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Abstract
Aggregation equations, such as the parabolic-elliptic Patlak–Keller–Segel model, are
known to have an optimal threshold for global existence versus finite-time blow-up.
In particular, if the diffusion is absent, then all smooth solutions with finite second
moment can exist only locally in time. Nevertheless, one can ask whether global exis-
tence can be restored by adding a suitable noise to the equation, so that the dynamics
are now stochastic. Inspired by the work of Buckmaster et al. (IntMath Res Not IMRN
23:9370–9385, 2020) showing that, with high probability, the inviscid SQG equation
with random diffusion has global classical solutions, we investigate whether suitable
randomdiffusion can restore global existence for a large class of active scalar equations
in arbitrary dimensionwith possibly singular velocity fields. This class includesHamil-
tonian flows, such as the SQG equation and its generalizations, and gradient flows,
such as those arising in aggregationmodels. For this class, we show global existence of
solutions in Gevrey-type Fourier–Lebesgue spaces with quantifiable high probability.

Mathematics Subject Classification 35Q35 · 35Q49 · 35Q70 · 35R60 · 60H50

1 Introduction

1.1 Motivation

To motivate the problem addressed in this article, let us consider the two-dimensional
aggregation-diffusion equation
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{
∂tθ = div(θ∇g ∗ θ)+ ν�θ

θ |t=0 = θ0
(t, x) ∈ R+ × R

2. (1.1)

Here, g(x) = 1
2π ln |x | is the Newtonian potential on R

2 and ν ≥ 0 is the diffusion
strength. It is natural to assume that θ0 ≥ 0 and consider solutions θ ≥ 0, as θ is
supposed to represent a density. If ν > 0, then Eq. (1.1) is known as the parabolic-
elliptic Patlak–Keller–Segel (PKS) equation, which is a model for the aggregation of
cells by chemotaxis [68, 79, 82]. If ν = 0, then the equation is the gradient flow of the
Newtonian energy with respect to the 2-Wasserstein metric. The equation has been
studied as a model for the evolution of vortex densities in superconductors [28, 98]
and as a model for adhesion dynamics [80, 85].

It is a straightforward calculation that any smooth solution to (1.1) conserves mass,
so we can unambiguously write M = ∫

R2 θ(x)dx = ∫
R2 θ0(x)dx . Suppose that θ is a

solution to (1.1) with finite secondmoment
∫
R2 |x |2θ t (x)dx . Evidently this quantity is

strictly positive if θ t is not identically zero. Using integration by parts, one computes

d

dt

∫
R2
|x |2θ t (x)dx = −M2

2π
+ 4νM = M

2π
(8πν − M) . (1.2)

Thus, ifM > 8πν, then the secondmoment is strictly decreasing at a linear rate. Since
the second moment is nonnegative, this implies that the maximal time of existence
for θ is finite. In particular, we see that if ν = 0, so there is no diffusion, then any
nonzero, sufficiently localized classical solution to (1.1) must have finite lifespan [65].
In fact, for initial datum in L1, one has a unique, global mild solution to (1.1) if and
only if M ≤ 8πν [97]. For the asymptotic behavior of solutions, we refer to [6, 20]
(M < 8πν), [4, 54] (M = 8πν), and [94–96] (M > 8πν), and references therein. In
the case ν = 0, one has a sharp bound for the time of existence for compactly supported
L∞ weak solutions to (1.1), which are necessarily unique, as well as exact solutions
that provide an explicit example of finite-time collapse to a nontrivial measure [12].

For the deterministic dynamics of Eq. (1.1), we see that global existence is a non-
starter for classical solutions if the diffusion is too weak relative to the size of the
initial data. But in the past two decades, there has been intense research activity on
understanding how adding some noise structure (in varying forms) to deterministic
equations can impact the behavior of solutions. A small, non-exhaustive sample of
this research is given by [7, 14, 22, 36, 37, 41, 44–47, 50] and references therein.
Concerning equations of the form (1.1), Flandoli et al. [43] have shown that blow-up
is delayed in a 3D version of (1.1) with positive ν on T

d by adding a suitable multi-
plicative noise of transport type. Misiats et al. [77] have shown that some choices of
random perturbations of Eq. (1.1) with ν > 0 lead to global solutions for small-mass
initial data, while other choices lead to finite-time blow-up with positive probability
for all initial data .

To the best of our knowledge, prior works have not shown that noise prevents finite-
time blow-up, in particular for the case ν = 0 when all smooth, sufficiently localized
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solutions necessarily blow up in finite time.1 Recently, the second author together with
Buckmaster et al. [14] showed that adding random diffusion leads to global solutions
with positive probability for the invsicid surface quasi-geostrophic (SQG) equation
with Gevrey-type initial data. Unlike the Eq. (1.1), inviscid SQG is a Hamiltonian
flow, and the long-time dynamics of classical solutions is still unresolved. In light of
this result, it is natural to ask if random diffusion may somehow improve the existence
theory for the Eq. (1.1), for which solutions a priori behave very differently. Thus, we
pose the following question, which the present article seeks to answer.

Question 1.1 Can one restore global existence of sufficiently regular solutions to (1.1)
by adding a suitable random diffusion?

1.2 Problem formulation

In order to investigate the regularizing effect of random diffusion and answer Ques-
tion 1.1, let us start from more general deterministic equations of the form

{
∂tθ + div (θM∇g ∗ θ) = 0

θ |t=0 = θ0
(t, x) ∈ R× R

d . (1.3)

One could also include a diffusion term −|∇|λθ , for λ > 0, in the right-hand side
(see Remark 1.8 below), but we will not do so here. Above, M is a d × d constant
matrix. There are several meaningful choices for M. For instance, if we choose M to
be −I, then we get gradient flows. While if we choose M to be antisymmetric,2 then
we obtain conservative/Hamiltonian flows. We assume that g ∈ S ′(Rd) is a tempered
distribution, such that the Fourier transform of ∇g is locally integrable and satisfies
the bound |ξ ĝ(ξ)| � |ξ |1−γ for some 0 < γ < d + 1. The model case is when g is a
log or Riesz potential according to the rule

±
{
− log |x |, γ = d

|x |γ−d , γ ∈ (0, d + 1) \ {d}. (1.4)

The choice of sign determines whether the potential is repulsive (+) or attractive
(−). When γ = 2, (1.4) is a constant multiple of the Coulomb/Newtonian potential.
We refer to the ranges γ > 2 and γ < 2 as sub-Coulombic and super-Coulombic,
respectively.

The general equation (1.3) encompasses a wide class of physical models. Focusing
first on the conservative case, in whichM is antisymmetric, the most notable examples
are in dimension 2. If M is rotation by π

2 and g(x) = − 1
2π log |x | is the Coulomb

potential, then (1.3) becomes the incompressible Euler vorticity equation (for instance,

1 In the interests of completeness, we also mention that several works (e.g. [8, 63, 69]) have investigated
the suppression of finite-time blow-up in the Patlak–Keller–Segel equation by deterministic perturbations
of convective type.
2 This case is limited to dimensions d ≥ 2, since there is no antisymmetric matrix (i.e. scalar) in dimension
1.
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see [76, Section 1.2] or [73, Chapter 2]). If g(x) = C |x |−1, then Eq. (1.3) becomes
the inviscid SQG equation, which models the motion of a rotating stratified fluid with
small Rosby and Froude numbers in which potential vorticity is conserved [26, 62,
83, 87]. More generally, choosing g(x) = Cγ |x |γ−2, for 0 < γ < 2, leads to the
generalized SQG (gSQG) family of equations [18, 84], for which the Euler vorticity
equation is the γ → 2− limit. While global-well posedness is known for classical
[58, 99] and weak [100] solutions to the Euler case, the global existence of smooth
solutions to the gSQG equation is a major open problem—it is only known if one
adds suitably strong diffusion to (1.3) (e.g. see [30, 33, 35, 67]). We refer the reader
to [16, 17, 21, 23, 26, 49, 57, 60, 87] and references therein for more information on
the well-posedness and long-time dynamics of the gSQG equation.

In the gradient-flow case, in whichM = −I, Eq. (1.3) has been studied for several
applications in addition to the aforementioned ones of adhesion dynamics, chemotaxis,
and vortices in superconductors. To name a few: materials science [61], cooperative
control [56], granular flow [3, 5, 27, 93], phase segregation in lattice matter models
[51–53], and swarming models [74, 75, 91, 92]. Several works have focused on the
well-posedness and long-time dynamics. We recount some of the results for the model
interaction (1.4), which is sometimes called a fractional porous medium equation. In
particular, in the repulsive case γ = 2, global existence, uniqueness, and asymptotic
behavior of nonnegative classical and L∞ weak solutions are known [2, 12, 71, 89].
The case 2 < γ < d + 1 is easier and follows by the same arguments [19, Section 4]
(see also [13] for an L p well-posedness result). For 0 < γ < 2, local well-posedness
of nonnegative classical solutions is known [25] and global existence, regularity, and
asymptotic behavior of certain nonnegative weak solutions are known [9, 24, 29, 31,
32, 34, 70]. To our knowledge, these weak solutions are only known to be unique
if d = 1 [11]. It is also an open problem whether classical solutions are global if
0 < γ < 2. If one allows for mixed-sign solutions, then the repulsive and attractive
equations are equivalent bymultiplication by−1. [12] has establishedwell-posedness,
in particular maximal time of existence, for compactly supported classical and L∞
weak solutions in the γ = 2 case. In particular, nonnegative classical and L∞ weak
solutions in the γ = 2 case are known to blow up in finite time, as remarked at the
beginning of the introduction. [78] has shown the existence of global renormalized
solutions in the sense of DiPerna–Lions [38, 39]. We also mention the works [1, 72,
78] for an equation arising in vortex superconductivity, which reduces to the repulsive
γ = 2 case of Eq. (1.3) when one considers nonnegative solutions.

As a unifying perspective, the Eq. (1.3) may be viewed as an effective description
of first-order mean-field dynamics of the form

⎧⎪⎨
⎪⎩
ẋ ti =

1

N

∑
1≤ j≤N : j 
=i

M∇g(xti − xtj )

xti |t=0 = x0i

i ∈ {1, . . . , N } (1.5)

in the limit as the number of particles N → ∞. The mathematical validity of this
description has been actively studied over the years [10, 15, 19, 40, 42, 55, 59, 64, 66,
81, 88, 90].
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Inspired by the aforementioned work of Buckmaster et al. [14], which in turn was
inspired by earlier work of Glatt-Holtz and Vicol [50], we propose adding a random
diffusion term to (1.3) by considering the stochastic partial differential equation

{
∂tθ + div(θM∇g ∗ θ) = ν(1+ |∇|s)θ Ẇ t

θ |t=0 = θ0
(t, x) ∈ R× R

d . (1.6)

Here, s ≥ 0 (we will determine further restrictions later), W is a standard real Brow-
nian motion, and the stochastic differential should be interpreted in the Itô sense. The
˙ superscript formally denotes differentiation with respect to time. We note that our
choice of random diffusion differs from that of [14], which used the fractional Lapla-
cian |∇|s = (−�)

s
2 . In that article, the authors work in the periodic setting of T2,

and after modding out by the mass of the solution, which is conserved, homogeneous
and inhomogeneous Sobolev spaces are equivalent. This equivalence fails on Rd , and
therefore the fractional Laplacian creates problems at low frequency, as will become
clear to the reader in Sects. 3 and 4 (see Remark 1.7 for further comments). Accord-
ingly, we opt to add an inhomogeneity to rectify this issue. We emphasize that our
choice of random perturbation differs from the aforementioned prior works [43, 77]
on stochastic PKS equations, which did not consider random diffusion as in (1.6).

A priori, it is not clear how to interpret the SPDE (1.6). Moreover, it is not clear
that the stochastic term in the right-hand side is regularizing since Wt does not have
definite sign. Formally, suppose that we have a solution θ to (1.6), and let us set
μt := e−νWt (1+|∇|s)θ t , where for each realization of W , 
t := e−νWt (1+|∇|s) is the
Fourier multiplier with symbol e−νWt (1+|ξ |s). As in [14], to compute the equation
satisfied by μ, we formally use the Fourier transform together with Itô’s lemma to
obtain

∂tμ = 
∂tθ + ∂t
θ + ∂t [
θ ]
= 


(− div(θM∇g ∗ θ)+ ν(1+ |∇|s)θ Ẇ )
+

(
−ν(1+ |∇|s)
Ẇ + ν2

2
(1+ |∇|s)2


)
θ − ν2(1+ |∇|s)2
θ

= − div

(

−1μM∇g ∗ 
−1μ

)
− ν2

2
(1+ |∇|s)2μ. (1.7)

Above, [
, θ ] denotes the quadratic covariation of the processes
 and θ . Also,we have
implicitly used that
t and |∇|s commute, both being Fourier multipliers. Observe that
(1.7) is a random PDE which may be interpreted pathwise (i.e. for fixed realization of
W , which almost surely is a locally continuous path on [0,∞)). Additionally, thanks
to the nontrivial quadratic variation of Brownian motion, we have gained a diffusion
term in this equation. Rather than deal with the original equation (1.6), we shall base
our mathematical interpretation on (1.7).
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Remark 1.1 One may wonder why we choose the Itô formulation in (1.6) as opposed
to the Stratonovich formulation

∂tθ + div(θM∇g ∗ θ) = ν(1+ |∇|s)θ ◦ Ẇ t (1.8)

which is formally equivalent to the Itô equation

∂tθ + div(θM∇g ∗ θ) = ν(1+ |∇|s)θ Ẇ t + ν2

2
(1+ |∇|s)2θ. (1.9)

Suppose we define μt := e−νWt (1+|∇|s)θ t as before. Then again using Itô’s lemma,
we find

∂tμ = 
∂tθ + ∂t
θ + ∂t [
θ ]

= 


(
− div(θM∇g ∗ θ)+ ν(1+ |∇|s)θ Ẇ t + ν2

2
(1+ |∇|s)2θ

)

+
(
−ν(1+ |∇|s)
Ẇ + ν2

2
(1+ |∇|s)2


)
θ − ν2(1+ |∇|s)2
θ

= −
 div(
−1μM∇g ∗ 
−1μ). (1.10)

No longer do we gain a fractional diffusion term, which, as we shall see below, is fatal
to our arguments. The preceding conclusion is to be expected. Indeed, ifW is aC1 path,
then by ordinary calculus, ∂tμ = −ν(1 + |∇|s)
θ Ẇ + 
∂tθ ; and the Stratonovich
formulation is precisely chosen to preserve the ordinary rules of calculus.

