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Abstract
In statistical seismology, the Epidemic Type Aftershocks Sequence (ETAS) model
is a branching process used world-wide to forecast earthquake intensity rates and
reproduce many statistical features observed in seismicity catalogs. In this paper, we
describe a fractional differential equation that governs the earthquake intensity rate of
the pure temporal ETAS model by using the Caputo fractional derivative and we solve
it analytically. We highlight that the tools and special functions of fractional calculus
simplify the classical methods employed to obtain the intensity rate and let us describe
the change of solution decay for large times. We also apply and discuss the theoretical
results to the Japanese catalog in the period 1965-2003.

Keywords Probability theory · Stochastic processes · Statistical seismology ·
Earthquake modeling · Fractional calculus

This paper is devoted to Francesco Mainardi on the occasion of his 80th birthday.

B Enrico Scalas
e.scalas@sussex.ac.uk; enrico.scalas@uniroma1.it

Lorenzo Cristofaro
lorenzo.cristofaro@uniroma1.it

Roberto Garra
roberto.garra@sbai.uniroma1.it

Ilaria Spassiani
ilaria.spassiani@ingv.it

1 Dipartimento di Scienze Statistiche, Università di Roma “La Sapienza”, Rome, Italy

2 Section of Mathematics, Università Telematica Internazionale Uninettuno, Rome, Italy

3 Department of Mathematics, University of Sussex, Falmer, Brighton, UK

4 Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13540-023-00144-5&domain=pdf
http://orcid.org/0000-0002-1516-9285


462 L. Cristofaro et al.

Mathematics Subject Classification 86A15 (primary) · 26A33 · 60G55 · 37A50 ·
74S40 · 60G18

1 Introduction

The 20th century saw a great expansion for the theory of fractional calculus, which
indeed found increasing applicability in many scientific fields, such as bioengineering,
physics and rheology (e.g. [2, 7, 21, 26, 27]). Some recent papers have been devoted
to the applications of fractional differential equations in modelling the temporal decay
of aftershocks, we refer for example to [24, 41]. De facto, fractional derivatives seem
to universally appear in mathematical models of epidemic processes (e.g., see [1, 3, 4,
33]), thus playing an important role in handling diffusion and memory mechanisms.
In particular, the Caputo fractional derivative is a very useful tool to describe natural
processes with memory and an underlying power-law behavior, as it is defined by
the convolution between a power law kernel and the ordinary derivative of a func-
tion. Therefore, it represents a natural candidate to handle epidemic-type models in
seismology, and specifically their decreasing power-law modeling typically used for
aftershocks decay. This is indeed the case of a benchmark model in this field: the
well-known Epidemic Type Aftershocks Sequence (ETAS) model [34–37], belonging
to the class of self-exciting, branching, Hawkes processes. In that model it is assumed
that any seismic event may generate its own offsprings independently of any other
shock in a cascade process. According to the pure temporal ETAS model, the after-
shocks rate φm0(t) dt generated by a given initial background event, occurred at t = 0
and with magnitude m0, is [22, 42]:

φm0(t)dt := Cm0 φ(t) dt, where t > 0 and (1.1)

Cm0 = K0 e
α(m0−mtr ), (1.2)

φ(t) = θ tθ0
1

t1+θ
H(t − t0). (1.3)

We stress that in the ETAS model the events are of two types: background if they
have not been triggered by any previous shock, and aftershocks if they have been
generated by a “mother” event. In the above expressions (1.1)-(1.2)-(1.3), H(·) is
the Heaviside function and mtr is the completeness magnitude, that is the threshold
such that all the events with a higher magnitude are surely recorded in the earth-
quake catalog. The time-magnitude separable functionCm0φ(t) is instead the so called
Omori-Utsu formula (OUF) describing the decay of aftershocks in time, also known as
the modified Omori law [38, 39, 46]. Its magnitude component Cm0 is named produc-
tivity law. The parameter t0 finally describes the lapse-time (dead time) immediately
after the main shock at 0, within which this event cannot produce its aftershocks and
the Omori relation cannot be applied. As the intuition suggests, t0 is very small [47].

