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Abstract
This paper deals with a limiting case motivated by contact geometry. The limiting case 
of a tensorial characterization of contact hypersurfaces in Kähler manifolds leads to Hopf 
hypersurfaces whose maximal complex subbundle of the tangent bundle is integrable. It 
is known that in non-flat complex space forms and in complex quadrics such real hyper-
surfaces do not exist, but the existence problem in other irreducible Kähler manifolds is 
open. In this paper we construct explicitly a one-parameter family of homogeneous Hopf 
hypersurfaces, whose maximal complex subbundle of the tangent bundle is integrable, in a 
Hermitian symmetric space of non-compact type and rank two. These are the first known 
examples of such real hypersurfaces in irreducible Kähler manifolds.
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1 Introduction

We start with the motivation for this paper. A contact manifold is a smooth odd-dimen-
sional manifold M together with a 1-form � on M satisfying � ∧ (d�)n−1 ≠ 0 , where 
dim

ℝ
(M) = 2n − 1 . Such a 1-form � is called a contact form. The kernel of � defines a 

hyperplane distribution C on M, the so-called contact distribution. The contact condition 
� ∧ (d�)n−1 ≠ 0 means that the maximal possible dimension of a submanifold of M all of 
whose tangent spaces are contained in C is equal to n − 1 . The contact condition therefore 
is a measure for maximal non-integrability of C.

Let M̄ be a Kähler manifold with Kähler structure J, Kähler metric g and 
n = dim

ℂ
(M̄) ≥ 2 . Let M be a real hypersurface in M̄ and (�, �, �, g) be the induced almost 

contact metric structure on M (see Sect. 2). The subbundle C = ker(�) = TM ∩ J(TM) of 
TM is the maximal complex subbundle of the tangent bundle TM. The real hypersurface 
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M is said to be a contact hypersurface if there exists an everywhere non-zero smooth func-
tion f ∶ M → ℝ so that d� = 2f� , where � is the fundamental 2-form on M defined by 
�(X, Y) = g(�X, Y) for all X, Y ∈ �(M) . The fundamental 2-form � is always closed, 
which implies � ∧ d�n−1 = (2f )n−1(� ∧ �n−1) ≠ 0 if M is a contact hypersurface. Thus 
every contact hypersurface in a Kähler manifold is a contact manifold. In this situation the 
maximal complex subbundle C of the tangent bundle of the contact hypersurface coincides 
with the contact distribution. A natural problem is to determine the contact hypersurfaces 
in Kähler manifolds.

The first systematic study of contact hypersurfaces in Kähler manifolds was carried 
out by Okumura [14]. Okumura proved the following very useful characterization of con-
tact hypersurfaces in Kähler manifolds: A real hypersurface M in a Kähler manifold M̄ 
is a contact hypersurface if and only if there exists an every non-zero smooth function 
f ∶ M → ℝ so that that the shape operator A of M and the structure tensor field � satisfy 
A� + �A = 2f� . It is not difficult to prove that the function f is constant when n > 2 (see 
[3], Proposition 3.5.4). Starting from Okumura’s work, contact hypersurfaces were classi-
fied in various Hermitian symmetric spaces (see [3] for an overview). The motivation for 
this paper is to understand the limiting case f = 0 . We will show (see Proposition 2.2) that 
the limiting case f = 0 characterizes Hopf hypersurfaces in Kähler manifolds for which 
the maximal complex subbundle C is integrable. For the concept of Hopf hypersurfaces see 
Sect. 2.

The totally geodesic real hypersurface ℝ2n−1 in the complex Euclidean space ℂn is an 
elementary example of a Hopf hypersurface whose maximal complex subbundle C is inte-
grable. In contrast, it is quite remarkable and not obvious that in non-flat complex space 
forms there are no Hopf hypersurfaces whose maximal complex subbundle C is integrable. 
This is not difficult to prove for the complex projective space ℂPn(c) with the Fubini-Study 
metric of constant holomorphic sectional curvature c > 0 , but the proof is quite involved 
for the complex hyperbolic space ℂHn(c) with the Bergman metric of constant holomor-
phic sectional curvature c < 0 . A detailed discussion of these two cases can be found in 
Section 2 of [13]. These non-existence results raise the existence question for other irre-
ducible Kähler manifolds. In [3], the geometry of real hypersurfaces in some irreducible 
Hermitian symmetric spaces of rank 2 was investigated. One of these Hermitian symmetric 
spaces is the Grassmann manifold SO2+n∕(SO2 × SOn) of oriented 2-planes in ℝ2+n , which 
is isometric to the complex quadric Qn in ℂPn+1(c) (with a suitable normalization of the 
metric). From the investigations in [3], Section 6.4, we can conclude that there are no Hopf 
hypersurfaces in this Hermitian symmetric space for which C is integrable.

In this paper we investigate the existence question in the dual Hermitian symmetric 
space of non-compact type, the complex hyperbolic quadric Qn∗ = SOo

2,n
∕(SO2 × SOn) . 

Surprisingly, we can construct a one-parameter family of pairwise non-congruent homoge-
neous Hopf hypersurfaces in Qn∗ whose maximal complex subbundle C is integrable.

Theorem 1.1 There exists a one-parameter family M2n−1
�

 , 0 ≤ 𝛼 < ∞ , of (pairwise non-
congruent) homogeneous Hopf hypersurfaces, whose maximal complex subbundle of the 
tangent bundle is integrable, in the Hermitian symmetric space Qn∗ = SOo

2,n
∕(SO2 × SOn) , 

n ≥ 3.

We give a brief geometric description of these real hypersurfaces. We normalize the 
Riemannian metric on Qn∗ so that the minimum of the sectional curvature is equal to −4 . 
The complex hyperbolic quadric Qn∗ is equipped with a circle bundle �0 of real structures 
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(see Sect. 3). This circle bundle determines a maximal �0-invariant subbundle Q of the tan-
gent bundle TM of M. The maximal Satake compactification of Qn∗ = SOo

2,n
∕(SO2 × SOn) 

has two boundary components of rank 1, namely a complex hyperbolic line B1 ≅ ℂH1(−4) 
of constant (holomorphic) sectional curvature −4 and a real hyperbolic space 
B2 ≅ ℝHn−2(−2) of constant sectional curvature −2 . It is an interesting fact that all non-
zero tangent vectors of B1 are singular tangent vectors of Qn∗ of a particular type (that 
is, tangent vectors that are contained in more than one maximal flat of Qn∗ ). In [4], we 
developed a technique, the so-called canonical extension method, for extending isometric 
actions on boundary components of irreducible Riemannian symmetric spaces of non-
compact type to isometric actions on the entire symmetric space. This method can be used 
to extend submanifolds in boundary components. By extending a point in the boundary 
component B1 ≅ ℂH1(−4) we obtain an isometric embedding Pn−1 of the complex hyper-
bolic space ℂHn−1(−4) into Qn∗ as a homogeneous complex hypersurface. This construc-
tion will be explained in detail in Sect. 4, where we will also investigate the geometry of 
this homogeneous complex hypersurface.

This homogeneous complex hypersurface Pn−1 will appear as the integral manifolds of 
the integrable distribution C in our examples. The Langlands decomposition of the para-
bolic subgroup of SOo

2,n
 with boundary component B1 ≅ ℂH1(−4) induces a horospherical 

decomposition B1 ×ℝ × H2n−3 of Qn∗ , where H2n−3 is the (2n − 3)-dimensional Heisenberg 
group with 1-dimensional center. The product ℝ × H2n−3 corresponds to the homogeneous 
complex hypersurface Pn−1 ≅ ℂHn−1(−4) . Now take any complete curve � in the bound-
ary component B1 ≅ ℂH1(−4) with constant geodesic curvature � ≥ 0 . The curve � is a 
geodesic in ℂH1(−4) if � = 0 , an equidistant curve to a geodesic in ℂH1(−4) if 0 < 𝛼 < 2 , 
a horocycle if � = 2 , or a closed circle in ℂH1(−4) if 2 < 𝛼 < ∞ . Sliding the homogeneous 
complex hypersurface Pn−1 ≅ ℂHn−1(−4) along the curve � in a suitable way, we obtain 
a homogeneous Hopf hypersurface M2n−1

�
 in Qn∗ whose maximal complex subbundle C is 

integrable. We will see that the homogeneous real hypersurface M2n−1
�

 has constant princi-
pal curvatures � , 0, +1 , −1 with multiplicities 1, 2, n − 1 , n − 1 , respectively. The principal 
curvature space T� is equal to the orthogonal complement C⟂ of C in TM. The principal cur-
vature space T0 is equal to the orthogonal complement C⊖Q of Q in C . The principal cur-
vature spaces T1 and T−1 span Q are mapped into each other by the structure tensor field � 
and are equal to the ±1-eigenspaces of the restriction to Q of a suitable real structure in �0 . 
The hypersurfaces M2n−1

�
 will in fact be constructed through an algebraic process, and the 

“sliding” description is a geometric interpretation of this algebraic construction, which will 
be explained thoroughly during the construction process. The homogeneous real hyper-
surface M2n−1

�
 is diffeomorphic to ℝ2n−1 for 0 ≤ � ≤ 2 and diffeomorphic to S1 ×ℝ

2n−2 for 
2 < 𝛼 < ∞.

We point out that none of the homogeneous real hypersurfaces M2n−1
�

 in Theorem 1.1 
arises as a limit of contact hypersurfaces in Qn∗ . The classification of contact hypersurfaces 
in Qn∗ can be found in Section 7.8 of [3]. For every real number f > 0 there exists, up to 
isometric congruence, a unique connected complete contact hypersurface M̃2n−1

f
 in Qn∗ sat-

isfying A� + �A = 2f� . This family M̃2n−1
f

 of contact hypersurfaces collapses to a totally 
geodesic complex embedding of the complex hyperbolic quadric Qn−1∗ into Qn∗ when tak-
ing the limit f → 0 , and so limf→0 M̃

2n−1
f

= Qn−1∗ is not a real hypersurface.
The paper is organized as follows. In Sect.  2 we introduce basic concepts from almost 

contact metric geometry in Kähler manifolds and provide characterizations of Hopf hyper-
surfaces and of real hypersurfaces satisfying A� + �A = 0 . In Sect. 3 we present two mod-
els for the complex hyperbolic quadric Qn∗ = SOo

2,n
∕(SO2 × SOn) . The first one is the stand-

ard symmetric space model, and the second one is the solvable Lie group model originating 
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from an Iwasawa decomposition of SOo
2,n

 . The interplay between both models allows us to 
switch between geometric and algebraic interpretations of relevant concepts. In Sect.  4 we 
construct the isometric embedding of the complex hyperbolic space ℂHn−1(−4) as a homoge-
neous complex hypersurface Pn−1 in Qn∗ and discuss aspects of the geometry of this embed-
ding. The homogeneous real hypersurfaces M2n−1

�
 ( 2 < 𝛼 ) will be constructed in Sect. 5 as the 

tubes around the homogeneous complex hypersurface Pn−1 in Qn∗ . In Sect. 6 we use the theory 
of parabolic subalgebras of real semisimple Lie algebras for the construction of the minimal 
homogeneous real hypersurface M2n−1

0
 . In Sect. 7 we construct the homogeneous real hyper-

surfaces M2n−1
�

 ( 0 < 𝛼 < 2 ) as the equidistant hypersurfaces to M2n−1
0

 . The homogeneous real 
hypersurface M2n−1

2
 will be constructed in Sect. 8 as the canonical extension of a horocycle in 

the boundary component B1 ≅ ℂH1(−4) . We will also investigate the geometry of the homo-
geneous real hypersurfaces M2n−1

�
 in the corresponding sections. In Sect. 9 we investigate the 

curvature of the homogeneous real hypersurfaces M2n−1
�

.

2  The maximal complex subbundle of the tangent bundle

Let M̄ be a Kähler manifold with Kähler structure J and Kähler metric g. We always 
assume n = dim

ℂ
(M̄) ≥ 2 . Let M be a real hypersurface in M̄ . We will denote the induced 

Riemannian metric on M also by g. The Levi Civita covariant derivative of M̄ and M is 
denoted by ∇̄ and ∇ , respectively. The Lie algebra of smooth vector fields on M is denoted 
by �(M).

Let � be a (local) unit normal vector field on M. We denote by A = A� the shape operator 
of M with respect to � . The unit vector field

is the Reeb vector field on M. The flow of the Reeb vector field � is the Reeb flow on M. 
We define a 1-form � on M by

for all X ∈ �(M) and a skew-symmetric tensor field � on M by decomposing JX into its 
tangential component �X and its normal component g(JX, � )� , that is,

for all X ∈ �(M) . The 1-form � is the almost contact form on M, and the skew-symmetric 
tensor field � is the structure tensor field on M. The quadruple (�, �, �, g) is the induced 
almost contact metric structure on M. Note that

for all X ∈ �(M) . Using the Kähler property ∇̄J = 0 and the Weingarten formula we obtain

for all X ∈ �(M) . The tangential component of this equation induces the useful equation

for all X ∈ �(M).

