
Probability Theory and Related Fields (2023) 185:705–746
https://doi.org/10.1007/s00440-022-01186-1

Estimating the probability that a given vector
is in the convex hull of a random sample

Satoshi Hayakawa1 · Terry Lyons1 · Harald Oberhauser1

Received: 14 April 2021 / Revised: 21 December 2022 / Accepted: 22 December 2022 /
Published online: 7 January 2023
© The Author(s) 2023

Abstract
For a d-dimensional random vector X , let pn,X (θ) be the probability that the convex
hull of n independent copies of X contains a given point θ . We provide sev-
eral sharp inequalities regarding pn,X (θ) and NX (θ) denoting the smallest n for
which pn,X (θ) ≥ 1/2. As a main result, we derive the totally general inequality
1/2 ≤ αX (θ)NX (θ) ≤ 3d + 1, where αX (θ) (a.k.a. the Tukey depth) is the minimum
probability that X is in a fixed closed halfspace containing the point θ . We also show
several applications of our general results: one is amoment-based boundon NX (E[X ]),
which is an important quantity in randomized approaches to cubature construction or
measure reduction problem. Another application is the determination of the canonical
convex body included in a random convex polytope given by independent copies of X ,
where our combinatorial approach allows us to generalize existing results in random
matrix community significantly.

Keywords Random convex hull · Tukey depth · Berry–Esseen theorem · Floating
body · Cubature

Mathematics Subject Classification Primary 60D05 · Secondary 65C05

1 Introduction

Consider generating independent and identically distributed d-dimensional random
vectors. How many vectors do we have to generate in order that a point θ ∈ R

d is
contained in the convexhull of the samplewith probability at least 1/2?Moregenerally,
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what is the probability of the event with an n-point sample for each n? These questions
were first solved for a general distribution which has a certain symmetry about θ by
Wendel [45]. Let us describe the problem more formally.

Let X be a d-dimensional random vector and X1, X2, . . . be independent copies of
X . For each θ ∈ R

d and positive integer n, define

pn,X (θ) := P(θ ∈ conv{X1, . . . , Xn}) ,

where conv A := {∑m
i=1 λi xi | m ≥ 1, xi ∈ A, λi ≥ 0,

∑m
i=1 λi = 1} denotes the

convex hull of a set A ⊂ R
d . We also define

NX (θ) := inf{n | pn,X (θ) ≥ 1/2}

as the reasonable number of observationswe need. As pn,X and NX are only dependent
on the probability distribution of X , we also write pn,μ and Nμ when X follows the
distribution μ. We want to evaluate pn,X as well as NX for a general X .

Wendel [45] showed that

pn,X (0) = 1− 1

2n−1

d−1∑

i=0

(
n − 1

i

)

(1)

holds for an X such that X and −X have the same distribution and X1, . . . , Xd

are almost surely linearly independent. In particular, NX (0) = 2d holds for such
random vectors. For an X with an absolutely continuous distribution with respect to
the Lebesgue measure, Wagner and Welzl [44] showed more generally that the right-
hand side of (1) is indeed an upper bound of pn,X , and they also characterized the
condition for equality (see Theorem 6). Moreover, Kabluchko and Zaporozhets [20]
recently gave an explicit formula for pn,X when X is a shifted Gaussian.

In this paper, our aim is to give generic bounds of pn,X and NX , and we are
particularly interested in the upper bound of NX , which is opposite to the bound given
by [44]. Estimating pn,X and NX is of great interest from application, which ranges
from numerical analysis to statistics, and compressed sensing. As a by-product, we
also give a general result explaining the deterministic body included in the random
polytope conv{X1, . . . , Xn}, which is a sharp generalization of a recent work in the
random matrix community [15]. The remainder of this section will explain more
detailed motivation from related fields and implications of our results.

Throughout the paper, let 〈·, ·〉 be any inner product on R
d , and ‖ · ‖ be the norm

it induces.

1.1 Cubature andmeasure reduction

Let μ be a Borel probability measure on some topological space X . Consider d
integrable functions f1, . . . , fd : X → R. Then, we know the existence of “good
reduction" of μ by Tchakaloff’s theorem [3, 40]:
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Theorem 1 (Tchakaloff) There are d + 1 points x1, . . . , xd+1 ∈ suppμ and weights
w1, . . . , wd+1 ≥ 0 such that w1 + · · · + wd+1 = 1 and

∫

X
fi (x) dμ(x) =

d+1∑

j=1

w j fi (x j ) (2)

holds for each i = 1, . . . , d.

The proof is essentially given by classical Carathéodory’s theorem. The points and
weights treated in Tchakaloff’s theorem is an important object in the field of numerical
integration, called cubature [39]. An equivalent problem is also treated as a beneficial
way of data compression in the field of data science [8, 26]. A typical choice of test
function fi is monomials when X is a subset of an Euclidean space, so the integration
with respect to the measure

∑d+1
j=1 w jδx j is a good approximation of

∫
X f dμ for a

smooth integrand f . However, constructions under general setting are also useful; for
example, in the cubature on Wiener space [25], X is the space of continuous paths, μ
is the Wiener measure, and the test functions are iterated integrals of paths.

To this generalized cubature construction (or measure reduction) problem, there are
efficient deterministic approaches [22, 26, 41] when μ is discrete. Using randomness
for construction is recently considered [8, 17] and it is important to know pn,X (E[X ])
for the d-dimensional random variable

X = f (Y ) = ( f1(Y ), . . . , fd(Y ))
,

where Y is drawn from μ. Indeed, once we have E[X ] ∈ conv{X1, . . . , Xn} (Xi =
f (Yi ) are independent copies of X ), then we can choose d + 1 points and weights
satisfying (2) by solving a simple linear programming problem. Evaluation of NX is
sought for estimating the computational complexity of this naive scheme.

1.2 Statistical depth

From the statistical context, pd+1,X (θ) for a d-dimensional X is called the simplicial
depth of θ ∈ R

d with respect to the (population) distribution of X [5, 24], which can
be used for mathematically characterizing the intuitive “depth” of each point θ when
we are given the distribution of X . For an empirical measure, it corresponds to the
number of simplices (whose vertices are in the data) containing θ .

There are also a various concepts measuring depth, all called statistical depth [5,
31]. One of the first such concepts is the halfspace depth proposed by [42]:

αX (θ) := inf
c∈Rd\{0}

P(〈c, X − θ〉 ≤ 0) ,

which can equivalently defined as the minimum measure of a halfspace containing
θ . Donoho and Gasko [11] and Rousseeuw and Ruts [36] extensively studied general
features of αX . We call it the Tukey depth throughout the paper.
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Our finding is that these two depth notions are indeed deeply related. We prove the
rate of convergence pn,X → 1 is essentially determined by αX (Proposition 13), and
we have a beautiful relation 1/2 ≤ αX NX ≤ 3d + 1 in Theorem 16.

1.3 Inclusion of deterministic convex bodies

Although we have seen the background of the pn,X (θ), which only describes the prob-
ability of a single vector contained in the random convex polytope, several aspects
of such random polytopes have been studied [19, 27]. In particular, people also stud-
ied deterministic convex bodies associated with the distribution of a random vector.
For example, one consequence of well-known Dvoretzky–Milman’s Theorem (see,
e.g., [43, Chapter 11]) is that the convex hull of n independent samples from the
d-dimensional standard normal distribution is “approximately” a Euclidean ball of
radius ∼ √

log n with high probability for a sufficiently large n.
Mainly from the context of randommatrices, there have been several researches on

the interior convex body of conv{X1, . . . , Xn} or its “absolute” version conv{±X1,

. . . ,±Xn} for various classes of X such as Gaussian, Rademacher or vector with i.i.d.
subgaussian entries [10, 13, 14, 16, 23]. One result about the Rademacher vector is
the following:

Theorem 2 [13] Let d be a sufficiently large positive integer and X1, X2, . . . be inde-
pendent samples from the uniform distribution over the set {−1, 1}d ⊂ R

d . Then,
there exists an absolute constant c > 0 such that, for each integer n ≥ d(log d)2, we
have

conv{±X1, . . . ,±Xn} ⊃ c
(√

log(n/d)Bd
2 ∩ Bd∞

)

with probability at least 1 − e−d . Here, Bd
2 is the Euclidean unit ball in R

d and
Bd∞ = [−1, 1]d .

Although each of those results in literature was based on its specific assumptions
on the distribution of X , Guédon et al. [15] found a possible way of treating the results
in a unified manner under some technical assumptions on X . They introduced the
floating body associated with X

K̃ α(X) := {s ∈ R
d | P(〈s, X〉 ≥ 1) ≤ α}

to our context (the notation here is slightly changed from the original one), and argued
that, under some assumptions on X , with high probability, conv{X1, . . . , Xn} includes
a constant multiple of the polar body of K̃ α(X) with log(1/α) ∼ 1+ log(n/d). Note
that their main object of interest is the absolute convex hull, but their results can be
extended to the ordinary convex hull (see [15, Remark 1.7]).

Let us explain more formally. Firstly, for a set A ⊂ R
d , the polar body of A is

defined as

A◦ := {x ∈ R
d | 〈a, x〉 ≤ 1 for all a ∈ A}.
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Secondly, we shall describe the assumptions used in [15]. Let |||·||| be a norm on R
d

and γ, δ, r , R > 0 be constants. Their assumptions are as follows:

– (γ, δ) small-ball condition: P(|〈t, X〉| ≥ γ |||t |||) ≥ δ holds for all t ∈ R
d .

– Lr condition with constant R: E
[|〈t, X〉|r ]1/r ≤ R|||t ||| holds for all t ∈ R

d .

Under these conditions, they proved the following assertion by using concentration
inequalities.

Theorem 3 [15] Let X be a d-dimensional symmetric random vector that satisfies the
small-ball condition and Lr condition for a norm |||·||| and constants γ, δ, r , R > 0. Let
β ∈ (0, 1) and set α = (en/d)−β . Then, there exist a constant c0 = c0(β, δ, r , R/γ )

and an absolute constant c1 > 0 such that, for each integer n ≥ c0d,

conv{X1, . . . , Xn} ⊃ 1

2

(
K̃ α(X)

)◦

holds with probability at least 1 − 2 exp(−c1n1−βdβ), where X1, X2, . . . are inde-
pendent copies of X.

Though computing
(
K̃ α(X)

)◦ for individual X is not necessarily an easy task,
this gives us a unified understanding of existing results in terms of the polar of the
floating body K̃ α(X). However, its use is limited due to the technical assumptions.
In this paper, we show that we can completely remove the assumptions in Theorem 3
and obtain a similar statement only with explicit constants (see Proposition 22 and
Corollary 25, or the next section).

Finally, we add that this interior body of random polytopes or its radius is recently
reported to be essential in the robustness of sparse recovery [15] and the convergence
rate of greedy approximation algorithms [6, 29] when the data is random.

1.4 Organization of the paper

In this paper, our aim is to derive general inequalities for pn,X and NX . The main part
of this paper is Sects. 2, 3, 4 and 5. The following is a broad description of the contents
of each section.

– Section 2: General bounds of pn,X without specific quantitative assumptions
– Section 3: Bounds of pn,X uniformly determined by αX

– Section 4: Bounds of NX (E[X ]) uniformly determined by the moments of X
– Section 5: Results on deterministic convex bodies included in random polytopes

Let us give more detailed explanation about each section. Section 2 provides gen-
eralization of the results of [44], and we give generic bounds of pn,X (θ) under a mild
assumption pd,X (θ) = 0, which is satisfied with absolutely continuous distributions
as well as typical empirical distributions. Our main result in Sect. 2 is as follows
(Theorem 8):
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Theorem Let X be an arbitrary d-dimensional random vector and θ ∈ R
d . If

pd,X (θ) = 0 holds, then, for any n ≥ m ≥ d + 1, inequalities

pn,X (θ) ≤ 1− 1

2n−1

d−1∑

i=0

(
n − 1

i

)

,

1

2n−m

( n
d+1

)

( m
d+1

) pm,X (θ) ≤ pn,X (θ) ≤
( n
d+1

)

( m
d+1

) pm,X (θ)

hold.