In this paper we follow a fractional approach to explicitly derive and analytically
solve the self-consistency equation of the pure-temporal ETAS model. This method-
ology represents quite a novelty in statistical seismology and, differently from the
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classical approaches based on the Laplace transform [20, 42, 44], it allows to obtain
a new closed representation of the rate function through the special functions of frac-
tional calculus. Indeed, in this work we illustrate the usefulness of fractional calculus
tools to treat problems in statistical seismology.

For the sake of simplicity, we shall focus here on a single aftershock sequence,
triggered by the fixed background event (t = 0,m0), which is assumed to generate
its offsprings according to the pure-temporal ETAS rate (1.1)-(1.2)-(1.3). The explicit
solution we shall find for the self-consistency equation will also be analyzed asymp-
totically to investigate any change of regime in the aftershocks decay, in relation to the
temporal scale considered (short/long term with respect to the background event) and
to the reciprocal order relationship between the magnitudes of mother and daughters.

In what follows, we will first go into the detail of the OUF law for aftershocks
(see Sect. 2), since it acts as a go-between to introduce fractional calculus in seismic
modeling analysis. It is also the specific object to investigate for possible changes of
regime. In Sect. 3, we then proceed with the explicit derivation of the “single” self-
consistency equation of the pure-temporal ETAS, that is, the one relative to the single
background-aftershocks sequence we are focusing on. The analytical solution in terms
of the rate is therefore obtained in Sect. 3.2 by means of results of fractional calculus,
and asymptotically analyzed in Sect. 3.3. A practical application to a real earthquake
catalog is then illustrated in Sect. 4, where we also included some comments about
the ongoing seismic sequence behavior in relation to the magnitudes involved. We
eventually discuss the results obtained.

2 The Omori-Utsumodel for aftershocks

Omori [38] originally proposed a decreasing power law tomodel the aftershocks decay
in the case of the 1891 Nobi earthquake of magnitude 8. In its first formulation, the
law was purely temporal with exponent 1, while the magnitude term Cm0 was absent.
The introduction of the exponent parameter θ + 1 and the inclusion of the magnitude
term are due to Utsu [46] and Otsuka [39], respectively. We stress that Cm0 controls
the average number of aftershocks generated by each event, that is, the productivity of
the process. We notice that in the case of the ETASmodel, this quantity coincides with
the so-called branching ratio, which represents the proportion of triggered events in
the entire catalog [49].

OUF is actually the most used model in practical applications, but, in the last
decades, a debate has ignited in the literature about the possibility that a single OUF,
generated by an initial background event, may or may not evolve into a global Omori-
Utsu law, that models the entire seismic process developing in successive generations.
The factors thatmay indeed induce abreak in the sequence’s decreasing trend, triggered
by the initial shock, are the potential occurrence of aftershocks with a magnitude
comparable to the one of the background event, and/or the passage of a sufficiently
long time since the latter’s occurrence. To account for these considerations, since
1894, many models alternative to OUF have been proposed, mainly of power law,
exponential, stretched exponential and Gamma types (e.g., see [5, 11, 15, 19, 25, 32,
34, 43]). For example, in Mignan [29] and [30], the author finds that, when using the
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complementary cumulative distribution function of the OUF (i.e. when using the rank
plot representation), the stretched exponential model gives a better fit to the whole
seismic aftershocks decay. In particular, he obtains this behavior for the 1891 Great
Nobi earthquake, that is exactly the dataset used in the landmark article by Omori [38].
Mignan’s argument has been considered misleading by Hainzl and Christophersen
[17]; these authors criticize the comparison of finite data sets with functions integrated
over infinite periods, and find that OUF is preferable when considering the Maximum
Likelihood Estimates (MLEs). Nevertheless, the ambiguity of the MLEs noted by
Mignan [31] due to the specific structure of the OUF suggests that one has to consider
both statistical results and physical features to choose the right temporal aftershock
decay model.