1.3 Statement of main results

We now present our main theorem. We assume that we have a standard real Brownian
motion {Wt }t≥0 defined on a filtered probability space (�,F , {F t }t≥0,P) satisfying
all the usual assumptions. Given α, β, ν > 0, consider the event

�α,β,ν := {ω ∈ � : α + βt − νWt (ω) ≥ 0 ∀t ∈ [0,∞)} ⊂ �. (1.11)

It is well-known (see [86, Proposition 6.8.1]) that P(�α,β,ν) = 1− e
− 2αβ

ν2 . We recall
the Fourier–Lebesgue norms ‖ · ‖Ŵ κ,r (see Sect. 2.2).

Theorem 1.2 Let d ≥ 1, 0 < γ < d + 1, 1
2 < s ≤ 1. If γ > 1, also suppose that we

are given 1 < q < d
γ−1 . Given α, β, ν > 0, suppose that β < ν2

2 .
Suppose first that γ ≤ 1. If s is sufficiently large depending on γ , then there exists

an r0 ≥ 1 depending on d, γ, s, such that the following holds. For any 1 ≤ r ≤ r0
and any σ > 0 sufficiently large depending on d, γ, r , s, there is a constant C > 0
depending only on d, γ, r , s, σ , such that for initial datum μ0 satisfying

‖e(α+ε)(1+|∇|s )μ0‖Ŵ σ s,r <
ν2 − 2β

C |M| (1.12)
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and any path in �α,β,ν , there exists a unique global solution μ ∈ C([0,∞); Ŵ σ s,r )

to Eq. (1.7) with initial datumμ0. Moreover, for φt := α+βt and assumingμ0 
= 0,3

the function

t �→ ‖e(φt+ε)(1+|∇|s)μt‖Ŵ σ s,r (1.13)

is strictly decreasing on [0,∞).
Now suppose that γ > 1. For σr , σq > 0 sufficiently large depending on

d, γ, s, r , q, there is a constant C > 0 depending only on d, γ, r , q, s, σr , σq , such
that for initial datum μ0 satisfying

‖e(α+ε)(1+|∇|s)μ0‖Ŵ σr s,r + ‖e(α+ε)(1+|∇|s )μ0‖
Ŵ

σq s,
2q
q−1

<
ν2 − 2β

C |M| (1.14)

and any path in �α,β,ν , there exists a unique global solution μ ∈ C([0,∞); Ŵ σr s,r ∩
Ŵ σq s,q) to Eq. (1.7) with initial datum μ0. Moreover, assuming μ0 
= 0, the function

t �→ ‖e(φt+ε)(1+|∇|s)μt‖Ŵ σr s,r + ‖e(φt+ε)(1+|∇|s)μt‖
Ŵ

σq s,
2q
q−1

(1.15)

is strictly decreasing on [0,∞).

To the best our knowledge, our result is the first demonstration that a random
diffusion term can lead to global solutions for equations which, without any diffusion,
necessarily blow up in finite time. This provides an affirmative answer to Question 1.1.
Furthermore, Theorem 1.2 substantially generalizes the prior work of Buckmaster et
al. [14, Theorem 1.1], which was limited to the SQG caseM equals rotation by π

2 and
ĝ(ξ) = |ξ |−1, corresponding to a conservative/Hamiltonian flow. In particular, our
result covers the full range of interactions in the model case (1.4) and also allows for
interactions (e.g. d < γ < d + 1) which may not be singular in physical space near
the origin but have very slow decay or even growth at∞.

We do not say anything here about the asymptotic behavior of the solutions we
construct, only that they are global. It would be interesting to give an asymptotic
description of the solution as t →∞, valid at least with positive probability. Indeed,
the reader will recall from the beginning of the introduction that such a description is
known for the deterministic PKS equation. We hope to address this question in future
work.

Before transitioning to discuss the proof of Theorem 1.2, let us record a few remarks
on the statement of and assumptions behind the theorem.

Remark 1.3 The solutions in Theorem 1.2 are pathwise. More precisely, there is a
good set �α,β,ν , defined above, of realizations of the Brownian motion, such that
for any ω ∈ �α,β,ν and with W (ω) : [0,∞) → R, we have a unique global solution
μ(ω) : [0,∞) → R to Eq. (1.7).We can then define a notion of solution to the original

3 Ifμ0 = 0, then by uniqueness, the solutionμ is zero identically in time, hence strict monotonicity cannot
hold in this trivial case.
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1226 M. Rosenzweig, G. Staffilani

equation (1.6) by setting θ t (ω) := eνWt (ω)(1+|∇|s)μt (ω). Since for any ω ∈ �α,β,ν ,
we have φt − νWt ≥ 0, it follows from the definition of the Fourier–Lebesgue norm
that

‖θ t (ω)‖Ŵ σ s,p ≤ ‖eφt (1+|∇|s)μt (ω)‖Ŵ σ s,p . (1.16)

for any 1 ≤ p ≤ ∞.
One may interpret Theorem 1.2 as follows (cf. [14, Remark 5.3]). Fixing α, ε, ν

and given an initial condition μ0 such that

E := ‖e(α+ε)(1+|∇|s )μ0‖Ŵ σr s,r + ‖e(α+ε)(1+|∇|s )μ0‖
Ŵ

σq s,
2q
q−1

1γ>1 < ∞, (1.17)

we can choose β <
ν2−CE |M|

2 , whereC is the constant from condition (1.12) or (1.14).
Then with probability at least

P = 1− exp

(
−α(ν2 − CE |M|)

ν2

)
, (1.18)

there is a pathwise unique global solution μ ∈ C([0,∞); Ŵ σr s,r ∩ Ŵ σq s,
2q
q−1 ) to

Eq. (1.7) with initial datum μ0, such that the function (1.15) is strictly decreasing on
[0,∞).

Remark 1.4 So as to make the result as accessible as possible, we have opted not to
include in the statement of Theorem 1.2 the explicit relations the parameters, such
as d, γ, s, r0, σ , have to satisfy in order for the theorem to apply. These relations are
explicitly worked out in Sects. 3 and 4 during the proofs of Propositions 3.1 and 4.1.
Here and throughout this article, the reader should keep inmind that themost favorable
choices for s, r are s = 1 and r = 1.

Remark 1.5 The conditions (1.12), (1.14) allows for initial data of arbitrarily large
mass. Indeed, focusing on the γ ≤ 1 case, suppose that μ̂0 ∈ C∞c and μ̂0(0) = M ,
for given M . Let L = supξ∈supp(μ̂0) |ξ |. Then

‖e(α+ε)(1+|∇|s)μ0‖Ŵ σ s,r ≤ Cd (1+ L)σ s L
d
r e(α+ε)(1+Ls )‖μ̂0‖L∞ . (1.19)

Taking β = ε ν2

2 , for given ε ∈ (0, 1), and requiring

CdC |M| (1+ L)σ s L
d
r e(α+ε)(1+Ls )‖μ̂0‖L∞

(1− ε)
< ν2, (1.20)

we see that (1.12) holds. For fixed ν, we can make the left-hand side of the preceding
inequality arbitrarily small by letting L → 0+. While for given L , we can take ν

arbitrarily large so that (1.20) holds. The latter case is reminiscent of themass-diffusion
threshold we saw earlier for the PKS equation.
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Remark 1.6 Although only the ratio 2β
ν2

appears in the value ofP(�α,β,ν), whichmight

suggest to the reader that one can send β, ν → 0+ while fixing 2β
ν2
, we emphasize

that the assumption 0 < β < ν2

2 is crucial. Indeed, our argument for showing local

well-posedness fails if β ≥ ν2

2 , and the requirement β < ν2

2 appears when showing
the functions (1.13), (1.15) are strictly decreasing. Furthermore, if ν, β → 0+, then
the right-hand sides of the initial datum conditions (1.12), (1.14) are tending to zero,
which implies that only μ0 ≡ 0 would satisfy these conditions in the limit.

Additionally, one might think that by increasing ν, the diffusion becomes stronger
and therefore one should get a “better” result. But P(�α,β,ν) evidently decreases to
zero as ν →∞, assuming β is fixed. The reason has to deal with the resulting growing
variance of νWt appearing in the definition of 
t , which requires a large value of β

to be absorbed by the exponential weight in our function spaces.

Remark 1.7 Theorem 1.2 is also valid if Rd is replaced by T
d . In fact, since Fourier

space is discrete on the torus, we do not have the same issues at low frequency as in
the setting of Rd , and therefore one can replace Eq. (1.6) with

∂tθ + div(θM∇g ∗ θ) = ν|∇|sθ Ẇ t . (1.21)

An elementary computation reveals that solutions conserve mass and therefore one
may quotient out the mass by assuming it is zero. As a result, the zero Fourier mode
vanishes and one has an equivalence of homogeneous and inhomogeneous Sobolev
norms. Working with (1.21) simplifies the proof greatly, as the two-tiered norm for
γ > 1 becomes unnecessary.

Remark 1.8 Theorem 1.2 is still valid if one adds a deterministic diffusion term
−χ |∇|λθ to the right-hand side of (1.6), for χ, λ > 0, which leads to (1.7) being
replaced by

∂tμ+ div

(

−1μM∇g ∗ 
−1μ

)
= −

(
ν2

2
(1+ |∇|s)2 + χ |∇|λ

)
μ. (1.22)

Since a deterministic diffusion term onlymakes the circumstances for global existence
more favorable, we have opted not to include this term.

1.4 Comments on proof

We briefly comment on the proof of Theorem 1.2. In light of the success of [14] in
showing that adding random diffusion to the inviscid SQG equation leads, with high
probability, to global solutions, and that the SQG equation is a special case of (1.3),
we are guided by the approach of the cited work. There are two main steps:

(1) Local well-posedness via contraction mapping argument,
(2) Monotonicity of the Gevrey norm via energy estimate.

As discussed below, repeating the proof of [14] in our more general context would
fail due to issues at low frequency related to working on R

d , as opposed to T
d , and
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1228 M. Rosenzweig, G. Staffilani

issues at high frequency stemming from the singularity of our interactions. Several
new ideas are consequently needed.

Step (1), carried out in Sect. 3, proceeds by rewriting the Eq. (1.7) in mild form (see
(3.3)) which is amenable to a contraction mapping argument for short times. The main
difficulty is estimating the nonlinear term in the scale of Gevrey-type spaces defined
in Sect. 3.1—the exponential weights of which are used to absorb the 
 operators—in
which we want to construct solutions. In particular, the velocity fieldM∇g∗μ can be
singular compared to the regularity of the scalar μ, as opposed to of the same order
in the SQG case of [14], which requires carefully balancing the derivatives in the
nonlinearity against the diffusion.

It turns out that using L2-based function spaces, as in [14], leads to a restriction on
γ that scales linearly in the dimension d, which would then limit us to strictly sub-
Coulombic interactions g in dimensions d ≥ 4. One of our new insights is to instead
consider Gevrey–Fourier–Lebesgue hybrid spaces (see (3.4)), which of course include
the function spaces of [14] as a special case. In particular, our new spaces behave
well with respect to Sobolev embedding when the integrability exponent r → 1+,
becoming an algebra at r = 1.

Another challenge in the local well-posedness step is the singularity near the origin
of the Fourier transform ĝ when γ is large. In particular, for γ > 1, |ξ ĝ(ξ)|may blow
up as |ξ | → 0. Dealing with this issue requires using a two-tiered function space,
compared to the case γ ≤ 1. More precisely, at high frequency, we need our functions
to be in an exponentially-weighted Fourier–Lebesgue space with high regularity index
and low integrability exponent; while at low frequency, we need our functions to be in
a similarly weighted space with low regularity index and high integrability exponent.
This leads us to the multi-parameter scale of spaces Xσ,σ̃ ,r ,r̃ ,

φ,γ introduced in (3.7) (more
generally, see Sect. 3).

After some paraproduct analysis and a fair amount of algebra to determine what
conditions all the various parameters have to satisfy, we prove Proposition 3.1, which
asserts local well-posedness in the class of solutions satisfying

sup
0≤t≤T

(
‖e(φt+ε)(1+|∇|s )μt‖Ŵ σlwp ,r + ‖e(φt+ε)(1+|∇|s )μt‖

Ŵ
0, 2q

q−1
1γ>1

)
< ∞, (1.23)

for some σlwp < σ . Here, 1(·) denotes the indicator function for the condition (·).
Although the Sobolev index σlwp is strictly less than that of the initial datum, we will
later improve it to σ through a bootstrap argument.

Step (2), carried out in Sect. 4, consists of upgrading the local solution from step (1)
to a global solution and also upgrading the Sobolev index from σlwp to σ . The original
idea of [14, Proposition 4.1], modified to our setting and presented for the r = 2 case,
is to prove an inequality for the time derivative of the “energy” ‖eφt (1+|∇|s)μt‖2Hσ s ,
which shows that this quantity is strictly decreasing on an interval [0, T ], provided it is
not too large at initial time and that ‖eφt (1+|∇|s)μt‖H (σ+1)s remains finite on the same
interval. With this type of conditional monotonicity result, the authors of that work
could exploit the fact that the initial datum belongs to a spacewith higher Gevrey index
α + ε in order to iteratively extend the lifespan of the solution, losing a decreasing
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fraction of ε along each step of the iteration. Note that in their work the Sobolev index
from the local well-posedness does not change.

Since we deal with γ that are more singular than in [14] and step (1) only gives
local solutions in a rougher space than that claimed in the statement of Theorem 1.2,
we need a more sophisticated argument. Moreover, we need to work in our scale
of Fourier–Lebesgue spaces, with the auxiliary space if γ > 1. We prove a similar
conditional monotonicity result for the energy

‖e(φt+ε′)(1+|∇|s)μt‖r
Ŵ σr s,r

+ ‖e(φt+ε′)(1+|∇|s)μt‖
2q
q−1

Ŵ
σq s,

2q
q−1

1γ>1, (1.24)

for any 0 ≤ ε′ ≤ ε, assuming σr , σq are sufficiently large depending on d, γ, s, r , q.
Similar to step (1), the bulk of the labor consists of paraproduct analysis for the non-
linearity and determining the set of conditions that the parameters d, γ, s, r , q, σr , σq
have to satisfy in order for the paraproduct analysis to be valid. In order to access the
monotonicity result, since σr > σlwp and σq > 0, we exploit the higher Gevrey index
of the initial datum together with an embedding lemma (see Lemma 3.5) to conclude
that if (1.23) holds, then for any 0 ≤ ε′ < ε and σr , σq ∈ R,

sup
0≤t≤T

(
‖e(φt+ε′)(1+|∇|s)μt‖Ŵ σr s,r + ‖e(φt+ε′)(1+|∇|s)μt‖

Ŵ
σq s,

2q
q−1

)
< ∞

(1.25)

also holds. We then obtain global existence by a lemma (see Lemma 4.5) which
quantifies the improvement in the lifespan of the solution as we decrease ε′. Finally,
we conclude global existence and monotonicity also hold with ε′ = ε by essentially
monotone convergence theorem.