� = −J�

�(X) = g(X, �)

JX = �X + g(JX, � )� = �X + �(X)�

�(�) = 1, �� = 0 and �2X = −X + �(X)�

0 = (∇̄XJ)𝜁 = ∇̄XJ𝜁 − J∇̄X𝜁 = −∇̄X𝜉 + JAX

∇X� = �AX
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The subbundle

of the tangent bundle TM of M is the maximal complex subbundle of TM. We denote by 
Γ(C) the set of all vector fields X on M with values in C , that is,

The real hypersurface M is called a Hopf hypersurface if the Reeb flow on M is a 
geodesic flow, that is, if the integral curves of the Reeb vector field � are geodesics in M. 
We have the following characterization of Hopf hypersurfaces.

Proposition 2.1 Let M be a real hypersurface in a Kähler manifold M̄ with induced 
almost contact metric structure (�, �, �, g) . The following statements are equivalent: 

 (i) M is a Hopf hypersurface in M̄;
 (ii) ∇�� = 0;
 (iii) The Reeb vector field � is a principal curvature vector of M at every point;
 (iv) The maximal complex subbundle C of TM is invariant under the shape operator A 

of M, that is, AC ⊆ C.

Proof Let p ∈ M and c ∶ I → M be an integral curve of the Reeb vector field � with 0 ∈ I 
and c(0) = p . Then we have ∇𝜉p

𝜉 = ∇ċ(0)𝜉 = (𝜉◦c)�(0) = ċ�(0) . If M is a Hopf hypersurface, 
then we have ċ�(0) = 0 by definition and therefore ∇�p

� = 0 . Since this holds at any point 
p ∈ M , we obtain ∇�� = 0 . Conversely, if ∇�� = 0 , then ċ� = ∇ċ𝜉 = ∇𝜉◦c𝜉 = 0 for any 
integral curve c of � . Thus any integral curve of � is a geodesic in M and hence M is a Hopf 
hypersurface. This establishes the equivalence of (i) and (ii)

The kernel ker(�) of the structure tensor field � is spanned by the Reeb vector field, that 
is, ker(�) = ℝ� . Since ∇�� = �A� , we therefore see that ∇�� = 0 if and only if A� ∈ ℝ� , 
which shows that (ii) and (iii) are equivalent.

We have the orthogonal decomposition TM = C⊕ℝ𝜉 . Since the shape operator A is 
self-adjoint, the equivalence of (iii) and (iv) is obvious.   ◻

The next result provides a characterization of real hypersurfaces when taking the limit 
f → 0 in Okumura’s characterization A� + �A = 2f� of contact hypersurfaces in Kähler 
manifolds.

Proposition 2.2 Let M be a real hypersurface in a Kähler manifold M̄ with induced 
almost contact metric structure (�, �, �, g) . The following statements are equivalent: 

 (i) The almost contact form � is closed, that is, d� = 0.
 (ii) The shape operator A of M and the structure tensor field � satisfy

 (iii) The real hypersurface M is a Hopf hypersurface, and the maximal complex sub-
bundle C of TM is integrable.

C = ker(�) = TM ∩ J(TM)

Γ(C) = {X ∈ �(M) ∶ Xp ∈ Cp for all p ∈ M}

= {X ∈ �(M) ∶ �(X) = 0}.

A� + �A = 0.
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Proof Using the equation ∇X� = �AX , the exterior derivative d� of � is

for all X, Y ∈ �(M) . It follows that � is closed if and only if A� + �A = 0 , which shows 
that (i) and (ii) are equivalent.

The above calculations imply that for X, Y ∈ Γ(C) we have

It follows that the distribution C is involutive if and only if g((A� + �A)X, Y) = 0 holds 
for all X,Y ∈ Γ(C) . We have g((A� + �A)�, Y) = g(�A�, Y) = 0 for all Y ∈ Γ(C) if 
and only if A� ∈ ℝ� , that is, if and only if M is a Hopf hypersurface. We always have 
g((A� + �A)�, �) = 0 . Using Frobenius Theorem we can now conclude the equivalence of 
(ii) and (iii).   ◻

3  The complex hyperbolic quadric

The complex hyperbolic quadric is the Riemannian symmetric space

where SOo
2,n

 denotes the identity component of the indefinite special orthogonal group 
SO2,n and SO2 × SOn is embedded canonically into SOo

2,n
 . The complex hyperbolic quad-

ric SOo
2,n
∕(SO2 × SOn) is the non-compact dual symmetric space of the complex quad-

ric SO2+n∕(SO2 × SOn) . We put G = SOo
2,n

 , K = SO2 × SOn and denote by o ∈ Qn∗ 
the “base point” I2+nK of the homogeneous space G/K, where I2+n ∈ G is the identity 
((2 + n) × (2 + n))-matrix. Then K is the isotropy group of G at o. We now describe the 
construction of the complex hyperbolic quadric as a Riemannian symmetric space in some 
more detail.

We denote by M2,n(ℝ) the real vector space of (2 × n)-matrices with real coefficients. Let

be the Lie algebra of G = SOo
2,n

 and

be the Lie algebra of K = SO2 × SOn . Let

be the Killing form of � and

d�(X, Y) = d(�(Y))(X) − d(�(X))(Y) − �([X, Y])

= Xg(Y , �) − Yg(X, �) − g([X, Y], �)

= g(∇XY , �) + g(Y ,∇X�) − g(∇YX, �) − g(X,∇Y�) − g([X, Y], �)

= g(Y ,�AX) − g(X,�AY)

= g((A� + �A)X, Y)

�([X, Y]) = −d�(X, Y) = −g((A� + �A)X, Y).

Qn∗ = SOo
2,n
∕(SO2 × SOn), n ≥ 1,

� = ��2,n =

{(
A1 B

B⊤ A2

)
∶ A1 ∈ ��2, A2 ∈ ��n, B ∈ M2,n(ℝ)

}

� = ��2 ⊕ ��n =

{(
A1 02,n
0n,2 A2

)
∶ A1 ∈ ��2, A2 ∈ ��n

}

B ∶ � × � → ℝ, (X, Y) ↦ tr(ad(X)ad(Y)) = ntr(XY)
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be the orthogonal complement of � in � with respect to B. The resulting decomposition 
� = �⊕ � is a Cartan decomposition of � . We identify the tangent space ToQn∗ of Qn∗ at o 
with � in the usual way.

The Cartan involution � ∈ Aut(�) on � is given by

where I2 and In are the identity (2 × 2)-matrix and (n × n)-matrix, respectively. Then

is a positive definite Ad(K)-invariant inner product on � . The Cartan decomposition 
� = �⊕ � is orthogonal with respect to B� . The restriction of B� to � × � induces a G-invar-
iant Riemannian metric gB�

 on Qn∗ , which is often referred to as the standard homogene-
ous metric on Qn∗ . The complex hyperbolic quadric (Qn∗, gB�

) is an Einstein manifold with 
Einstein constant − 1

2
 (see [18] and use duality between Riemannian symmetric spaces of 

compact type and of non-compact type). We renormalize the standard homogeneous metric 
gB�

 so that the Einstein constant of the renormalized Riemannian metric g is equal to −2n , 
that is,

This renormalization implies that the minimum of the sectional curvature of (Qn∗, g) is 
equal to −4 . Note that (Q1∗, g) is isometric to the complex hyperbolic line ℂH1(−4) and 
(Q2∗, g) is isometric to the Riemannian product ℂH1(−4) × ℂH1(−4) of two complex 
hyperbolic lines. For n ≥ 3 , (Qn∗, g) is an irreducible Riemannian symmetric space of non-
compact type and rank 2. We assume n ≥ 3 in the following.

The Lie algebra � decomposes orthogonally into � = ��2 ⊕ ��n . The first factor ��2 is the 
1-dimensional center of � . The adjoint action of

on � induces a Kähler structure J on Qn∗ . In this way (Qn∗, g, J) becomes a Hermitian sym-
metric space.

We define

Note that c0 ∉ K , but c0 is in the isotropy group at o of the full isometry group of (Qn∗, g) . 
The adjoint transformation Ad(c0) leaves � invariant and C0 = Ad(c0)|� is an anti-linear 

� =

{(
02,2 B

B⊤ 0n,n

)
∶ B ∈ M2,n(ℝ)

}

�(X) = I2,nXI2,n with I2,n =

(
−I2 02,n
0n,2 In

)
,

B� ∶ � × � → ℝ, (X, Y) = −B(X, �(Y))

gB�
= 4ng.

Z =

⎛
⎜⎜⎜⎜⎝

0 − 1 0 ⋯ 0

1 0 0 ⋯ 0

0 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ 1

⎞
⎟⎟⎟⎟⎠
∈ SO2 ⊂ SO2 × SOn = K

c0 =

⎛⎜⎜⎜⎜⎝

1 0 0 ⋯ 0

0 − 1 0 ⋯ 0

0 0 1 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 ⋯ 1

⎞⎟⎟⎟⎟⎠
∈ O2 × SOn.
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involution on � ≅ ToQ
n∗ satisfying C0J + JC0 = 0 . In other words, C0 is a real structure on 

ToQ
n∗ . The involution C0 commutes with Ad(g) for all g ∈ SOn ⊂ K but not for all g ∈ K . 

More precisely, for g = (g1, g2) ∈ K with g1 ∈ SO2 and g2 ∈ SOn , say 

g1 =

(
cos(�) − sin(�)

sin(�) cos(�)

)
 with � ∈ ℝ , so that Ad(g1) corresponds to multiplication with 

the complex number � = ei� , we have

It follows that we have a circle of real structures

This set is Ad(K)-invariant and therefore generates an Ad(G)-invariant S1-subbundle �0 of 
the endomorphism bundle End(TQn∗) , consisting of real structures (or conjugations) on 
the tangent spaces of Qn∗ . This S1-bundle naturally extends to an Ad(G)-invariant vector 
subbundle � of End(TQn∗) with rk(�) = 2 , which is parallel with respect to the induced 
connection on End(TQn∗) . For any real structure C ∈ �0 the tangent line to the fiber of 
� through C is spanned by JC. For every p ∈ Qn∗ and real structure C ∈ �p we have an 
orthogonal decomposition

into two totally real subspaces of TpQn∗ . Here V(C) and JV(C) are the (+1) - and (−1)
-eigenspaces of C, respectively. By construction, we have

and

For

and u ∈ V(C0) we have

C0◦Ad(g) = �−2Ad(g)◦C0.

{cos(�)C0 + sin(�)JC0 ∶ � ∈ ℝ}.

TpQ
n∗ = V(C)⊕ JV(C)

V(C0) =

⎧
⎪⎪⎨⎪⎪⎩

⎛⎜⎜⎜⎜⎝

0 0 u1 ⋯ un
0 0 0 ⋯ 0

u1 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

un 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎠
∶ u ∈ ℝ

n

⎫⎪⎪⎬⎪⎪⎭

JV(C0) =

⎧
⎪⎪⎨⎪⎪⎩

⎛⎜⎜⎜⎜⎝

0 0 0 ⋯ 0

0 0 v1 ⋯ vn
0 v1 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮

0 vn 0 ⋯ 0

⎞⎟⎟⎟⎟⎠
∶ v ∈ ℝ

n

⎫
⎪⎪⎬⎪⎪⎭

.

C = cos(�)C0 + sin(�)JC0
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It follows that

Geometrically this tells us that, if we rotate a real structure by angle � , then the ±1-eigen-
spaces rotate by angle �∕2.

The Riemannian metric g, the Kähler structure J and a real structure C on Qn∗ can be 
used to give an explicit expression of the Riemannian curvature tensor R̄ of (Qn∗, g) (see 
[15] and use duality). More precisely, we have

for all X, Y , Z ∈ �(Qn∗) , where C is an arbitrary real structure in �0.
For every non-zero tangent vector v ∈ � ≅ ToQ

n∗ there exists a maximal abelian sub-
space � ⊂ � with v ∈ � . If � is unique, then v is said to be a regular tangent vector, other-
wise v is said to be a singular tangent vector. From the explicit expression of the Riemann-
ian curvature tensor it is straightforward to find the singular tangent vectors of Qn∗ . There 
are exactly two types of singular tangent vectors v ∈ ToQ

n∗ , which can be characterized as 
follows: 

 (i) If there exists a real structure C ∈ �0 such that v ∈ V(C) , then v is singular. Such a 
singular tangent vector is called �-principal.

 (ii) If there exist a real structure C ∈ �0 and orthonormal vectors u,w ∈ V(C) such that 
v

��v�� =
1√
2
(u + Jw) , then v is singular. Such a singular tangent vector is called �

-isotropic.

For every unit tangent vector v ∈ ToQ
n∗ there exist a real structure C ∈ �0 and orthonor-

mal vectors u,w ∈ V(C) such that

for some t ∈ [0,
�

4
] . The singular tangent vectors correspond to the boundary values t = 0 

and t = �

4
.