Results by Mignan [29] and Hainzl and Christophersen [17] could be both valid,
and the differences may be due to the fact that the problem is analyzed from two
different perspectives. In this regard, an interesting point to stress is that Omori [38]
proposed the power law decay to model the global aftershocks sequence of the great
1891 Nobi earthquake; nevertheless, for seismic forecast purposes the Omori-Utsu
formula is used only for first generation aftershocks following an initial strong event.
This is assumed for example in the ETAS model, where the aftershock component of
the self-consistency seismic rate is obtained by the superposition of OUFs [34–37].
As the intuition suggests, nothing ensures that a single OUF generated by the starting
shock remains valid for the sequence of all the aftershocks, at least in general [45].

The papers [42] and [19] deal with a similar issue in the ETAS context, that is
averaging over all the possible earthquake sequences: they study how the aggregate
ETASprocessmatches theOmori-Utsu law. The authors define the regime of criticality
through the parameter θ and the branching ratio n, which is obtained as the integral
over time and all the magnitudes of the OUF multiplied by the decreasing exponential
Gutenberg-Richter law for the events’ sizes [16]. In particular, the authors distinguish
three regimes: n < 1 and θ > 0 (subcritical), n > 1 and θ > 0 (supercritical), θ < 0
and n infinite. In the subcritical regime they observe a transition from a power law
decay with exponent 1 − θ to a power law decay with exponent 1 + θ (OUF); in the
supercritical regime, the authors observe a transition from an Omori power law with
exponent 1 + θ (OUF) to an explosive exponential increase. In both the two cases
above, the transition is marked by the characteristic time t∗HS depending only on the
ETAS parameters. In the case of infinite n (θ < 0), the authors observe a transition
from a power law decay with exponent 1 − |θ | to an exponential increase, but it is
now marked by a different characteristic time, depending again only on the ETAS
parameters.

Interestingly, when discarding the magnitude component in equation (1.1), that is
when focusing on φ(t)dt normalized by φ̄ = ∫ ∞

0 φ(τ) dτ , where φ(·) is the OUF in
equation (1.3), the self-consistent equation that describes the seismicity rate N (t) in t
is the classical Wiener-Hopf integral equation

N (t) = φ̄

∫ t−t0

0
N (τ )θ tθ0

1

(t − τ)1+θ
dτ,

123



A fractional approach to study the pure-temporal... 465

where we recall that the seismicity rate is “the number of earthquakes in a specified
interval of space-time-magnitude, normalized by the length of the time interval” (see
[9]). Under certain conditions, it can be viewed also as a fractional integral equation
similar to that of a fractional linear death model [12, 42]. This suggests the use of the
theory of fractional calculus to deal with the “single” self-consistency equation of the
pure-temporal ETAS model, and taking advantage of the straightforward character of
the results to investigate the range of validity of OUF in different conditions.

3 Fractional approach to deal with the “single” self-consistency
equation of the pure temporal ETASmodel

As promised in the introduction, we now derive the “single” self-consistency equation
for the pure temporal ETAS model.

3.1 From the conditional intensity to themean

We can define the fractional ETAS model by its intensity, based on the history of
occurences Ht = {ti ∈ [0,+∞)|ti < t}:

λ(t |Ht ) = φm0(t) +
∫ t

0
φmτ (t − τ)N (dτ) (3.1)

= φm0(t) +
∑

ti<t

φmi (t − ti ), (3.2)

where φm0 and φmτ are defined in (1.1) with m0 the magnitude of the first earthquake
and mτ the magnitude of the earthquake at time τ . As highlighted in the paper by
Chen et al. [8], we stress that the numberN of events in a certain time interval (dt) is
a branching random variable, with the rate λ(t |Ht ) defined above. Note that the ti s in
the above equations are random variables.

Let us define the expected intensity as

λ(t) = E[λ(t |Ht )].