In Sect. 3, we introduce pε
n,X and αε

X for an ε ≥ 0, which are “ε-relaxation" of pn,X

and αX in that p0n,X = pn,X and α0
X = αX hold. For this generalization, we prove that

the convergence of pε
n,X → 1 is uniformly evaluated in terms of αε

X (Proposition 13),
and obtain the following result (Theorem 14):

Theorem Let X be an arbitrary d-dimensional random vector and θ ∈ R
d . Then, for

each ε ≥ 0 and positive integer n ≥ 3d/αε
X (θ), we have

pε
n,X (θ) > 1− 1

2d
.

Although we do not define ε-relaxation version here, we can see from the case ε = 0
that, for example, NX (θ) ≤ �3d/αX (θ)� generally holds (see also Theorem 16).

In Sect. 4, we derive upper bounds of NX without relying on αX , which may also be
unfamiliar. By using the result in the preceding section and the Berry–Esseen theorem,
we show some upper bounds of NX in terms of the (normarized) moments of X as
follows (Theorem 19):

Theorem Let X be a centered d-dimensional random vector with nonsingular covari-
ance matrix V . Then,

NX ≤ 17d

(

1+ 9

4
sup

c∈Rd ,‖c‖2=1
E

[∣
∣
∣c
V−1/2X

∣
∣
∣
3
]2
)

holds.

Here, ‖ · ‖2 denotes the usual Euclidean norm on R
d . Note that the right-hand side

can easily be replaced by the moment of ‖V−1/2X‖2 (see also Corollary 20).
Section 5 asserts that K α(X) := {θ ∈ R

d | αX (θ) ≥ α} (α ∈ (0, 1)) is a canonical
deterministic body included in the randomconvex polytope conv{X1, . . . , Xn}.We see
in Proposition 22 that this body is essentially equivalent to the

(
K̃ α(X)

)◦ mentioned
in Sect. 1.3, and prove the following (Theorem 24):

Theorem Let X be an arbitrary symmetric d-dimensional random vector, and let
α, δ, ε ∈ (0, 1). If a positive integer n satisfies

n ≥ 2d

α
max

{
log(1/δ)

d
+ log

1

ε
, 6

}

,
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then we have, with probability at least 1− δ,

conv{X1, . . . , Xn} ⊃ (1− ε)K α(X),

where X1, X2, . . . are independent copies of X.

A consequence of this theorem (Corollary 25) enables us to remove the technical
assumption of Theorem 3.

Note that all these results give explicit constants with reasonable magnitude, which
is because of our combinatorial approach typically seen in the proof of Proposition 10
and Proposition 15. After thesemain sections, we give some implications of our results
on motivational examples (introduced in Sects. 1.1, 1.2) in Sect. 6, and we finally give
our conclusion in Sect. 7.

2 General bounds of pn,X

In this section, we denote pn,X (0) by only pn,X . As we always have pn,X (θ) =
pn,X−θ (0), it suffices to treat pn,X (0) unless we consider properties of pn,X as a
function.

Let us start with easier observations. Proposition 4 and Proposition 5 are almost
dimension-free. Firstly, as one expects, the following simple assertion holds.

Proposition 4 For an arbitrary d-dimensional random vector X with E[X ] = 0 and
P(X �= 0) > 0, we have

0 < pd+1,X < pd+2,X < · · · < pn,X < · · · → 1.

The conclusion still holds if we only assume pn,X > 0 for some n instead ofE[X ] = 0.

Proof For the proof of p2d,X > 0, see, e.g., [17]. From this and Carathéodory’s
theorem,we also have pd+1,X > 0.We clearly have pn+1,X ≥ pn,X for eachn ≥ d+1.

The strict inequality also seems trivial, but we prove this for completeness. Assume
pn+1,X = pn,X for some n. This implies that 0 /∈ conv{Xi }ni=1 ⇒ 0 /∈ conv{Xi }n+1

i=1
holds almost surely. By symmetry, for any J ⊂ {1, . . . , n + 2} with |J | = n + 1,
0 /∈ conv{Xi }n+1

i=1 ⇒ 0 /∈ conv{Xi }i∈J holds almost surely. Therefore, we have 0 /∈
conv{Xi }ni=1 ⇒ 0 /∈ conv{Xi }n+2

i=1 with probability one. By repeating this argument,
we obtain

0 /∈ conv{X1, . . . , Xn} �⇒ 0 /∈ conv{X1, . . . , Xn+d+1}
�⇒ 0 /∈ conv{Xn+1, . . . , Xn+d+1}

with probability one, but this is only possible when P(0 /∈ conv{X1, . . . , Xn}) = 0 as
pd+1,X > 0 and the variables Xn+1, . . . , Xn+d+1 are independent from the others.
This is of course impossible from the assumption P(X �= 0) > 0 (there exists a unit
vector c ∈ R

d such that P(〈c, X〉 > 0) > 0), so we finally obtain pn,X < pn+1,X .
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Proving pn,X → 1 is also easy. From the independence, we have

pm(d+1),X = 1− P
(
0 /∈ conv{X1, . . . , Xm(d+1)}

)

≥ 1− P

(
m⋂

k=1

{0 /∈ conv{X(k−1)(d+1)+1, . . . , Xk(d+1)}}
)

= 1− (1− pd+1,X )m → 1 (m → ∞).

This leads to the conclusion combined with the monotonicity of pn,X .
Note that we have used the condition E[X ] = 0 only to ensure pd+1 > 0. Hence

the latter statement readily holds from the same argument. ��
The next one includes a little quantitative relation among pn,X and NX .

Proposition 5 For an arbitrary d-dimensional random vector X and integers n ≥
m ≥ d + 1,

pn,X ≤
(
n

m

)

pm,X , NX ≤ n

pn,X

hold.

Proof Let M be the number of m-point subsets of {X1, . . . , Xn} whose convex hull
contains 0. Then, we have

E[M] =
∑

J⊂{1,...,n}
|J |=m

P(0 ∈ conv{Xi }i∈J ) =
(
n

m

)

pm,X .

As pn,X = P(M ≥ 1) ≤ E[M], we obtain the first inequality.
For the second part, we carry out the following rough estimate: For the minimum

integer k satisfying (1− pn,X )k ≤ 1/2, we have NX ≤ kn. If pn,X ≥ 1/2 holds, then

NX ≤ n immediately holds. Thus it suffices to prove k ≤
⌈
1−pn,X
pn,X

⌉
when pn,X < 1/2.

Indeed, by the motonicity of (1+ 1/x)x over x > 0, we have

(
1

1− pn,X

) 1−pn,X
pn,X =

(

1+ pn,X

1− pn,X

) 1−pn,X
pn,X ≥ 2, (∵ pn,X < 1/2)

so the conclusion follows. ��
Remark 1 Although the estimate NX ≤ n

pn,X
looks loose in general, NX ≤ 2d

p2d,X
is

a sharp uniform bound for each dimension d up to a universal constant. Indeed, in
Examples 34 and 35 (Appendix B), we prove that

lim
ε↘0

sup
X :d-dimensional

p2d,X<ε

NX p2d,X

2d
≥ 1

4
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holds for each positive integer d. In contrast, the other inequality pn,X ≤ (nm
)
pm,X is

indeed very loose and drastically improved in Proposition 7.

In Propositions 4 and 5, we have never used the information of dimension except
for observing pd+1,X > 0 in Proposition 4. However, when the distribution of X has
a certain regularity, there already exists a strong result that reflects the dimensionality.

Theorem 6 [44] When the distribution of X is absolutely continuous with respect to
the Lebesgue measure on R

d ,

pn,X ≤ 1− 1

2n−1

d−1∑

i=0

(
n − 1

i

)

= 1

2n−1

n−d−1∑

i=0

(
n − 1

i

)

(3)

holds for each n ≥ d + 1. The equality is attained if and only if the distribution is
balanced, i.e., P(〈c, X〉 ≤ 0) = 1/2 holds for all the unit vectors c ∈ R

d .

The authors of [44] derived this result by showing the existence of a nonneg-
ative continuous function hX on [0, 1] such that hX (t) = hX (1 − t), hX (t) ≤
d+1
2 min{td , (1− t)d} and

pn,X = 2

(
n

d + 1

)∫ 1

0
tn−d−1hX (t) dt . (4)

We shall provide an intuitive description of the function hX . Let us consider a
one-dimensional i.i.d. sequence Y1,Y2, . . . (also independent from X1, X2, . . .),
where each Yi follows the uniform distribution over (0, 1). If we consider the
(d + 1)-dimensional random vectors X̃i := (Xi ,Yi ), then, for each n, 0 ∈
conv{X1, . . . , Xn} ⊂ R

d is obviously equivalent to the condition that the (d + 1)-th
coordinate axis (denoted by 	) intersects the convex set C̃n := conv{X̃1, . . . , X̃n} ⊂
R
d+1.
Under a certain regularity condition, there are exactly two facets (a d-dimensional

face ofCn) respectively composed of a (d+1)-point subset of {X̃1, . . . , X̃n} that inter-
sects 	. Let us call them top and bottom, where the top is the facet whose intersection
with 	 has the bigger (d + 1)-th coordinate. Let us define another random variable H
as

– 0 if 	 does not intersect conv{X̃1, . . . , X̃d+1},
– otherwise the probability that 0 and X̃d+2 are on the same side of the hyperplane
supporting conv{X̃1, . . . , X̃d+1} (conditioned by X̃1, . . . , X̃d+1).

Then, for a given realization of {X̃1, . . . , X̃n}, the probability that conv{X̃1, . . . , X̃d+1}
becomes the top of C̃n is Hn−d−1. As there are

( n
d+1

)
choice of (equally) possible “top,"

we can conclude that

pn,X = P

(
	 intersects C̃n

)
=
(

n

d + 1

)

P

(
{X1, . . . , Xd+1} is the top of C̃n

)

=
(

n

d + 1

)

E

[
Hn−d−1

]
.
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A similar observation shows pn,X = ( n
d+1

)
E
[
(1− H)n−d−1, H > 0

]
, and so we can

understand hX as the density of a half mixture of H and 1 − H over {H > 0}. This
has been a simplified explanation of hX . For more rigorous arguments and proofs, see
[44].

By using this “densit” function, we can prove the following interesting relationship.

Proposition 7 Let X be anRd -valued random variable with an absolutely continuous
distribution. Then, for any integers n ≥ m ≥ d + 1, we have

1

2n−m

n(n − 1) · · · (n − d)

m(m − 1) · · · (m − d)
pm,X ≤ pn,X ≤ n(n − 1) · · · (n − d)

m(m − 1) · · · (m − d)
pm,X . (5)

Proof The right inequality is clear from (4). For the left inequality, by using hX (t) =
hX (1− t), we can rewrite (4) as

pn,X =
(

n

d + 1

)∫ 1

0
tn−d−1(hX (t) + hX (1− t)) dt

=
(

n

d + 1

)∫ 1

0
(tn−d−1 + (1− t)n−d−1)hX (t) dt .

We can prove for a ≥ b ≥ 0 that ta+(1−t)a

tb+(1−t)b
attains its minimum at t = 1/2, e.g., by

using the method of Lagrange multipliers. Accordingly, we obtain

pn,X
( n
d+1

) =
∫ 1

0
(tn−d−1 + (1− t)n−d−1)hX (t) dt

≥ 2m−n
∫ 1

0
(tm−d−1 + (1− t)m−d−1)hX (t) dt = 2m−n pm,X

( m
d+1

) ,

which is equivalent to the inequality to prove. ��
Remark 2 The left inequality has nothing to say when n and m are large so 2n−m is
faster than (n/m)d . However, for small n and m, it works as a nice estimate. Consider
the case n = 2d and m = d + 1. Then, the proposition and the usual estimate for
central binomial coefficients yield

p2d,X ≥ 1

2d−1

(
2d

d + 1

)

pd+1,X ≥ 1

2d−1

(
d

d + 1

22d

2
√
d

)

pd+1,X = 2d
√
d

d + 1
pd+1,X .