Let v be a unit tangent vector of Qn∗ and consider the Jacobi operator R̄v defined by

We have

C(cos(�∕2)u + sin(�∕2)Ju)

= cos(�∕2)Cu + sin(�∕2)CJu

= cos(�∕2)Cu − sin(�∕2)JCu

= cos(�∕2)(cos(�)C0 + sin(�)JC0)u − sin(�∕2)J(cos(�)C0 + sin(�)JC0)u

= (cos(�∕2) cos(�) + sin(�∕2) sin(�))u + (cos(�∕2) sin(�) − sin(�∕2) cos(�))Ju

= cos(�∕2)u + sin(�∕2)Ju.

V(C) = {cos(�∕2)u + sin(�∕2)Ju ∶ u ∈ V(C0)}.

R̄(X, Y)Z = g(X, Z)Y − g(Y , Z)X + g(JX, Z)JY − g(JY , Z)JX + 2g(JX, Y)JZ

+ g(CX, Z)CY − g(CY , Z)CX + g(JCX, Z)JCY − g(JCY ,Z)JCX

v = cos(t)u + sin(t)Jw

R̄vX = R̄(X, v)v.

R̄vX = −X + g(X, v)v − 3g(X, Jv)Jv + g(X,Cv)Cv − g(Cv, v)CX + g(X, JCv)JCv.
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By a straightforward computation we obtain the eigenvalues and eigenspaces of R̄v (see 
also [15]). The eigenvalues are

with corresponding eigenspaces

where C is a suitable real structure, and u,w ∈ V(C) are orthonormal vectors such that

for some t ∈ [0,
�

4
] . The five eigenvalues are distinct unless t ∈ {0, tan−1(

1

2
),

�

4
}.

If t = 0 , then Cv = v and hence v is �-principal. In this case R̄v has two eigenvalues 0,−2 
with corresponding eigenspaces

If t = �

4
 , then v = 1√

2
(u + Jw) and hence v is �-isotropic. In this case R̄v has three eigenval-

ues 0,−1,−4 with corresponding eigenspaces

If t = tan−1(
1

2
) , then cos(t) = 2√

5
 , sin(t) = 1√

5
 , and hence cos(2t) = 3

5
 and sin(2t) = 4

5
 . In this 

case R̄v has four eigenvalues 0,− 2

5
,−

8

5
,−

18

5
.

Let � be a maximal abelian subspace of � and �∗ be the dual vector space of � . For each 
� ∈ �∗ we define

If � ≠ 0 and �� ≠ {0} , then � is a restricted root and �� is a restricted root space. Let Σ ⊂ �∗ 
be the set of restricted roots. The restricted root spaces provide a restricted root space 
decomposition

of � , where �0 = �0 ⊕ � and �0 ≅ ��n−2 is the centralizer of � in � . The restricted root spaces 
�� and �0 are pairwise orthogonal with respect to B� . The corresponding restricted root 
system is of type B2 . We choose a set Λ = {�1, �2} of simple roots of Σ such that �1 is the 

0,−1 + cos(2t),−1 − cos(2t),−2 + 2 sin(2t),−2 − 2 sin(2t)

E0 = ℝu⊕ℝw ≅ ℝ
2,

E−1+cos(2t) = V(C)⊖ (ℝu⊕ℝw) ≅ ℝ
n−2,

E−1−cos(2t) = JV(C)⊖ J(ℝu⊕ℝw) ≅ ℝ
n−2,

E−2+2 sin(2t) = ℝ(Ju + w) ≅ ℝ,

E−2−2 sin(2t) = ℝ(Ju − w) ≅ ℝ,

v = cos(t)u + sin(t)Jw

E0 = ℝv⊕ J(V(C)⊖ℝv) ≅ ℝ
n,

E−2 = ℝJv⊕ (V(C)⊖ℝv) ≅ ℝ
n.

E0 = ℝv⊕ℝCv⊕ℝJCv = ℝv⊕ ℂCv ≅ ℝ⊕ ℂ,

E−1 = �⊖ (ℂv⊕ ℂCv) ≅ ℂ
n−2,

E−4 = ℝJv ≅ ℝ.

�� = {X ∈ � ∶ ad(H)X = �(H)X for all H ∈ �}.

� = �0 ⊕

(⨁
𝛼∈Σ

�𝛼

)
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longer root of the two simple roots and denote by Σ+ the resulting set of positive restricted 
roots. If we write, as usual, �1 = �1 − �2 and �2 = �2 , the positive restricted roots are

The multiplicities of the two long roots �1 and �1 + 2�2 are equal to 1, and the multiplicities 
of the two short roots �2 and �1 + �2 are equal to n − 2 , respectively. Explicitly, the positive 
restricted root spaces and �0 are:

The negative restricted root spaces can be computed easily from the positive restricted root 
spaces using the fact that �−� = �(��).

For each � ∈ Σ we define

�1 = �1 − �2, �2 = �2, �1 + �2 = �1, �1 + 2�2 = �1 + �2.

�0 =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 a1 0 0 ⋯ 0

0 0 0 a2 0 ⋯ 0

a1 0 0 0 0 ⋯ 0

0 a2 0 0 0 ⋯ 0

0 0 0 0

⋮ ⋮ ⋮ ⋮ B

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∶ a1, a2 ∈ ℝ, B ∈ ��n−2

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

≅ ℝ
2 ⊕ ��n−2,

�𝛼1+𝛼2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 v1 ⋯ vn−2
0 0 0 0 0 ⋯ 0

0 0 0 0 v1 ⋯ vn−2
0 0 0 0 0 ⋯ 0

v1 0 − v1 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 0 − vn−2 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

∶ v ∈ ℝ
n−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

≅ ℝ
n−2,

�𝛼2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 ⋯ 0

0 0 0 0 w1 ⋯ wn−2

0 0 0 0 0 ⋯ 0

0 0 0 0 w1 ⋯ wn−2

0 w1 0 − w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 wn−2 0 − wn−2 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

∶ w ∈ ℝ
n−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

≅ ℝ
n−2,

�𝛼1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 x 0 x 0 ⋯ 0

−x 0 x 0 0 ⋯ 0

0 x 0 x 0 ⋯ 0

x 0 − x 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

∶ x ∈ ℝ

⎫⎪⎪⎪⎬⎪⎪⎪⎭

≅ ℝ,

�𝛼1+2𝛼2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 y 0 − y 0 ⋯ 0

−y 0 y 0 0 ⋯ 0

0 y 0 − y 0 ⋯ 0

−y 0 y 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

∶ y ∈ ℝ

⎫⎪⎪⎪⎬⎪⎪⎪⎭

≅ ℝ.
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Then we have �� = �−� , �� = �−� and �𝛼 ⊕ �𝛼 = �𝛼 ⊕ �−𝛼 for all � ∈ Σ.
We define a nilpotent subalgebra � of � by

Then � = �⊕ �⊕ � is an Iwasawa decomposition of � , which induces a corresponding 
Iwasawa decomposition G = KAN of G. Here, A and N are the connected closed subgroups 
of G with Lie algebras � and � , respectively.

The subalgebra

of � is solvable and the corresponding connected closed subgroup AN of G with Lie algebra 
�⊕ � is solvable, simply connected and acts simply transitively on Qn∗ . Then (Qn∗, g) is 
isometric to the solvable Lie group AN equipped with the left-invariant Riemannian metric 
⟨⋅, ⋅⟩ defined by

with H1,H2 ∈ � and X̂1, X̂2 ∈ � . For each X̂ ∈ � , the orthogonal projection X onto � with 
respect to B� is

By construction, we have ⟨X̂, X̂⟩ = g(X,X) and

Let H1,H2 ∈ � be the dual basis of �1, �2 ∈ �∗ defined by ��(H�) = ��� . Since 
�1 = �1 − �2 and �2 = �2 , we have

�𝛼 = � ∩ (�𝛼 ⊕ �−𝛼), �𝛼 = � ∩ (�𝛼 ⊕ �−𝛼).

� = �𝛼1 ⊕ �𝛼2 ⊕ �𝛼1+𝛼2 ⊕ �𝛼1+2𝛼2

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 x + y 0 x − y v1 ⋯ vn−2
−x − y 0 x + y 0 w1 ⋯ wn−2

0 x + y 0 x − y v1 ⋯ vn−2
x − y 0 − x + y 0 w1 ⋯ wn−2

v1 w1 − v1 − w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 wn−2 − vn−2 − wn−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∶
x, y ∈ ℝ,

v,w ∈ ℝ
n−2

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

.

�⊕ � =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 x + y a1 x − y v1 ⋯ vn−2
−x − y 0 x + y a2 w1 ⋯ wn−2

a1 x + y 0 x − y v1 ⋯ vn−2
x − y a2 − x + y 0 w1 ⋯ wn−2

v1 w1 − v1 − w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 wn−2 − vn−2 − wn−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∶
a1, a2, x, y ∈ ℝ,

v,w ∈ ℝ
n−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⟨H1 + X̂1,H2 + X̂2⟩ = −
1

4n
B(H1, 𝜃(H2)) −

1

8n
B(X̂1, 𝜃(X̂2))

= −
1

4
tr(H1𝜃(H2)) −

1

8
tr(X̂1𝜃(X̂2))

=
1

4
tr(H1H2) −

1

8
tr(X̂1𝜃(X̂2))

X =
1

2
(X̂ − 𝜃(X̂)) ∈ �.

⟨H1 + X̂1,H2 + X̂2⟩ = g(H1 + X1,H2 + X2).
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Note that

For each � in Σ we define the root vector H� ∈ � of � by ⟨H� ,H⟩ = �(H) for all H ∈ � . 
Note that

for all H ∈ � and X� ∈ �� . If we put

then

It follows that

We have

H1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

1 0 0 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, H2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 ⋯ 0

0 0 0 1 0 ⋯ 0

1 0 0 0 0 ⋯ 0

0 1 0 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

⟨H1,H1⟩ = 1

4
tr(H1H1) =

1

2
, ⟨H2,H2⟩ = 1

4
tr(H2H2) = 1.

[H,X�] = ad(H)X� = �(H)X� = ⟨H� ,H⟩X�

H� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 x1 0 0 ⋯ 0

0 0 0 x2 0 ⋯ 0

x1 0 0 0 0 ⋯ 0

0 x2 0 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 a1 0 0 ⋯ 0

0 0 0 a2 0 ⋯ 0

a1 0 0 0 0 ⋯ 0

0 a2 0 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⟨H� ,H⟩ = 1

4
tr(H�H) =

1

2
(x1a1 + x2a2).

H�1
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2 0 0 ⋯ 0

0 0 0 − 2 0 ⋯ 0

2 0 0 0 0 ⋯ 0

0 − 2 0 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, H�1+2�2
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2 0 0 ⋯ 0

0 0 0 2 0 ⋯ 0

2 0 0 0 0 ⋯ 0

0 2 0 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

H�2
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 ⋯ 0

0 0 0 2 0 ⋯ 0

0 0 0 0 0 ⋯ 0

0 2 0 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

, H�1+�2
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 2 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

2 0 0 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

.
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and

4  The homogeneous complex hypersurface

In this section we construct a homogeneous complex hypersurface Pn−1 ≅ ℂHn−1(−4) in 
(Qn∗, g) and compute its shape operator. We define

It is easy to verify that �2n−3 is a nilpotent subalgebra of � and isomorphic to the (2n − 3)- 
dimensional Heisenberg algebra with 1-dimensional center.

We have

It follows that

is a solvable subalgebra of �⊕ � . (Note that ℝH2 denotes here the real span of H2 and 
not the real hyperbolic plane!) In fact, this subalgebra is the standard solvable extension 
of the Heisenberg algebra �2n−3 and isomorphic to the solvable Lie algebra of the solvable 
part of the Iwasawa decomposition of the isometry group of the complex hyperbolic space 
ℂHn−1(−4) (see, e.g., [5] or [17]).

This construction leads to an isometric embedding P̂n−1 of the (n − 1)-dimensional com-
plex hyperbolic space ℂHn−1(−4) with constant holomorphic sectional curvature −4 into 
(AN, ⟨⋅, ⋅⟩) . By construction, P̂n−1 is a homogeneous submanifold of (AN, ⟨⋅, ⋅⟩) . Let Ĵ be 
the complex structure on (AN, ⟨⋅, ⋅⟩) corresponding to the complex structure J on (Qn∗, g) . 
We have Ĵ�𝛼2 = �𝛼1+𝛼2 and ĴH2 ∈ �𝛼1+2𝛼2 , which shows that the tangent space

is a complex subspace of ToAN . Since AN is contained in the identity component SOo
2,n

 of 
the full isometry group of Qn∗ , it consists of holomorphic isometries, which implies that 
P̂n−1 is a complex submanifold of (AN, ⟨⋅, ⋅⟩).

Altogether we conclude that the solvable subalgebra

⟨H�1
,H�1

⟩ = 1

4
tr(H�1

H�1
) = 4,

⟨H�1+2�2
,H�1+2�2

⟩ = 1

4
tr(H�1+2�2

H�1+2�2
) = 4,

⟨H�2
,H�2

⟩ = 1

4
tr(H�2

H�2
) = 2,

⟨H�1+�2
,H�1+�2

⟩ = 1

4
tr(H�1+�2

H�1+�2
) = 2,

2H1 = H�1+�2
and 2H2 = H�1+2�2

.