Now we obtain the self-consistent equation by applying the expectation on (3.1) lead-
ing to:

λ(t) = φm0(t) +
∫ t

0
φmτ (t − τ)λ(τ) dτ. (3.3)

We can compute E[N (dτ)] using the definition of conditional intensity and condi-
tioning twice, so that E[N (dτ)] = λ(τ)dτ , and Campbell’s theorem to exchange
E[N (dτ)] expectation and integral, see [10].
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3.2 Solution by Fractional Calculus tools

To solve the self-consistent equation and find the precise explicit approximation of
λ(t) for t ≥ t0, denoted by λ̃(t) hereinafter, we first recall that in our case N (0) = 1, or
equivalentlyλ(0) = 1, andλ(t) = 0 for t ∈ (0, t0]. For the sake of simplicity, hereafter
wewill consider that all the aftershocks havemagnitudes equal to the strongest one, say
m1, which in fact can be thought as the reference non-negligible contribute to the total
rate. Then, setting mτ = m1, Bm = K0eα(m−mtr )θ tθ0 and φm(t) = Bmt−1−θ H(t − t0)
in equation (3.3), we have that:

λ(t) = φm0(t) + Bm1

∫ t

t0

H(t − τ − t0)

(t − τ)1+θ
λ(τ )dτ.

Applying the definition of the Heaviside function, we obtain for t > t0:

λ(t) = φm0(t) +
∫ t−t0

t0

Bm1

(t − τ)1+θ
λ(τ )dτ

= φm0(t) +
[
Bm1

θ

1

(t − τ)θ
λ(τ )

]t−t0

t0

− Bm1

θ

∫ t−t0

t0

1

(t − τ)θ
λ′(τ )dτ

= φm0(t) + Bm1λ(t − t0)

θ tθ0
− Bm1

θ

∫ t−t0

t0

1

(t − τ)θ
λ′(τ )dτ.

Recalling the meaning of the parameter t0 and the fact that we are looking for
continous solution λ that are locally absolutely continous in (0,+∞), we assume now
that t0 � 1 so that for large t , one has λ(t − t0) ≈ λ(t) and

∫ t

t−t0

1

(t − τ)θ
λ′(τ )dτ ≈ 0.

These considerations lead to the self-consistent equation for λ̃:

λ̃(t) = φm0(t) + Bm1 λ̃(t)

θ tθ0
− Γ (1 − θ)Bm1

θ
(cDθ

t0+λ̃)(t), t > t0.

Hence, from (3.3), using the approximations described above, we obtain the frac-
tional differential equation which describes the expected intensity λ̃(t) for t ≥ t0:

{
(cDθ

t0+λ̃)(t) − νλ̃(t) = θ
Bm1Γ (1−θ)

φm0(t) for t > t0,

λ̃(t) = 0 for t = t0,
(3.4)

where ν = θ
Bm1Γ (1−θ)

(
Bm1
θ tθ0

− 1

)

and cDθ
t0+ is the Caputo fractional derivative whose

domain is the set of absolutely continuous function on (0,+∞), see [23]. We interpret
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the above fractional differential equation as an anomalous relaxation equation with
source proportional to the Omori-Utsu law.

For a > 0, α ∈ (0, 1) and a suitable function ψ we recall that the Caputo fractional
derivative is defined as follows:

(cDα
aψ)(x) = 1

Γ (1 − α)

∫ x

a

ψ ′(s)
(x − s)α

ds.

The solution of the fractional differential equation (3.4) is given by Theorem 1, in
Appendix 1 (see [23]):

λ̃(t) = θBm0

Bm1Γ (1 − θ)

∫ t

t0
(t − τ)θ−1Eθ,θ (ν(t − τ)θ )τ−1−θdτ, t ≥ t0 (3.5)

where:

Bm1 = K0e
α(m1−mtr )θ tθ0 ;

ν = θ

Bm1Γ (1 − θ)

(
Bm1

θ tθ0
− 1

)

= K0eα(m1−mtr ) − 1

K0tθ0Γ (1 − θ)eα(m1−mtr )
(3.6)

and

Eθ,θ (νs
θ ) =

∑

k≥0

(νsθ )k

Γ (kθ + θ)

is the two-parameter Mittag-Leffler function, see [14]. We notice that λ̃(t) → 0 for
t → t+0 . Besides, if the constant ν is negative, the Mittag-Leffler function with two
parameters and the solution λ̃(t) decays to zero for t → ∞. In order to have ν < 0
we need that m1 − mtr < − ln(K0)α

−1, as α > 0.
We finally stress that the solution (3.5) of problem (3.4) is proportional to a con-

volution, and this fact will be used to determine its asymptotic behaviour. This result
will be illustrated in the next section.