This is comparable to the symmetric case, where pd+1,X = 1/2d and p2d,X = 1/2
hold.

The right inequality is an obvious improvement of the dimension-free estimate
given in Proposition 5.

We next generalize these results to general distributions including discrete ones
such as empirical measures. However, at least we have to assume pd,X = 0. Note that
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it is weaker than the condition that X has an absolutely continuous distribution, as it
is satisfied with usual empirical measures (see Proposition 9).

From smoothing arguments, we obtain the following generalization of inequalities
(3) and (5).

Theorem 8 Let X be an arbitrary d-dimensional random vector with pd,X = 0. Then,
for any n ≥ m ≥ d + 1, inequalities

pn,X ≤ 1− 1

2n−1

d−1∑

i=0

(
n − 1

i

)

,
1

2n−m

( n
d+1

)

( m
d+1

) pm,X ≤ pn,X ≤
( n
d+1

)

( m
d+1

) pm,X

hold.

Proof LetU be a uniform randomvariable over the unit ball ofRd which is independent
from X . Let also U1,U2 . . . be independent copies of U , which is independent from
X1, X2, . . .. We shall prove that limε↘0 pn,X+εU = pn,X for each n. Note that the
distribution of X + εU has the probability density function

f (x) = 1

V εd
P(‖X − x‖2 ≤ ε) ,

where V denotes the volume of the unit ball. Therefore, once we establish the limit
limε↘0 pn,X+εU = pn,X the statement of the theorem is clear.

From pd,X = 0, we know that

qX (δ) := P

(

inf
y∈conv{Xi }di=1

‖y‖ ≤ δ

)

→ 0, δ ↘ 0. (6)

For each n ≥ d + 1, consider the event An := {0 ∈ conv{X1, . . . , Xn}}. If the
closed ε-ball centered at 0 is included in conv{X1, . . . , Xn}, then 0 is also contained
in conv{Xi + εUi }ni=1 as ‖εUi‖ ≤ ε for all i (more precisely, we can prove this by
using the separating hyperplane theorem). Therefore, by considering the facets of the
convex hull, we have

P

⎛

⎜
⎜
⎝An ∩

⋂

J⊂{1,...,n}
|J |=d

{

inf
y∈conv{Xi }i∈J

‖y‖ ≥ ε

}
⎞

⎟
⎟
⎠ ≤ P

(
0 ∈ conv{Xi + εUi }ni=1

) = pn,X+εU .

By using (6), we have

pn,X+εU ≥ P(An) − P

⎛

⎜
⎜
⎝

⋃

J⊂{1,...,n}
|J |=d

{

inf
y∈conv{Xi }i∈J

‖y‖ < ε

}
⎞

⎟
⎟
⎠

≥ pn,X −
(
n

d

)

qX (ε) → pn,X (ε ↘ 0),
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and so we obtain lim infε↘0 pn,X+εU ≥ pn,X .
On the other hand, if we have 0 ∈ conv{Xi + εUi }ni=1 and 0 /∈ conv{Xi }ni=1

at the same time, then there exsits J ⊂ {1, . . . , n} such that |J | = d and
inf y∈conv{Xi }i∈J ‖y‖ ≤ ε. Indeed, we can write 0 as a convex combination∑n

i=1 λi (Xi + εUi ) = 0, so

∥
∥
∥
∥
∥

n∑

i=1

λi Xi

∥
∥
∥
∥
∥
=
∥
∥
∥
∥
∥
ε

n∑

i=1

λiUi

∥
∥
∥
∥
∥
≤ ε

n∑

i=1

λi‖Ui‖ ≤ ε.

As 0 /∈ conv{Xi }ni=1, there is a facet within ε-distance from 0. Therefore, we obtain

P
(
0 ∈ conv{Xi + εUi }ni=1

) ≤ P

⎛

⎜
⎜
⎝An ∪

⋃

J⊂{1,...,n}
|J |=d

{

inf
y∈conv{Xi }i∈J

‖y‖ ≤ ε

}
⎞

⎟
⎟
⎠ ,

and similarly it follows that

pn,X+εU ≤ pn,X +
(
n

d

)

qX (ε) and lim sup
ε↘0

pn,X+εU ≤ pn,X .

Thus we finally obtain limε↘0 pn,X+εU = pn,X . ��
We should remark that pd,X = 0 is naturally satisfied with (centered) empirical

measures.

Proposition 9 Let μ be an absolutely continuous probability distribution on R
d and

Y1,Y2, . . . be an i.i.d. samplings from μ. Then, with probability one, for each M ≥
d + 1, distributions

μM := 1

M

M∑

i=1

δYi and μ̃M := 1

M

M∑

i=1

δYi− 1
M

∑M
j=1 Y j

satisfy pd,μM = pd,μ̃M = 0. pd,μM = 0 also holds for 1 ≤ M ≤ d and requires only
pd,μ = 0.

Proof For μM , it suffices to prove that with probability one there are no J ⊂
{1, . . . , M} with |J | = d such that 0 ∈ conv{Yi }i∈J . This readily follows from the
absolute continuity of the original measure μ. The extension to the case μ satisfies
only pd,μ = 0 is immediate.

For the centered version μ̃M , what to prove is that with probability one there are
no J ⊂ {1, . . . , M} with |J | = d such that 1

M

∑M
i=1 Y j ∈ conv{Yi }i∈J . Suppose this

occurs for some J . Then, we have that 1
M−d

∑
i �=J Yi is on the affine hull of {Yi }i∈J .

However, as {Yi }i /∈J is independent from {Yi }i∈J for a fixed J , this probability is zero
again from the absolute continuity of μ. Therefore, we have the desired conclusion. ��
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3 Uniform bounds of p"n,X via the relaxed Tukey depth

We have not used any quantitative assumption on the distribution of X in the previ-
ous section. In this section, however, we shall evaluate pn,X and its ε-approximation
version by using the Tukey depth and its relaxation. We shall fix an arbitrarily
real inner product 〈·, ·〉 on R

d , and use the induced norm ‖ · ‖ and the notation
dist(x, A) := infa∈A ‖x − a‖ for an x ∈ R

d and A ⊂ R
d .

For a d-dimensional random vector X and θ ∈ R
d , define an ε-relaxation version

of the Tukey depth by

αε
X (θ) := inf‖c‖=1

P(〈c, X − θ〉 ≤ ε) .

We also define, for a positive integer n,

pε
n,X (θ) := P(dist(θ, conv{X1, . . . , Xn}) ≤ ε) ,

where X1, . . . , Xn are independent copies of X . Note that pn,X = p0n,X . Although we
regard them as functions of θ in Sect. 5, we only treat the case θ = 0 and omit the
argument θ in this section.

Proposition 10 Let X be a d-dimensional random vector with an absolutely contin-
uous distribution with respect to the Lebesgue measure. Then, for each ε ≥ 0 and
positive integer n ≥ d + 1, we have

1− pε
n,X ≤ n(1− αε

X )

n − d
(1− pε

n−1,X ).

Before going into details of quantitative results, we note the following equivalence
of the positivity of αε

X and pε
n,X which immediately follows from this assertion.

Proposition 11 Let X be an arbitrary d-dimensional random vector and let ε ≥ 0.
Then, pε

n,X > 0 for some n ≥ 1 implies αε
X > 0. Reciprocally, αε

X > 0 implies
pε
n,X > 0 for all n ≥ d + 1.

Proof If dist(0, conv{Xi }ni=1) ≤ ε, there exists a point x ∈ conv{Xi }ni=1 with ‖x‖ ≤ ε.
Then, for each c ∈ R

d with ‖c‖ = 1, we have 〈c, x〉 ≤ ε and so 〈c, Xi 〉 ≤ ε for at
least one i ∈ {1, . . . , n}. Hence we have a uniform evaluation

P(〈c, X〉 ≤ ε) = 1

n

n∑

i=1

P(〈c, Xi 〉 ≤ ε) ≥ 1

n
P

(
n⋃

i=1

{〈c, Xi 〉 ≤ ε}
)

≥ 1

n
P
(
dist(0, conv{Xi }ni=1) ≤ ε

)
,

and the first assertion follows.
For the latter, if αε

X is positive, we have pε
n,X > 0 for a sufficiently large n

from Proposition 10. Finally, Carathéodory’s theorem yields the positivity for all
n ≥ d + 1. ��
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Let us prove Proposition 10.

Proof of Proposition 10 Let m ≥ d be an integer. We first consider the quantity qm :=
1− pε

n,X . Let Am be the event given by

dist(0, conv{Xi }mi=1) > ε.

Also, let Bm be the event that {X1, . . . , Xm} is in general position. Then, we have
P(Bm) = 1 and qm = P(Am ∩ Bm).

Under the event Am∩Bm , we have a unique point hm ∈ conv{Xi }mi=1 thatminimizes
‖hm‖. Let Hm be the open halfspace defined by Hm := {x ∈ R

d | 〈x − hm, hm〉 > 0}.
Then, the boundary ∂Hm is the hyperplane going through hm and perpendicular to
hm . From the general-position assumption, there are at most d points on ∂Hm . Let
Im be the set of indices i satisfying ∂Hm , then Im is a random subset of {1, . . . ,m}
with 1 ≤ |Im | ≤ d under the event Am ∩ Bm . Note also that Xi ∈ H for each
i ∈ {1, . . . , d}\Im . For simplicity, define Im = ∅ for the event (Am ∩ Bm)c.

As Im is a random set determined uniquely, we can decompose the probability
P(Am ∩ Bm) as follows by symmetry:

qm = P(Am ∩ Bm) =
d∑

k=1

(
m

k

)

P(Im = {1, . . . , k}) .

Hence, we want to evaluate the probability P(Im = {1, . . . , k}). Note that we can
similarly define hk as the unique point in conv{Xi }ki=1 thatminimizes the distance from
the origin. Then, Hk is the open halfspace Hk = {x ∈ R

d | 〈x − hm,k, hm,k
〉
> 0}.

Then, we have

P(Im = {1, . . . , k})

= E

⎡

⎣1{‖hk‖>ε, conv{Xi }ki=1⊂∂Hk }
m∏

j=k+1

P

(
X j ∈ Hk | conv{Xi }ki=1

)
⎤

⎦

= E

[

1{‖hk‖>ε, conv{Xi }ki=1⊂∂Hk }P
(
X ′ ∈ Hk | conv{Xi }ki=1

)m−k
]

,

where X ′ is a copyof X independent from X1, X2, . . ..AsP
(
X ′ ∈Hk | conv{Xi }ki=1

) ≤
1− αε

X under the event {‖hk‖ > ε, conv{Xi }ki=1 ⊂ ∂Hk}, we have

P(Im+1 = {1, . . . , k}) = E

[

1{‖hk‖>ε, conv{Xi }ki=1⊂∂Hk }P
(
X ′ ∈ Hk | conv{Xi }ki=1

)m+1−k
]

≤ (1− αε
X )P(Im = {1, . . . , k}) .
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Therefore, we have

qm+1 =
d∑

k=1

(
m + 1

k

)

P(Im+1 = {1, . . . , k})

=
d∑

k=1

m + 1

m + 1− k

(
m

k

)

(1− αε
X )P(Im = {1, . . . , k})

≤ (m + 1)(1− αε
X )

m + 1− d
qm .

By letting n = m + 1, we obtain the conclusion. ��
If we define gd,n(α) by gd,n := 1 for n = 1, . . . , d and

gd,n(α) := min

{

1,
n(1− α)

n − d
gd,n−1(α)

}

(7)

for n = d + 1, d + 2, . . ., we clearly have 1− pε
n,X ≤ gd,n(α

ε
X ) from Proposition 10

for a d-dimensional X having density. We can actually generalize this to a general X .

Lemma 12 Let X be an arbitrary d-dimensional random vector. Then, for each ε ≥ 0
and positive integer n, we have 1− pε

n,X ≤ gd,n(α
ε
X ).