1.5 Organization of article

We close the introduction by outlining the remaining body of the article. In Sect. 2,
we introduce the basic notation of the article and review some frequently used facts
from Fourier analysis. In Sect. 3, we begin (Sect. 3.1) with our class of Gevrey–
Fourier–Lebesgue spaces and their properties and then (Sect. 3.2) show the local
well-posedness of the Cauchy problem for Eq. (1.7). In Sect. 4, we first (Sect. 4.1)
show the monotonicity property of the Gevrey norm. We then (Sect. 4.2) use this
property together with the local theory from Sect. 3 in order to prove our main result,
Theorem 1.2.

2 Preliminaries

2.1 Notation

Given nonnegative quantities A and B, we write A � B if there exists a constant
C > 0, independent of A and B, such that A ≤ CB. If A � B and B � A, we write
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A ∼ B. To emphasize the dependence of the constant C on some parameter p, we
sometimes write A �p B or A ∼p B. We denote the natural numbers excluding zero
byN and including zero byN0. Similarly, we denote the positive real numbers byR+.

TheFourier and inverse transformof a function f : Rd → C
m are defined according

to the convention

f̂ (ξ) = F( f )(ξ) :=
∫
Rd

f (x)e−i x ·ξdx,

f̌ (x) = F−1( f )(x) := (2π)−d
∫
Rd

f (ξ)eiξ ·xdξ.

(2.1)

In the case m > 1, the notation should be understood component-wise. Given a
function m : Rd → C

m , we use the notation m(∇) to denote the Cm-valued Fourier
multiplier with symbol m(ξ). In the particular, the notation |∇| = (−�)

1
2 denotes the

Fourier multiplier with symbol |ξ | and 〈∇〉 := (1 + |∇|2)1/2 denotes the multiplier
with Japanese bracket symbol (1+ |ξ |2)1/2.

2.2 Sobolev embedding

For the reader’s convenience, we state and prove an elementary Sobolev embedding
tailored to the Fourier analysis of Sects. 3 and 4. To the state the lemma, we recall that
the Bessel potential space Ws,p is defined by

‖ f ‖Ws,p := ‖〈∇〉s f ‖L p , s ∈ R, p ∈ (1,∞) (2.2)

and the Fourier–Lebesgue space Ŵ s,p is defined by

‖ f ‖Ŵ s,p := ‖〈·〉s f̂ ‖L p , s ∈ R, p ∈ [1,∞]. (2.3)

For p = 2, these two spaces coincide by Plancherel’s theorem, and, following standard
notation, we shall write Hs . When s = 0, we shall also adopt the notation Ŵ 0,r = L̂r .

Lemma 2.1 If 1 ≤ p < r ≤ ∞, then

‖ f ‖Ŵ s,p �d,p,r ‖ f ‖
Ŵ

(s+ d(r−p)
rp )+,r

, (2.4)

where the notation (·)+ means (·)+ ε, for any ε > 0, with the implicit constant then
depending on ε and possibly blowing up as ε → 0+. If 2 ≤ p ≤ ∞, then

‖ f ‖Ŵ s,p �d,p ‖ f ‖
W

s, p
p−1 . (2.5)

Proof Fix r > 1 and let 1 ≤ p < r . By Hölder’s inequality,

‖ f ‖Ŵ s,p = ‖〈·〉s f̂ ‖L p = ‖〈·〉−δ〈·〉s+δ f̂ ‖L p �d ‖〈·〉−δ‖
L

rp
r−p
‖ f ‖Ŵ r ,s+δ . (2.6)
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The first factor is finite provided that rpδ
r−p > d ⇐⇒ δ >

d(r−p)
rp .

Now suppose 2 ≤ p ≤ ∞. If 〈∇〉s f ∈ L
p

p−1 , then by the Hausdorff–Young
inequality F(〈∇〉s f )(ξ) = 〈ξ 〉s f̂ (ξ) belongs to L p and

‖ f ‖Ŵ s,p = ‖〈·〉s f̂ ‖L p �d,p ‖〈∇〉s f ‖
L

p
p−1 = ‖ f ‖Ws, p

p−1 . (2.7)

��

3 Local well-posedness

We investigate the local well-posedness of the Cauchy problem

{
∂tμ+ div


(

−1μ(M∇g ∗ 
−1μ)

)+ ν2

2 (1+ |∇|s)2μ = 0

μ|t=0 = μ0.
(3.1)

Set A := (1+ |∇|s)2. It will be convenient to introduce the bilinear operator

B( f , g) := div

(

−1 f (M∇g ∗ 
−1g)

)
. (3.2)

The reader should note that B itself depends on time through 
, and, when necessary,
we shall make explicit this time dependence by writing Bt ( f , g). We rewrite (3.1) in
mild form

μt = e−
tν2
2 Aμ0 −

∫ t

0
e−

(t−τ )ν2
2 ABτ (μτ , μτ )dτ. (3.3)

In order to perform a contraction mapping argument based on the mild formulation
(3.3), we use a generalization of the scale of Gevrey function spaces from [14] (see
also [48]). Given a ≥ 0 and κ ∈ R, we define

‖ f ‖Gκ,r
a
:= ‖eaA1/2

f ‖Ŵ κs,r . (3.4)

We refer to a as the exponential weight or Gevrey index, κ as the Sobolev index,
and r as the integrability exponent. If r < ∞, then the completion with respect to
this norm of functions with compactly supported Fourier transforms in Lr defines a
Banach space, as the reader may check. For 0 < T < ∞ and a continuous function
φ : [0, T ] → [0,∞), we define

‖ f ‖C0
TG

κ,r
φ
:= sup

0≤t≤T
‖ f t‖Gκ,r

φt
. (3.5)

We write C0∞ when sup0≤t≤T is replaced by sup0≤t<∞. Set

C0
TG

κ,r
φ := { f ∈ C([0, T ]; Ŵ κs,r (Rd)) : ‖ f ‖C0

TG
κ,r
φ

< ∞}. (3.6)
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Wealso allow forT = ∞, replacing [0, T ] in the preceding linewith [0,∞). Evidently,
this defines a Banach space.

To deal with possible issues at low frequencies when γ is large, we also have need
for the Banach spaces

Xκ1,κ2,r1,r2
a,γ :=

{
Gκ1,r1
a , γ ≤ 1

Gκ1,r1
a ∩ Gκ2,r2

a , γ > 1,
(3.7)

where

‖ f ‖Gκ1,r1
a ∩Gκ2,r2

a
:= ‖ f ‖Gκ1,r1

a
+ ‖ f ‖Gκ2,r2

a
, (3.8)

and

C0
T X

κ1,κ2,r1,r2
φ,γ :=

{
f ∈ C

(
[0, T ]; Ŵ κ1s,r1 (Rd ) ∩ Ŵ κ2s,r2 (Rd )

)
: ‖ f ‖C0

T X
κ1,κ2 ,r1,r2
φ,γ

< ∞
}

.

(3.9)

The main result of this section is the following proposition.

Proposition 3.1 Let d ≥ 1, 0 < γ < d + 1, 1
2 < s ≤ 1. If γ > 1, then also suppose

we are given 1 ≤ q < d
γ−1 . Given α, β > 0, suppose W is a realization from the set

�α,β,ν and that β < ν2

2 . Set φ
t := α + βt .

There exists r0 ≥ 1 depending on d, γ, s, such that the following holds. For any
1 ≤ r ≤ r0, there exists σ0 ∈ (0, 2s−1

s ) depending on d, γ, r , s, such that for any
σ ∈ (σ0,

2s−1
s ) with 1 − γ ≤ σ s, there exists a constant C > 0 depending on

d, γ, s, σ, r , q, β, ν, such that for ‖μ0‖
X
σ,0,r , 2q

q−1
α,γ

≤ R, there exists a unique solution

μ ∈ C0
T X

σ,0,r , 2q
q−1

φ,γ to the Cauchy problem (3.1), with T ≥ C(|M|R)
− 2s

(2−σ)s−1 . More-
over,

‖μ‖
C0
T X

σ,0,r , 2q
q−1

φ,γ

≤ 2‖μ0‖
X
σ,0,r , 2q

q−1
α,γ

. (3.10)

Additionally, if ‖μ0
j‖

X
σ,0,r , 2q

q−1
α,γ

≤ R, for j ∈ {1, 2}, then

‖μ1 − μ2‖
C0
T X

σ,0,r , 2q
q−1

φ,γ

≤ 2‖μ0
1 − μ0

2‖
X
σ,0,r , 2q

q−1
α,γ

. (3.11)

Remark 3.2 Compared to statement of Theorem 1.2, where the Sobolev indices σr , σq

can be arbitrarily large, Proposition 3.1 contains the restriction σ < 2s−1
s and the

second Sobolev index is set to zero. These restrictions are temporary: we only need
them to first obtain the existence of a solution. Using a monotonicity argument in the
next section, which is in the spirit of persistence of regularity arguments, we then
allow for larger values of σ .

123



Global solutions of aggregation equations and other flows… 1233

Remark 3.3 A lower bound for r0 is explicitly worked out in the proof of Proposi-
tion 3.1. See condition (LWP2) below and the ensuing analysis.

Remark 3.4 The solutions constructed by Proposition 3.1 do not a priori conserve
mass.4 To see this, note that by using Eq. (3.1) and the fundamental theorem of
calculus,

d

dt

∫
Rd

μt (x)dx = −ν2

2

∫
Rd

(1+ |∇|s)2μt (x)dx = −ν2

2

∫
Rd

μt (x)dx, (3.12)

where the ultimate equality follows from expanding the square and using the Fourier
transform. Solving the ODE (3.12), we find∫

Rd
μt (x)dx = e−

ν2 t
2

∫
Rd

μ0(x)dx . (3.13)

So ifμ0 has zero mass, thenμt has zero mass for all times t . Otherwise, the magnitude
of the mass is exponentially decreasing as t → ∞. Recalling the mass/diffusion
threshold for the PKS equation, this decreasing of the mass of our solutions may
provide some intuition why global existence is ultimately possible.

3.1 Gevrey embeddings

Before proceeding to the contractionmapping step,we record someelementary embed-
dings satisfied by the spaces Gκ,r

a .

Lemma 3.5 If a′ ≥ a ≥ 0 and κ ′ ≥ κ , then

‖ f ‖Gκ,r
a
≤ ea−a′ ‖ f ‖

Gκ′,r
a′

. (3.14)

If κ ′ ≥ κ and a′ > a ≥ 0, then

‖ f ‖Gκ′,r
a
≤ �κ ′ − κ�!

(a′ − a)�κ ′−κ� ‖ f ‖Gκ,r
a′

. (3.15)

where �·� denotes the usual ceiling function.

Proof First, observe that for any a′ ≥ a ≥ 0,

‖ f ‖Gκ,r
a
= ‖e(a−a′)A1/2

ea
′A1/2

f ‖Ŵ κs,r ≤ ea−a′ ‖ f ‖Gκ,r
a′

, (3.16)

since e(a−a′)(1+|ξ |s ) ≤ ea−a′ . Also, for any κ ′ ≥ κ , we trivially have from ‖ · ‖Ŵ κs,r ≤
‖ · ‖Ŵ κ′s,r that

‖ f ‖Gκ,r
a
≤ ‖ f ‖Gκ′,r

a
. (3.17)

4 If we work on Td and replace (1+ |∇|s ) with |∇|s , then mass is conserved.
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Now for κ ′ ≥ κ , we have

‖ f ‖Gκ′,r
a
= ‖〈∇〉κ ′seaA1/2

f ‖L̂r = ‖〈∇〉(κ
′−κ)se(a−a′)A1/2〈∇〉κsea′A1/2

f ‖L̂r . (3.18)

Observe from the power series for z �→ ez that

〈ξ 〉(κ ′−κ)se(a−a′)(1+|ξ |s ) ≤ (1+ |ξ |s)κ ′−κe(a−a′)(1+|ξ |s) ≤ �κ ′ − κ�!
(a′ − a)�κ ′−κ� , (3.19)

where �·� is the usual ceiling function. Implicitly, we have used ‖ · ‖�2 ≤ ‖ · ‖�s , since
s ≤ 2. Therefore,

‖ f ‖Gκ′,r
a
≤ �κ ′ − κ�!

(a′ − a)�κ ′−κ� ‖ f ‖Gκ,r
a′

. (3.20)

��

3.2 Contractionmapping argument

Next, we define the map

μt �→ (T μ)t := e−
tν2
2 Aμ0 −

∫ t

0
e−

(t−τ )ν2
2 ABτ (μτ , μτ )dτ. (3.21)

We check that this map is well-defined on C0
TX

σ,0,r , 2q
q−1

φ,γ for φt = α + βt , with
α, β, σ, r , q, γ > 0 satisfying the conditions in the statement of Proposition 3.1.
To this end, we assume here and throughout this subsection that we have a realization
of W belonging to �α,β,ν .

Lemma 3.6 If β < ν2

2 , then for any 1 ≤ r ≤ ∞, 0 < s ≤ 1, σ ∈ R, and α > 0, it
holds that

‖e− tν2
2 Aμ0‖Gσ,r

φt
≤ ‖μ0‖Gσ,r

α
∀t ≥ 0. (3.22)

Proof It is straightforward from the definition of φt that

‖e− tν2
2 Aμ0‖Gσ,r

φt
= ‖et(β− ν2

2 A1/2)A1/2
eαA1/2

μ0‖Ŵ σ s,r (3.23)

If β < ν2

2 , then since (1+|ξ |s) ≥ 1, the right-hand is≤ ‖eαA1/2
μ0‖Ŵ σ s,r = ‖μ0‖Gσ,r

α
.
��

Next, we observe from the bilinearity of B that

B(μ1, μ1)− B(μ2, μ2) = B(μ1 − μ2, μ1)+ B(μ2, μ1 − μ2), (3.24)
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and therefore

(T (μ1)− T (μ2))
t = −

∫ t

0
e−

ν2(t−τ )
2 A (

Bτ (μτ
1 − μτ

2, μ
τ
1)+ Bτ (μτ

2, μ
τ
1 − μτ

2)
)
dτ.

(3.25)

Lemma 3.7 Let d ≥ 1, 0 < γ < d + 1, 1
2 < s ≤ 1. If γ > 1, also assume that we are

given 1 ≤ q < d
γ−1 . Additionally, suppose that β < ν2

2 .
There exists an r0 ∈ [1,∞], depending on d, γ, s, such that the following holds.

