=
∫ ∞

0
L −1[(ταβsβ − 1) e−ξ Bταβ sβ ; u] e−uτ−α

L −1[s−1 e−usα ; t] du,

(11.3)

where s ÷ u and s ÷ t constitute the Laplace pairs. Here the Efros theorem was used
twice: once in Eq. (11.2) which is obtained by q̂1(s) = q̂HN (α, β; τ ; s) and another
time by q̂2(s). Inserting Eq. (11.3) into Eq. (11.2) and changing the order of integration
we get

nHN (α, β;τ, t) = B
∫ ∞

0
L −1

[
(ταβsβ − 1)

×
∫ ∞

0
e−ξ Bταβ sβ dξ ; u

]
e−uτ−α

L −1[s−1 e−usα ; t] du

=
∫ ∞

0
L −1

[
1 − 1

ταβsβ
; u

]
e−uτ−α

L −1[s−1 e−usα ; t] du (11.4)

Because of e−at L −1[ĝ(s); t] = L −1[ĝ(s + a); t] then

L −1
[
1 − 1

ταβsβ
; u

]
e−uτ−α = L −1

[
1 − 1

(1 + ταs)β
; u

]
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= δ(u) − φCD(β; τα; u).

The real function φCD(β; τα; u) ≡ φHN (1, β; τα; u) is the response function for
the Cole-Davidson (CD) model which figures out φCD(α, β; τα; u) = L −1[(1 +
ταs)−β; u

]
. Having in mind the above we present Eq. (11.4) as

nHN (α, β; τ ; t) = L −1[s−1
∫ ∞

0
δ(u) e−usα du; t]

−
∫ ∞

0
φCD(β; τα; u)L −1[s−1 e−usα ; t] du

= 1 −
∫ ∞

0
φCD(β; τα; u)L −1[s−1 e−usα ; t] du

= 1 +
∫ ∞

0
ṅCD(β; τα; u)L −1[s−1 e−usα ; t] du (11.5)

derived using the response function equal to the time derivative of relaxation function
taken with minus sign, φCD(β; τα; u) = −ṅCD(β; τα; u) and the Leibniz formula
which shifts derivative from the relaxation function nCD ontoL −1[s−1 exp(−usα); t].
Thus Eq. (11.5) becomes

nHN (α, β; τ ; t) = −
∫ ∞

0
nCD(β; τα; u)L −1

[
s−1 d

du
e−usα ; t

]
du, (11.6)

which is Eq. (5.6).
In the case of Jurlewicz-Weron-Stanislavski (JWS) model we proceed similarly. As

for the HN model the crucial step is using the Efros theorem twice. Firstly, we use
q̂1(s) = q̂JWS(α, β; τ ; s) which reads

q̂JWS(α, β; τ ; s) = Bsαβ

(sα + τ−α)β − sαβ
(11.7)

and implies

f JWS(α, β; τ ; ξ, t) = B eBξ L −1
[ sαβ−1

(sα + τ−α)β − sαβ

× e
−Bξ

(sα+τ−α)β

(sα+τ−α)β−sαβ ; t
]
. (11.8)

Hence, Eq. (5.3) adjusted to JWS model reads

nJWS(α, β; τ ; x, t) =
∫ ∞

0
nD(B; ξ) f JWS(α, β; τ ; ξ, t) dξ

=
∫ ∞

0
L −1

[ sαβ − 1

(sα + τ−α)β − sαβ
e
−ξ

B(sα+τ−α)β

(sα+τ−α)β−sαβ ; t
]
. (11.9)
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To calculate the inverse Laplace transform in the integrand of Eq. (11.9) we apply the
Efros theorem once more, this time with Ĝ2(s) and q̂2(s) as given below Eq. (11.2).
Thus the RHS of (11.9) becomes

L −1
[ sαβ − 1

(sα + τ−α)β − sαβ
e
−ξ

B(sα+τ−α)β

(sα+τ−α)β−sαβ ; t
]

=
∫ ∞

0
L −1

[ (s − τ−α)β

sβ − (s − τ−α)β
e
−ξ Bsβ

sβ−(s−τ−α)β ; u
]

× L −1[s−1 e−usα ; t] e−uτ−α

du. (11.10)

Inserting it into Eq. (11.9) and changing the order of integration we have

nJWS(α, β; τ ;x, t) = B
∫ ∞

0
e−uτ−α

L −1
[ (s − τ−α)β

sβ − (s − τ−α)β

×
∫ ∞

0
e
−ξ Bsβ

sβ−(s−τ−1α) dξ ; u]L −1[s−1 e−usα ; t] du

=
∫ ∞

0
L −1

[ (s − τ−α)β

sβ
; u

]
e−uτ−α

L −1[s−1 e−usα ; t] du.

(11.11)

The next observation is

L −1
[ (s − τ−α)β

sβ
; u

]
e−uτ−α = L −1

{ (sτα)β

[1 + (sτα)]β ; u
}

= L −1[(sτα)βφ̂CD(β; τα; s); u]
= L −1[1 − φ̂MCD(β; τα; s); u], (11.12)

where we used the definition of JWS spectral function in which φ̂JWS(1, β; τα; s) ≡
φ̂MCD(β; τα; s). Because of L −1[1; u] = δ(u) and the inverse Laplace transform of
the spectral function is equal to the response function then Eq. (11.12) is expressed as
δ(u) − φMCD(β; τα; u). Consequently, nJWS appears as

nJWS(α, β; τ ; x, t) = L −1
[
s−1

∫ ∞

0
δ(u) e−usα du; t

]

−
∫ ∞

0
φMCD(β; τα; u)L −1

[
s−1 e−usα ; t

]
du. (11.13)

The use φMCD(β; τα; u) = −ṅMCD(β; τα; u) and the Leibniz formula allow one to
rewrite the RHS of Eq. (11.11) as

nJWS(α, β; τ ; x, t) =
∫ ∞

0
nMCD(β; τα; u)L −1

[
s−1 d

du
e−usα ; t

]
du, (11.14)

which leads to Eq. (50).
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