Proof Note first that gd,n(α) is non-increasing with respect to α ∈ [0, 1]. Let X̃ be a
d-dimensional random vector such that ‖X − X̃‖ ≤ δ for some δ > 0. Then, for an
arbitrary c ∈ R

d with ‖c‖ = 1, we have

〈c, X̃〉 ≤ 〈c, X〉 + δ,

so P(〈c, X〉 ≤ ε) ≤ P(〈c, X̃〉 ≤ ε + δ). Hence we have αε
X ≤ αε+δ

X̃
.

Consider generating i.i.d. pairs (X1, X̃1), . . . , (Xn, X̃n) that are copies of (X , X̃).
Then, for each x ∈ conv{Xi }ni=1, there is a convex combination such that x =∑n

i=1 λi Xi with λi ≥ 0 and
∑n

i=1 λi = 1. Then, we have

∥
∥
∥
∥
∥
x −

n∑

i=1

λi X̃i

∥
∥
∥
∥
∥
≤

n∑

i=1

λi‖Xi − X̃i‖ ≤ δ.

It means that inf y∈conv{X̃i }ni=1
‖x − y‖ ≤ δ holds for every x ∈ conv{Xi }ni=1, and we

can deduce that pε+2δ
n,X ≥ pε+δ

n,X̃
holds.

In particular, we can choose X̃ having density, so that we have 1 − pε+δ
n,X ≤

gd,n(α
ε+δ

X̃
). Therefore, from the monotonicity of gd,n , we have

1− pε+2δ
n,X ≤ 1− pε+δ

n,X̃
≤ gd,n(α

ε+δ

X̃
) ≤ gd,n(α

ε
X ).
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As δ > 0 can be taken arbitrarily, we finally obtain

1− pε
n,X ≤ gd,n(α

ε
X )

by letting δ → 0. The δ-relaxation technique used in this proof is a big advantage of
introducing pε

n,X extending pn,X . ��
From this lemma, we obtain the following general bound.

Proposition 13 Let X be an arbitrary d-dimensional random vector. Then, for each
ε ≥ 0 and positive integer n ≥ d/αε

X , we have

1− pε
n,X ≤

(
nαε

X

d
exp

{(
1

αε
X
log

1

1− αε
X

)(

1+ αε
X − nαε

X

d

)})d

.

Proof From Lemma 12, it suffices to prove that

gd,n(α) ≤
(
nα

d
exp

{(
1

α
log

1

1− α

)(
1+ α − nα

d

)})d

(8)

holds for each α ∈ (0, 1) and n ≥ d/α. From the definition of gd,n (see (7)), if we set
n0 := �d/α�, then we have

gd,n(α) ≤ n(n − 1) · · · n0
(n − d)(n − d − 1) · · · (n0 − d)

(1− α)n−n0+1gd,n0−1(α)

≤ n(n − 1) · · · (n − d + 1)

(n0 − 1)(n0 − 2) · · · (n0 − d)
(1− α)n−n0+1

≤
(

n

n0 − d

)d

(1− α)n−n0+1.

As we know d/α ≤ n0 < d/α + 1 by definition, we have

gd,n(α) ≤
(

n

d/α − d

)d

(1− α)n−
d
α =

(nα

d

)d
(1− α)n−

d
α
−d .

This is indeed the desired inequality (8). ��
Remark 3 As 1

α
log 1

1−α
≥ 1 holds on (0, 1) for n ≥ (1+α)d

α
, the bound (8) yields a

looser but more understandable variant

gd,n(α) ≤
(nα

d
exp
(
1+ α − nα

d

))d
.

Note that we have a trivial lower bound of 1− pε
n,X ≥ (1− αε

X )n , which is proven by
fixing a separating hyperplane between the origin and sample points.

For a special choice n = �3d/α�, the following is readily available:
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Theorem 14 Let X be an arbitrary d-dimensional random vector. Then, for each ε ≥ 0
and positive integer n ≥ 3d/αε

X , we have

pε
n,X > 1− 1

2d
.

Proof From Proposition 13, it suffices to prove

3 exp

{(
1

α
log

1

1− α

)

(α − 2)

}

<
1

2
(9)

for all α ∈ (0, 1). If we let f (x) = x−2
x log 1

1−x for x ∈ (0, 1), then we have

f ′(x) = 1

x2

(

2 log
1

1− x
− x(2− x)

1− x

)

= 1

x2

(

2 log
1

1− x
+ (1− x) − 1

1− x

)

.

If we set t := log 1
1−x , t takes positive reals and we have

2 log
1

1− x
+ (1− x) − 1

1− x
= 2t + e−t − et = 2(t − sinh t) < 0.

Therefore, it suffices to consider the limit α ↘ 0. In this limit, the left-hand side of
(9) is equal to 3e−2, which is smaller than 1/2 since e >

√
6 holds. ��

We complete this section with a stronger version of Proposition 10 only for ε = 0.
Indeed, by summing up the following inequality, we can immediately obtain the ε = 0
case in Proposition 10.

Proposition 15 Let X be a d-dimensional random vector with an absolutely continu-
ous distribution with respect to the Lebesgue measure. Then,

pn+1,X − pn,X ≤ n(1− αX )

n − d
(pn,X − pn−1,X )

holds for all n ≥ d + 1.

Proof First, observe that pn+1,X − pn,X = P(0) ∈ conv{X1, . . . , Xn+1}\ conv
{X1, . . . , Xn} for n ≥ d + 1 and independent copies X1, X2, . . . of X . Assume
0 ∈ conv{X1, . . . , Xn+1}\ conv{X1, . . . , Xn} holds and no d + 1 points of
{0, X1, . . . , Xn+1} lie on the same hyperplane (the latter is satisfied almost surely
as X is absolutely continuous). Then, there exists an expression such that

0 =
n+1∑

i=1

λi Xi ,

n+1∑

i=1

λi = 1, λi ≥ 0.
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Here 0 < λn+1 < 1 must hold as 0 /∈ conv{X1, . . . , Xn} and Xn+1 �= 0. Therefore,
we can rewrite

1

1− λn+1

n∑

i=1

λi Xi = − λn+1

1− λn+1
Xn+1

and this left-hand side is a convex combination of {X1, . . . , Xn}. Therefore, the line
	 passing through Xn+1 and 0 intersects conv{X1, . . . , Xn} after 0 (if directed from
Xn+1 to 0). Also, 	 never intersects conv{X1, . . . , Xn} before 0. Indeed, if λXn+1 ∈
conv{X1, . . . , Xn} for some λ > 0, then 0 ∈ conv{λXn+1,− λn+1

1−λn+1
Xn+1} ⊂

conv{X1, . . . , Xn} holds and it contradicts the assumption.
Hence, we can define the first hitting point of 	 and conv{X1, . . . , Xn} after

0. More formally, let P be the minimum-normed point in 	 ∩ conv{X1, . . . , Xn}.
Then, by the general-position assumption, there exists a unique J ⊂ {1, . . . , n} with
|J | = d such that P ∈ conv{Xi }i∈J (more strongly, P is in the relative interior of
conv{Xi }i∈J ). In other words, conv{Xi }i∈J is the unique facet which intersects 	 first.
Then, there exists a unique normal vector cJ that defines the hyperplane supporting
{Xi }i∈J , i.e., 〈cJ , Xi 〉 = 1 for each i ∈ J . Since 〈cJ , P〉 = 1 also holds, we have
〈cJ , Xn+1〉 < 0. We can also prove 〈cJ , Xi 〉 > 1 for each i ∈ {1, . . . , n}\J . Indeed,
if we have

〈
cJ , X j

〉
< 1 for some j ∈ {1, . . . , n}\J , then there are interior points of

conv{Xi }i∈J∪{ j} that belongs to 	 and this contradicts the minimality of the norm of
P .

Therefore, for a fixed J ⊂ {1, . . . , n} with |J | = d, the probability that
0 ∈ conv{X1, . . . , Xn+1}\ conv{X1, . . . , Xn} holds and conv{Xi }i∈J becomes the
first facet intersecting 	 after 0 is, from the independence,

E

⎡

⎣P
(
0 ∈ conv{Xi }i∈J∪{n+1} | {Xi }i∈J

) ∏

j∈{1,...,n}\J
P
(〈
cJ , X j

〉
> 1 | {Xi }i∈J

)
⎤

⎦

= E

[
P
(
0 ∈ conv{Xi }i∈J∪{n+1} | {Xi }i∈J

)
P
(〈
cJ , X

′〉 > 1 | {Xi }i∈J
)n−d

]
,

where X ′ is a copy of X independent from {Xi }i≥1. By symmetry, this J is chosenwith
equal probability given 0 ∈ conv{X1, . . . , Xn+1}\ conv{X1, . . . , Xn} (almost surely
without overlapping). Hence, we obtain

pn+1,X − pn,X

=
(
n

d

)

E

[
P(0 ∈ conv{X1, . . . , Xd+1} | {Xi }i∈I )P

(〈
cI , X

′〉 > 1 | {Xi }i∈I
)n−d

]
,

where I = {1, . . . , d}. Observe that this representation is still valid for n = d. From
the definition of αX , we have P

(〈
cI , X ′〉 > 1 | {Xi }i∈I

) ≤ 1 − αX , so finally obtain,
for n ≥ d + 1,
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pn+1,X − pn,X

=
(
n

d

)

E

[
P(0 ∈ conv{X1, . . . , Xd+1} | {Xi }i∈I )P

(〈
cI , X

′〉 > 1 | {Xi }i∈I
)n−d

]

≤ (1− αX )

(
n

d

)

E

[
P(0 ∈ conv{X1, . . . , Xd+1} | {Xi }i∈I )P

(〈
cI , X

′〉 > 1 | {Xi }i∈I
)n−1−d

]

= (1− αX )

(n
d

)

(n−1
d

) (pn,X − pn−1,X )

= n(1− αX )

n − d
(pn,X − pn−1,X ).

This is the desired inequality. ��

4 Bounds of NX via Berry–Esseen theorem

In this section, we discuss upper bounds of NX for a centered X , which are of particular
interest from the randomized measure reduction (see Sect. 1.1).

We know the following assertion as a consequence of Theorem 14.

Theorem 16 Let X be an arbitrary d-dimensional random vector. Then, we have

1

2αX
≤ NX ≤

⌈
3d

αX

⌉

.

Proof The right inequality is an immediate consequence of Theorem 14. To prove the
left one, let n be a positive integer satisfying 1

2n > αX . Then, there exists a vector
c ∈ R

d\{0} such that P
(
c
X ≤ 0

)
< 1

2n . Then, for X1, X2, . . . , Xn (i.i.d. copies of
X ), we have

pn,X = P(0 ∈ conv{X1, . . . , Xn}) ≤ P

(
n⋃

i=1

{c
Xi ≤ 0}
)

≤ nP
(
c
X ≤ 0

)
<

1

2
.

Therefore, NX must satisfy 1
2NX

≤ αX . ��
Remark 4 The above theorem states that 1/2 ≤ αX NX ≤ 3d + 1. This evaluation for
αX NX is indeed tight up to a universal constant. For example, if X is a d-dimensional
standard Gaussian, we have αX = 1

2 and NX = 2d, so αX NX = d. Moreover, for a
small ε ∈ (0, 1), if we consider X = (X1, . . . , Xd) such that

– P
(
Xd = 1

) = ε and P
(
Xd = −1

) = 1− ε,
– (X1, . . . , Xd−1)|Xd=1 is a standard Gaussian,
– X1 = · · · = Xd−1 = 0 if Xd = −1,

then we can see αX = ε/2 and NX = Ω((d − 1)/ε) as (0, . . . , 0, 1) has to be in the
convex hull of samples to include the origin in it. Hence the bound αX NX = O(d) is
sharp even for a small αX .

123



724 S. Hayakawa et al.

On the contrary,

inf
X :d-dimensional

αX NX ≤ 2

holds (even when requiring pd,X = 0) for each positive integer d from Example 34
and Example 35 in the appendix (Sect. B).