For any 1 ≤ r ≤ r0, there exists σ0 ∈ (0, 2s−1
s ) depending on d, γ, s, r , such that for

any σ ∈ (σ0,
2s−1
s ) with 1 − γ ≤ σ s, there exists a constant C depending only on

d, γ, r , q, σ, s, β, ν, such that for any T > 0,

∥∥∥∥
∫ t

0
e−

ν2(t−τ)
2 ABτ (μτ

1 , μ
τ
2)dτ

∥∥∥∥
C0
T G

σ,r
φ

≤ C |M|
(
T + T 1− σ s+1

2s

) ((
‖μ1‖C0

T G
0,r
φ
‖μ2‖

C0
T G

0, 2q
q−1

φ

+ ‖μ1‖
C0
T G

0, 2q
q−1

φ

‖μ2‖
C0
T G

0, 2q
q−1

φ

)
1γ>1 + ‖μ1‖C0

T G
σ,r
φ
‖μ2‖C0

T G
σ,r
φ

)
. (3.26)

Remark 3.8 We give bounds on the size of the threshold r0 from the statement of
Lemma 3.7 during the proof of the lemma. We have omitted them from the statement
in order to simplify the presentation. There is an extensive amount of algebra to
determine the final conditions on the parameters, but if the reader is not interested in
this optimization, they can just consider r = s = 1, which is straightforward to check.

Proof of Lemma 3.7 We make the change of unknown μt
j := e−φt A1/2〈∇〉−σ sρt

j , so
that

‖ρt
j‖L̂r = ‖μt

j‖Gσ,r
φt

. (3.27)

By Minkowski’s inequality, we see that

‖eφt A1/2
∫ t

0
e−

ν2(t−τ)
2 ABτ (μτ

1 , μ
τ
2)dτ‖Ŵ σ s,r ≤

∫ t

0
‖eφt A1/2− ν2(t−τ)

2 ABτ (μτ
1 , μ

τ
2)‖Ŵ σ s,r dτ, (3.28)

and by definition of the Ŵ σ s,r norm, the preceding right-hand side equals

∫ t

0

(∫
Rd

erφ
t (1+|ξ |s)−ν2(t−τ)(1+|ξ |s)2〈ξ 〉rσ s

∣∣∣∣e−νW τ (1+|ξ |s )
∫
Rd

(ξ ·Mη)ĝ(η)

〈ξ − η〉σ s〈η〉σ s

e−φτ (2+|ξ−η|s+|η|s )eνW τ (2+|ξ−η|s+|η|s )ρ̂τ
1 (ξ − η)ρ̂τ

2 (η)dη

∣∣∣r )1/r

dτ. (3.29)
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Using φt − φτ = β(t − τ), the preceding expression is controlled by

∫ t

0

( ∫
Rd

er(t−τ)(1+|ξ |s )(β− ν2
2 (1+|ξ |s))〈ξ 〉rσ s

∣∣∣∣
∫
Rd

e(φτ−νW τ )(|ξ |s−|ξ−η|s−|η|s−1)

|ξ ·Mη||ĝ(η)|
〈ξ − η〉σ s〈η〉σ s

∣∣ρ̂τ
1 (ξ − η)

∣∣ ∣∣ρ̂τ
2 (η)

∣∣ dη

∣∣∣∣
r

dξ

)1/r

dτ. (3.30)

Since 0 < s ≤ 1, we have by the triangle inequality and ‖ · ‖�1 ≤ ‖ · ‖�s that
|ξ |s − |ξ − η|s − |η|s ≤ 0.5 Since φτ − νW τ ≥ 0 for all 0 ≤ τ ≤ t by assumption, it
follows that

e(φτ−νW τ )(|ξ |s−|ξ−η|s−|η|s−1) ≤ 1. (3.31)

Now set δ := min{ 12 ( ν2

2 − β), ν2

4 }. By assumption that β < ν2

2 , we have

er(t−τ)(1+|ξ |s )(β− ν2
2 (1+|ξ |s)) ≤ e−rδ(t−τ)(1+|ξ |s )2 . (3.32)

With these observations, we reduce to estimate the expression

∫ t

0

( ∫
Rd

e−rδ(t−τ)(1+|ξ |s )2 〈ξ 〉rσ s
∣∣∣∣
∫
Rd

|ξ ·Mη||ĝ(η)|
〈ξ − η〉σ s〈η〉σ s

∣∣ρ̂τ
1 (ξ − η)

∣∣ ∣∣ρ̂τ
2 (η)

∣∣ dη

∣∣∣∣
r

dξ

)1/r

dτ.

(3.33)

To deal with the inhomogeneity of (1+ |ξ |s)2, we split the integral with respect to
ξ into the low-frequency piece |ξ | ≤ 1 and the high-frequency piece |ξ | > 1. At low
frequency, we can crudely estimate everything directly to find

( ∫
|ξ |≤1

e−rδ(t−τ)(1+|ξ |s )2
∣∣∣∣
∫
Rd

|ξ ·Mη||ĝ(η)|
〈ξ − η〉σ s〈η〉σ s

∣∣ρ̂τ
1 (ξ − η)

∣∣ ∣∣ρ̂τ
2 (η)

∣∣ dη

∣∣∣∣
r

dξ

)1/r

�γ |M|
(∫

|ξ |≤1

∣∣∣∣
∫
Rd
〈ξ − η〉−σ s |η|1−γ 〈η〉−σ s

∣∣ρ̂τ
1 (ξ − η)

∣∣ ∣∣ρ̂τ
2 (η)

∣∣ dη

∣∣∣∣
r

dξ

)1/r

.

(3.34)

Above, we have used our assumption that |ηĝ(η)| �γ η1−γ . If 1 − γ ≥ 0, then
|η|1−γ 〈η〉−σ s ≤ 〈η〉1−γ−σ s . If 1−γ < 0, thenwe have to be careful about singularities
at low frequency. More precisely, by Hölder’s inequality, we can control the Lr

ξ norm
by the L∞ξ norm. For q(1− γ ) > −d, Hölder’s inequality gives

∣∣∣∣
∫
|η|≤1

〈ξ − η〉−σ s |η|1−γ 〈η〉−σ s |ρ̂τ
1 (ξ − η)||ρ̂τ

2 (η)|dη

∣∣∣∣
5 Here, �p denotes the space of sequences x = (xn)∞n=1 ∈ R

N such that ‖x‖p
�p =

∑∞
n=1 |xn |p < ∞. It is

elementary that for any 0 < p1 ≤ p2 < ∞, we have ‖x‖�p2 ≤ ‖x‖�p1 .
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≤ ‖| · |1−γ 1B(0,1)‖Lq‖〈ξ − ·〉−σ s〈·〉−σ s ρ̂τ
1 (ξ − ·)ρ̂τ

2 1B(0,1)‖
L

q
q−1

�d,γ,q ‖ρ̂τ
1 ‖

Ŵ
−σ s, 2q

q−1
‖ρ̂τ

2 ‖
Ŵ
−σ s, 2q

q−1

� ‖eφτ A1/2
μτ
1‖

Ŵ
0, 2q

q−1
‖eφτ A1/2

μτ
2‖

Ŵ
0, 2q

q−1
. (3.35)

The remaining expression

( ∫
|ξ |≤1

∣∣∣∣
∫
|η|≥1

〈ξ − η〉−σ s |η|1−γ 〈η〉−σ s
∣∣ρ̂τ

1 (ξ − η)
∣∣ ∣∣ρ̂τ

2 (η)
∣∣ dη

∣∣∣∣
r

dξ

)1/r

(3.36)

is handled by estimate (3.41) below.
At high frequency, we trivially have

e−rδ(t−τ)(1+|ξ |s )2 ≤ e−rδ(t−τ)|ξ |2s . (3.37)

Writing |ξ | = (t − τ)− 1
2s (t − τ)

1
2s |ξ |, it follows from the power series for z �→ ez

that

e−rδ(t−τ)(1+|ξ |s )2〈ξ 〉rσ s |ξ |r �δ (t − τ)−
r(σ s+1)

2s . (3.38)

Hence,(∫
|ξ |>1

e−rδ(t−τ)(1+|ξ |s )2 〈ξ〉rσ s
∣∣∣∣
∫
Rd

|ξ ·Mη||ĝ(η)|
〈ξ − η〉σ s〈η〉σ s

∣∣ρ̂τ
1 (ξ − η)

∣∣ ∣∣ρ̂τ
2 (η)

∣∣ dη

∣∣∣∣
r

dξ

)1/r

�γ,δ,σ,s |M|(t − τ)−
(σ s+1)

2s

(∫
|ξ |>1

∣∣∣∣
∫
Rd
〈ξ − η〉−σ s |η|1−γ 〈η〉−σ s

∣∣ρ̂τ
1 (ξ − η)

∣∣ ∣∣ρ̂τ
2 (η)

∣∣ dη

∣∣∣∣
r

dξ

)1/r

.

(3.39)

As before, we have to be careful about singularities in η at low frequency if 1−γ < 0.
Observe from Young’s inequality that

(∫
|ξ |>1

∣∣∣∣
∫
|η|≤1

〈ξ − η〉−σ s |η|1−γ 〈η〉−σ s
∣∣ρ̂τ

1 (ξ − η)
∣∣ ∣∣ρ̂τ

2 (η)
∣∣ dη

∣∣∣∣
r

dξ

)1/r

≤ ‖〈·〉−σ s ρ̂τ
1 ‖Lr ‖| · |1−γ ρ̂τ

2 1B(0,1)‖L1

�d,γ,σ,s,q ‖eφτ A1/2
μτ
1‖Ŵ 0,r ‖eφτ A1/2

μτ
2‖

Ŵ
0, 2q

q−1
, (3.40)

for any q < d
γ−1 . For η at high frequency, we have by Young’s inequality followed

by Lemma 2.1 that for any 1 ≤ p ≤ r ,

( ∫
Rd

∣∣∣∣
∫
|η|≥1

〈ξ − η〉−σ s〈η〉1−γ−σ s
∣∣ρ̂τ

1 (ξ − η)
∣∣ ∣∣ρ̂τ

2 (η)
∣∣ dη

∣∣∣∣
r

dξ

)1/r

≤ ‖〈·〉−σ s ρ̂τ
1 ‖L p‖〈·〉1−γ−σ s ρ̂τ

2 ‖
L

rp
(r+1)p−r
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�σ,s,d,γ,r ,p ‖ρτ
1 ‖Ŵ−σ s,1‖ρτ

2 ‖Ŵ 1−γ−σ s,11r=1 + ‖ρτ
1 ‖Ŵ (

d(r−1)
r −σ s)+,r

‖ρτ
2 ‖Ŵ 1−γ−σ s,r 1p=1

r>1

+ ‖ρτ
1 ‖Ŵ−σ s,r ‖ρτ

2 ‖Ŵ (1−γ−σ s+ d(r−1)
r )+,r

1p=r
r>1

+ ‖ρτ
1 ‖

Ŵ
(
d(r−p)

rp −σ s)+,r
‖ρτ

2 ‖
Ŵ

(1−γ−σ s+ d(p−1)
p )+,r

11<p<r
r>1

= ‖eφτ A1/2
μτ
1‖Ŵ 0,1‖eφτ A1/2

μτ
2‖Ŵ 1−γ,11r=1 + ‖eφτ A1/2

μτ
1‖Ŵ d(r−1)

r +,r
‖eφτ A1/2

μτ
2‖Ŵ 1−γ,r 1p=1

r>1

+ ‖eφτ A1/2
μτ
1‖Ŵ 0,r ‖eφτ A1/2

μτ
2‖Ŵ (1−γ+ d(r−1)

r )+,r
1p=r
r>1

+ ‖eφτ A1/2
μτ
1‖

Ŵ
(
d(r−p)

rp )+,r
‖eφτ A1/2

μτ
2‖

Ŵ
(1−γ+ d(p−1)

p )+,r
11<p<r

r>1
. (3.41)

In order to obtain estimates that close, we need the top Sobolev index appearing in
(3.41) to be ≤ σ s. This leads us to the following conditions:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1− γ ≤ σ s, r = 1
d(r−1)

r < σ s and 1− γ ≤ σ s, p = 1 and r > 1

1− γ + d(r−1)
r < σ s, p = r and r > 1

d(r−p)
rp < σ s and 1− γ + d(p−1)

p < σ s, 1 < p < r and r > 1.

(3.42)

Putting together the estimates (3.40) and (3.41), we have shown that

(∫
|ξ |>1

∣∣∣∣
∫
Rd
〈ξ − η〉−σ s |η|1−γ 〈η〉−σ s

∣∣ρ̂τ
1 (ξ − η)

∣∣ ∣∣ρ̂τ
2 (η)

∣∣ dη

∣∣∣∣
r

dξ

)1/r

�d,s,σ,γ,r ,q ‖eφτ A1/2
μτ
1‖Ŵ 0,r ‖eφτ A1/2

μτ
2‖

Ŵ
0, 2q

q−1
1γ>1

+ ‖eφτ A1/2
μτ
1‖Ŵ σ s,r ‖eφτ A1/2

μτ
2‖Ŵ σ s,r . (3.43)

Combining the estimates (3.35) and (3.43), we have shown that (3.33) is�d,γ,s,σ,r ,q

|M|
∫ t

0

(
1+ Cδ(t − τ)−

(σ s+1)
2s

) ((
‖eφτ A1/2

μτ
1‖Ŵ 0,r ‖eφτ A1/2

μτ
2‖

Ŵ
0, 2q

q−1

+ ‖eφτ A1/2
μτ
1‖

Ŵ
0, 2q

q−1
‖eφτ A1/2

μτ
1‖

Ŵ
0, 2q

q−1

)
1γ>1 + ‖eφτ A1/2

μτ
1‖Ŵσ s,r ‖eφτ A1/2

μτ
2‖Ŵσ s,r

)
dτ

�σ,s |M|
(
t + Cδ t

1− (σ s+1)
2s

) ((
‖μ1‖C0

t G
0,r
φ
‖μ2‖

C0
t G

0, 2q
q−1

φ

+ ‖μ1‖
C0
t G

0, 2q
q−1

φ

‖μ2‖
C0
t G

0, 2q
q−1

φ

)
1γ>1

+ ‖μ1‖C0
t G

σ,r
φ
‖μ2‖C0

t G
σ,r
φ

)
, (3.44)

assuming that (σ s+1)
2s < 1.