�2n−3 = �𝛼2 ⊕ �𝛼1+𝛼2 ⊕ �𝛼1+2𝛼2 .

[H2, X̂] =

{
X̂ , if X̂ ∈ �𝛼2 ⊕ �𝛼1+𝛼2 ,

2X̂ , if X̂ ∈ �𝛼1+2𝛼2 .

� = ℝH2 ⊕ �2n−3 = ℝH𝛼1+2𝛼2
⊕ �𝛼2 ⊕ �𝛼1+𝛼2 ⊕ �𝛼1+2𝛼2

ToP̂
n−1 = ℝH𝛼1+2𝛼2

⊕ �𝛼2 ⊕ �𝛼1+𝛼2 ⊕ �𝛼1+2𝛼2
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of �⊕ � induces an isometric embedding P̂n−1 of the complex hyperbolic space ℂHn−1(−4) 
with constant holomorphic sectional curvature −4 into (AN, ⟨⋅, ⋅⟩) as a homogeneous com-
plex hypersurface. This induces an isometric embedding Pn−1 of the complex hyperbolic 
space ℂHn−1(−4) with constant holomorphic sectional curvature −4 into (Qn∗, g) as a 
homogeneous complex hypersurface.

Remark 4.1 Smyth [16] proved that every homogeneous complex hypersurface in the 
complex hyperbolic space ℂHn is a complex hyperbolic hyperplane ℂHn−1 embedded 
in ℂHn as a totally geodesic submanifold. As we have just seen, up to congruency, there 
are at least two homogeneous complex hypersurfaces in the complex hyperbolic quad-
ric Qn∗ , namely the complex hyperbolic quadric Qn−1∗ and the complex hyperbolic space 
Pn−1 ≅ ℂHn−1(−4) . The first one is totally geodesic (see [8, 11] and use duality between 
Riemannian symmetric spaces of compact type and of non-compact type), the second one 
is not. The classification of the homogeneous complex hypersurfaces in the complex hyper-
bolic quadric Qn∗ remains an open problem.

We now compute the shape operator Â of P̂n−1 ≅ ℂHn−1(−4) in (AN, ⟨⋅, ⋅⟩) . Let

be a unit normal vector of P̂n−1 at o. The Weingarten equation tells us that

where ∇̂ is the Levi Civita covariant derivative of (AN, ⟨⋅, ⋅⟩) and X̂, Ŷ ∈ � . We consider 
𝜁 , X̂, Ŷ  as left-invariant vector fields. Since ⟨⋅, ⋅⟩ is a left-invariant Riemannian metric, the 
Koszul formula for ∇̂ implies

Since � is a subalgebra of �⊕ � , we have [X̂, Ŷ] ∈ � and hence ⟨[X̂, Ŷ], 𝜁⟩ = 0 . Moreover, 
since ad(𝜁 )∗ = −ad(𝜃(𝜁 )) , we have

Altogether this implies

Thus, the shape operator Â𝜁 of P̂n−1 is given by

where

is the orthogonal projection of 𝜁 onto � and [ ⋅ ]� is the orthogonal projection onto �.
The normal space 𝜈oP̂n−1 of P̂n−1 at the point o is given by

� = ℝH𝛼1+2𝛼2
⊕ �𝛼2 ⊕ �𝛼1+𝛼2 ⊕ �𝛼1+2𝛼2

𝜁 ∈ (�⊖ℝH2)⊕ �𝛼1 = ℝH𝛼1
⊕ �𝛼1

⟨Â𝜁 X̂, Ŷ⟩ = −⟨∇̂X̂𝜁 , Ŷ⟩,

2⟨Â𝜁 X̂, Ŷ⟩ = 2⟨∇̂X̂ Ŷ , 𝜁⟩ = ⟨[X̂, Ŷ], 𝜁⟩ + ⟨[𝜁 , X̂], Ŷ⟩ + ⟨[𝜁 , Ŷ], X̂⟩.

⟨[𝜁 , Ŷ], X̂⟩ = −⟨[𝜃(𝜁 ), X̂], Ŷ⟩.

2⟨Â𝜁 X̂, Ŷ⟩ = ⟨[𝜁 − 𝜃(𝜁 ), X̂], Ŷ⟩.

Â𝜁 X̂ = [𝜁 , X̂]�,

𝜁 =
1

2
(𝜁 − 𝜃(𝜁 )) ∈ �
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and the tangent space ToP̂n−1 of P̂n−1 at the point o is given by

The vector 𝜁 =
1

2
H𝛼1

∈ � is a unit normal vector of P̂n−1 at o. We have

and thus

A straightforward matrix computation gives

Since the latter matrix is in � , we conclude that

𝜈oP̂
n−1 = ℝH𝛼1

⊕ �𝛼1 =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 x a x 0 ⋯ 0

−x 0 x − a 0 ⋯ 0

a x 0 x 0 ⋯ 0

x − a − x 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∶ a, x ∈ ℝ

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

,

ToP̂
n−1 = � =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 y b − y v1 ⋯ vn−2
−y 0 y b w1 ⋯ wn−2

b y 0 − y v1 ⋯ vn−2
−y b y 0 w1 ⋯ wn−2

v1 w1 − v1 − w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 wn−2 − vn−2 − wn−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∶
b, y ∈ ℝ,

v,w ∈ ℝ
n−2

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

.

𝜃(𝜁 ) =
1

2
𝜃(H𝛼1

) = −
1

2
H𝛼1

= −𝜁

𝜁 =
1

2
(𝜁 − 𝜃(𝜁 )) = 𝜁 .

⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 ⋯ 0

0 0 0 − 1 0 ⋯ 0

1 0 0 0 0 ⋯ 0

0 − 1 0 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 y b − y v1 ⋯ vn−2
−y 0 y b w1 ⋯ wn−2

b y 0 − y v1 ⋯ vn−2
−y b y 0 w1 ⋯ wn−2

v1 w1 − v1 − w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 wn−2 − vn−2 − wn−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 v1 ⋯ vn−2
0 0 0 0 − w1 ⋯ − wn−2

0 0 0 0 v1 ⋯ vn−2
0 0 0 0 − w1 ⋯ − wn−2

v1 − w1 − v1 w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 − wn−2 − vn−2 wn−2 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

∈ �.
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with

It follows that the principal curvatures of P̂n−1 with respect to the unit normal vector 𝜁 are 
0, 1 and −1 , with corresponding principal curvature spaces

We now compute the shape operator of P̂n−1 at o for other unit normal vectors. Since 
𝜈oP̂

n−1 is Ĵ-invariant, the vector Ĵ𝜁 ∈ �𝛼1 is a unit normal vector of P̂n−1 at o. Moreover, 
𝜁 , Ĵ𝜁 is an orthonormal basis of the normal space 𝜈oP̂n−1 . Using a well-known formula for 
the shape operator of a complex submanifold of a Kähler manifold (see, e.g., [7], Lemma 
7.4), we have

Since every unit normal vector of P̂n−1 at o is of the form

the shape operator Â𝜁 therefore completely determines the shape operator for every other 
unit normal vector of P̂n−1 at o. More precisely, we have

This readily implies that the principal curvatures of P̂n−1 with respect to the unit normal 
vector cos(𝜑)𝜁 + sin(𝜑)Ĵ𝜁 are 0, 1 and −1 , with corresponding principal curvature spaces

Using orthogonal projections onto � we obtain the corresponding description of the shape 
operator A of Pn−1 at o.

Â𝜁 X̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 v1 ⋯ vn−2
0 0 0 0 − w1 ⋯ − wn−2

0 0 0 0 v1 ⋯ vn−2
0 0 0 0 − w1 ⋯ − wn−2

v1 − w1 − v1 w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 − wn−2 − vn−2 wn−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

X̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 y b − y v1 ⋯ vn−2
−y 0 y b w1 ⋯ wn−2

b y 0 − y v1 ⋯ vn−2
−y b y 0 w1 ⋯ wn−2

v1 w1 − v1 − w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 wn−2 − vn−2 − wn−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ ToP̂
n−1.

T̂
𝜁

0
= ℝH𝛼1+2𝛼2

⊕ �𝛼1+2𝛼2 T̂
𝜁

1
= �𝛼1+𝛼2 T̂

𝜁

−1
= �𝛼2 .

ÂĴ𝜁 = ĴÂ𝜁 .

cos(𝜑)𝜁 + sin(𝜑)Ĵ𝜁 ,

Âcos(𝜑)𝜁+sin(𝜑)Ĵ𝜁 = cos(𝜑)Â𝜁 + sin(𝜑)JÂ𝜁 .

T̂
cos(𝜑)𝜁+sin(𝜑)Ĵ𝜁

0
= ℝH𝛼1+2𝛼2

⊕ �𝛼1+2𝛼2 ,

T̂
cos(𝜑)𝜁+sin(𝜑)Ĵ𝜁

1
= {cos

(
𝜑

2

)
X̂ + sin

(
𝜑

2

)
JX̂ ∶ X̂ ∈ �𝛼1+𝛼2},

T̂
cos(𝜑)𝜁+sin(𝜑)Ĵ𝜁

−1
= {sin

(
𝜑

2

)
X̂ − cos

(
𝜑

2

)
JX̂ ∶ X̂ ∈ �𝛼1+𝛼2}.
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Recall that

The orthogonal projection of 𝜈oP̂n−1 onto � is

The complex line ℂH�1
 is a Lie triple system in � and therefore determines a totally geo-

desic complex submanifold B1 of Qn∗ . The (non-zero) tangent vectors of B1 are �-isotropic, 
which implies that the sectional curvature of B1 is equal to −4 . Thus B1 is isometric to the 
complex hyperbolic line ℂH1(−4) of constant (holomorphic) sectional curvature −4 . We 
will encounter B1 again later, where it appears in a horospherical decomposition of the 
complex hyperbolic quadric.

We now apply the standard real structure C0 to the normal space �oPn−1 = ToB1,

Note that C0(ToB1) = C(ToB1) for any real structure C at o and therefore the construction 
is independent of the choice of real structure. The complex line ℂH�1+2�2

 is also a Lie tri-
ple system in � and determines a totally geodesic complex submanifold Σ1 of Qn∗ . The 
(non-zero) tangent vectors of Σ1 are also �-isotropic, which implies that the sectional cur-
vature of Σ1 is equal to −4 . Thus Σ1 is isometric to the complex hyperbolic line ℂH1(−4) 
of constant (holomorphic) sectional curvature −4 . The tangent space ToΣ1 is the kernel of 
the shape operator of the homogeneous complex hypersurface Pn−1 ≅ ℂHn−1(−4) . Since 
ℝH𝛼1+2𝛼2

⊕ �𝛼1+2𝛼2 is a subalgebra of � , this implies geometrically that P̂n−1 , and hence 
also Pn−1 , is foliated by totally geodesic complex hyperbolic lines ℂH1(−4) whose tangent 
spaces are obtained by rotating the normal spaces of P̂n−1 (resp. Pn−1 ) via a real structure Ĉ 
(resp. C).

The Riemannian product B1 × Σ1 ≅ ℂH1(−4) × ℂH1(−4) is isometric to the complex 
hyperbolic quadric Q2∗ and describes the standard isometric embedding of Q2∗ into Qn∗.

We have

and

𝜈oP̂
n−1 = ℝH𝛼1

⊕ �𝛼1 .

𝜈oP
n−1 = ℂH𝛼1

= ℝH𝛼1
⊕ �𝛼1 =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 a x 0 ⋯ 0

0 0 x − a 0 ⋯ 0

a x 0 0 0 ⋯ 0

x − a 0 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∶ a, x ∈ ℝ

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

.

C0(ToB1) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 a x 0 ⋯ 0

0 0 − x a 0 ⋯ 0

a − x 0 0 0 ⋯ 0

x a 0 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∶ a, x ∈ ℝ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= ℝH𝛼1+2𝛼2

⊕ �𝛼1+2𝛼2 = ℂH𝛼1+2𝛼2
.

[�𝛼1+𝛼2 ⊕ �𝛼2 , �𝛼1+𝛼2 ⊕ �𝛼2 ] ⊂ �0 ⊕ �𝛼1 ⊕ �𝛼1+2𝛼2
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Altogether we conclude that �𝛼1+𝛼2 ⊕ �𝛼2 is a Lie triple system. It is easy to see that this 
Lie triple system is J-invariant. The complex totally geodesic submanifold of Qn∗ gener-
ated by this Lie triple system is isometric to Qn−2∗ . However, the only complex totally geo-
desic submanifolds of a complex hyperbolic space are again complex hyperbolic spaces 
(see [19] and use duality). It follows that there exists a totally geodesic submanifold 
Σn−2 ≅ ℂHn−2(−4) of P ≅ ℂHn−1(−4) with ToΣn−2 = �𝛼1+𝛼2 ⊕ �𝛼2 . We have

The tangent space ToΣn−2 = �𝛼1+𝛼2 ⊕ �𝛼2 and the normal space 𝜈oΣn−2 = �⊕ �𝛼1+2𝛼2 ⊕ �𝛼1 
are Lie triple systems in �.