Although Theorem 16 has strong generality, in many situations we have little infor-
mation about the Tukey depth αX . Indeed, approximately computing the Tukey depth
itself is an important and difficult problem [9, 47]. However, if we limit the argument
to a centered X , we can obtain various moment-based bounds as shown below. In this
section, we use the usual Euclidean norm ‖ ·‖2 given by ‖x‖2 =

√
x
x for simplicity.

Let X be a d-dimensional centered random vector whose covariance matrix V :=
E
[
XX
] is nonsingular. We also define V−1/2 as the positive-definite square root of

V−1. Then, for each unit vector c ∈ R
d (namely ‖c‖2 = 1), we have

E

[
(c
V−1/2X)2

]
= E

[
c
V−1/2XX
V−1/2c

]
= E

[
c
c
]
= 1, (10)

We have the following simple result for a bounded X .

Proposition 17 Let X be a centered d-dimensional random vector with nonsingular
covariance matrix V . If ‖V−1/2X‖2 ≤ B holds almost surely for a positive constant
B, then we have

αX ≥ 1

2B2 , NX ≤ ⌈6dB2⌉.

Proof For a one-dimensional random variable Y with E[Y ] = 0, E
[
Y 2
] = 1 and

|Y | ≤ B, we have

BP(Y ≤ 0) ≥ E[−min{Y , 0}] = 1

2
E[|Y |]

and so

P(Y ≤ 0) ≥ E[|Y |]
2B

≥ E
[|Y |2]
2B2 = 1

2B2 .

By observing this inequality for each Y = c
V−1/2X with ‖c‖2 = 1, we obtain the
bound of αX . The latter bound then follows from Theorem 16. ��

Let us consider the unbounded case. The Berry–Esseen theorem evaluates the speed
of convergence in the central limit theorem [4, 12]. The following is a recent result
with an explicit small constant.

Theorem 18 [21] Let Y be a random variable with E[Y ] = 0, E
[
Y 2
] = 1, and

E
[|Y |3] < ∞, and let Y1,Y2, . . . be independent copies of Y . Also let Z be one-

dimensional standard Gaussian. Then, we have
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∣
∣
∣
∣P

(
Y1 + · · · + Yn√

n
≤ x

)

− P(Z ≤ x)

∣
∣
∣
∣ ≤

0.4784E
[|Y |3]√
n

for arbitrary x ∈ R and n ≥ 1.

Wecan apply theBerry–Esseen theorem for evaluating the probabilityP
(
c
Sn ≤ 0

)

from (10), where Sn is the normalized i.i.d. sum 1√
n
V−1/2(X1 + · · · + Xn). By elab-

orating this idea, we obtain the following bound of NX .

Theorem 19 Let X be a centered d-dimensional random vector with nonsingular
covariance matrix V . Then,

NX ≤ 17d

(

1+ 9

4
sup

c∈Rd ,‖c‖2=1
E

[∣
∣
∣c
V−1/2X

∣
∣
∣
3
]2
)

holds.

Proof Let n be an integer satisfying

n ≥ 9

4
sup

c∈Rd ,‖c‖2=1
E

[∣
∣
∣c
V−1/2X

∣
∣
∣
3
]2

.

Then, for an arbitrary ‖c‖2 = 1, from Theorem 18, we have

P

(
c
V−1/2(X1 + · · · + Xn)

n
≤ 0

)

= P

(
c
V−1/2(X1 + · · · + Xn)√

n
≤ 0

)

≥ 1

2
− 2

3
· 0.48 = 9

50
,

where X1, X2, . . . are independent copies of X . Hence αn−1(X1+···+Xn)
≥ 9/50 holds.

Then we can use Theorem 16 to obtain

Nn−1(X1+···+Xn)
≤
⌈
50

9
· 3d
⌉

≤ 17d.

Since NX ≤ nNn−1(X1+···+Xn)
holds, we have

NX ≤ 17d

(

1+ 9

4
sup

c∈Rd ,‖c‖2=1
E

[∣
∣
∣c
V−1/2X

∣
∣
∣
3
]2
)

,

which is the desired conclusion. ��
Remark 5 The bound in Theorem 19 is sharp up to constant as a uniform bound in

terms of E
[∣
∣c
V−1/2X

∣
∣3
]
. Indeed, if X is d-dimensional standard Gaussian, then

E

[∣
∣c
V−1/2X

∣
∣3
]
= 2

√
2√

π
holds for all ‖c‖2 = 1 while NX = 2d, so we have
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sup
c∈Rd ,‖c‖2=1

E

[∣
∣
∣c
V−1/2X

∣
∣
∣
3
]−2

NX = π

4
d.

From Theorem 19, we can also obtain several looser but more tractable bounds.

Corollary 20 Let X be a centered d-dimensional random vector with nonsingular
covariance matrix V . NX can be bounded as

NX ≤ 17d

(

1+ 9

4
min

{

E

[∥
∥
∥V−1/2X

∥
∥
∥
3

2

]2
, E

[∥
∥
∥V−1/2X

∥
∥
∥
4

2

]})

.

Proof From Theorem 19, it suffices to prove

E

[∣
∣
∣c
V−1/2X

∣
∣
∣
3
]2

≤ E

[∥
∥
∥V−1/2X

∥
∥
∥
3

2

]2
, E

[∥
∥
∥V−1/2X

∥
∥
∥
4

2

]

for each unit vector c ∈ R
d . The first bound is clear from

∣
∣
∣c
V−1/2X

∣
∣
∣ ≤ ‖c‖2

∥
∥
∥V−1/2X

∥
∥
∥
2
=
∥
∥
∥V−1/2X

∥
∥
∥
2
.

The second bound can also be derived as

E

[∣
∣
∣c
V−1/2X

∣
∣
∣
3
]2

≤ E

[∣
∣
∣c
V−1/2X

∣
∣
∣
2
]

E

[∣
∣
∣c
V−1/2X

∣
∣
∣
4
]

= E

[∣
∣
∣c
V−1/2X

∣
∣
∣
4
]

≤ E

[∥
∥
∥V−1/2X

∥
∥
∥
4

2

]

,

where we have used the Cauchy–Schwarz inequality. ��
Remark 6 In the order notation, the first bound in this corollary states

NX = O
(

d E

[∥
∥
∥V−1/2X

∥
∥
∥
3

2

]2
)

.

This estimate is also sharp up to O(d) factor in the sense that we can prove

sup

⎧
⎪⎨

⎪⎩

NX

E

[∥
∥V−1/2X

∥
∥3
2

]2

∣
∣
∣
∣
∣
∣
∣

X is d-dimensional, E[X ] = 0,

V = E
[
XX
] is nonsingular, E

[∥
∥V−1/2X

∥
∥3
2

]
< ∞

⎫
⎪⎬

⎪⎭
≥ 1

2

for each positive integer d. For the proof of this fact, see Example 34 and Example 35
in the appendix (Sect. B).
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We finally remark that there are multivariate versions of the Berry–Esseen theorem
[35, 46] and we can use them to derive a bound of NX in a different approach which
does not use αX . However, their bounds only gives the estimate

NX = O
(

d7/2E

[∥
∥
∥V−1/2X

∥
∥
∥
3

2

]2
)

, (11)

which is far worse than the bounds obtained in Theorem 19 and Corollary 20. How-
ever, it is notable that this approach from multidimensional Berry–Esseen formulas
is applicable to non-identical Xi ’s if the second and third moments are uniformly
bounded, while the combinatorial approach based on αX seems to be fully exploiting
the i.i.d. assumption. Therefore, we provide the details of this alternative approach in
the appendix (Sect. A).

5 Deterministic interior body of random polytopes

For each α > 0, define a deterministic set defined by the level sets of Tukey depth

K α(X) := {θ ∈ R
d | αX (θ) ≥ α}.

This set is known to be compact and convex [36]. We can also naturally generalize
this set for the ε-relaxation of Tukey depth, and the generalization also satisfies the
following:

Proposition 21 Let X be a d-dimensional random vector. Then, for each ε ≥ 0 and
α > 0, the set {θ ∈ R

d | αε
X (θ) ≥ α} is compact and convex, and satisfies

{θ ∈ R
d | αε

X (θ) ≥ α} ⊃ {θ ∈ R
d | dist(θ, K α(X)) ≤ ε}.

Proof We fix α and denote

Kε = {θ ∈ R
d | αε

X (θ) ≥ α}.

Note that K0 = K α(X). Let c ∈ R
d satisfy ‖c‖ = 1. Define t(c) by

t(c) := inf{t ∈ R | P(〈c, X〉 ≤ t) ≥ α}. (12)

If t(c) = ∞, i.e., the right-hand set is empty for some c, then each set Kε is empty.
t(c) > −∞ is clear from α > 0. Suppose t(c) ∈ R for all c. From the continuity of
probability, the infimum can actually be replaced by minimum, so we have

P(〈c, X − θ〉 ≤ ε) ≥ α ⇐⇒ 〈c, θ〉 + ε ≥ t(c)

for each θ ∈ R
d . Hence, if θ0 ∈ K0 and ‖θ − θ0‖ ≤ ε, then we have θ ∈ Kε, so we

obtain the inclusion statement.
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Let us prove that Kε is compact and convex. Define Hε(c) := {θ ∈ R
d | 〈c, θ〉 ≥

t(c) − ε} for each c ∈ R
d with ‖c‖ = 1. From (12), we have Kε = ⋂

‖c‖=1 Hε(c).
As Hε(c) is closed and convex, Kε is also closed and convex. To prove compactness,
we shall prove Kε is bounded. As X is a random vector, there is an R > 0 such that
P(‖X‖ ≥ R) < α. Then, for each θ ∈ R

d satisfying ‖θ‖ ≥ R + ε, we have

P

(〈

− θ

‖θ‖ , X − θ

〉

≤ ε

)

= P

(〈

− θ

‖θ‖ , X

〉

≤ ε − ‖θ‖
)

≤ P(‖X‖ ≥ R) < α.

Therefore, we have ‖θ‖ < R + ε for each θ ∈ Kε and so Kε is bounded. ��
Remark 7 Note that the inclusion stated in Proposition 21 can be strict. For example,
if X is a d-dimensional standard Gaussian, K α(X) is empty for each α > 1/2, but the
ε-relaxation of Tukey depth can be greater than 1/2 for ε > 0.

From this proposition, we can naturally generalize the arguments given in
this section to the ε-relaxation case; natural interior bodies of ε-neighborhood of
conv{X1, . . . , Xn} are given by the ε-relaxation of Tukey depth. However, to keep the
notation simple, we only treat K α(X) the interior body of usual convex hull in the
following.

We next prove that the polar body
(
K̃ α(X)

)◦ used in [15], whichwe have introduced
in Sect. 1.3, is essentially the same as K α(X) in their setting, i.e., when X is symmetric.
Recall that K̃ α(X) is defined as

K̃ α(X) = {s ∈ R
d | P(〈s, X〉 ≥ 1) ≤ α}.

Note that the following proposition is not surprising if we go back to the original
background of K̃ α [37], where X is uniform from some deterministic convex set, and
recent reseaches on its deep relation to the Tukey depth [32].

Proposition 22 Let X be a d-dimensional symmetric random vector. Then, for each
α ∈ (0, 1/2), we have

{θ ∈ R
d | αX (θ) > α} ⊂ (K̃ α(X)

)◦ ⊂ K α(X).

Proof Consider the set

Aα := {s ∈ R
d | P(〈s, X〉 ≥ 1) < α}.

Then, we clearly have Aα ⊂ K̃ α(X) and so (Aα)◦ ⊃ (K̃ α(X)
)◦. We first prove that

(Aα)◦ = K α(X) actually holds. From the definition of a polar, θ ∈ (Aα)◦ if and only
if

P(〈s, X〉 ≥ 1) < α �⇒ 〈s, θ〉 ≤ 1

holds for each s ∈ R
d\{0}. If we represent s = r−1c by r > 0 and c ∈ R

d with
‖c‖ = 1, this is equivalent to
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P(〈c, X〉 ≥ r) < α �⇒ 〈c, θ〉 ≤ r (13)

for each r > 0 and ‖c‖ = 1. As we have assumed that X is symmetric and α < 1/2,
(13) is still equivalent even if we allow r to take all reals.