In order to complete the proof of the lemma, it is important to list all the conditions
we imposed on the parameters d, γ, σ, s, r during the course of the above analysis:

(LWP1) 0 < s ≤ 1;
(LWP2) (a) r = 1 and 1− γ ≤ σ s,

(b) or r > 1 and d(r−1)
r < σ s and 1− γ ≤ σ s,
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(c) or r > 1 and 1− γ + d(r−1)
r < σ s,

(d) or r > 1 and∃p ∈ (1, r) such that d(r−p)
rp < σ s and 1−γ+ d(p−1)

p < σ s;

(LWP3) (σ s+1)
2s < 1

Condition (LWP3) means σ < 2s−1
s and since we require σ > 0, we need s > 1

2 .
Given any value of 0 < γ < d + 1, (LWP2)a can be satisfied by choosing r = 1 and
σ s ≥ min{0, 1 − γ }. More generally, we can satisfy all three conditions by arguing
as follows. Given 0 < γ < d + 1 and 1

2 < s ≤ 1, condition (LWP3) implies that for
any choice r ≥ 1,

σ s < 2s − 1. (3.45)

According to (LWP2)b, it is possible to find such a σ ≥ 1−γ
s and r > 1 if and only if

d(r − 1)

r
< 2s − 1 and 1− γ < 2s − 1 ⇐⇒ r <

d

d + 1− 2s
and

2− γ

2
< s. (3.46)

According to (LWP2)c, it is possible to find such a σ > 0 and r > 1 if and only if

1− γ + d(r − 1)

r
< 2s − 1 ⇐⇒

{
r < d

d+2−γ−2s , γ + 2s ≤ d + 2

r ≤ ∞, γ + 2s > d + 2.
(3.47)

According to (LWP2)d, it is possible to find such a σ > 0 and r > 1 if and only if for
such choice of r , there exists p ∈ (1, r) such that

d(r − p)

rp
< 2s − 1 and 1− γ + d(p − 1)

p
< 2s − 1. (3.48)

Since the preceding constraint is equivalent to

d

p
<

d

r
+ 2s − 1 and d + 2− γ − 2s <

d

p
, (3.49)

such a p exists if and only if

d + 2− γ − 2s <
d

r
+ 2s − 1 ⇐⇒

{
r < d

d+3−γ−4s , γ + 4s ≤ d + 3

r ≤ ∞, γ + 4s > d + 3.
(3.50)

With this case analysis, the proof of Lemma 3.7 is now complete. ��
Lemma 3.9 Let d ≥ 1, 1 < γ < d + 1. Suppose that γ, r , s, σ satisfy the constraints
of Lemma 3.7 and that

d + 1− γ < σ s + d

r
. (3.51)
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Then for any 1 ≤ q < d
γ−1 , there exists a constant C > 0 depending on

d, γ, r , q, s, σ, β, ν, such that for any T > 0,

∥∥∥∥
∫ t

0
e−

ν2(t−τ )
2 ABτ (μτ

1, μ
τ
2)dτ

∥∥∥∥
C0
TG

0, 2q
q−1

φ

≤ C |M|
(
T + T 1− σ s+1

2s

)
(
‖μ1‖

C0
TG

0, 2q
q−1

φ

‖μ2‖
C0
TG

0, 2q
q−1

φ

+ ‖μ1‖C0
TG

σ,r
φ
‖μ2‖

C0
TG

0, 2q
q−1

φ

)
. (3.52)

Proof Set q ′ := q
q−1 . The proof follows the exact same lines of Lemma 3.7 with r

replaced by 2q ′. Using the estimates (3.35), (3.40), (3.41), we find that

∥∥∥∥
∫ t

0
e−

ν2(t−τ )
2 ABτ (μτ

1, μ
τ
2)dτ

∥∥∥∥
G0,2q′

φt

�d,s,q,γ,β,ν,p |M|
∫ t

0

(
1+ (t − τ)−

σ s+1
2s

) (
‖eφτ A1/2

μτ
1‖Ŵ 0,2q′ ‖eφτ A1/2

μτ
2‖Ŵ 0,2q′

+ ‖eφτ A1/2
μτ
1‖Ŵ 0,p‖eφτ A1/2

μτ
2‖

Ŵ
1−γ,

2q′ p
(2q′+1)p−2q′

)
dτ (3.53)

for any choice 1 ≤ p ≤ 2q ′. We want all the norms appearing in the right-hand side to
be controlled by Ŵ 0,2q ′ and Ŵ σ s,r . Using Lemma 2.1, we see that we need to choose
p ≤ r so that

d

p
− d

r
< σ s ⇐⇒ σ s + d

r
>

d

p
. (3.54)

For any choice of p, we have

2q ′ p
(2q ′ + 1)p − 2q ′

= 2q ′
(

p

p + 2q ′(p − 1)

)
≤ 2q ′, (3.55)

since p ≥ 1. In order for

‖eφτ A1/2
μτ
2‖

Ŵ
1−γ,

2q′ p
(2q′+1)p−2q′

� ‖eφτ A1/2
μτ
2‖Ŵ 0,2q′ , (3.56)

another use of Lemma 2.1 tells us that we need

1− γ + d

(
(2q ′ + 1)p − 2q ′

2q ′ p
− 1

2q ′

)
= 1− γ + d(p − 1)

p
< 0⇐⇒ d + 1− γ <

d

p
. (3.57)
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Since we also needed σ s + d
r > d

p , the existence of a p satisfying both the upper and
lower bounds is true if and only if

d + 1− γ < σ s + d

r
⇐⇒

{
r < d

d+1−γ−σ s , γ + σ s ≤ d + 1

r ≤ ∞, γ + σ s > d + 1.
(3.58)

Note that if γ ≥ 1, then for any σ s > 0, we have d
d+1−γ−σ s > 1.

Under the constraints of the preceding paragraph, the right-hand side of (3.53) is
�d,γ,r ,q,σ,s

|M|
∫ t

0

(
1+ (t − τ)−

σ s+1
2s

)(
‖eφτ A1/2

μτ
1‖Ŵ 0,2q′ ‖eφτ A1/2

μτ
2‖Ŵ 0,2q′

+ ‖eφτ A1/2
μτ
1‖Ŵ σ s,r ‖eφτ A1/2

μτ
2‖Ŵ 0,2q′

)
dτ. (3.59)

Taking the supremum over τ ∈ [0, T ] in the right-hand side and using fundamental
theorem of calculus leads to the desired conclusion. ��

An immediate corollary of Lemmas 3.7 and 3.9 is the following estimate for the
Duhamel term.

Corollary 3.10 Under the assumptions of Lemmas 3.7 and 3.9, there exists a constant
C > 0 depending on d, γ, r , q, σ, s, β, ν, such that for any T > 0 and μ1, μ2 ∈
C0
T X

σ,0,r , 2q
q−1

φ,γ ,

∥∥∥∥
∫ t

0
e−

ν2(t−τ )
2 ABτ (μτ

1, μ
τ
2)dτ

∥∥∥∥
C0
T X

σ,0,r , 2q
q−1

φ,γ

≤ C |M|
(
T + T 1− σ s+1

2s

) (
‖μ1‖

C0
T X

σ,0,r , 2q
q−1

φ,γ

‖μ2‖
C0
T X

σ,0,r , 2q
q−1

φ,γ

)
. (3.60)

Proof of Proposition 3.1 Putting together the estimates of Lemma 3.6 and Corol-
lary 3.10, we have shown that there exists a constant C > 0 depending on
d, γ, r , q, σ, s, β, ν, such that

‖T (μ)‖
C0
T X

σ,0,r , 2q
q−1

φ,γ

≤ ‖μ0‖
X

σ,0,r , 2q
q−1

α,γ

+ C |M|
(
T + T 1− (σ s+1)

2s

)
‖μ‖2

C0
T X

σ,0,r , 2q
q−1

φ,γ

(3.61)

and

‖T (μ1)− T (μ2)‖
C0
T X

σ,0,r , 2q
q−1

φ,γ

≤ C |M|
(
T + T 1− (σ s+1)

2s

)
‖μ1 − μ2‖

C0
T X

σ,0,r , 2q
q−1

φ,γ

×
(
‖μ1‖

C0
T X

σ,0,r , 2q
q−1

φ,γ

+ ‖μ2‖
C0
T X

σ,0,r , 2q
q−1

φ,γ

)
. (3.62)
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We now want to show that for any appropriate choice of T , the map T is a contraction
on the closed ball BR(0) of radius R > 2‖μ0‖

X
σ,0,r , 2q

q−1
α,γ

centered at the origin in the

space C0
TX

σ,0,r , 2q
q−1

φ,γ . Indeed, from the estimates (3.61) and (3.62), we see that if

C |M|R
(
T + T 1− σ s+1

2s

)
<
1

2
, (3.63)

then T is a contraction on BR(0). So by the contraction mapping theorem, there exists

a unique fixed pointμ = T (μ) ∈ C0
TX

σ,0,r , 2q
q−1

φ,γ . We note that T ≥ C ′(|M|R)−
2s

2s−σ s−1 ,
where C ′ > 0 is a possibly different constant than C but depending on the same
parameters.

The preceding result shows local existence and uniqueness of solutions to the
Cauchy problem (3.1). To complete the proof of Proposition 3.1, we now prove contin-

uous dependence on the initial data. For j = 1, 2, letμ j be a solution inC0
Tj
X

σ,0,r , 2q
q−1

φ,γ

to (3.1) with initial datum μ0
j , such that ‖μ0

j‖
X

σ,0,r , 2q
q−1

α,γ

≤ R. Then there exists a

T �d,γ,r ,q,σ,s,β,ν (|M|R)−
2s

2s−σ s−1 such that μ1, μ2 are defined on [0, T ]. From the
mild formulation (3.3), the triangle inequality, Lemma 3.6, and Corollary 3.10, we see
that
‖μ1 − μ2‖

C0
T X

σ,0,r , 2q
q−1

φ,γ

≤ ‖μ0
1 − μ0

2‖
X

σ,0,r , 2q
q−1

α,γ

+ C |M|
(
T + T 1− σ s+1

2s

)
‖μ1 − μ2‖

C0
T X

σ,0,r , 2q
q−1

φ,γ

(
‖μ1‖

C0
T X

σ,0,r , 2q
q−1

φ,γ

+ ‖μ2‖
C0
T X

σ,0,r , 2q
q−1

φ,γ

)
. (3.64)

Taking T smaller if necessarywhile still preserving T �d,γ,r ,q,s,σ,β,ν (|M|R)−
2s

2s−σ s−1 ,

we may assume that 2C |M|(T + T 1− σ s+1
2 )R ≤ 1

4 . Bounding each ‖μ j‖
C0
T X

σ,0,r , 2q
q−1

φ,γ

by R in the last factor, it then follows from (3.64) that

‖μ1 − μ2‖
C0
T X

σ,0,r , 2q
q−1

φ,γ

≤ 2‖μ0
1 − μ0

2‖
X

σ,0,r , 2q
q−1

α,γ

. (3.65)

With this last estimate, the proof of Proposition 3.1 is complete. ��

4 Global existence

We now show that with quantifiable high probability, there exists a global solutionμ ∈
C0∞X

σr ,σq ,r , 2q
q−1

φ,γ to the Cauchy problem (3.1), provided σr , σq , r , q are appropriately
chosen. Moreover, the function

t �→ ‖μt‖Xσr ,σq ,r ,q

φt ,γ
(4.1)
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is strictly decreasing on [0,∞), provided that ‖μ0‖Xσr ,σq ,r ,q
α,γ

is sufficiently small. This

then proves Theorem 1.2.

4.1 Monotonicity of Gevrey norm

The goal of this subsection is to show the following. Suppose we have a solu-

tion μ ∈ C0
TX

κr ,κq ,r , 2q
q−1

φ,γ to (3.1), where φt := α + βt , such that μ also belongs

to C0
TX

κ ′r ,κ ′q ,r , 2q
q−1

φ,γ , for sufficiently larger κ ′r > κr and κ ′q > κq , and such that

‖μ0‖
X

κr ,κq ,r , 2q
q−1

α,γ

is sufficiently small depending on d, γ, r , q, κr , κq , s, β, ν, |M|. If
κr , κq are sufficiently large depending on d, s, γ , then the quantity ‖μt‖

X
κr ,κq ,r , 2q

q−1
φt ,γ

must be strictly decreasing on the interval [0, T ]. In other words, the Gevrey norm of
μt is strictly decreasing on an interval, provided that we know a Gevrey norm with
higher Sobolev index (but the same Gevrey index) remains finite on the same interval.

Proposition 4.1 Let d ≥ 1, 0 < γ < d + 1, 1 ≤ r ≤ ∞, 1
2 < s ≤ 1. If γ > 1, then

also suppose we are given 1 < q < d
γ−1 . Given α, β > 0, set φt := α + βt . Assume

that W is a realization from �α,β,ν .
If γ ≤ 1, then there is a threshold κ0,r ∈ R depending on r , d, s, γ , such that

for any κr > κ0,r , the following holds. There is a constant Cr > 0, depending only

on d, γ, r , s, κr , such that if μ ∈ C0
TG

κr+ 2
r ,r

φ is a nonzero solution to (3.1), for some
T > 0, satisfying

‖μ0‖Gκr ,r
α

<
ν2 − 2β

Cr |M| , (4.2)

then

‖μt‖Gκr ,r
φt

< ‖μt ′ ‖Gκr ,r

φt
′ ∀0 ≤ t ′ < t ≤ T . (4.3)

If γ > 1, then there is a threshold κ0,q ∈ R depending on q, d, s, γ , such that for
any κq > κ0,q , the following holds. There is a constant Cq > 0, depending only on

d, γ, q, s, κq , such that if μ ∈ C0
TG

κq+ q−1
q ,

2q
q−1

φ is a nonzero solution to (3.1), for some
T > 0, satisfying

‖μ0‖
G

κq ,
2q
q−1

α

<
ν2 − 2β

Cq |M| , (4.4)

then

‖μt‖
G

κq ,
2q
q−1

φt

< ‖μt ′ ‖
G

κq ,
2q
q−1

φt
′

∀0 ≤ t ′ < t ≤ T . (4.5)
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Furthermore, if μ ∈ C0
T X

κr+ 2
r ,κq+ q−1

q ,r , 2q
q−1

φ,γ is a nonzero solution, where κr > κ0,r ,
such that

‖μ0‖
X
κr ,κq ,r , 2q

q−1
α,γ

<
ν2 − 2β

|M|max{Cr ,Cq} , (4.6)

then (4.3) also holds.

Remark 4.2 Bounds for the thresholds κ0,r , κ0,q are explicitly worked out in the proof
of Proposition 4.1. See the conditions (U1),(U2) and (L1),(L2) below together with
their respectively ensuing analysis.