3.3 Asymptotics

We focus here on managing the convolution kernel to define the characteristic time t∗,
which marks the transition of the decaying trend of λ̃(t), see [19]. Its behaviour will
be compared with the one of the solution found in [19], which is also expressed in the
terms of our convolution kernel.

Let us start by considering the explicit form of the solution (3.5) as a convolution

λ̃(t) = θBm0

Bm1Γ (1 − θ)
·
(
tθ−1Eθ,θ (ν(tθ ))
H(t − t0)t

−1−θ
)

, (3.7)

where H(t − t0) is the translated Heaviside function.
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We observe that the functions involved in the convolution in (3.7) can be written in
terms of two probability densities: −ν−1tθ−1Eθ,θ (ν(tθ )) is the density of a Mittag-
Leffler random variable XML , and θ tθ0 t

−1−θ H(t−t0) is the density of a Pareto random
variable XP . Thus, ignoring the constant terms in front of the integral in (3.5), and
setting Z = XML + XP as the sum of the two independent random variables just
defined, we can deduce that the solution λ̃(t) of our problem is proportional to the
probability density function fZ (z):

fZ (z) ∝
∫ z

t0
(z − t)θ−1Eθ,θ (ν(z − t)θ )t−1−θ dt . (3.8)

In order to get the asymptotic behaviour, we first note that we have θ ∈ (0, 1). It
then follows that the Pareto density can be approximated by a Mittag-Leffler density
of index θ . As we are interested in the asymptotic behaviour, instead of looking for
an explicit approximation, we can just use the fact that the tail of the Mittag-Leffler
density vanishes as t−1−θ . Therefore, we replace XP with another copy of XML and
we study the following integral:

fZ (z) ∼
∫ z

0
(z − t)θ−1Eθ,θ (ν(z − t)θ )tθ−1Eθ,θ (νt

θ ) dt as z → ∞. (3.9)

It can be exactly computed in terms of the Prabhakar functions (three-parameter
Mittag-Leffler functions). They are defined as follows [40]

Eξ
β,γ (u) =

∞∑

r=0

(ξ)r

r !Γ (βr + γ )
ur , (3.10)

where the Pochhammer symbol (ξ)r represents the ascending factorial defined as
(ξ)r = ξ(ξ + 1) · · · (ξ + r − 1), with ξ �= 0 and β, γ, ξ, u ∈ C with Re(β) > 0. We
can now use the following formula [6, 18]

∫ x

0
(x − t)β−1Eγ

α,β(a(x − t)α)tδ−1Eσ
α,δ(at

α) dt = xβ+δ−1Eγ+σ
α,β+δ(ax

α). (3.11)

Let us first remark that Eθ,θ (u) = E1
θ,θ (u), then using (3.11), we can conclude that

fZ (z) ∼ z2θ−1E2
θ,2θ (νz

θ ) as z → ∞. (3.12)

The asymptotic behaviour of Prabhakar functions is studied e.g. in [13]. In particular,
in our case it turns out that γ = βξ as ξ = 2, β = θ , γ = 2θ . Therefore, the first term
in the sum presented in [13] cancels out and, for z → ∞, as we have ν < 0, we can
see that the dominant behaviour for z → ∞ of fZ (z) is

fZ (z) ∼ z2θ−1z−3θ = z−1−θ . (3.13)
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Fig. 1 Probability density function proportional to the solution λ̃(t). The parameters used are described
in the next section, and they coincide with the parameters taken from the Japanese catalog in the period
1965-2003

This gives the asymptotic behavior of our solution λ̃(t) for t → ∞. A graphical
representation of our derivation can be found in Fig. 1, where it is shown that the
empirical probability density well retraces the approximation, whose large t trend is
the same as that of the function t−θ−1.