We shall prove that, for a fixed c, (13) is equivalent to P(〈c, X − θ〉 ≥ 0) ≥ α.
Indeed, if

P(〈c, X − θ〉 ≥ 0) = P(〈c, X〉 ≥ 〈c, θ〉) < α

holds, there exists a δ > 0 such that P(〈c, X〉 ≥ 〈c, θ〉 − δ) < α. Then, we have the
negation of (13) by letting r = 〈c, θ〉 − δ. For the opposite direction, if we assume
P(〈c, X〉 ≥ 〈c, θ〉) ≥ α, we have P(〈c, X〉 ≥ r) ≥ α for all r < 〈c, θ〉 and so (13) is
true. Therefore, we obtain (Aα)◦ = K α(X).

For each β ∈ (α, 1/2), we clearly have K̃ α(X) ⊂ Aβ . Therefore, we have

⋃

α<β<1/2

K β(X) ⊂ (K̃ α(X)
)◦ ⊂ K α(X),

which is the desired assertion. ��
We are going to prove the extension of Theorem 3 by finding a finite set of points

whose convex hull approximates K α(X). The following statement is essentially well-
known [2, 34], but we give the precise statement and a brief proof for completeness.

Proposition 23 Let K be a compact and convex subset of Rd such that K = −K.
Then, for each ε ∈ (0, 1), there is a finite set A ⊂ R

d such that

(1− ε)K ⊂ conv A ⊂ K , |A| ≤
(

1+ 2

ε

)d

.

Proof We can only consider the case K has full dimension, i.e., K has a nonempty
interior. Then, the Minkowski functional of K (e.g., see [7, IV.1.14])

|||x ||| := inf{t | t ≥ 0, x ∈ t K }

defines a norm on R
d (note that all norms are equivalent on R

d ). For this norm, it is
known that there is a finite subset A ⊂ S such that miny∈A |||x − y||| ≤ ε for all x ∈ B
and |A| ≤ (1 + 2/ε)d [34, Lemma 4.10]. It suffices to prove (1 − ε)K ⊂ conv A.
Assume the contrary, i.e., let x0 be a point such that |||x ||| ≤ 1 − ε and x0 /∈ conv A.
Then, there exists a (d − 1)-dimensional hyperplane H ⊂ R

d such that x0 ∈ H
and all the points in A lie (strictly) on the same side as the origin with respect to H .
Let y ∈ argminx∈H |||x |||. Then, we have |||y||| ≤ 1 − ε, and z := |||y|||−1y satisfies
minx∈H |||z − x ||| ≥ ε. Hence, we have minx∈A |||z − x ||| > ε and it contradicts the
assumption for A. ��
Theorem 24 Let X be an arbitrary symmetric d-dimensional random vector, and let
α, δ, ε ∈ (0, 1). If a positive integer n satisfies
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n ≥ 2d

α
max

{
log(1/δ)

d
+ log

1

ε
, 6

}

,

then we have, with probability at least 1− δ,

conv{X1, . . . , Xn} ⊃ (1− ε)K α(X),

where X1, X2, . . . are independent copies of X.

Proof As K α(X) is symmetric and convex, there is a set A ⊂ K α(X) with cardinality
at most (1 + 2/ε)d such that (1 − ε)K α(X) ⊂ conv A from Proposition 23. We
shall evaluate the probability of A ⊂ conv{Xi }ni=1. As each point θ ∈ A satisfies
αX (θ) ≥ α, from Remark 3, we have

1− pn,X (θ) ≤
(nα

d
exp
(
1+ α − nα

d

))d
(14)

for each θ ∈ A. Hence, it suffices to prove the right-hand side of (14) is bounded by
(1+ 2/ε)−dδ. By taking the logarithm, it is equivalent to showing

nα

d
− log

nα

d
≥ 1+ α + log(1/δ)

d
+ log

(

1+ 2

ε

)

.

Let us denote x := nα/d. For x ≥ 12, as x/2− log x is increasing, we have

x

2
− log x ≥ 6− log 6 ≥ 2+ log 3 ≥ 1+ α + log 3

by a simple computation. Therefore, from log(1 + 2/ε) ≤ log 3 + log(1/ε) and the
assumption for n, we obtain the inequality (14). ��
Remark 8 Although the bound given in Theorem 24 requires n ≥ 12d/α, it can be
loosened for moderate δ and ε. For example, if we want to obtain a bound for the
case δ = ε = 1/2, then we can prove n ≥ 5d/α to be sufficient by using the
bound in Proposition 13. Moreover, we should note that we have used the assumption
that X is symmetric only for assuring that K α(X) is symmetric so that we can use
Proposition 23. If we take a symmetric convex subset K ⊂ K α(X), we can prove a
similar inclusion statement for K even for a nonsymmetric X .

If we want a generalized version of Theorem 3, we can prove the following:

Corollary 25 Let X be an arbitrary d-dimensional symmetric random vector. Let β ∈
(0, 1) and set α = (en/d)−β . Then, there exists an absolute constant c > 0.45 such
that, for each integer n satisfying n ≥ (12eβ)1/(1−β)d, we have

conv{X1, . . . , Xn} ⊃ 1

2
K α(X)

with probability at least 1− exp(−ce−βn1−βdβ), where X1, X2, . . . are independent
copies of X.
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Proof For α = (en/d)−β , we have

α

12d
n = 1

12eβ

(n

d

)1−β

,

so n ≥ 12d/α is equivalent to n ≥ (12eβ)1/(1−β)d. Hence, from Theorem 24, it
suffices to determine how small δ can be taken so as to satisfy

n ≥ 2d

α

(
log(1/δ)

d
+ log 2

)

.

As n ≥ 12d holds for all β, for a := log 2
6 < 0.1, we have an ≥ 2d

α
log 2. Therefore,

we can take δ as small as

log(1/δ) = α

2
(1− a)n = 1− a

2
e−βn1−βdβ.

Therefore, we can take c = 1−a
2 > 0.45 as desired. ��

6 Application

We discuss implications of the results of this paper in two parts. The first part discusses
the use of the bounds we gave on pn,X , while the second part gives implication of
NX ’s bounds on the randomized cubature construction.

6.1 Bounds of pn,X

Firstly, the inequality between pn,X and pm,X given in Proposition 7 provides the
inequality

p2d,X ≥ 2d
√
d

d + 1
pd+1,X (15)

as it is mentioned in Remark 2.
Measure reduction Consider a discrete (probability) measure μ = ∑

x∈X wxδx for
a finite subset of X ⊂ R

d . In [8], randomized algorithms for constructing a convex
combination satisfying EX∼μ[X ] =∑d+1

i=1 λi xi (xi ∈ X ), whose existence is assured
by Tchakaloff’s theorem [3, 40], are considered. As a basic algorithm, the authors
consider the following scheme:

(a.1) Randomly choose d points A = {x1, . . . , xd} from X .
(a.2) For each x ∈ X ⊂ A, determine ifEX∼μ[X ] ∈ conv(A∪{x}) or not, and finish

the algorithm and return A ∪ {x} if it holds.
(a.3) Go back to (a.1).

Although we can execute the decision for each x in (a.2) with O(d2) computational
costwith anO(d3)preprocessing for a fixed A, the overall expected computational cost
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until the end of the algorithm is at leastΩ
(
d2/pd+1,X

)
under some natural assumption

on μ (see Proposition 9).
However, we can also consdier the following naive procedure:

(b.1) Randomly choose 2d points B = {x1, . . . , x2d} from X .
(b.2) Return B if EX∼μ[X ] ∈ conv B, and go back to (b.1) if not.

By using an LP solver with the simplex method we can execute (b.2) in (empirically)
O(d3) time [33, 38].Hence the overall computational cost canbeheuristically bounded
above by O(d3/p2d,X

)
, which is faster than the former by Ω

(
d−3/22d

)
from the

evaluation in (15). Note also that we have rigorously polynomial bounds via other LP
methods (e.g., an infeasible-interior-point method [30]), and so the latter scheme is
preferable even in worst-case when the dimension d becomes large.
Relation between two depths We can also deduce an inequality between two depth
concepts in statistics. As is mentioned in Introduction, for a random vector X ∈ R

d ,
pd+1,X is called the simplicial depth whereas αX is the Tukey depth of the origin with
respect to X .

Naively, we have αX ≥ pn,X
n for each n, so αX ≥ pd+1,X

d+1 holds. However, by using
(15) here, we obtain a sharper estimate

αX ≥ p2d,X

2d
≥ 1

2d

2d
√
d

d + 1
pd+1,X ≥ 2d−1

√
d(d + 1)

pd+1,X .

In contrast, deriving a nontrivial upper bound of αX in terms of pd+1,X still seems
difficult.

6.2 Bounds of NX

Secondly, we give applications of the bounds of NX given in Sect. 4.
Random trigonometic cubature Consider a d-dimensional random vector

X = (cos θ, . . . , cos dθ)
 ∈ R
d

for a positive integer d, where θ is a uniform random variable over (−π, π). Then,
from an easy computation, we have V := E

[
XX
] = 1

2 Id , and so we obtain

‖V−1/2X‖2 ≤ 2d

almost surely. Therefore, from Proposition 17, we have

NX ≤ 1+ 12d2.

This example is equivalent to a randomconstruction of the so-calledGauss–Chebyshev
quadrature [28, Chapter 8]. Although we can bound as above the number of observa-
tions required in a random construction, concrete constructions with fewer points are
already known.
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Deriving a bound for random construction of cubature without any know determin-
istic construction, such as cubature onWiener space [18, 25], which is more important,
is still unsolved and left for future work.
Beyond naive cubature construction Recall the cubature construction problem
described in Sect. 1.1. We consider a random variable of the form X = f (Y ), where Y
is a random variable on some topological spaceX and f = ( f1, . . . , fd)
 : X → R

d

is a d-dimensional vector valued integrable function. Our aim is to find points
y1, . . . , yd+1 ∈ X and weights w1, . . . , wd+1 ≥ 0 whose total is one such that

E
[
f (Y )

] =
d+1∑

j=1

w j f (y j ). (16)

A naive algorithm proposed by [17] was to generate independent copies Y1,Y2, . . .
of Y and choose y j from these random samples. Without any knowledge of NX , the
algorithm would be of the form

(c.1) Take k = 2d.
(c.2) Randomly generate Yi up to i = k and determine if (16) can be satisfied with

y j ∈ {Yi }ki=1 by using an LP solver.
(c.3) If we find a solution, stop the algorithm. Otherwise, go to (c.2) after replacing

k by 2k.

This procedure ends at k ≤ 2NX (E[X ]) with probability more than half. We can
then heuristically estimate the computational cost by Θ(C(d, NX (E[X ]))), where we
denote by C(d, n) the computational complexity of a linear programming problem
finding the solution of (16) from n sample points. Empirically, this is estimated as
Ω(d2n) or more when we use the simplex method [38].

However, our analysis on NX via the Berry–Esseen bound tells us the possibility
of an alternative (Algorithm 1).

Although the pseudocode may seem a little long, this is just uses 	d random vectors
of the form n−1(X1 + · · · + Xn) as the possible vertices of the convex combination,
which is used for deriving bounds of NX in Sect. 4. After executing Algorithm 1,
we can use any algorithm for deterministic measures (typically called recombination;
[22, 26, 41]) to obtain an actual d + 1 points cubature rule, whose time complexity
is rigorously bounded by O(kd3 + 2kd2

)
by using the final value of k in the above

algorithm.
As we can carry out Algorithm 1 within O(2k	d2 + kC(d, 	d)

)
, the overall com-

putational cost is O(kC(d, 	d) + 2k	d2
)
. Then we heuristically have the bound

O(k	d3 + 2k	d2
)
for a small 	. By using the number N = 2k	d, which is the number

of randomly generated copies of Y , this cost is rewritten as

O
(
log(N/	d)	d3 + Nd

)
.