The proof of Proposition 4.1 consists of several lemmas. To begin, we observe from
the chain rule and using Eq. (3.1) (there is an approximation step we omit),

d

dt
|eφt (1+|ξ |s )μ̂t (ξ)| =  

(
|eφt (1+|ξ |s )μ̂t (ξ)|−1eφt (1+|ξ |s )μ̂t (ξ)

(
β(1+ |ξ |s)eφt (1+|ξ |s )μ̂t (ξ)

− eφt (1+|ξ |s )F(Bt (μt , μt ))(ξ)− ν2

2
(1+ |ξ |s)2eφt (1+|ξ |s )μ̂t

)
. (4.7)

Replacing the first and second terms by their magnitudes, we see that the right-hand
side is ≤

|eφt (1+|ξ |s)μ̂t (ξ)|
(

β(1+ |ξ |s)− ν2

2
(1+ |ξ |s)2

)
+

∣∣∣eφt (1+|ξ |s )F(Bt (μt , μt ))(ξ)

∣∣∣ .
(4.8)

Using the elementary inequality (remember that s ≤ 1)

〈ξ 〉 ≤ (1+ |ξ |s) 1
s ≤ 2

2−s
2s 〈ξ 〉 (4.9)

together with our assumption that β < ν2

2 , we arrive at the inequality

d

dt
|eφt (1+|ξ |s )μ̂t (ξ)| ≤ −〈ξ〉2s |eφt (1+|ξ |s )μ̂t (ξ)|

(
ν2

2
− β

)
+

∣∣∣eφt (1+|ξ |s )F(Bt (μt , μt ))(ξ)

∣∣∣ .
(4.10)

It now follows from this identity, the chain rule, and differentiating inside the integral
that for any 1 ≤ r < ∞,

1

r

d

dt
‖eφt A1/2

μt‖r
Ŵ σ s,r ≤ −

(
ν2

2
− β

) ∫
Rd

∣∣∣eφt (1+|ξ |s )〈ξ 〉(σ+ 2
r )sμ̂t (ξ)

∣∣∣r dξ

+
∫
Rd

∣∣∣eφt (1+|ξ |s )〈ξ 〉σ sμ̂t (ξ)

∣∣∣r−1 〈ξ 〉σ seφt (1+|ξ |s )|F(Bt (μt , μt ))(ξ)|dξ. (4.11)
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We need to show that the second term in (4.11) is not so large that it cannot be
absorbed by the first term, which is negative. This is a problem in Fourier analysis,
which we address with the next two lemmas.

Lemma 4.3 For any t > 0 with φt − νWt ≥ 0, it holds for any test functions f , g that

|eφt (1+|ξ |s )F(Bt ( f , g))(ξ)|
�γ |M|

∫
Rd
|ξ ||η|1−γ

∣∣∣eφt (1+|ξ−η|s ) f̂ (ξ − η)eφt (1+|η|s)ĝ(η)

∣∣∣ dη. (4.12)

Proof We observe from the definition (3.2) of Bt that for any test functions f , g,

eφt (1+|ξ |s)F(Bt ( f , g))(ξ)

=
∫
Rd

eφt (1+|ξ |s)−νWt (|ξ |s−|η|s−|ξ−η|s−1) (ξ ·Mη) ĝ(η) f̂ (ξ − η)ĝ(η)dη. (4.13)

Writing 1 = eφt (1+|η|s )e−φt (1+|η|s ) = eφt (1+|ξ−η|s )e−φt (1+|ξ−η|s ), we see that the
magnitude of the preceding right-hand side is controlled by∣∣∣∣

∫
Rd

e(φt−νWt )(|ξ |s−|η|s−|ξ−η|s−1) (ξ ·Mη) ĝ(η)eφt (1+|ξ−η|s ) f̂ (ξ − η)eφt (1+|η|s ) ĝ(η)dη

∣∣∣∣
�γ |M|

∫
Rd

e(φt−νWt )(|ξ |s−|η|s−|ξ−η|s−1)|ξ ||η|1−γ
∣∣∣eφt (1+|ξ−η|s ) f̂ (ξ − η)eφt (1+|η|s ) ĝ(η)

∣∣∣ dη,

(4.14)

where we have used our assumption that |ηĝ(η)| �γ |η|1−γ . Since φt − νWt ≥ 0 by
assumption and |ξ |s − |η|s − |ξ − η|s − 1 ≤ 0 by ‖ · ‖�1 ≤ ‖ · ‖�s (recall s ≤ 1), the
desired inequality now follows. ��

Next, we observe that by applying Lemma 4.3 to the second term in the right-hand
side of (4.11), we need to estimate expressions of the form

∫
Rd

∣∣∣eφt (1+|ξ |s )〈ξ〉κs ĥ(ξ)

∣∣∣r−1 〈ξ〉κs+1 ∫
Rd
|η|1−γ

∣∣∣eφt (1+|ξ−η|s ) f̂ (ξ − η)eφt (1+|η|s ) ĝ(η)

∣∣∣ dηdξ,

(4.15)

where f , g, h are test functions.We take care of such expressions with the next lemma.

Lemma 4.4 Let d ≥ 1, 0 < γ < d+1, 1 ≤ r ≤ ∞, 12 < s ≤ 1. If γ > 1, also assume
that 1 ≤ q < d

γ−1 . Then there exists a threshold κ0 depending on d, γ, r , s, such that
for any κ > κ0, there exists a constant C > 0 depending on d, γ, r , s, q, κ so that

∫
Rd

∣∣∣eφt (1+|ξ |s )〈ξ〉κs ĥ(ξ)

∣∣∣r−1 〈ξ〉κs+1 ∫
Rd
|η|1−γ

∣∣∣eφt (1+|ξ−η|s ) f̂ (ξ − η)eφt (1+|η|s ) ĝ(η)

∣∣∣ dηdξ

≤ C‖eφt A1/2
h‖r−1

Ŵ (κ+ 2
r )s,r

(
‖eφt A1/2

f ‖
Ŵ (κ− 2(r−1)

r )s+1,r ‖eφt A1/2
g‖

Ŵ
1−γ,

2q
q−1

1γ>1

+ ‖eφt A1/2
f ‖

Ŵ (κ+ 2
r )s,r ‖eφt A1/2

g‖Ŵ κs,r + ‖eφt A1/2
f ‖Ŵ κs,r ‖eφt A1/2

g‖
Ŵ (κ+ 2

r )s,r

)
. (4.16)
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Proof Writing 〈ξ 〉κs+1 = 〈ξ 〉κs+1− 2s(r−1)
r 〈ξ 〉 2s(r−1)r and applying Hölder’s inequality

with conjugate exponents r
r−1 and r , we find that the left-hand side of (4.16) is ≤

‖eφt A1/2〈∇〉(κ+ 2
r )sh‖r−1

L̂r

( ∫
Rd
〈ξ 〉(rκ−2(r−1))s+r

∣∣∣∣
∫
Rd
|η|1−γ

∣∣∣eφt (1+|ξ−η|s) f̂ (ξ − η)eφt (1+|η|s )ĝ(η)

∣∣∣ dη

∣∣∣r dξ

)1/r

, (4.17)

with obvious modification if r = ∞. We need to estimate the second factor. We first
address the singularity in η at low frequency if 1− γ < 0. Observe that by separately
considering the regions |ξ | ≤ 2|η| and |ξ | > 2|η|, it follows from Young’s inequality
that( ∫

Rd
〈ξ〉(rκ−2(r−1))s+r

∣∣∣∣
∫
|η|≤1

|η|1−γ
∣∣∣(eφt (1+|ξ−η|s ) f̂ (ξ − η)

) (
eφt (1+|η|s ) ĝ(η)

)∣∣∣ dη

∣∣∣∣
r

dξ

)1/r

�r ,κ,s,γ,d ‖〈·〉(κ− 2(r−1)
r )s+1eφt (1+|·|s ) f̂ ‖Lr ‖| · |1−γ eφt (1+|·|s ) ĝ1B(0,1)‖L1

� ‖eφt A1/2
f ‖

Ŵ (κ− 2(r−1)
r )s+1,r ‖eφt A1/2

g‖
Ŵ

1−γ,
2q
q−1

, (4.18)

for any 1 ≤ q < d
γ−1 , where we use Hölder’s inequality on the second factor to obtain

the ultimate line.
Next, we make an elementary Bony decomposition by splitting the space of (ξ, η)

into the regions |ξ − η| ≤ |η|
8 , |η| ≤ |ξ−η|

8 , and 1
8 <

|ξ−η|
|η| < 8.

• If |ξ − η| ≤ |η|
8 , then |η| ∼ |ξ |. So by Young’s inequality followed by application

of Lemma 2.1, it holds for any 1 ≤ p ≤ r that

⎛
⎝∫

Rd
〈ξ〉r((κ− 2(r−1)

r )s+1)
⎛
⎝∫

|ξ−η|≤ |η|
8|η|>1

eφt (1+|ξ−η|s )| f̂ (ξ − η)||η|1−γ eφt (1+|η|s )|ĝ(η)|dη

⎞
⎠

r

dξ

⎞
⎠

1/r

�r ,κ,s,γ ‖eφt A1/2
f ‖

L̂
pr

p(r+1)−r ‖〈∇〉
(κ− 2(r−1)

r )s+2−γ eφt A1/2
g‖L̂ p

�d,r ,s,κ,γ,p ‖eφt A1/2
f ‖Ŵ 0,1‖eφt A1/2

g‖Ŵ κs+2−γ,11r=1

+ ‖eφt A1/2
f ‖Ŵ 0,r ‖eφt A1/2

g‖
Ŵ ((κ− 2(r−1)

r )s+2+ d(r−1)
r −γ )+,r

1r>1
p=1

+ ‖eφt A1/2
f ‖

Ŵ
d(r−1)

r +,r
‖eφt A1/2

g‖
Ŵ (κ− 2(r−1)

r )s+2−γ,r
1r>1
p=r

+ ‖eφt A1/2
f ‖

Ŵ
d(p−1)

p +,r
‖eφt A1/2

g‖
Ŵ

((κ− 2(r−1)
r )s+2−γ+ d(r−p)

rp )+,r
1 r>1
1<p<r

. (4.19)

• If |η| ≤ |ξ−η|
8 , then |ξ−η| ∼ |ξ |. Again using Young’s inequality and Lemma 2.1,

it holds for any 1 ≤ p̃ ≤ r that

⎛
⎝∫

Rd
〈ξ〉r((κ− 2(r−1)

r )s+1)
⎛
⎝∫

|η|≤ |ξ−η|
8|η|>1

eφt (1+|ξ−η|s )| f̂ (ξ − η)||η|1−γ eφt (1+|η|s )|ĝ(η)|dη

⎞
⎠

r

dξ

⎞
⎠

1/r
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�r ,κ,s,γ ‖〈∇〉(κ− 2(r−1)
r )s+1eφt A1/2

f ‖
L̂

p̃r
p̃(r+1)−r

‖〈∇〉1−γ eφt A1/2
g‖L̂ p̃

�d,s,κ,γ,r , p̃ ‖eφt A1/2
f ‖Ŵ κs+1,1‖eφt A1/2

g‖Ŵ 1−γ,11r=1

+ ‖eφt A1/2
f ‖

Ŵ (κ− 2(r−1)
r )s+1,r ‖eφt A1/2

g‖
Ŵ (1−γ+ d(r−1)

r )+,r
1r>1
p̃=1

+ ‖eφt A1/2
f ‖

Ŵ ((κ− 2(r−1)
r )s+1+ d(r−1)

r )+,r
‖eφt A1/2

g‖Ŵ 1−γ,r 1r>1
p̃=r

+ ‖eφt A1/2
f ‖

Ŵ
((κ− 2(r−1)

r )s+1+ d( p̃−1)
p̃ )+,r

‖eφt A1/2
g‖

Ŵ
(1−γ+ d(r− p̃)

r p̃ )+,r
1 r>1
1< p̃<r

. (4.20)

• If 1
8 <

|ξ−η|
|η| < 8, then min{|ξ − η|, |η|} � |ξ |. So we can evenly distribute the

derivatives between f and g and use Young’s inequality together with Lemma 2.1
to obtain

⎛
⎝∫

Rd
〈ξ〉r((κ− 2(r−1)

r )s+1)
⎛
⎝∫

1
8≤ |ξ−η|

|η| ≤8
|η|>1

eφt (1+|ξ−η|s )| f̂ (ξ − η)||η|1−γ eφt (1+|η|s )|ĝ(η)|dη

⎞
⎠

r

dξ

⎞
⎠

1/r

�r ,κ,s,γ ‖〈∇〉
(κ− 2(r−1)

r )s+2−γ

2 eφt A1/2
f ‖

L̂
2r
r+1
‖〈∇〉 (κ− 2(r−1)

r )s+2−γ

2 eφt A1/2
g‖

L̂
2r
r+1

�d,r ,κ,s,γ ‖eφt A1/2
f ‖

Ŵ
κs+2−γ

2 ,1
‖eφt A1/2

g‖
Ŵ

κs+2−γ
2 ,1

1r=1

+ ‖eφt A1/2
f ‖

Ŵ (
(κ− 2(r−1)

r )s+2+ d(r−1)
r −γ

2 )+,r
‖eφt A1/2

g‖
Ŵ (

(κ− 2(r−1)
r )s+2+ d(r−1)

r −γ

2 )+,r
1r>1. (4.21)

Combining the estimates (4.18), (4.19), (4.20), (4.21), we see that

( ∫
Rd
〈ξ〉(rκ−2(r−1))s+r

∣∣∣∣
∫
Rd
|η|1−γ

∣∣∣(eφt (1+|ξ−η|s ) f̂ (ξ − η)
) (

eφt (1+|η|s ) ĝ(η)
)∣∣∣ dη

∣∣∣∣
r

dξ

)1/r

�d,s,γ,κ,r ,q,p, p̃ ‖eφt A1/2
f ‖

Ŵ (κ− 2(r−1)
r )s+1,r ‖eφt A1/2

g‖
Ŵ

1−γ,
2q
q−1

1γ>1

+
(
‖eφt A1/2

f ‖Ŵ 0,1‖eφt A1/2
g‖Ŵ κs+2−γ,1 + ‖eφt A1/2

f ‖Ŵ κs+1,1‖eφt A1/2
g‖Ŵ 1−γ,1

+ ‖eφt A1/2
f ‖

Ŵ
κs+2−γ

2 ,1
‖eφt A1/2

g‖
Ŵ

κs+2−γ
2 ,1

)
1r=1

+ ‖eφt A1/2
f ‖

Ŵ
d(p−1)

p +,r
‖eφt A1/2

g‖
Ŵ

((κ− 2(r−1)
r )s+2−γ+ d(r−p)

rp )+,r
1 r>1
1<p<r

+ ‖eφt A1/2
f ‖

Ŵ
((κ− 2(r−1)

r )s+1+ d( p̃−1)
p̃ )+,r

‖eφt A1/2
g‖

Ŵ
(1−γ+ d(r− p̃)

r p̃ )+,r
1 r>1
1< p̃<r

+ ‖eφt A1/2
f ‖

Ŵ (
(κ− 2(r−1)

r )s+2+ d(r−1)
r −γ

2 )+,r
‖eφt A1/2

g‖
Ŵ (

(κ− 2(r−1)
r )s+2+ d(r−1)

r −γ

2 )+,r
1r>1. (4.22)

Above, we have limited ourselves to the cases r = 1 and r > 1, 1 < p, p̃ < ∞ so as
to simplify the exposition (the cost is an insignificant ε loss at the endpoint exponents).
In order to obtain the desired estimate (4.16), we need the maximum Sobolev index of
the norms in (4.22) to be< (κ+ 2

r )s. This leads us to make the following assumptions
on the parameters d, s, κ, γ, r , p, p̃.

(U1) r = 1
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(a) κs + 2− γ ≤ (κ + 2)s,
(b) max{κs + 1, 1− γ } ≤ (κ + 2)s,
(c) κs+2−γ

2 ≤ (κ + 2)s.