We summarize the previous discussion in the following theorem.

Theorem 4.2 There exists a homogeneous complex hypersurface Pn−1 in (Qn∗, g) which 
is isometric to the complex hyperbolic space ℂHn−1(−4) of constant holomorphic sectional 
curvature −4 . In terms of root spaces and root vectors, the tangent space and normal space 
of Pn−1 at o is

The normal space �oPn−1 is a Lie triple system, and the totally geodesic submanifold B1 of 
Qn∗ generated by this Lie triple system is isometric to a complex hyperbolic line ℂH1(−4) 
of constant (holomorphic) sectional curvature −4 . The (non-zero) tangent vectors of B1 are 
�-isotropic. In particular, the (non-zero) normal vectors of Pn−1 are �-isotropic singular 
tangent vectors of Qn∗.

The tangent space ToPn−1 decomposes orthogonally into

where C is any real structure in �0 at o. The subspace C(�oPn−1) is a Lie triple system, and 
the totally geodesic submanifold Σ1 of Qn∗ generated by this Lie triple system is isometric to 
a complex hyperbolic line ℂH1(−4) of constant (holomorphic) sectional curvature −4 . The 
(non-zero) tangent vectors of Σ1 are �-isotropic. The subspace �𝛼1+𝛼2 ⊕ �𝛼2 is a Lie triple 
system in � and a complex subspace of ToPn−1 . The totally geodesic submanifold of Qn∗ 
generated by this Lie triple system is isometric to the complex hyperbolic quadric Qn−2∗ , 
and the totally geodesic submanifold of Pn−1 ≅ ℂHn−1(−4) generated by this complex sub-
space is isometric to the complex hyperbolic space ℂHn−2(−4).

Let � ∈ �oP
n−1 be a unit normal vector of Pn−1 . Then, � is of the form

[�0, �𝛼1+𝛼2 ] ⊂ �𝛼1+𝛼2 ,

[�𝛼1 , �𝛼1+𝛼2 ] ⊂ �𝛼2 ,

[�𝛼1+2𝛼2 , �𝛼1+𝛼2 ] ⊂ �𝛼2 ,

[�0, �𝛼2 ] ⊂ �𝛼2 ,

[�𝛼1 , �𝛼2 ] ⊂ �𝛼1+𝛼2 ,

[�𝛼1+2𝛼2 , �𝛼2 ] ⊂ �𝛼1+𝛼2 .

ToP
n−1 = ToΣ1 ⊕ ToΣ

n−2, 𝜈oP
n−1 = ToB1.

ToP
n−1 = ℝH𝛼1+2𝛼2

⊕ �𝛼1+2𝛼2 ⊕ �𝛼1+𝛼2 ⊕ �𝛼2 , 𝜈oP
n−1 = ℝH𝛼1

⊕ �𝛼1 .

ToP
n−1 = C(𝜈oP

n−1)⊕ (�𝛼1+𝛼2 ⊕ �𝛼2 ),

� =
1

2
cos(�)H�1

+
1

2
sin(�)JH�1
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and the principal curvatures of Pn−1 with respect to � are 0, 1,−1 with corresponding prin-
cipal curvature spaces

where C = cos(�)C0 + sin(�)JC0 . The 0-eigenspace is independent of the choice of unit 
normal vector � and coincides with the kernel T0 of the shape operator of Pn−1.

Let M be a submanifold of a Riemannian manifold M̄ and � ∈ �pM be a normal vector 
of M. Consider the Jacobi operator R̄𝜁 = R̄(⋅, 𝜁 )𝜁 ∶ TpM̄ → TpM̄ . If R̄𝜁 (TpM) ⊆ TpM , then 
the restriction K� of R̄𝜁 to TpM is a self-adjoint endomorphism of TpM , the so-called nor-
mal Jacobi operator of M with respect to � . The family K = (K� )�∈�M is called the normal 
Jacobi operator of M.

A submanifold M of a Riemannian manifold M̄ is curvature-adapted if for every normal 
vector � ∈ �pM , p ∈ M , the following two conditions are satisfied: 

 (i) R̄𝜁 (TpM) ⊆ TpM;
 (ii) the normal Jacobi operator K� and the shape operator A� of M are simultaneously 

diagonalizable, that is, 

Since R̄𝜆𝜁 = 𝜆2R̄𝜁 for all 𝜆 > 0 , it suffices to check conditions (i) and (ii) only for unit nor-
mal vectors. Curvature-adapted submanifolds were introduced in [6]. They were also stud-
ied by Gray in [10] using the notion of compatible submanifolds. Curvature-adapted sub-
manifolds form a very useful class of submanifolds in the context of focal sets and tubes.

Corollary 4.3 The homogeneous complex hypersurface Pn−1 ≅ ℂHn−1(−4) in (Qn∗, g) is 
curvature-adapted.

Proof Let � be a unit normal vector of Pn−1 at o. Then � is an �-isotropic singular tangent 
vector of Qn∗ . We already computed the eigenvalues and eigenspaces of the Jacobi operator 
R̄𝜁 in Sect. 3. It follows from this that R̄𝜁 has three eigenvalues 0,−1,−4 with correspond-
ing eigenspaces

Note that E�

−1
 is independent of the choice of the unit normal vector � and hence we can 

denote this space by E−1 . The tangent space ToPn−1 is given by

From Theorem 4.2 we see that T𝜁

0
= T0 = C0(𝜈oP

n−1) = ℂC0𝜁 ⊂ E
𝜁

0
 and E−1 = T

𝜁

1
⊕ T

𝜁

−1
 , 

which implies that K� and A� commute. Since this holds for all unit normal vectors � , it fol-
lows that Pn−1 is curvature-adapted.   ◻

T
𝜁

0
= C(𝜈oP

n−1) = ToΣ1,

T
𝜁

1
= {cos

(
𝜑

2

)
X + sin

(
𝜑

2

)
JX ∶ X ∈ �𝛼1+𝛼2} ⊂ V(C),

T
𝜁

−1
= {sin

(
𝜑

2

)
X − cos

(
𝜑

2

)
JX ∶ X ∈ �𝛼1+𝛼2} ⊂ JV(C),

K�A� = A�K� .

E
𝜁

0
= ℝ𝜁 ⊕ ℂC0𝜁 , E

𝜁

−1
= �⊖ (ℂ𝜁 ⊕ ℂC0𝜁 ), E

𝜁

−4
= ℝJ𝜁 .

ToP
n−1 = C0(𝜈oP

n−1)⊕ E−1.
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5  Tubes around the homogeneous complex hypersurface

In this section we discuss the geometry of the tubes around the homogeneous complex 
hypersurface Pn−1 ≅ ℂHn−1(−4) in (Qn∗, g) . We first observe that the tubes around Pn−1 
are homogeneous real hypersurfaces in Qn∗ . In fact, the connected closed subgroup H of 
G = SO0

2,n
 with Lie algebra

acts on Qn∗ with cohomogeneity one (see [2], Theorem 8). By construction, the orbit of H 
containing o is the homogeneous complex hypersurface Pn−1 and the principal orbits are 
the tubes around Pn−1 . We denote by P2n−1

r
 the tube with radius r ∈ ℝ+ around Pn−1 in Qn∗ . 

Note that P2n−1
r

 is a homogeneous real hypersurface in Qn∗ and hence dim
ℝ
(P2n−1

r
) = 2n − 1.

By Corollary 4.3, the homogeneous complex hypersurface Pn−1 is curvature-adapted. 
Since tubes around curvature-adapted submanifolds in Riemannian symmetric spaces 
are again curvature-adapted (see [10], Theorem 6.14, or [6], Theorem 6), Corollary 4.3 
implies:

Proposition 5.1 The tube P2n−1
r

 with radius r ∈ ℝ+ around the homogeneous complex 
hypersurface Pn−1 ≅ ℂHn−1(−4) in (Qn∗, g) is curvature-adapted.

We can therefore use Jacobi field theory to compute the principal curvatures and 
principal curvature spaces of P2n−1

r
 (see, e.g., [1], Section 10.2.3, for a detailed descrip-

tion of the methodology). Since P2n−1
r

 is a homogeneous real hypersurface in Qn∗ , it 
suffices to compute the principal curvatures and principal curvature spaces at one 
point. Let � ∈ �oP

n−1 be a unit normal vector and � ∶ ℝ → Qn∗ the geodesic in Qn∗ with 
�(0) = o and �̇�(0) = 𝜁 . Then p = �(r) ∈ P2n−1

r
 and 𝜁r = �̇�(r) is a unit normal vector of 

P2n−1
r

 at o. Since � is �-isotropic, also �r is �-isotropic. Thus the normal bundle of P2n−1
r

 
consists of �-isotropic singular tangent vectors of Qn∗.

We denote by �⟂ the parallel subbundle of the tangent bundle of Qn∗ along � that is 
defined by the orthogonal complements of ℝ�̇�(t) in T�(t)Qn∗ , t ∈ ℝ , and put

Let D be the End(�⟂)-valued tensor field along � solving the Jacobi equation

where the decomposition of the matrices is with respect to the decomposition 
𝛾⟂(0) = ToP

n−1 ⊕ℝJ𝜁 and A� is the shape operator of Pn−1 with respect to � . If v ∈ ToP
n−1 

and Bv is the parallel vector field along � with Bv(0) = v , then Zv = DBv is the Jacobi  
field along � with initial values Zv(0) = v and Z�

v
(0) = −A�v . If v ∈ ℝJ� and Bv is the 

parallel vector field along � with Bv(0) = v , then Zv = DBv is the Jacobi field along � 
with initial values Zv(0) = 0 and Z�

v
(0) = v . We decompose ToPn−1 orthogonally into 

ToP
n−1 = T

𝜁

0
⊕ T

𝜁

1
⊕ T

𝜁

−1
 (see Theorem 4.2).

Since � is �-isotropic, the Jacobi operator R̄⟂
𝛾
 at o is of matrix form

� = �𝛼1 ⊕ � = �𝛼1 ⊕ℝH𝛼1+2𝛼2
⊕ �𝛼2 ⊕ �𝛼1+𝛼2 ⊕ �𝛼1+2𝛼2

R̄⟂
𝛾
= R̄𝛾 |𝛾⟂ = R̄(⋅, �̇�)�̇�|𝛾⟂ .

D�� + R̄⟂
𝛾
◦D = 0, D(0) =

(
idToPn−1 0

0 0

)
, D�(0) =

(
−A𝜁 0

0 id
ℝJ𝜁

)
,
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with respect to the decomposition T𝜁

0
⊕ T

𝜁

1
⊕ T

𝜁

−1
⊕ℝJ𝜁 . Since (Qn∗, g) is a Riemannian 

symmetric space, the Jacobi operator R̄⟂
𝛾
 is parallel along � . By solving the above second-

order initial value problem explicitly we obtain

with respect to the parallel translate of the decomposition T𝜁

0
⊕ T

𝜁

1
⊕ T

𝜁

−1
⊕ℝJ𝜁 along � 

from o to �(r) . The shape operator Ar
�r

 of P2n−1
r

 with respect to the unit normal vector 
𝜁r = �̇�(r) satisfies the equation

The matrix representation of Ar
�r

 with respect to the parallel translate of the decomposition 
T
𝜁

0
⊕ T

𝜁

1
⊕ T

𝜁

−1
⊕ℝJ𝜁 along � from o to �(r) therefore is

It is remarkable that the principal curvatures of the tubes P2n−1
r

 , corresponding to the maxi-
mal complex subbundle C , are the same as those for the focal set Pn−1 . The only additional 
principal curvature comes from the circles in P2n−1

r
 generated by the unit normal bundle of 

Pn−1 , which in fact is the Hopf principal curvature function � . We change the orientation 
of the unit normal vector field of P2n−1

r
 so that � becomes positive, that is, � = 2 coth(2r).

Since the Kähler structure J is parallel along � , the condition JT�

1
= T

�

−1
 is preserved by 

parallel translation along � . From this we easily see that the shape operator Ar
�r

 of P2n−1
r

 sat-
isfies Ar

�r
� + �Ar

�r
= 0 . We summarize the previous discussion in the following result.

Theorem 5.2 Let P2n−1
r

 be the tube with radius r ∈ ℝ+ around the homogeneous complex 
hypersurface Pn−1 ≅ ℂHn−1(−4) in (Qn∗, g) . The normal bundle of P2n−1

r
 consists of �-iso-

tropic singular tangent vectors of (Qn∗, g) . The homogeneous real hypersurface P2n−1
r

 has 
four distinct constant principal curvatures

with multiplicities 2, n − 2, n − 2, 1 , respectively, with respect to a suitable orientation of 
the unit normal vector field �r of P2n−1

r
 . In particular, the mean curvature of P2n−1

r
 is equal 

to 2 coth(2r) . The corresponding principal curvature spaces are

⎛
⎜⎜⎜⎝

0 0 0 0

0 − 1 0 0

0 0 − 1 0

0 0 0 − 4

⎞
⎟⎟⎟⎠

D(r) =

⎛⎜⎜⎜⎝

1 0 0 0

0 e−r 0 0

0 0 er 0

0 0 0
1

2
sinh(2r)

⎞⎟⎟⎟⎠

Ar
�r
= −D�(r)◦D−1(r).