As our bound for NX (E[X ]) in Theorem 19 is applicable for this N because of the
use of Berry–Esseen type estimate (	 = 17 is used in the proof), we can also give an
estimate for this alternative algorithm. If the N is not as large as Ω(dNX (E[X ])) for
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Algorithm 1 Randomized cubature construction for recombination
Input: An integer 	 ≥ 2
Output: (w1, y1), . . . , (wn , yn) ∈ R≥0 ×X satisfying

∑n
j=1 w j = 1 and E[X ] =∑n

j=1 w j f (y j )
1: Initialize:
2: x1, . . . , x	d , z1, . . . , z	d : vectors in R

d , k ← 0
3: for i = 1, . . . , 	d do
4: Sample Yi
5: xi ← f (Yi )
6: end for
7: while E[X ] /∈ conv{x1, . . . , x	d } do
8: for i = 1, . . . , 	d do
9: zi ← 0 (as an Rd vector)
10: end for
11: for j = 2k , . . . , 2k+1 − 1 do
12: for i = 1, . . . , 	d do
13: Sample Y j	d+i

14: zi ← zi + 2−k f (Y j	d+i )

15: end for
16: end for
17: for i = 1, . . . , 	d do
18: xi ← (xi + zi )/2
19: end for
20: k ← k + 1
21: end while
22: Take xi1 , . . . , xid+1 and λ1, . . . , λd+1 such that E[X ] =∑d+1

m=1 λmxim by solving an LP

23: Return (2−kλm , Y j	d+im ) for ( j,m) ∈ {0, . . . , 2k − 1} × {1, . . . , d + 1}

an appropriate choice of 	, we indeed have a better scheme, though the comparison
itself may be a nontrivial problem in general. In any event, the fact that we can avoid
solving a large LP problem is an obvious advantage.

7 Concluding remarks

In this paper, we have investigated inequalities regarding pn,X , NX and αX , which is
motivated from the fields of numerical analysis, data science, statistics and random
matrix. We generalized the existing inequalities for pn,X in Sect. 2. After pointing out
that the convergence rate of pn,X is determined by αX in Sect. 3 with introduction of
ε-relaxation of both quantities, we proved that NX and 1/αX are of the same magni-
tude up to an O(d) factor in Theorem 16. We also gave estimates of NX based on the
moments of X in Sect. 4 by using Berry–Esseen type bounds. Although arguments
have been based on whether a given vector is included in the random convex polytope
conv{X1, . . . , Xn}, in Sect. 4, we extended our results to the analysis of deterministic
convex bodies included in the random convex hull, which immediately led to a techni-
cal improvement on a result from the randommatrix community. We finally discussed
several implications of our results on application in Sect. 6.

Data availibility Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.
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A Bounds of NX via Multivariate Berry–Esseen theorem

In this section, we provide two different estimates of NX . Although we can prove that
the first bound (Sect. A.2) is strictly stronger than the second one (Sect. A.3), we also
give the proof of the second as there seems to be more room for improvement in the
second approach than in the first.

The following first bound is the one mentioned in (11). The proof is given in
Sect. A.2.

Theorem 26 Let X be an R
d-valued random vector which is centered and of nonsin-

gular covariance matrix V . Then,

NX ≤ 8d

(

1+ 36d2(42d1/4 + 16)2E

[∥
∥
∥V−1/2X

∥
∥
∥
3

2

]2
)

holds.

Note that

E

[∥
∥
∥V−1/2X

∥
∥
∥
3

2

]2
≥ E

[∥
∥
∥V−1/2X

∥
∥
∥
2

2

]3
= d3

holds so we can ignore the O(d) term. In the case sup
∥
∥V−1/2X

∥
∥
2 < ∞, we have

E

[∥
∥
∥V−1/2X

∥
∥
∥
3

2

]2
≤ E

[∥
∥
∥V−1/2X

∥
∥
∥
2

2
sup
∥
∥
∥V−1/2X

∥
∥
∥
2

]2
= d2 sup

∥
∥
∥V−1/2X

∥
∥
∥
2

2
.

Therefore, the followingproposition,whichonly states NX =Õ
(

d15/2 sup
∥
∥V−1/2X

∥
∥2
2

)

,

is weaker than Theorem 26. However, the approach of proofs is different and there
seems to remain some room for improvement in the proof of Proposition 27, so we
give the proof in Sect. 1.

Proposition 27 Let X be anRd -valued random vector which is centered, bounded and
of nonsingular covariance matrix V . Then, for all n satisfying

n

(1+ log n)2
≤ 216100d13/2 sup

∥
∥
∥V−1/2X

∥
∥
∥
2

2
,
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NX ≤ 6dn holds.

A.1 Multivariate Berry–Esseen bounds

Before proceeding to the evaluation of NX , we briefly review multivariate Berry–
Esseen type theorems. The following theorem should be the best known bound with
explicit constants and dependence with respect to the dimension.

Theorem 28 [35] Let Y1, . . . ,Yn be i.i.d. D-dimensional independent random vectors
with mean zero and covariance ID. For any convex measurable set A ⊂ R

D, it holds

∣
∣
∣
∣P

(
Y1 + · · · + Yn√

n
∈ A

)

− P(Z ∈ A)

∣
∣
∣
∣ ≤

(42D1/4 + 16)E
[‖Y1‖32

]

√
n

,

where Z is a D-dimensional standard Gaussian.

Note that the original statement is not limited to the i.i.d. case.However, similarly to the
other existing Berry–Esseen type bounds, Theorem 28 only gives information about
convex measurable sets. Thus we cannot use this result directly. However, Sect. A.2
gives a creative use of Theorem 28.

Unlike the usual Berry–Esseen results, the next theorem can be used for noncon-
vex case with reasonable dependence on dimension. We denote by W2(μ, ν) the
Wasserstein-2 distribution between two probability measures μ and ν on the same
domain. This is defined formally as

W2(μ, ν) := inf
Y∼μ,Z∼ν

E

[
‖Y − Z‖22

]
,

where the infimum is taken for all the joint distribution (Y , Z) with the marginal
satisfying Y ∼ μ and Z ∼ ν. Although it is an abuse of notation, we also write
W2(Y , Z) to representW2(μ, ν) when Y ∼ μ and Z ∼ ν for some random variables
Y and Z .

Theorem 29 [46] Let Y1, . . . ,Yn be D-dimensional independent random vectors with
mean zero, covariance Σ , and ‖Yi‖2 ≤ B almost surely for each i . If we let Z be a
Gaussian with covariance Σ , then we have

W2

(
Y1 + · · · + Yn√

n
, Z

)

≤ 5
√
DB(1+ log n)√

n
.

For a set A ⊂ R
D and an ε > 0, define

Aε :=
{

x ∈ R
D
∣
∣
∣
∣ infy∈A ‖x − y‖2 ≤ ε

}

, A−ε :=
{

x ∈ R
D
∣
∣
∣
∣ infy∈Ac

‖x − y‖2 ≥ ε

}

.

By combining the following assertion with Theorem 29, we derive another bound of
NX in Sect. 1.
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Proposition 30 Let Y , Z be D-dimensional random vectors. Then, for anymeasurable
set A ⊂ R

d and any ε > 0, the following estimates hold:

P(Y ∈ A) ≤ P
(
Z ∈ Aε

)+ W2(Y , Z)2

ε2
,

P(Y ∈ A) ≥ P
(
Z ∈ A−ε

)− W2(Y , Z)2

ε2
.

Proof This proof is essentially the same as the argument given in the proof of [46,
Proposition 1.4]. Let (Y ′, Z ′) be an arbitrary couple of random variables such that
Y ′ ∼ Y and Z ′ ∼ Z . Then, we have

P
(
Y ′ ∈ A

) = P
(‖Y ′ − Z ′‖2 < ε, Y ′ ∈ A

)+ P
(‖Y ′ − Z ′‖2 ≥ ε, Y ∈ A

)

≤ P
(
Z ′ ∈ Aε

)+ P
(‖Y ′ − Z ′‖2 ≥ ε

)

≤ P
(
Z ′ ∈ Aε

)+ 1

ε2
E

[
‖Y ′ − Z ′‖22

]
. (by Chebyshev’s inequality)

By taking the infimum of the right-hand side with respect to all the possible couples
(Y ′, Z ′), we obtain the former result. The latter can also be derived by evaluating

P
(
Z ′ ∈ A−ε

) = P
(‖Y ′ − Z ′‖2 < ε, Z ′ ∈ A−ε

)+ P
(‖Y ′ − Z ′‖2 ≥ ε, Z ∈ A−ε

)

≤ P
(
Y ′ ∈ A

)+ P
(‖Y ′ − Z ′‖2 ≥ ε

)

≤ P
(
Y ′ ∈ A

)+ 1

ε2
E

[
‖Y ′ − Z ′‖22

]

and again taking the infimum. ��

A.2 The first bound

In this section,we proveTheorem26.We shall set D = d andmake use of Theorem28.
First, fix a set S ⊂ R

d and consider the set C(S) := {x ∈ R
d | 0 ∈ conv(S ∪

{x})}. We can prove this set is convex for any S. Indeed, if 0 ∈ conv S, then clearly
C(S) = R

d . Otherwise, x ∈ C(S) is equivalent to the existence of some k ≥ 0 and
x1, . . . , xk ∈ S, λ > 0, λ1, . . . , λk ≥ 0 such that

λ + λ1 + · · · + λk = 1, λx + λ1x1 + · · · + λk xk = 0.

Here, λ > 0 comes from the assumption 0 /∈ conv S. This occurs if and only if x is
contained in the negative cone of S, i.e.,C(S) = {∑k

i=1 λ̃i xi | k ≥ 0, λ̃i ≤ 0, xi ∈ S}.
In both cases C(S) is convex, so S0 is always convex (and of course measurable).

Let X be an Rd -valued random vector with mean 0 and nonsingular covariance V .

Suppose E
[∥
∥V−1/2X

∥
∥3
2

]
< ∞. Let X1, X2, . . . be independent copies of X , and for
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a fixed positive integer n, define

Wi := V−1/2X(i−1)n+1 + · · · + V−1/2Xin√
n

for i = 1, . . . , 2d. We also let Z1, . . . , Z2d be independent d-dimensional standard
Gaussian which is also independent from X1, X2, . . .. Then, by using Theorem 28 and
the above-mentioned convexity of C(S), we have

P(0 ∈ {W1, . . . ,W2d}) = P(W1 ∈ C({W2, . . . ,W2d}))

≥ P(Z1 ∈ C({W2, . . . ,W2d})) −
(42d1/4 + 16)E

[∥
∥V−1/2X

∥
∥3
2

]

√
n

= P(0 ∈ conv{Z1,W2, . . . ,W2d}) −
(42d1/4 + 16)E

[∥
∥V−1/2X

∥
∥3
2

]

√
n

.

By repeating similar evaluations, we obtain

P(0 ∈ conv{W1, . . . ,W2d})

≥ P(0 ∈ conv{Z1,W2, . . . ,W2d}) −
(42d1/4 + 16)E

[∥
∥V−1/2X

∥
∥3
2

]

√
n

≥ P(0 ∈ conv{Z1, Z2,W3, . . . ,W2d}) −
2(42d1/4 + 16)E

[∥
∥V−1/2X

∥
∥3
2

]

√
n

...

≥ P(0 ∈ conv{Z1, . . . , Zi ,Wi+1, . . . ,W2d}) −
i(42d1/4 + 16)E

[∥
∥V−1/2X

∥
∥3
2

]

√
n

...

≥ P(0 ∈ conv{Z1, . . . , Z2d}) −
2d(42d1/4 + 16)E

[∥
∥V−1/2X

∥
∥3
2

]

√
n

= 1

2
−

2d(42d1/4 + 16)E
[∥
∥V−1/2X

∥
∥3
2

]

√
n

.

Therefore, by letting

n =
⌈

36d2(42d1/4 + 16)2E

[∥
∥
∥V−1/2X

∥
∥
∥
3

2

]2
⌉

,
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we have P(0 ∈ conv{X1, . . . , X2dn}) ≥ 1/6. Since (1−1/6)4 < 1/2 holds, we finally
obtain NX ≤ 8dn.