(U2) r > 1

(a) (κ − 2(r−1)
r )s + 1 ≤ (κ + 2

r )s;

(b) there exists p ∈ (1, r) such thatmax{ d(p−1)
p , (κ− 2(r−1)

r )s+2−γ+ d(r−p)
rp } <

(κ + 2
r )s;

(c) there exists p̃ ∈ (1, r) such that max{(κ − 2(r−1)
r )s + 1 + d( p̃−1)

p̃ , 1 − γ +
d(r− p̃)

r p̃ } < (κ + 2
r )s;

(d)
(κ− 2(r−1)

r )s+2+ d(r−1)
r −γ

2 < (κ + 2
r )s.

Let us analyze the above conditions.
For (U1)a, observe

κs + 2− γ ≤ (κ + 2)s ⇐⇒ 2− γ

2
≤ s. (4.23)

Since γ > 0 by assumption, we can always choose s sufficiently close to 1, so that
this condition holds. For (U1)b, the inequality is equivalent to

1

2
≤ s and 1− γ − 2s ≤ κs. (4.24)

The first inequality is true by assumption, and the second inequality holds by taking
κ sufficiently large depending on given γ, s. (U2)c is equivalent to

2− γ − 4s ≤ κs, (4.25)

which holds by taking κ sufficiently large depending on given s, γ . (U2)a is equivalent
to

− 2(r − 1)s

r
+ 1 ≤ 2s

r
⇐⇒ 1

2
≤ s, (4.26)

which holds by assumption. For (U2)b, observe that

d(p − 1)

p
< (κ + 2

r
)s ⇐⇒ d − (κ + 2

r
)s <

d

p
(4.27)

and

(κ − 2(r − 1)

r
)s + 2− γ + d(r − p)

rp
< (κ + 2

r
)s ⇐⇒ d

p
<

d

r
+ γ + 2s − 2. (4.28)
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Thus, it is possible to find such a p ∈ (1, r) if and only if

d − (κ + 2

r
)s <

d

r
+ γ + 2s − 2 ⇐⇒ d − 2s

r
− d

r
− γ − 2s + 2 < κs,

(4.29)

which holds by taking κ sufficiently large depending on given d, γ, r , s. For (U2)c,
observe

(
κ − 2(r − 1)

r

)
s + 1+ d( p̃ − 1)

p̃
<

(
κ + 2

r

)
s ⇐⇒ d + 1− 2s <

d

p̃
(4.30)

and

1− γ + d(r − p̃)

r p̃
<

(
κ + 2

r

)
s ⇐⇒ d

p̃
< κs + 2s + d

r
+ γ − 1.

(4.31)

It is possible to find such a p̃ ∈ (1, r) if and only if

d + 1− 2s < κs + 2s + d

r
+ γ − 1 ⇐⇒ d + 2− 2s − 2s + d

r
− γ < κs,

(4.32)

which holds by taking κ sufficiently large depending on given d, γ, r , s. Lastly, (U2)d
is equivalent to

d + 2− γ − 2s − d + 2s

r
< κs, (4.33)

which holds by taking κ sufficiently large depending on given d, γ, r , s.
Next, we observe that in order to obtain the desired estimate (4.16), we need the

minimum Sobolev index of the norms appearing in (4.22) to be ≤ κs. This leads us
to make the following additional assumptions on the parameters d, s, κ, γ, r , p, p̃:

(L1) r = 1

(a) 1− γ ≤ κs
(b) κs+2−γ

2 ≤ κs

(L2) r > 1

(a) there exists p ∈ (1, r) such thatmin{ d(p−1)
p , (κ− 2(r−1)

r )s+2−γ+ d(r−p)
rp } <

κs
(b) there exists p̃ ∈ (1, r) such that min{(κ − 2(r−1)

r )s + 1 + d( p̃−1)
p̃ , 1 − γ +

d(r− p̃)
r p̃ } < κs

(c)
(κ− 2(r−1)

r )s+2+ d(r−1)
r −γ

2 < κs.
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Let us analyze the preceding assumptions.
For any 1

2 < s ≤ 1, (L1)a always holds if we assume 2(1− γ ) ≤ κ . For (L1)b,

κs + 2− γ

2
≤ κs ⇐⇒ 2− γ ≤ κs, (4.34)

which is ensured by taking κ sufficiently large depending on given γ, s. For (L2)a, we
need

d(p − 1)

p
< κs or (κ − 2(r − 1)

r
)s + 2− γ + d(r − p)

rp
< κs. (4.35)

Since p < r and therefore d(p−1)
p <

d(r−1)
r , the first inequality is valid if d(r−1)

r < κs,
which holds by taking κ sufficiently large depending on given d, r , s. For the second
inequality, we see

(
κ − 2(r − 1)

r

)
s + 2− γ + d(r − p)

rp
< κs ⇐⇒ 2− 2s − γ + d

p
+ (2s − d)

r
< 0.

(4.36)

The left-hand side of the second inequality is maximized by choosing p = 1, so it
would suffice to assume d, γ, s, r satisfy

2− 2s − γ + d + (2s − d)

r
< 0. (4.37)

For (L2)b, we need

(
κ − 2(r − 1)

r

)
s + 1+ d( p̃ − 1)

p̃
< κs or 1− γ + d(r − p̃)

r p̃
< κ. (4.38)

The first inequality is equivalent to

d + 1− 2s + 2s

r
− d

p̃
< 0. (4.39)

The left-hand side is maximized by choosing p̃ = r , therefore it suffices to assume

d + 1− 2s + (2s − d)

r
< 0. (4.40)

The second inequality is equivalent to

1− γ + d

p̃
− d

r
< κs, (4.41)
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the left-hand side of which is maximized by choosing p̃ = 1. So, it would suffice to
assume

1− γ + d − d

r
< κs, (4.42)

which is seen to hold by choosing κ sufficiently large depending on given d, γ, r , s.
For (L2)c, we observe that the inequality is equivalent to

d + 2− γ − 2s + 2s − d

r
< κs, (4.43)

which is valid provided that κ is sufficiently large depending on given d, γ, r , s.
The preceding sets of assumptions tell us that given d, γ, r , s, there is a threshold

κ0 depending on d, γ, r , s, such that for all κ > κ0, the right-hand side of (4.22) is
controlled by

‖eφt A1/2
f ‖

Ŵ (κ− 2(r−1)
r )s+1,r ‖eφt A1/2

g‖
Ŵ

1−γ,
2q
q−1

1γ>1

+ ‖eφt A1/2
f ‖

Ŵ (κ+ 2
r )s,r ‖eφt A1/2

g‖Ŵ κs,r + ‖eφt A1/2
f ‖Ŵ κs,r ‖eφt A1/2

g‖
Ŵ (κ+ 2

r )s,r .

(4.44)

Recalling the starting inequality (4.17), we see that the proof is complete. ��

We are now prepared to prove Proposition 4.1.

Proof of Proposition 4.1 Given 1 < q < d
γ−1 , set q

′ := q
q−1 . We first show that the

quantity

‖eφt A1/2
μt‖2q ′

Ŵ κs,2q′ (4.45)

is strictly decreasing on an interval [0, T ], provided that κ sufficiently large depending
on q ′ and the higher norm ‖eφt A1/2

μt‖
Ŵ

(κ+ 1
q′ )s,2q

′ remains finite on [0, T ]. Indeed, let
κ0,2q ′ denote the threshold given by Lemma 4.4 with r = 2q ′, and suppose that
κ > κ0,2q ′ . Using Hölder’s inequality and Lemmas 4.3 and 4.4, we see that

∫
Rd

∣∣∣eφt (1+|ξ |s)〈ξ 〉κsμ̂t (ξ)

∣∣∣2q ′−1 〈ξ 〉κseφt (1+|ξ |s)|F(Bt (μt , μt ))(ξ)|dξ

≤ C |M|‖eφt A1/2
μt‖2q ′−1

Ŵ
(κ+ 1

q′ )s,2q
′

(
‖eφt A1/2

μt‖
Ŵ

(κ−2+ 1
q′ )s+1,2q

′ ‖eφt A1/2
μt‖Ŵ 1−γ,2q′ 1γ>1

+ ‖eφt A1/2
μt‖

Ŵ
(κ+ 1

q′ )s,2q
′ ‖eφt A1/2

μt‖Ŵ κs,2q′
)

(4.46)
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where the constant C > 0 depends only on d, γ, q, s, κ . Applying this bound to the
differential identity (4.11) (with r replaced by 2q ′), it follows that

d

dt

1

2q ′
‖eφt A1/2

μt‖2q ′
Ŵ κs,2q′ ≤ −

(
ν2

2
− β

)
‖eφt A1/2

μt‖2q ′
Ŵ

(κ+ 1
q′ )s,2q

′

+ C |M|‖eφt A1/2
μt‖2q ′−1

Ŵ
(κ+ 1

q′ )s,2q
′

(
‖eφt A1/2

μt‖
Ŵ

(κ−2+ 1
q′ )s+1,2q

′ ‖eφt A1/2
g‖Ŵ 1−γ,2q′ 1γ>1

+ ‖eφt A1/2
μt‖

Ŵ
(κ+ 1

q′ )s,2q
′ ‖eφt A1/2

μt‖Ŵ κs,2q′
)

. (4.47)

Note that since s > 1
2 by assumption, (κ − 2 + 1

q ′ )s + 1 < (κ + 1
q ′ )s. Thus, the

right-hand side of the preceding inequality is ≤

‖eφt A1/2
μt‖2q ′

Ŵ
(κ+ 1

q′ )s,2q
′

(
C |M|‖eφt A1/2

μt‖Ŵ κs,2q′ −
(

ν2

2
− β

) )
. (4.48)

We now want to show that if ‖eαA1/2
μ0‖Ŵ κs,2q′ <

ν2−2β
2C|M| and the first factor remains

finite on [0, T ], then ‖eφt A1/2
μt‖Ŵ κs,2q′ is strictly decreasing on [0, T ]. To do this, we

use a continuity argument.
Let T∗ denote the maximal time in [0, T ] such that

‖eφt A1/2
μt‖Ŵ κs,2q′ <

ν2 − 2β

2C |M| ∀t ∈ [0, T∗). (4.49)

Such a T∗ exists and is positive since the preceding inequality is true at t = 0 by
assumption and the function t �→ ‖eφt A1/2

μt‖Ŵ κs,2q′ is continuous on [0, T ]. (4.49)
together with (4.48) imply that the right-hand side of (4.47) is negative on [0, T∗).
Hence, the function t �→ ‖eφt A1/2

μt‖Ŵ κs,2q′ is strictly decreasing on [0, T∗), implying

‖eφt A1/2
μT∗‖Ŵ κs,2q′ < ‖eφt A1/2

μ0‖Ŵ κs,2q′ <
ν2 − 2β

2C |M| . (4.50)

This inequality implies by maximality that T∗ = T , and therefore strict monotonicity
holds on [0, T ].

We next show that this monotonicity property of the norm ‖eφt A1/2
μt‖Ŵ κs,2q′ also

implies a monotonicity property for the norm ‖eφt A1/2
μt‖Ŵ κ̃s,r , for appropriate κ̃ , pro-

vided that ‖eαA1/2
μ0‖Ŵ κ̃s,r is sufficiently small. If γ ≤ 1, then this step is unnecessary

and the argument given above suffices with 2q ′ replaced by r .
Let κ0,r denote the regularity threshold given by Lemma 4.4, and let κr > κ0,r .

Again using Hölder’s inequality and Lemmas 4.3 and 4.4, we see that

∫
Rd

∣∣∣eφt (1+|ξ |s)〈ξ〉κr s μ̂t (ξ)

∣∣∣r−1 〈ξ〉κr seφt (1+|ξ |s)|F(Bt (μt , μt ))(ξ)|dξ
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≤ Cr ,q |M|‖eφt A1/2
μt‖r−1

Ŵ (κr+ 2
r )s,r

(
‖eφt A1/2

μt‖
Ŵ (κr−2+ 2

r )s+1,r ‖eφ
t A1/2

μt‖Ŵ 1−γ,2q′ 1γ>1

+ ‖eφt A1/2
μt‖

Ŵ (κr+ 2
r )s,r ‖eφ

t A1/2
μt‖Ŵ κr s,r

)
, (4.51)

where the constantCr ,q > 0 depends only on d, γ, r , q, s, κr .We use the subscript r to
emphasize the dependence on r , as we shall momentarily invoke another constant and
regularity parameter depending on q. Applying the preceding bound to the differential
identity (4.11) it follows that

d

dt

1

r
‖eφt A1/2

μt‖r
Ŵ κr s,r

≤
(
Cr ,q |M|

(
‖eφt A1/2

μt‖Ŵ κr s,r + ‖eφt A1/2
μt‖Ŵ 1−γ,2q′ 1γ>1

)

−
(

ν2

2
− β

) )
‖eφt A1/2

μt‖r
Ŵ (κr+ 2

r )s,r
. (4.52)

Since 1 − γ < 0 if γ > 1, we know that there is a constant Cq depending on
d, γ, q, s, κq , for κq > κ0,2q ′ , such that if

‖eαA1/2
μ0‖

Ŵ κq s,2q′ <
ν2 − 2β

2Cq |M| and ‖μ‖
C0
TG

(κq+ 1
q′ ),2q

′
φ

< ∞, (4.53)

then ‖eφt A1/2
μt‖

Ŵ κq s,2q′ is strictly decreasing on [0, T ]. A fortiori,

‖eφt A1/2
μt‖Ŵ 1−γ,2q′ ≤ ‖eαA1/2

μ0‖
Ŵ κq ,2q′ ∀t ∈ [0, T ]. (4.54)

Therefore, suppose that

‖eαA1/2
μ0‖

Ŵ κq s,2q′ < min

{
ν2 − 2β

2Cq |M| ,
ν2 − 2β

2Cr ,q |M|
}

, (4.55)

‖eαA1/2
μ0‖Ŵ κr s,r <

ν2 − 2β

2Cr ,q |M| − ‖e
αA1/2

μ0‖
Ŵ κq s,2q′ . (4.56)

Under these assumptions, it follows by repeating the continuity argument from above
that the quantity ‖eφt A1/2

μt‖Ŵ κr s,r is strictly decreasing on [0, T ]. With this last bit,
the proof of Proposition 4.1 is complete. ��

4.2 Proof of Theorem 1.2

We now use the local well-posedness established by Proposition 3.1 together with the
monotonicity of the Gevrey norm established by Proposition 4.1 in order to show that
with high probability, solutions in the class we consider are global. Moreover, their
Gevrey norm strictly decreases as time t → ∞. This then proves Theorem 1.2. To
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1254 M. Rosenzweig, G. Staffilani

show the desired result, we use a refined reformulation of the iterative argument from
[14, Section 5].