Ar
�r
=

⎛⎜⎜⎜⎝

0 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 − 2 coth(2r)

⎞⎟⎟⎟⎠
.

0, 1,−1, 2 coth(2r)

T
𝜁
r

0
= ℂC𝜁

r
= C⊖Q, T

𝜁
r

2 coth(2r)
= ℝJ𝜁

r
,
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where C is an arbitrary real structure on Qn∗ . The principal curvature spaces T�r
1

 and T�r
−1

 
are mapped into each other by the complex structure J (or equivalently, by the structure 
tensor field � ) and are contained in the ±1-eigenspaces of a suitable real structure C. 
Moreover, the shape operator Ar and the structure tensor field � of P2n−1

r
 satisfy

To put this into the context of Theorem 1.1, we define M2n−1
�

= P2n−1
r

 with � = 2 coth(2r) . 
Recall that the normal space �oPn−1 is a Lie triple system and the totally geodesic submani-
fold B1 of Qn∗ generated by this Lie triple system is isometric to a complex hyperbolic line 
ℂH1(−4) of constant holomorphic sectional curvature −4 . The same is true for all the other 
normal spaces of Pn−1 . It follows that, by construction, the integral curves of the Reeb vector 
field � = −J� are circles of radius r in a complex hyperbolic line of constant sectional curva-
ture −4 . Such a circle has constant geodesic curvature � = 2 coth(2r) . We thus see that the 
integral curves of the Reeb vector field are circles with radius r in a complex hyperbolic line 
ℂH1(−4) . This clarifies the geometric construction discussed in the introduction.

6  The minimal homogeneous Hopf hypersurface

In this section we construct the minimal homogeneous real hypersurface M2n−1
0

 in (Qn∗, g) . 
The construction is a special case of the canonical extension technique developed by the 
author and Tamaru in [4].

We start by defining the reductive subalgebra

and the nilpotent subalgebra

of � = ��2,n . Here, �2n−3 is the (2n − 3)-dimensional Heisenberg algebra with 1-dimen-
sional center. Note that �1 already appeared in the construction of the homogeneous com-
plex hypersurface Pn−1 in Sect. 4 as part of the subalgebra � = ℝH𝛼1+2𝛼2

⊕ �1 . We define

which gives an orthogonal decomposition of � into � = �1 ⊕ �1 . The reductive subalgebra 
�1 is the centralizer and the normalizer of �1 in � . Since [�1,�1] ⊆ �1,

is a subalgebra of � , the so-called parabolic subalgebra of � associated with the simple root 
�1 . The subalgebra �1 = �1 ∩ �(�1) is a reductive Levi subalgebra of �1 and �1 is the unipo-
tent radical of �1 . Therefore the decomposition �1 = �1 ⊕ �1 is a semidirect sum of the Lie 
algebras �1 and �1 . The decomposition �1 = �1 ⊕ �1 is the Chevalley decomposition of the 
parabolic subalgebra �1.

Next, we define a reductive subalgebra �1 of � by

The subalgebra �1 normalizes �1 ⊕ �1 . The decomposition

Ar� + �Ar = 0.

�1 = �−𝛼1 ⊕ �0 ⊕ �𝛼1 ≅ ��1,1 ⊕ℝ⊕ ��n−2

�1 = �𝛼2 ⊕ �𝛼1+𝛼2 ⊕ �𝛼1+2𝛼2 ≅ �2n−3

�1 = ker(�1) = ℝH�1+2�2
, �1 = ℝH�1

,

�1 = �1 ⊕ �1

�1 = �−𝛼1 ⊕ �1 ⊕ �𝛼1 ⊕ �0 ≅ ��1,1 ⊕ ��n−2.
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is the Langlands decomposition of the parabolic subalgebra �1 . We define a subalgebra �1 
of � by

Next, we define the semisimple subalgebra

It is easy to see that the subspaces

are Lie triple systems in � . Then �1 = �𝛼1 ⊕ (�1 ⊕ �𝛼1 ) is a Cartan decomposition of the 
semisimple subalgebra �1 of � and �1 is a maximal abelian subspace of �1 ⊕ �𝛼1 . Moreover, 
�1 = (�𝛼1 ⊕ �1)⊕ �−𝛼1 ⊕ �𝛼1 is the restricted root space decomposition of �1 with respect to 
�1 and {±�1} is the corresponding set of restricted roots.

We now relate these algebraic constructions to the geometry of the complex hyperbolic 
quadric Qn∗ . We denote by A1 ≅ ℝ the connected abelian subgroup of G with Lie algebra �1 
and by N1 ≅ H2n−3 the connected nilpotent subgroup of G with Lie algebra �1 ≅ �2n−3 . Here, 
H2n−3 is the (2n − 3)-dimensional Heisenberg group with 1-dimensional center. The central-
izer L1 = ZG(�1) ≅ SU1,1 ×ℝ × SOn−2 of �1 in G is a reductive subgroup of G with Lie alge-
bra �1 . The subgroup A1 is contained in the center of L1 . The subgroup L1 normalizes N1 and 
Q1 = L1N1 is a subgroup of G with Lie algebra �1 . The subgroup Q1 coincides with the nor-
malizer NG(�1 ⊕ �1) of �1 ⊕ �1 in G and hence Q1 is a closed subgroup of G. The subgroup 
Q1 is the parabolic subgroup of G associated with the simple root �1.

Let G1 ≅ SU1,1 be the connected subgroup of G with Lie algebra �1 ≅ ��1,1 . The intersec-
tion K1 of L1 and K, i.e., K1 = L1 ∩ K ≅ SO2 × SOn−2 , is a maximal compact subgroup of 
L1 and �1 is the Lie algebra of K1 . The adjoint group Ad(L1) normalizes �1 , and consequently 
M1 = K1G1 ≅ SU1,1 × SOn−2 is a subgroup of L1 . The Lie algebra of M1 is �1 and L1 is iso-
morphic to the Lie group direct product M1 × A1 , i.e., L1 = M1 × A1 ≅ (SU1,1 × SOn−2) ×ℝ . 
The parabolic subgroup Q1 acts transitively on Qn∗ and the isotropy subgroup at o is K1 , that is, 
Qn∗ ≅ Q1∕K1.

Since �1 = �𝛼1 ⊕ (�1 ⊕ �𝛼1 ) is a Cartan decomposition of the semisimple subalgebra �1 , 
we have [�1 ⊕ �𝛼1 , �

1 ⊕ �𝛼1 ] = �𝛼1 . Thus G1 ≅ SU1,1 is the connected closed subgroup of G 
with Lie algebra [�1 ⊕ �𝛼1 , �

1 ⊕ �𝛼1 ]⊕ (�1 ⊕ �𝛼1 ) . Since �1 ⊕ �𝛼1 is a Lie triple system in 
� , the orbit B1 = G1 ⋅ o of the G1-action on Qn∗ containing o is a connected totally geodesic 
submanifold of Qn∗ with ToB1 = �1 ⊕ �𝛼1 . Moreover, B1 is a Riemannian symmetric space of 
non-compact type and rank 1, and

where ℂH1(−4) is a complex hyperbolic line of constant (holomorphic) sectional curvature 
−4 . The submanifold B1 is a boundary component of Qn∗ in the context of the maximal 
Satake compactification of Qn∗ . This boundary component coincides with the totally geo-
desic submanifold B1 that we constructed in Sect. 4.

�1 = �1 ⊕ �1 ⊕ �1

�1 = �1 ∩ � = �1 ∩ � = �1 ∩ � = �𝛼1 ⊕ �0 ≅ ��2 ⊕ ��n−2.

�1 = �−𝛼1 ⊕ �1 ⊕ �𝛼1 ≅ ��1,1.

�⊕ �𝛼1 = �1 ∩ �, �1 ⊕ �𝛼1 = �1 ∩ � = �1 ∩ �

B1 = G1 ⋅ o = G1∕(G1 ∩ K1) ≅ SU1,1∕SO2 ≅ ℂH1(−4),
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Clearly, �1 is a Lie triple system and the corresponding totally geodesic submanifold is 
a Euclidean line ℝ = A1 ⋅ o . Since the action of A1 on M is free and A1 is simply connected, 
we can identify ℝ and A1 canonically.

Finally, �1 = �⊕ �𝛼1 is a Lie triple system and the corresponding totally geodesic sub-
manifold F1 is the symmetric space

The submanifolds F1 and B1 have a natural geometric interpretation. Denote by C̄+(Λ) ⊂ � 
the closed positive Weyl chamber that is determined by the two simple roots �1 and �2 . 
Let Z be non-zero vector in C̄+(Λ) such that �1(Z) = 0 and 𝛼2(Z) > 0 , and consider the 
geodesic �Z(t) = Exp(tZ) ⋅ o in Qn∗ with �Z(0) = o and �̇�Z(0) = Z . The totally geodesic sub-
manifold F1 is the union of all geodesics in Qn∗ parallel to �Z , and B1 is the semisimple part 
of F1 in the de Rham decomposition of F1 (see, e.g., [9], Proposition 2.11.4 and Proposition 
2.20.10).

The parabolic group Q1 is diffeomorphic to the product M1 × A1 × N1 . This analytic dif-
feomorphism induces an analytic diffeomorphism between

and Qn∗ , giving a horospherical decomposition of the complex hyperbolic quadric Qn∗,

The factor ℝ × H2n−3 corresponds to the homogeneous complex hypersurface 
Pn−1 ≅ ℂHn−1(−4) that we discussed in Sect. 4.

We have ℝH𝛼1
= �1 ⊂ �1 and G1 ⋅ o = B1 . It follows from Theorem 4.2 that �1 consists 

of �-isotropic tangent vectors of Qn∗ . Let A1 ≅ ℝ be the abelian subalgebra of � with Lie 
algebra �1 . Then the orbit A1 ⋅ o is the path of an �-isotropic geodesic � (determined by 
the root vector H�1

 ) in the complex hyperbolic quadric Qn∗ . Moreover, by construction, 
this geodesic is contained in the boundary component B1 ≅ ℂH1(−4) . The action of A1 on 
ℂH1(−4) is of cohomogeneity one. The orbit containing o is the geodesic � , and the other 
orbits are the equidistant curves to �.

The canonical extension of the cohomogeneity one action of A1 on the boundary com-
ponent B1 ≅ ℂH1(−4) is defined as follows. We first define the solvable subalgebra

of �⊕ � . Let S1 be the connected solvable subgroup of AN with Lie algebra �1 . Then the 
action of S1 on AN (resp. Qn∗ ) is of cohomogeneity one (see [4]). By construction, all orbits 
of the S1-action on AN (resp. Qn∗ ) are homogeneous real hypersurfaces in (AN, ⟨⋅, ⋅⟩) (resp. 
(Qn∗, g) ). Let M̂2n−1

0
 (resp. M2n−1

0
 ) be the orbit containing the point o. Geometrically, we can 

F1 = L1 ⋅ o = L1∕K1 = (M1 × A1)∕K1 = B1 ×ℝ ≅ ℂH1(−4) ×ℝ.

B1 ×ℝ × N1 ≅ ℂH1(−4) ×ℝ × H2n−3

ℂH1(−4) ×ℝ × H2n−3 ≅ Qn∗.

�1 = �1 ⊕ �1 ⊕ �1 = �⊕ �1

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 y a1 − y v1 ⋯ vn−2
−y 0 y a2 w1 ⋯ wn−2

a1 y 0 − y v1 ⋯ vn−2
−y a2 y 0 w1 ⋯ wn−2

v1 w1 − v1 − w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 wn−2 − vn−2 − wn−2 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

∶
a1, a2, y ∈ ℝ,

v,w ∈ ℝ
n−2

⎫
⎪⎪⎪⎬⎪⎪⎪⎭
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describe this orbit as the canonical extension of an �-isotropic geodesic in the boundary 
component B1 ≅ ℂH1(−4).

We will now compute the shape operator of the homogeneous real hypersurface 
M̂2n−1

0
 in (AN, ⟨⋅, ⋅⟩) . Since M̂2n−1

0
 is homogeneous, it suffices to make the computations 

at the point o. We define

Then

and

Thus 𝜁 is a unit normal vector of M̂2n−1
0

 at o. Let Â be the shape operator of M̂2n−1
0

 in 
(AN, ⟨⋅, ⋅⟩) with respect to 𝜁 . As in Sect. 4, using arguments involving the Weingarten and 
Koszul formulas, we can show that

for all X̂ ∈ �1 , where 𝜁 =
1

2
(𝜁 − 𝜃(𝜁 )) is the orthogonal projection of 𝜁 onto � and [ ⋅ ]�1 is 

the orthogonal projection onto �1.
We have

For

𝜁 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 ⋯ 0

−1 0 1 0 0 ⋯ 0

0 1 0 1 0 ⋯ 0

1 0 − 1 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ �𝛼1 ⊂ �.