It is also useful to observe that the kernel in the convolution (3.8) can be written as

tθ−1Eθ,θ (−
(
t/t∗

)θ
),

i.e., just rescaling the two-parameterMittag-Leffler functionwith respect to the critical
time

t∗ = (−1/ν)1/θ = t0

(
K0Γ (1 − θ)eα(m1−mtr )

)1/θ

(1 − K0eα(m1−mtr ))1/θ
,

where we have
(
K0Γ (1−θ)eα(m1−mtr )

)1/θ

(1−K0eα(m1−mtr ))1/θ
> 1, assuming that m1 − mtr < − ln(K0)

α
.

Interestingly, t∗ only depends on the magnitude m1 and, for any arbitrary constant ε,
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it holds

t∗ ≤ ε ⇔ m1 − mtr ≤ 1

α
ln

(
ε

t0

)θ

K0

[

Γ (1 − θ) +
(

ε

t0

)θ
] . (3.14)

The right-hand side (RHS) of the last inequality above is plotted in Fig. 2 for ε = 0.5
and: as a function of (K0, α) and fixed (t0, θ) in the top panel, viceversa in the bottom
one. Since m1 has to be larger than mtr , we also plot only positive values of RHS. By
looking at the figure, we can deduce that RHS remains small for typical parameters’
ranges and, consequently, so does the characteristic time. More precisely, we obtain
that m1 − mtr is always smaller than 1.5 and in this case t∗ < 0.5.

According to the analysis developed in [19], the critical time t∗ is particularly
relevant, since it describes the cross-over from the “short time” Omori’s law to the
“long time” behaviour (see [19] for the full discussion). In particular, we have that the
behaviour of the kernel K (t) = tθ−1Eθ,θ (νtθ ) can be approximated as follows:

– Kt<t∗(t) ∼ 1/t1−θ , for t0 < t << t∗,
– Kt>t∗(t) ∼ 1/t1+θ , for t >> t∗.

By looking again at Fig. 2, we can deduce that when m1 is sufficiently small, the
kernel can almost always be approximated by the classical OUF (second point above),
as t will quite immediately be larger than t∗.

4 Application to a real earthquake catalog

We now turn to explicitly compute the theoretical solution obtained above in a prac-
tical case, and to validate the conclusions we discussed. To do that, we consider a
set of parameters from the literature, to have a consistent set of estimates, and we
fix two arbitrary values for m0 and m1. In particular, we consider the parameters
(K0, θ, α, t0) = (0.37, 0.149, 0.79, 0.0078) as estimated for the Japanese catalog
(JMA) in the period 1965/01/01 - 2003/09/23 by Zhuang [48]. We stress that his
parameter p corresponds to our θ + 1. The completeness magnitude in this case is
mtr = 4. With these values for the input parameters, simple computations give that
m∗ = 5.26 is the zero of ν in (3.6). Panel a) of Fig. 3 shows that this latter function
increases with m1. The same monotonic behavior is observed in panel b) for the crit-
ical time t∗ as a function of ν. In agreement with the results discussed in the previous
Sect. 3.3, we conclude that a stronger m1 implies a longer critical time t∗, therefore
t < t∗ for a longer period, and this is the case of deviation from the classical OUF.

In order to guarantee that ν < 0 and, consequently, that the solution λ̃(t) does not
explode (see Sect. 3.2), we have to consider magnitude values smaller than m∗. We
then fix m0 = 4.65, and we consider the two cases:

1) 4.05 = m1 < m0;
2) 5.25 = m1 > m0.
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Fig. 2 3D representation of the right-hand side (RHS) of the last inequality in (3.14) for the characteristic
time t∗, as a function of (K0, α), with fixed (t0, θ), in the top panel; viceversa, in the bottom one
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Fig. 3 Panel a): monotonic behavior of ν in (3.6) as a function of the aftershocks magnitude m1. Panel b):
monotonic behavior of the critical time t∗ as a function of ν
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Time

m
1

m  = 4.65
0

~

Fig. 4 3D representation of the global solution λ̃(·), defined in (3.7), as a function of the time t and the
aftershocks’magnitudem1. The value ofm0 is fixed to 4.65,while the parameters set used is (K0, θ, α, t0) =
(0.37, 0.149, 0.79, 0.0078), as estimated in [48]

The equality case is instead analyzed for a small and a high value of the magnitudes:

3) m0 = m1 = (4.05; 5.25).
The 3D graphical representation of the solution λ̃(·) in (3.7), as a function of the time
t and the aftershocks’ magnitudem1, for fixedm0 = 4.65 and the set of parameters by
Zhuang [48] introduced above, is given in Fig. 4. The plot shows a decreasing trend of
the solution, that is faster when m1 < m0; this is also the case in which the decrease
starts immediately after the dead time t0. For a higher m1, a little more time is instead
necessary for the solution to begin its decrease, and this latter has a slightly lower
velocity rate. Finally, a sort of plateau appears in correspondence of longer times.
This is what expected, as the aftershocks sequence induces an increase in the mean
λ(t) = E(λ(t |Ht )) proportional to its size, until when, after a sufficiently long time
period, it lowers to the background level of seismicity.

Figure 5 shows instead the temporal evolution, in x-log scale, of the absolute dif-
ference between the explicit solution λ̃m0,m1(t) := λ̃(t) in (3.7) and φm0 , for the three
cases of above: panel a) for the first two, panel b) for the third one. By looking at
the plots, we observe that when the aftershock magnitude m1 is strong, even stronger
than the m0 of the first event, the global OUF is clearly different than the decreasing
power law φm0 generated in t = 0 (indicated in the figure as a dashed line). Instead,
the difference is much less evident when m1 < m0. In particular, the mean absolute
distance between the global λ̃m0,m1 and φm0 in this latter case is 0.19 within the first
5 days, and 0.17 within the first month. In the same periods, for m1 > m0, this dis-
tance increases to 0.67 and 0.57, respectively. Finally, also the global mean distance
increases of more than 200% when m1 is larger that m0.
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The case m0 = m1 is instead linked to the value we select for these magnitudes. If
it is low (4.05), we obtain that λ̃m0,m1 on average deviates from φm0 of 0.12 and 0.1
within 5 and 30 days, respectively. These values increase to 1.1 and 0.91 when m0 =
m1 = 5.25. The global mean distance increases instead of one order of magnitude.
As expected, this is the case in which we appreciate the largest difference between the
global and the initial OUF, and in fact the two high values considered are expected to
strongly influence the ongoing seismic sequence.

We stress that the results illustrated above are not conditioned to the specific
input setting we selected. In fact, we repeated the same analysis by consider-
ing different parameters sets and different geographical regions, still obtaining the
same results. In the following repository https://github.com/FractionalEarthquakes/
FractionalEarthquakes we added the programs we developed to obtain the results pre-
sented in this paper.

5 Discussion and conclusions

The epidemic-type nature of the ETAS model for seismic sequences, as well as the
underlying power-lawbehavior it considers for the aftershocks’ decay,make thismodel
a natural object of study within the fractional theory. In line with this consideration,
in this paper we developed a new procedure to derive and solve the self-consistency
equationof the pure-temporalETASmodel, in the case of a single earthquake sequence.
Differently from the classical approach, based on the Laplace transform and quite
laborious to carry through with, our methodology allowed to obtain a closed form of
the ETAS rate function in a straightforward way, by means of results of fractional
calculus. For the sake of simplicity, we considered here a basic sequence in which a
single mainshock, occurred in t = 0 with magnitude m0, gives birth to its family of
aftershocks all with magnitude m1 equal to strongest one.