Let us first present the case 0 < γ ≤ 1, which is simpler due to not needing a
two-tiered norm. Fix ε > 0 and suppose that μ0 ∈ Gσ0,r

α+ε for σ0 above the regularity
threshold κ0,r given by Proposition 4.1. Throughout this subsection, we assume that
the parameters d, γ, r , s, σ0, α, β, ν satisfy all the constraints of Theorem 1.2.We also
assume that

0 < ‖μ0‖Gσ0,r
α+ε

<
ν2 − 2β

Cmon|M| , (4.57)

where Cmon = Cr > 0 is the constant from Proposition 4.1. The strict positivity
assumption is because μ0 = 0 implies μ is identically zero, and therefore strict
monotonicity does not hold in this trivial case. Assuming a realization of W from
�α,β,ν and given r ≥ 1 sufficiently small depending on d, γ, s, Proposition 3.1 implies
that for any 0 < σ < 2s−1

s , with 1−γ ≤ σ s, sufficiently large depending on d, γ, s, r ,
there is a maximal solution μ to the Cauchy problem (3.1) with lifespan [0, Tmax,σ,ε),
such that μ belongs to C0

TG
σ,r
φ+ε for any 0 ≤ T < Tmax,σ,ε . Our main lemma to

conclude global existence is the following result relating the lifespan of μt in Gσ,r
φt+ε

to the lifespan of μ in the larger space Gσ,r
φt+ε′ , for any ε′ ∈ [0, ε).

Lemma 4.5 Let μ be as above. There exists a constant C > 0 depending on
d, γ, r , s, σ, β, ν such that for any 0 ≤ ε2 < ε1 ≤ ε, the maximal times of exis-
tence Tmax,σ,ε1 , Tmax,σ,ε2 of μ

t as taking values in Gσ,r
φt+ε1

,Gσ,r
φt+ε2

, respectively, satisfy
the inequality

Tmax,σ,ε2 ≥ Tmax,σ,ε1 + C
(
|M|‖μ0‖Gσ0,r

α+ε

)− 2s
2s−σ s−1

. (4.58)

Proof Fix 0 < ε2 < ε1 ≤ ε. For any σ ′ ≥ σ , it follows from Lemma 3.5 that μ is
also a solution in C0

TG
σ ′,r
φ+ε2

for any 0 ≤ T < Tmax,σ,ε1 . Furthermore, we have the
quantitative bound

‖μt‖
Gσ ′,r

φt+ε2

≤ �σ ′ − σ�!
(ε1 − ε2)�σ ′−σ� ‖μt‖Gσ,r

φt+ε1
∀ 0 ≤ t < Tmax,σ,ε1 . (4.59)

Choose σ ′ such that

σ0 ≥ σ ′ > κ0,r , (4.60)

where κ0,r is the regularity threshold of Proposition 4.1. Using the assumption (4.57),
we can then apply Proposition 4.1 to conclude that the function t �→ ‖μt‖

Gσ ′,r
φt+ε2

is

strictly decreasing on the interval [0, T ] for any T < Tmax,σ,ε1 . In particular, since we
can ensure that σ ≤ σ ′, it follows from this monotonicity and Lemma 3.5 that

‖μ‖C0
TG

σ,r
φ+ε2

≤ ‖μ‖
C0
TG

σ ′,r
φ+ε2

≤ ‖μ0‖
Gσ ′,r

α+ε2

≤ ‖μ0‖Gσ0,r
α+ε

∀ 0 ≤ T < Tmax,σ,ε1 .
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(4.61)

Let Clwp,σ be the constant from Proposition 3.1, and choose T∗ < Tmax,σ,ε1 so that

Tmax,σ,ε1 − T∗ ≤
Clwp,σ

(
|M|‖μ0‖Gσ0,r

α+ε

)− 2s
2s−σ s−1

2
. (4.62)

Thus by relabeling time, we can apply Proposition 3.1 once more, but with initial
datum μT∗ , to find that μ belongs to C0

T0
Gσ,r

φ+ε2
, where

T0 = T∗ + Clwp,σ (|M|‖μ0‖Gσ,r
α+ε2

)−
2s

2s−σ s−1

= (T∗ − Tmax,σ,ε1)+ Tmax,σ,ε1 + Clwp,σ (|M|‖μ0‖Gσ,r
α+ε2

)−
2s

2s−σ s−1

≥ Tmax,σ,ε1 +
Clwp,σ (|M|‖μ0‖Gσ0,r

α+ε
)−

2s
2s−σ s−1

2
, (4.63)

where we have used that ‖μ0‖Gσ,r
α+ε2

≤ ‖μ0‖Gσ0,r
α+ε2

. Taking C = Clwp,σ
2 , the preceding

inequality is exactly what we need to show. ��

Proof of Theorem 1.2 for γ ≤ 1. Fix 0 < ε′ < ε. Let σ, σ0 be as above. If Tmax,σ,ε′ <

∞, then let n ∈ N be such that nC(|M|‖μ0‖Gσ0,r
α+ε

)−
2s

2s−σ s−1 satisfies the inequality

nC(|M|‖μ0‖Gσ0,r
α+ε

)−
2s

2s−σ s−1 > Tmax,σ,ε′ − Tmax,σ,ε, (4.64)

where C is the same constant as in the inequality (4.58). We observe from Lemma 4.5
that

Tmax,σ,ε′ − Tmax,σ,ε =
n−1∑
j=0

(
T
max,σ,ε− ( j+1)(ε−ε′)

n
− T

max,σ,ε− j(ε−ε′)
n

)

≥
n−1∑
j=0

C(|M|‖μ0‖Gσ0,r
α+ε

)−
2s

2s−σ s−1

> Tmax,σ,ε′ − Tmax,σ,ε, (4.65)

which is a contradiction. Thus, Tmax,σ,ε′ = ∞.
We have shown that for any 0 < ε′ < ε and any 0 < σ < 2s−1

s sufficiently
large depending on d, γ, s, r , it holds that ‖μ‖C0

TG
σ,r
φ+ε′

< ∞ for all T > 0. Using the

arbitrariness of ε′, we see from Lemma 3.5 that for any T > 0, ‖μ‖
C0
TG

σ0+ 2
r ,r

φ+ε′
< ∞.
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Using that

‖μ0‖Gσ0,r
α+ε′

≤ ‖μ0‖Gσ0,r
α+ε

<
ν2 − 2β

Cmon|M| (4.66)

by assumption (4.57), where Cmon > 0 is the constant from Proposition 4.1, we can
applyProposition4.1 on the interval [0, T ] to obtain that the function t �→ ‖μt‖Gσ0,r

φt+ε′
is

strictly decreasing on [0, T ]. Since T > 0 was arbitrary, we see that this monotonicity
property holds on the entire interval [0,∞).

Finally, we show that μ actually belongs to C0∞Gσ0,r
φ+ε and that the decreasing prop-

erty holds on [0,∞). Note that there is no longer a loss in the Gevrey index value
(i.e. ε′ = ε). To this end, we observe from the result of the preceding paragraph and
‖ · ‖Gσ0,r

α+ε′
≤ ‖ · ‖Gσ0,r

α+ε
, for ε′ < ε, that for any t ≥ 0,

‖μt‖Gσ0,r
φt+ε′

≤ ‖μ0‖Gσ0,r
α+ε′

≤ ‖μ0‖Gσ0,r
α+ε

< ∞. (4.67)

Unpacking the definition of the left-hand side and appealing to monotone convergence
theorem, it follows that

‖μt‖Gσ0,r
φt+ε

= lim
ε′→ε−

(∫
Rd

∣∣∣〈ξ 〉σ0e(φt+ε′)(1+|ξ |s)μ̂t (ξ)

∣∣∣r dξ

)1/r

≤ ‖μ0‖Gσ0,r
α+ε

.

(4.68)

Similarly, for any t2 ≥ t1 ≥ 0,

‖μt2‖Gσ0,r

φt2+ε

= lim
ε′→ε−

‖μt2‖Gσ0,r

φt2+ε′
≤ lim

ε′→ε−
‖μt1‖Gσ0,r

φt1+ε′
= ‖μt1‖Gσ0,r

φt1+ε

, (4.69)

where the inequality is strict if t2 > t1. This completes the proof of Theorem 1.2 in
the case γ ≤ 1. ��

Let us nowpresent the caseγ > 1, the strategy forwhich is similar to before. Fix ε >

0 and suppose that μ0 ∈ X
σ0,r ,σ0,q ,r , 2q

q−1
α+ε,γ for σ0,r , σ0,q above the regularity thresholds

κ0,r , κ0,q given by Proposition 4.1 and 1 < q < d
γ−1 . Let us drop the subscript γ

from the notation Xα+ε,γ , as γ > 1 is fixed. In what follows, we assume that the
parameters d, γ, r , q, s, σ0,r , σ0,q , α, β, ν satisfy all the constraints of Theorem 1.2.
We also assume that

0 < ‖μ0‖
X

σ0,r ,σ0,q ,r , 2q
q−1

α+ε

<
ν2 − 2β

max{Cmon,r ,Cmon,q}|M| , (4.70)

where Cmon,r = Cr ,Cmon,q = Cq > 0 are the constants from Proposition 4.1.
Assuming a realization of W from �α,β,ν , Proposition 3.1 implies that given r ≥ 1
sufficiently small depending on d, s, γ and 0 < σ < 2s−1

s sufficiently large depending
on d, γ, s, r , there is a maximal solution μ to the Cauchy problem (3.1) with lifespan
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[0, Tmax,σ,ε), such that μ belongs to C0
TX

σ,0,r , 2q
q−1

φ+ε for any 0 ≤ T < Tmax,σ,ε . Here,
we recycle the notation Tmax,ε,σ used above. Analogous to Lemma 4.5, we have the
following relation for the maximal lifespans as we decrease ε.

Lemma 4.6 Let μ be as above. There exists a constant C > 0 depending on
d, γ, r , q, s, σ, β, ν such that for any 0 ≤ ε2 < ε1 ≤ ε, the maximal times of existence

Tmax,σ,ε1 , Tmax,σ,ε2 of μ
t as taking values in X

σ,0,r , 2q
q−1

φt+ε1
, X

σ,0,r , 2q
q−1

φt+ε2
, respectively, satisfy

the inequality

Tmax,σ,ε2 ≥ Tmax,σ,ε1 + C(|M|‖μ0‖
X
σ0,r ,σ0,q ,r , 2q

q−1
α+ε

)−
2s

2s−σ s−1 . (4.71)

Proof Fix 0 < ε2 < ε1 ≤ ε. For any σr ≥ σ and σq ≥ 0, it follows from Lemma 3.5

that μ is also a solution in C0
TX

σr ,σq ,r , 2q
q−1

φ+ε2
for any 0 ≤ T < Tmax,σ,ε1 . Furthermore,

we have the quantitative bounds

‖μt‖Gσr ,r
φt+ε2

≤ �σr − σ�!
(ε1 − ε2)�σr−σ� ‖μt‖Gσr ,r

φt+ε1
∀ 0 ≤ t < Tmax,σ,ε1 , (4.72)

‖μt‖
G

σq ,
2q
q−1

φt+ε2

≤ �σq�!
(ε1 − ε2)

�σq� ‖μ
t‖

G
0, 2q

q−1
φt+ε1

∀ 0 ≤ t < Tmax,σ,ε1 , (4.73)

which of course imply that ‖μ‖
C0
T X

σr ,σq ,r , 2q
q−1

φ+ε2

is finite on any compact subinterval of

[0, Tmax,σ,ε1). Choose σr , σq such that

σ0,r ≥ σr > κ0,r and σ0,q ≥ σq > κ0,q , (4.74)

where κ0,r , κ0,q are the regularity thresholds of Proposition 4.1. Using the assump-
tion (4.57), we can then apply Proposition 4.1 to conclude that the function t �→
‖μt‖

X
σr ,σq ,r , 2q

q−1
φt+ε2

is strictly decreasing on the interval [0, T ] for any T < Tmax,σ,ε1 . In

particular, since we can ensure σ ≤ σr and 0 ≤ σq , it follows from this monotonicity
and Lemma 3.5 that

‖μ‖
C0
T X

σ,0,r , 2q
q−1

φ+ε2

≤ ‖μ‖
C0
T X

σr ,σq ,r , 2q
q−1

φ+ε2

≤ ‖μ0‖
X

σr ,σq ,r , 2q
q−1

α+ε2

≤ ‖μ0‖
X

σ0,r ,σ0,q ,r , 2q
q−1

α+ε

(4.75)

for all 0 ≤ T < Tmax,σ,ε1 . LetClwp,σ be the constant from Proposition 3.1, and choose
T∗ < Tmax,σ,ε1 so that

Tmax,σ,ε1 − T∗ ≤
Clwp,σ (|M|‖μ0‖

X
σ0,r ,σ0,q ,r , 2q

q−1
α+ε

)−
2s

2s−σ s−1

2
. (4.76)
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Then by the same argument as in the proof of Lemma 4.5, we see that μ ∈
C0
T0
X

σ,0,r , 2q
q−1

φ+ε2
, where

T0 ≥ Tmax,σ,ε1 +
Clwp,σ

(
|M|‖μ0‖

X
σ0,r ,σ0,q ,r , 2q

q−1
α+ε

)− 2s
2s−σ s−1

2
, (4.77)

which completes the proof of the lemma. ��
Proof of Theorem 1.2 for γ > 1. Fix 0 < ε′ < ε. Let σ, σ0,r , σ0,q be as above. If
Tmax,σ,ε′ < ∞, then choosing n ∈ N such that

nC(|M|‖μ0‖
X

σ0,r ,σ0,q ,r , 2q
q−1

α+ε

)−
2s

2s−σ s−1 > Tmax,σ,ε′ − Tmax,σ,ε, (4.78)

where C is the same constant as in the inequality (4.71), one can use the same argu-
ment from above, except now invoking Lemma 4.6, to derive a contradiction. Thus,
Tmax,σ,ε′ = ∞.

We have shown that for any 0 < ε′ < ε and all 0 < σ < 2s−1
s sufficiently large

depending on d, s, γ, r , it holds that ‖μ‖
C0
T X

σ,0,r , 2q
q−1

φ+ε′
< ∞ for all T > 0. By the

arbitrariness of ε′, Lemma 3.5 implies for any T > 0, ‖μ‖
C0
T X

σ0,r+ 2
r ,σ0,q+ q−1

q ,r , 2q
q−1

φ+ε′
<

∞. Using initial datum assumption (4.70), we can apply Proposition 4.1 on the interval
[0, T ] to obtain that the function t �→ ‖μt‖

X
σ0,r ,σ0,q ,r , 2q

q−1
φt+ε′

is strictly decreasingon [0, T ].
Since T > 0 was arbitrary, we see that this monotonicity property holds on the entire
interval [0,∞). Using the same monotone convergence argument from before, we
complete the proof in the γ > 1 case. ��
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