𝜃(𝜁 ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 − 1 0 ⋯ 0

−1 0 − 1 0 0 ⋯ 0

0 − 1 0 1 0 ⋯ 0

−1 0 − 1 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ �−𝛼1

⟨𝜁 , 𝜁⟩ = −
1

8
tr(𝜁𝜃(𝜁 )) = 1.

ÂX̂ = [𝜁 , X̂]�1

𝜁 =
1

2
(𝜁 − 𝜃(𝜁 )) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 ⋯ 0

0 0 1 0 0 ⋯ 0

0 1 0 0 0 ⋯ 0

1 0 0 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ �𝛼1 .
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we then compute

The orthogonal projection of [𝜁 , X̂] onto �1 is

We conclude that the shape operator Â of M̂2n−1
0

 in (AN, ⟨⋅, ⋅⟩) with respect to 𝜁 is given by

with

From this we deduce that 0 is a principal curvature of M̂2n−1
0

 with multiplicity 3 and cor-
responding principal curvature space

X̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 y a1 − y v1 ⋯ vn−2
−y 0 y a2 w1 ⋯ wn−2

a1 y 0 − y v1 ⋯ vn−2
−y a2 y 0 w1 ⋯ wn−2

v1 w1 − v1 − w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 wn−2 − vn−2 − wn−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ �1

[𝜁 , X̂] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 a2 − a1 0 0 w1 ⋯ wn−2

a1 − a2 0 0 0 v1 ⋯ vn−2
0 0 0 a2 − a1 w1 ⋯ wn−2

0 0 a1 − a2 0 v1 ⋯ vn−2
w1 v1 − w1 − v1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

wn−2 vn−2 − wn−2 − vn−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

[𝜁 , X̂]�1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 w1 ⋯ wn−2

0 0 0 0 v1 ⋯ vn−2
0 0 0 0 w1 ⋯ wn−2

0 0 0 0 v1 ⋯ vn−2
w1 v1 − w1 − v1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

wn−2 vn−2 − wn−2 − vn−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

ÂX̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 w1 ⋯ wn−2

0 0 0 0 v1 ⋯ vn−2
0 0 0 0 w1 ⋯ wn−2

0 0 0 0 v1 ⋯ vn−2
w1 v1 − w1 − v1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

wn−2 vn−2 − wn−2 − vn−2 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

X̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 y a1 − y v1 ⋯ vn−2
−y 0 y a2 w1 ⋯ wn−2

a1 y 0 − y v1 ⋯ vn−2
−y a2 y 0 w1 ⋯ wn−2

v1 w1 − v1 − w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 wn−2 − vn−2 − wn−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ �1.
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On the orthogonal complement �𝛼1+𝛼2 ⊕ �𝛼2 the shape operator is of the form

with respect to the orthogonal decomposition �𝛼1+𝛼2 ⊕ �𝛼2 . The characteristic polynomial 
of this matrix is x2 − 1 , and hence the eigenvalues of Â restricted to �𝛼1+𝛼2 ⊕ �𝛼2 are 1 and 
−1 . The corresponding eigenspaces are

and

All of the above calculations are with respect to the metric ⟨⋅, ⋅⟩ on AN. We now switch 
to the Riemannian metric g on Qn∗ and the Cartan decomposition � = �⊕ � . Recall that, by 
construction, (AN, ⟨⋅, ⋅⟩) and (Qn∗, g) are isometric and the metrics are related by

with H1,H2 ∈ � and X̂1, X̂2 ∈ �.
Since 𝜁 is a unit vector in ��1 , the vector 𝜁 =

1

2
(𝜁 − 𝜃(𝜁 )) is a unit vector in ��1 . Since 

�𝛼1 ⊂ ToB1 and all (non-zero) tangent vectors of the boundary component B1 are �-isotropic 
(see Theorem 4.2), we conclude that the normal bundle of M2n−1

0
 consists of �-isotropic sin-

gular tangent vectors of (Qn∗, g).
Let A be the shape operator of M2n−1

0
 in (Qn∗, g) with respect to � . The above calculations 

imply that

T̂0 = �⊕ �𝛼1⊕2𝛼2
.

Â =

(
0 1

1 0

)

T̂1 =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 u1 ⋯ un−2
0 0 0 0 u1 ⋯ un−2
0 0 0 0 u1 ⋯ un−2
0 0 0 0 u1 ⋯ un−2
u1 u1 − u1 − u1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

un−2 un−2 − un−2 − un−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

≅ ℝ
n−2

T̂−1 =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 u1 ⋯ un−2
0 0 0 0 − u1 ⋯ − un−2
0 0 0 0 u1 ⋯ un−2
0 0 0 0 − u1 ⋯ − un−2
u1 − u1 − u1 u1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

un−2 − un−2 − un−2 un−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

≅ ℝ
n−2.

⟨H1 + X̂1,H2 + X̂2⟩ = g(H1,H2) + g(X1,X2)

AX =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 w1 ⋯ wn−2

0 0 0 0 v1 ⋯ vn−2
0 0 0 0 0 ⋯ 0

0 0 0 0 0 ⋯ 0

w1 v1 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

wn−2 vn−2 0 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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with

From this, we easily deduce the following result.

Theorem 6.1 Let M2n−1
0

 be the homogeneous real hypersurface in (Qn∗, g) obtained by 
canonical extension of the geodesic that is tangent to the root vector H�1

 in the boundary 
component B1 ≅ ℂH1(−4) of (Qn∗, g) . The normal bundle of M2n−1

0
 consists of �-isotropic 

singular tangent vectors of (Qn∗, g) and M2n−1
0

 has three distinct constant principal cur-
vatures 0, 1, −1 with multiplicities 3, n − 2 , n − 2 , respectively. The principal curvature 
spaces T0 , T1 and T−1 are

We have T1 ⊕ T−1 = Q and JT1 = T−1 . The shape operator A of M2n−1
0

 satisfies

Note that

We immediately see from Theorem 6.1 that tr(A) = 0.

Corollary 6.2 The homogeneous Hopf hypersurface M2n−1
0

 in (Qn∗, g) is minimal.

The eigenspaces T0 , T1 and T−1 of the shape operator A and the eigenspaces E0 , E−1 
and E−4 of the normal Jacobi operator K� satisfy

It follows that A and K = K� are simultaneously diagonalizable and hence AK = KA . This 
implies that M2n−1

0
 is curvature-adapted.

Corollary 6.3 The homogeneous Hopf hypersurface M2n−1
0

 in (Qn∗, g) is curvature-adapted.

We finally relate this construction to the discussion in the introduction. The 
subalgebra

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 a1 − y v1 ⋯ vn−2
0 0 y a2 w1 ⋯ wn−2

a1 y 0 0 0 ⋯ 0

−y a2 0 0 0 ⋯ 0

v1 w1 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 wn−2 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ ToM
2n−1
0

⊂ �.

T0 = �⊕ �𝛼1+2𝛼2 = ℝJ𝜁 ⊕ (C⊖Q),

T1 = {X − JX ∶ X ∈ �𝛼2} = {X + JX ∶ X ∈ �𝛼1+𝛼2},

T−1 = {X + JX ∶ X ∈ �𝛼2} = {X − JX ∶ X ∈ �𝛼1+𝛼2}.

A� + �A = 0.

T1 ⊂ V

�
1√
2

(C0 + JC0)

�
, T−1 ⊂ JV

�
1√
2

(C0 + JC0)

�
.

T0 = E0 ⊕ E−4, T−1 ⊕ T1 = E−1.
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of �⊕ � contains the subalgebra

The subalgebra � induces the homogeneous complex hypersurface P̂n−1 ≅ ℂHn−1(−4) , as 
discussed in Sect. 4. Since the construction is left-invariant, it follows that the homogene-
ous real hypersurface M̂2n−1

0
 in (AN, ⟨⋅, ⋅⟩) is foliated by isometric copies of the homogene-

ous complex hypersurface P̂n−1 ≅ ℂHn−1(−4) . This implies that the homogeneous complex 
hypersurface M2n−1

0
 in (Qn∗, g) is foliated by isometric copies of the homogeneous complex 

hypersurface Pn−1 ≅ ℂHn−1(−4) . The normal space �oPn−1 is a Lie triple system, and the 
totally geodesic submanifold B1 of Qn∗ generated by this Lie triple system is a complex 
hyperbolic line ℂH1(−4) of constant holomorphic sectional curvature −4 . The same is true 
for all the normal spaces of Pn−1 at other points. It follows that, by construction, the inte-
gral curves of the Reeb vector field � = −J� are geodesics in a complex hyperbolic line of 
constant (holomorphic) sectional curvature −4 . Such a geodesic has constant geodesic cur-
vature 0. This clarifies the geometric construction explained in the introduction.

7  Equidistant real hypersurfaces

In this section we compute the shape operator of the other orbits of the cohomogeneity 
one action on (Qn∗, g) that we discussed in Sect. 6. Recall that M2n−1

0
 is the orbit of this 

action containing o. Since the action is isometric, the other orbits are the equidistant 
real hypersurfaces to M2n−1

0
 . For r ∈ ℝ+ we denote by M2n−1

�
 the equidistant real hyper-

surface to M2n−1
0

 at oriented distance r ∈ ℝ+ , where we put � = 2 tanh(2r).
From Corollary 6.3 we know that M2n−1

0
 is a curvature-adapted real hypersurface 

in Qn∗ . We can therefore use Jacobi field theory to compute the principal curvatures 
and principal curvature spaces of M2n−1

�
 (see, e.g., [1], Section 10.2.2). Since M2n−1

�
 is 

a homogeneous real hypersurface in Qn∗ , it suffices to compute the principal curvatures 
and principal curvature spaces at one point. Let � ∈ �oM

2n−1
0

 be the unit normal vector 
of M2n−1

0
 as defined in Sect. 6 and A� be the shape operator of M2n−1

0
 at o with respect 

to � . We denote by T0 , T1 and T−1 the principal curvature spaces as in Theorem 6.1. Let 
� ∶ ℝ → Qn∗ be the geodesic in Qn∗ with �(0) = o and �̇�(0) = 𝜁 . Then p = �(r) ∈ M2n−1

�
 

and 𝜁r = �̇�(r) is a unit normal vector of M2n−1
�

 at p. We denote by �⟂ the parallel subbun-
dle of the tangent bundle of Qn∗ along � that is defined by the orthogonal complements 
of ℝ�̇�(t) in T�(t)Qn∗ , and put

Let D be the End(�⟂)-valued tensor field along � solving the Jacobi equation

If v ∈ ToM
2n−1
0

 and Bv is the parallel vector field along � with Bv(0) = v , then Y = DBv is 
the Jacobi field along � with initial values Y(0) = v and Y �(0) = −A�v.

Since � is �-isotropic, the Jacobi operator R̄⟂
𝛾
 at o is of matrix form

�1 = �⊕ �1 = �⊕ �𝛼2 ⊕ �𝛼1+𝛼2 ⊕ �𝛼1+2𝛼2

� = ℝH𝛼1+2𝛼2
⊕ �𝛼2 ⊕ �𝛼1+𝛼2 ⊕ �𝛼1+2𝛼2 .

R̄⟂
𝛾
= R̄𝛾 |𝛾⟂ = R̄(⋅, �̇�)�̇�|𝛾⟂ .

D�� + R̄⟂
𝛾
◦D = 0, D(0) = idToM2n−1

0

, D�(0) = −A𝜁 .
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with respect to the decomposition ℂC𝜁 ⊕ T1 ⊕ T−1 ⊕ℝJ𝜁 . Note that T0 = ℂC𝜁 ⊕ℝJ𝜁 . 
Since (Qn∗, g) is a Riemannian symmetric space, the Jacobi operator R̄⟂

𝛾
 is parallel along � . 

By solving the above second-order initial value problem explicitly we obtain

with respect to the parallel translate of the decomposition T0 ⊕ T1 ⊕ T−1 ⊕ℝJ𝜁 along � 
from o to �(r) . The shape operator A�

�r
 of M2n−1

�
 with respect to 𝜁r = �̇�(r) satisfies the 

equation

The matrix representation of A�
�r

 with respect to the parallel translate of the decomposition 
T0 ⊕ T1 ⊕ T−1 ⊕ℝJ𝜁 along � from o to �(r) therefore is

It is remarkable that the principal curvatures of the equidistant real hypersurfaces to M2n−1
0

 
are preserved along the parallel translate of the maximal complex subspace Co ⊂ ToM

2n−1
0

 . 
The only additional principal curvature arises in direction of the Reeb vector field, which 
is the Hopf principal curvature. We change the orientation of the unit normal vector field �r 
so that the Hopf principal curvature is positive, that is, is equal to � . Thus we have proved:

Theorem 7.1 Let M2n−1
0

 be the minimal homogeneous Hopf hypersurface in (Qn∗, g) as 
in Sect. 6 and M2n−1

�
 be the equidistant real hypersurface at oriented distance r ∈ ℝ+ from 

M2n−1
0

 , where � = 2 tanh(2r) . Then M2n−1
�

 is a homogeneous Hopf hypersurface with four 
distinct constant principal curvatures 0, 1, −1 , 2 tanh(2r) with multiplicities 2, n − 2 , n − 2 , 
1, respectively. The principal curvature spaces T0 , T1 , T−1 , T2 tanh(2r) satisfy

Moreover, the shape operator A� and the structure tensor field � of M2n−1
�

 satisfy

The principal curvature spaces T2 tanh(2r) , T0 , T1 and T−1 of the shape operator A� and 
the eigenspaces E0 , E−1 and E−4 of the normal Jacobi operator K� = K�r

 satisfy

⎛
⎜⎜⎜⎝

0 0 0 0

0 − 1 0 0

0 0 − 1 0

0 0 0 − 4

⎞
⎟⎟⎟⎠

D(r) =

⎛⎜⎜⎜⎝

1 0 0 0

0 e−r 0 0

0 0 er 0

0 0 0 cosh(2r)

⎞⎟⎟⎟⎠

A�
�r
= −D�(r)◦D−1(r).