Under reasonable approximations in [t − t0, t] related to the meaning of the dead
time t0 (see Sect. 3.2), we have shown that the “single” self-consistency equation of
the pure-temporal ETAS model can be written as a non-homogeneous, differential
equation involving Caputo fractional derivative. The explicit solution of such an equa-
tion is the result of a well-know theorem of fractional theory [23], which then allowed
us to give the representation of the pure-temporal ETAS rate in a closed form. The
function we obtained depends on the two-parameter Mittag-Leffler function, and this
agrees with the results found in [19].

Our next stephas been to study the asymptotics of the solution.Todo that,wenoticed
that the solution is proportional to a convolution integral, whose kernel allowed to
identify a critical timemarking the transition from “short” to “long” time behaviours. It
is worth mentioning here that some known results about the asymptotics of theMittag-
Leffler function relate it to the stretched exponential [28]. This is very interesting in
light of the fact that, in the papers by Mignan [29–31], the stretched exponential
function is indeed expected to give a better fit to the data, especially at large times
(t � t0). In the present paper, we have not obtained a rigorous and concrete result
about this hint, but it will surely be the object of a future in-depth study.
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Fig. 5 Temporal evolution of the absolute difference between the explicit solution λ̃m0,m1 (t) := λ̃(t),
defined in (3.7), and the Omori law φm0 , for the cases m1 ≷ m0 and m1 = m0 in panels a) and b),
respectively

In order to show a practical application of the theoretical results we obtained,
we then explicitly computed the solution of the pure-temporal ETAS rate by using
the parameters set values estimated for the Japanese catalog from 1965/01/01 to
2003/09/23 by Zhuang [48], and pairs of arbitrary fixed values for (m0,m1), such
to consider the cases m0 <,=,> m1. These order relationships are indeed expected
to regulate the possiblity of a break in the decreasing trend of the sequence started by
the initial shock, due to the occurrence of “relevant” secondary events. We obtained
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that, if the aftershocks’ magnitudem1 is strong, even larger than the initial event’s one
m0, the behavior of the global temporal rate is supposed to violate the Omori-Utsu
formula generated by the first event. It consists instead in the superposition of OUFs,
which technically leads to a convolution power series. Conversely, if m1 is much
smaller thanm0, the global temporal rate can be approximated by the Omori-Utsu law
started in t = 0. This follows from the fact that since the aftershocks are very small,
they give a negligible contribute to the total temporal rate.

We can conclude that, although the single earthquake sequence we considered here
is obviously a plain case for a basic seismic model, still it allowed us to develop a sim-
plified procedure for computing the earthquake rate of a seismic process in a very direct
way. More in general, we hope our work will entice to consider fractional calculus to
perform theoretical studies of seismic models of epidemic type. As a future work, we
aim to generalize the procedure we proposed, to account for randomized aftershocks’
magnitudes, that is, consider a generic mτ in the self-consistent equation (3.3).
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6 Appendix 1: Fractional differential equations

To solve the fractional differential equation in 3.4, we refer to Theorem 4.3 in [23].
We define Cγ [a, b] as

Cγ [a, b] = { f : (a, b] → R|(x − a)γ f (x) ∈ C[a, b]}.

In our case, we have [a, b] = [t0, T ] and (x − t0)γ f (x) = (x − t0)γ
1

(x−t0)θ
=

(x − t0)γ−θ which is in C[t0, T ] only if γ − θ ≥ 0, i.e. γ ≥ θ .
For γ = θ we have that f (x) ∈ Cγ [a, b].
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Theorem 1 Let n − 1 < α < n (n ∈ N) and let γ ∈ [0, 1) be such that γ ≤ α.
Also let λ ∈ R. If f (x) ∈ Cγ [a, b], the Cauchy problem

(cDα
a+y)(x) − λy(x) = f (x), x ∈ [a, b]

yk(a) = bk, k = 0, .., n − 1

with b0, ..bn−1 ∈ R, has a unique solution y(x) which is

y(x) =
n−1∑

j=0

b j (x − a) j Eα, j+1(λ(x − a)α) +
∫ x

a
(x − t)α−1Eα,α[λ(x − t)α] f (t)dt,

where Eα,α is the two-parameter Mittag-Leffler function.
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