A�
�r
=

⎛⎜⎜⎜⎝

0 0 0 0

0 1 0 0

0 0 − 1 0

0 0 0 − 2 tanh(2r)

⎞⎟⎟⎟⎠
.

T0 = C⊖Q,

T2 tanh(2r) = ℝJ𝜁r = C
⟂
,

T1 ⊕ T−1 = Q and JT1 = T−1.

A�� + �A� = 0.



650 J. Berndt 

1 3

It follows that A� and K� are simultaneously diagonalizable and hence A�K
� = K

�A� . This 
implies:

Corollary 7.2 The equidistant real hypersurface M2n−1
�

 , 0 < 𝛼 < 2 , to the minimal homo-
geneous Hopf hypersurface M2n−1

0
 in (Qn∗, g) is curvature-adapted.

By construction, the integral curves of the Reeb vector field on M2n−1
�

 are congruent to 
an equidistant curve at distance r = 1

2
tanh

−1(
�

2
) to a geodesic in a complex hyperbolic line 

ℂH1(−4) . Such an equidistant curve has constant geodesic curvature 2 tanh(2r) . As in pre-
vious cases, this leads to the geometric interpretation of M2n−1

�
 given by attaching copies of 

the homogeneous complex hypersurface Pn−1 ≅ ℂHn−1(−4) to such an equidistant curve to 
a geodesic in the boundary component B1 ≅ ℂH1(−4) . Equivalently, M2n−1

�
 is the canonical 

extension of an equidistant curve at distance r = 1

2
tanh

−1(
�

2
) to a geodesic in the boundary 

component B1 ≅ ℂH1(−4).

8  The homogeneous Hopf hypersurface of horocyclic type

In this section we discuss the canonical extension of a horocycle in the boundary compo-
nent B1 ≅ ℂH1(−4) , which leads to the homogeneous real hypersurface M2n−1

2
 in Theo-

rem 1.1. We first define the solvable subalgebra

of �⊕ � . Recall that �1 ⊕ �𝛼1 = ℝH𝛼1
⊕ �𝛼1 generates the boundary component 

B1 ≅ ℂH1(−4) . The orbit containing o of the 1-dimensional Lie group generated by ��1 is 
a horocycle in the boundary component B1 . Since the tangent vectors of B1 are �-isotropic, 
the horocycle is �-isotropic. The canonical extension of this cohomogeneity one action 
on B1 is the cohomogeneity one action on Qn∗ by the subgroup H1 of AN with Lie algebra 
�1 . Let M̂2n−1

2
= H1 ⋅ o ≅ H1 be the orbit of the H1-action on (AN, ⟨⋅, ⋅⟩) containing o and 

M2n−1
2

= H1 ⋅ o be the orbit of the H1-action on (Qn∗, g) containing o.
The normal space 𝜈oM̂2n−1

2
 of M̂2n−1

2
 at o is

Since ⟨H�1
,H�1

⟩ = 4 , the vector 𝜁 =
1

2
H𝛼1

∈ � is a unit normal vector of M̂2n−1
2

 at o. Let Â 
be the shape operator of M̂2n−1

2
 in (AN, ⟨⋅, ⋅⟩) with respect to 𝜁 . As in previous sections, we 

can show that the shape operator Â of M̂2n−1
2

 is given by

T2 tanh(2r) = E−4, T0 = E0, T−1 ⊕ T1 = E−1.

�1 = �1 ⊕ � =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 x + y a x − y v1 ⋯ vn−2
−x − y 0 x + y a w1 ⋯ wn−2

a x + y 0 x − y v1 ⋯ vn−2
x − y a − x + y 0 w1 ⋯ wn−2

v1 w1 − v1 − w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 wn−2 − vn−2 − wn−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∶
a, x, y ∈ ℝ,

v,w ∈ ℝ
n−2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

𝜈oM̂
2n−1
2

= �1 = ℝH𝛼1
.

ÂX̂ = [𝜁 , X̂]�1
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for all X̂ ∈ �1 , where

and [ ⋅ ]�1 is the orthogonal projection onto �1.
For

we then compute

Since the last matrix is in �1 , the orthogonal projection of [𝜁 , X̂] onto �1 is [𝜁 , X̂] . We con-
clude that the shape operator Â of M̂2n−1

2
 in (AN, ⟨⋅, ⋅⟩) is given by

with

From this we deduce that the principal curvatures of M̂2n−1
2

 are 2, 0, 1, −1 with correspond-
ing multiplicities 1, 2, n − 2 , n − 2 , respectively. The corresponding principal curvature 
spaces are

𝜁 =
1

2
(𝜁 − 𝜃(𝜁 )) = 𝜁 =

1

2
H𝛼1

X̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 x + y a x − y v1 ⋯ vn−2
−x − y 0 x + y a w1 ⋯ wn−2

a x + y 0 x − y v1 ⋯ vn−2
x − y a − x + y 0 w1 ⋯ wn−2

v1 w1 − v1 − w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 wn−2 − vn−2 − wn−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ �1

[𝜁 , X̂] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 2x 0 2x v1 ⋯ vn−2
−2x 0 2x 0 − w1 ⋯ − wn−2

0 2x 0 2x v1 ⋯ vn−2
2x 0 − 2x 0 − w1 ⋯ − wn−2

v1 − w1 − v1 w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 − wn−2 − vn−2 wn−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

ÂX̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 2x 0 2x v1 ⋯ vn−2
−2x 0 2x 0 − w1 ⋯ − wn−2

0 2x 0 2x v1 ⋯ vn−2
2x 0 − 2x 0 − w1 ⋯ − wn−2

v1 − w1 − v1 w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 − wn−2 − vn−2 wn−2 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

X̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 x + y a x − y v1 ⋯ vn−2
−x − y 0 x + y a w1 ⋯ wn−2

a x + y 0 x − y v1 ⋯ vn−2
x − y a − x + y 0 w1 ⋯ wn−2

v1 w1 − v1 − w1 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 wn−2 − vn−2 − wn−2 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ �1.
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All of the above calculations are with respect to the metric ⟨⋅, ⋅⟩ on AN. We now switch 
to the Riemannian metric g on Qn∗ and the Cartan decomposition � = �⊕ � . Recall that, by 
construction, (AN, ⟨⋅, ⋅⟩) and (Qn∗, g) are isometric and the metrics are related by

with H1,H2 ∈ � and X̂1, X̂2 ∈ �.
Let A be the shape operator of M2n−1

2
 in (Qn∗, g) with respect to � . The above calcula-

tions then imply

with

From this we deduce the following result.

Theorem 8.1 The homogeneous real hypersurface M2n−1
2

 in (Qn∗, g) has four distinct con-
stant principal curvatures 2, 0, 1, −1 with multiplicities 1, 2, n − 2 , n − 2 , respectively. The 
principal curvature spaces T2 , T0 , T1 and T−1 are

In particular, T1 and T−1 are mapped into each other by the structure tensor field � . Moreo-
ver, the shape operator A and the structure tensor field � of M2n−1

2
 satisfy

Note that T1 ⊂ V(C0) and T−1 ⊂ JV(C0).
The eigenspaces T2 , T0 , T1 and T−1 of the shape operator A and the eigenspaces E0 , E−1 

and E−4 of the normal Jacobi operator K = K� satisfy

It follows that A and K are simultaneously diagonalizable and hence AK = KA . Thus we 
have proved the following.

T̂2 = �𝛼1 T̂0 = �1 ⊕ �𝛼1⊕2𝛼2
T̂1 = �𝛼1+𝛼2 T̂−1 = �𝛼2 .

⟨H1 + X̂1,H2 + X̂2⟩ = g(H1,H2) + g(X1,X2)

AX =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 2x v1 ⋯ vn−2
0 0 2x 0 − w1 ⋯ − wn−2

0 2x 0 0 0 ⋯ 0

2x 0 0 0 0 ⋯ 0

v1 − w1 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 − wn−2 0 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 a x − y v1 ⋯ vn−2
0 0 x + y a w1 ⋯ wn−2

a x + y 0 0 0 ⋯ 0

x − y a 0 0 0 ⋯ 0

v1 w1 0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

vn−2 wn−2 0 0 0 ⋯ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ ToM
2n−1
2

⊂ �.

T2 = �𝛼1 = ℝJ𝜁 , T0 = ℝH𝛼+2𝛼2
⊕ �𝛼1⊕2𝛼2

= C⊖Q, T1 = �𝛼1+𝛼2 , T−1 = �𝛼2 .

A� + �A = 0.

T2 = E−4, T0 = E0, T−1 ⊕ T1 = E−1.
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Corollary 8.2 The homogeneous Hopf hypersurface M2n−1
2

 in (Qn∗, g) is curvature-adapted.

By construction, the integral curves of the Reeb vector field � are congruent to a horo-
cycle in a complex hyperbolic line ℂH1(−4) . Such a horocycle has constant geodesic 
curvature 2. As in previous cases, this leads to the geometric interpretation of M2n−1

2
 

being obtained by attaching isometric copies of the homogeneous complex hypersurface 
Pn−1 ≅ ℂHn−1(−4) to the horocycle in a suitable way. Equivalently, M2n−1

2
 is the canonical 

extension of a horocycle in the boundary component B1 ≅ ℂH1(−4).

9  Curvature

In this section we compute the Ricci tensor Ric� and the scalar curvature s� of the homo-
geneous Hopf hypersurface M2n−1

�
 in (Qn∗, g) . Let R� , Ric� , s� be the Riemannian curvature 

tensor, Ricci tensor, scalar curvature of M2n−1
�

 , respectively. Let A� and K� be the shape 
operator and normal Jacobi operator of M2n−1

�
 with respect to the unit normal vector �� , 

respectively. The Gauss equation tells us that

for all X, Y , Z,W ∈ �(M2n−1
�

) . Contracting the Gauss equation gives, after some straight-
forward computations, the expression

where we used the fact that the Ricci tensor of (Qn∗, g) is equal to −2ng and tr(A�) = � by 
Theorem 1.1. Since the unit normal vector �� of M2n−1

�
 is �-isotropic, the normal Jacobi 

operator K� of M2n−1
�

 satisfies

by Theorem 1.1 and the description of the Jacobi operator in Sect. 3. It follows that

It follows that the Ricci tensor of M2n−1
�

 has two (if � = 0 ), three (if � = 4 ) or four (if 
� ∉ {0, 4} ) constant eigenvalues. More specifically, for � = 0 we obtain

which means that M2n−1
0

 is pseudo-Einstein (see [12]).

g(R̄(X, Y)Z,W) = g(R𝛼(X,Y)Z,W) − g(A𝛼Y ,Z)g(A𝛼X,W) + g(A𝛼X, Z)g(A𝛼Y ,W)

Ric�X = −2nX −K�X + �A�X − A2

�
X,

K𝛼X =

⎧⎪⎨⎪⎩

0 , if X ∈ C⊖Q = T0,

−X , if X ∈ Q = T−1 ⊕ T1,

−4X , if X ∈ C
⟂ = ℝ𝜉 = T𝛼

Ric𝛼X =

⎧⎪⎨⎪⎩

−2nX , if X ∈ C⊖Q = T0,

(−2n − 𝛼)X , if X ∈ T−1,

(−2n + 𝛼)X , if X ∈ T1,

(−2n + 4)X , if X ∈ C
⟂ = ℝ𝜉 = T𝛼 .

Ric0X = −2nX + 4�(X)�,
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Proposition 9.1 The minimal homogeneous real hypersurface M2n−1
0

 is a pseudo-Einstein  
Hopf hypersurface in (Qn∗, g) . In particular, the Ricci tensor Ric0 of M2n−1

0
 is �-invariant, 

that is, Ric0◦� = �◦Ric0.

We also see that

This equation is motivated by Ricci solitons (see [3], Lemma 3.3.11). However, none of the 
homogeneous Hopf hypersurfaces M2n−1

�
 is a Ricci soliton.

By contracting the Ricci tensor we see that the scalar curvature of M2n−1
�

 is independent of �.

Proposition 9.2 The scalar curvature s� of the homogeneous Hopf hypersurface M2n−1
�

 in 
(Qn∗, g) does not depend on � and satisfies
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