A.3 The second bound

In this section, we provide a proof of Sect. 27 in a different manner from the one given
in the previous section. We set D = 2d2 and define Ad ⊂ R

D as follows:

Ad := {x = (x1, . . . , x2d) ∈ (Rd)2d � R
D | 0 ∈ conv{x1, . . . , x2d} ⊂ R

d}.

Then, it suffices to find a suitable upper bound ofP
(
Z ∈ Ad\A−ε

d

)
for a D-dimensional

standard Gaussian Z for our purpose. For an ε > 0, Bd,ε := Ad\A−ε
d can be explicitly

written as

Bd,ε =
{

x = (x1, . . . , x2d ) ∈ R
D
∣
∣
∣
∣

0 ∈ conv{xi }2di=1,

∃x̃ = (x̃i )2di=1 ∈ R
D s.t.‖x − x̃‖2 < ε, 0 /∈ conv{x̃i }2di=1

}

.

(17)

For a (finite) set S = {v1, . . . , v j } ⊂ R
d , define the negative box N (S) ⊂ R

d by

N (S) := {a1v1 + · · · + a jv j | ai ∈ [−1, 0]}.

N (S) is obviously a convex set.

Lemma 31 For an arbitrary x = (x1, . . . , x2d) ∈ Bd,ε, there exists an index k ∈
{1, . . . , 2d} such that xk ∈ N ({xi | i �= k})\N ({xi | i �= k})−ε

√
2d .

Proof As 0 ∈ conv{xi }2di=1, there exist nonnegative weights λ1, . . . , λ2d such that
λ1x1 + · · · + λ2d x2d = 0 with the total weight one. Let k be an index such that wk

is the maximum weight. Then, λk is clearly positive and we have xk =∑i �=k − λi
λk
xi .

Therefore, we obtain xk ∈ N ({xi | i �= k}).
By (17), there exists an x̃ = (x̃i )2di=1 ∈ R

D such that
∑2d

i=1 ‖xi − x̃i‖22 < ε2 and
0 /∈ conv{x̃i }2di=1. We can prove that x̃k /∈ N ({x̃i | i �= k}). Indeed, if we can write
x̃k = −∑i �=k ai x̃i with ai ∈ [0, 1], then

⎛

⎝1+
∑

i �=k

ai

⎞

⎠

−1⎛

⎝x̃k +
∑

i �=k

ai x̃i

⎞

⎠ = 0

is a convex combination and it contradicts the assumption 0 /∈ conv{x̃i }2di=1. Therefore,
we can take a unit vector c ∈ R

d such that

c
 x̃k > max{c
y | y ∈ N ({x̃i | i �= k})}. (18)

Let us assume the closed ball with center xk and radius δ is included in N ({xi | i �= k})
for a δ > 0. Then, if δ > ‖xk − x̃k‖2, the closed ball with center x̃k and radius
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δ′ := δ − ‖xk − x̃k‖2 is included in N ({xi | i �= k}). In particular, we have some
coefficients ai ∈ [−1, 0] such that x̃k + δ′c =∑i �=k ai xi . By the inequality (18), we
have

c
 x̃k > c

∑

i �=k

ai x̃i = c

⎛

⎝x̃k + δ′c +
∑

i �=k

ai (x̃i − xi )

⎞

⎠ ,

so by arranging

δ′ <
∑

i �=k

ai c

(xi − x̃i ) ≤

∑

i �=k

‖xi − x̃i‖2.

Therefore, from the definition of δ′, we obtain

δ <

2d∑

i=1

‖xi − x̃i‖2 ≤
(

2d
2d∑

i=1

‖xi − x̃i‖2
)1/2

≤ ε
√
2d

by Cauchy-Schwarz and the assumption. It immediately implies the desired assertion.
��

Proposition 32 P
(
Z ∈ Bd,ε

) ≤ 8
√
2d7/4ε holds.

Proof By Lemma 31, we have Bd,ε ⊂ ⋃2d
k=1{x | xk ∈ N ({xi | i �= k})\N ({xi |

i �= k})−ε
√
2d}. Therefore, letting Z = (Z1, . . . , Z2d) be a standard Gaussian in R

D

(where each Zi is a independent standard Gaussian in R
d ), we can evaluate

P
(
Z ∈ Bd,ε

) ≤
2d∑

k=1

P

(
Zk ∈ N ({Zi | i �= k})\N ({Zi | i �= k})−ε

√
2d}
)

.

For each k, Zk is independent from the random convex set N ({Zi | i �= k}). Therefore,
we canuse the result of [1] to deduceP

(
Zk ∈N ({Zi | i �= k})\N ({Zi | i �= k})−ε

√
2d}
)

≤ 4d1/4 · ε√2d. Therefore, we finally obtain

P
(
Z ∈ Bd,ε

) ≤ 2d · 4d1/4 · ε√2d = 8
√
2d7/4ε.

��
By letting ε = 2−13/2d−7/4, we have P

(
Z ∈ Bd,ε

) ≤ 1/8. Under this value of ε, if
we let n satisfy

n

(1+ log n)2
≥ 8 · 25DB2

ε2
= 400d2B2 · 213d7/2 = 215100B2d11/2, (19)

for a constant B, then we have
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(
5
√
DB(1+ log n)√

n

)2

≤ ε2

8
.

Now consider a bounded and centered R
d -valued random vector X with V =

E
[
XX
] nonsingular. Then B ′ := sup

∥
∥V−1/2X

∥
∥
2 is finite. Let X1, X2, . . . be

independent copies of X . Define R
D-valued random vectors Y1,Y2, . . . by Yi :=

(V−1/2X(2i−1)d+1, . . . , V−1/2X2id)

 for each i . Then, note that ‖Yi‖2 ≤

√
2dB ′. By

taking B = √
2dB ′ in (19), we have from Theorem 29 that (for ε = 2−13/2d−7/4)

P
(
Z ∈ Bd,ε

) ≤ 1

8
,

1

ε2
W2

(
Y1 + · · · + Yn√

n
, Z

)

≤ 1

8
.

From Proposition 30, we obtain

P

(
Y1 + · · · + Yn√

n
∈ Ad

)

≥ P(Z ∈ Ad) − P
(
Z ∈ Bd,ε

)

− 1

ε2
W2

(
Y1 + · · · + Yn√

n
, Z

)

≥ 1

4
.

Therefore, 0 is contained in the convex hull of {X1, . . . , X2dn}with probability at least
1/4. Since (1−1/4)3 < 1/2, NX ≤ 6dn holds. Therefore, our proof of Proposition 27
is complete.

B Extreme examples

Before treating concrete examples, we prove a proposition which is useful for evalu-
ating NX .

Lemma 33 For a random vector X and its independent copies X1, X2, . . ., define ÑX

as the minimum index n satisfying 0 ∈ conv{X1, . . . , Xn}. Then, we have
1

2
E

[
ÑX

]
≤ NX ≤ 2E

[
ÑX

]
.

Proof From the definition of NX , P
(
0 ∈ {X1, . . . , XNX−1}

)
< 1/2 holds. Thus

P

(
ÑX ≥ NX

)
≥ 1/2, and so we obtain E

[
ÑX

]
≥ 1

2NX .

For the other inequality, we use the evaluation P

(
ÑX ≥ kNX

)
≤ 2−k for each

nonnegative integer k. As ÑX is a nonnegative discrete random variable, we have

E

[
ÑX

]
=

∞∑

n=1

P

(
ÑX ≥ n

)
≤

∞∑

k=0

NXP

(
ÑX ≥ kNX

)
≤ 2NX .

��
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Note that all the examples given below satisfy pd,X = 0. They are given as one of
the worst-case examples for uniform estimates of NX in Proposition 5 or Theorem 26.
Let us start with the simplest extreme case.

Example 34 Let d = 1. For an ε ∈ (0, 1), let X be a random variable such that
P(X = 1/ε) = ε and P(X = −1/(1− ε)) = 1− ε. Then E[X ] = 0.

In this example, we can explicitly calculate pn,X as

pn,X = 1− εn − (1− ε)n .

In particular, p2,X = 2ε − 2ε2. We have limε↘0(1 − ε)1/2ε = e−1/2 = 0.60 . . ., so
p�1/2ε�,X < 1/2 holds for a sufficiently small ε. For such an ε, we have

NX ≥ 1

2ε
= 1− ε

2

2

p2,X
, (20)

and so NX ≤ 2
p2,X

in Proposition 5 is sharp up to constant.

For ε ∈ (0, 1/2), NX can also be evaluated above as NX ≤ 2E
[
ÑX

]
≤

2
(
1
ε
+ 1

(1−ε)

)
by using Proposition 33. We also have αX = ε for ε ∈ (0, 1/2),

so

inf
X :1-dimensional

αX NX ≤ 2+ 2ε

1− ε
→ 2 (ε → 0).

As the variance is V = E
[
X2
] = 1

ε
+ 1

1−ε
= 1

ε(1−ε)
, we have

E

[∣
∣
∣V−1/2X

∣
∣
∣
3
]2

= V−3
(

1

ε2
+ 1

(1− ε)2

)2

= ε3(1− ε)3
(

1

ε4
+ 2

ε2(1− ε)2
+ 1

(1− ε)4

)

= 1

ε
+O(1) .

Therefore, from (20), we obtain

sup

{

E

[∣
∣
∣V−1/2X

∣
∣
∣
3
]−2

NX

∣
∣
∣
∣
∣

X is 1-dimensional, E[X ] = 0,

V = E
[
X2
] ∈ (0,∞), E

[∣
∣V−1/2X

∣
∣3
]

< ∞
}

≥ 1

2
,

which is what is mentioned in Remark 6 when d = 1.
The next example is a multi-dimensional version of the previous one.
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Example 35 Let d ≥ 2. Let {e1, . . . , ed} ⊂ R
d be the standard basis ofRd . Let us first

consider, for an arbitrary ε ∈ (0, 1), a random vector X given by

X = Y

(
d−1∑

i=1

Ziei − 1

1− ε
ed

)

+ 1

ε
(1− Y )ed ,

where P(Y = 1) = 1− ε, P(Y = 0) = ε and Z1, . . . , Zd−1 are independent uniform
random variables over [−1, 1]. (also independent from Y ). Namely, X is ε−1ed with
probability ε and a (d − 1)-dimensional uniform vector over a box on the hyperplane
{x ∈ R

d | e
d x = −(1− ε)−1} otherwise. E[X ] = 0 also holds.

Let us estimate pd+1,X , p2d,X and NX for this X . To contain the origin in the convex
hull, we have to observe at least one Xi with Y = 0. Therefore, for an ε ! 1/d, we
have

pd+1,X = (d + 1)ε(1− ε)d2−(d−1) = d + 1

2d−1 ε
(
1+O

(
d2ε2

))

p2d,X =
d∑

k=1

(
2d

k

)

εk(1− ε)2d−k p2d−k,X ′

= 2dεp2d−1,X ′ +O
(
d2ε2

)
= d

(

1+ 1

22d−2

(
2d − 2

d − 1

))

ε +O
(
d2ε2

)

≥ d

(

1+ 1

2
√
d − 1

)

ε +O
(
d2ε2

)
,

where X ′ represents a (d − 1)-dimensional uniform random vector over the box
[−1, 1]d−1. We can see that p2d,X � 2d−1 pd+1,X holds for a small ε as Remark 2
suggests.

For the calculation of NX , we can exploit Proposition 33. We first bound the expec-
tation of ÑX . For independent copies X1, X2, . . . of X , let N1 be the minimum integer
n satisfying Xn = ε−1ed . We also define N2 as the minimum integer n satisfying
−(1− ε)−1ed ∈ conv{X1, . . . , Xn}. Then, ÑX = max{N1, N2} holds. Thus we have
N1 ≤ ÑX ≤ N1 + N2. E[N1] = 1/ε clearly holds. For N2, we can evaluate (again
using X ′) as

E[N2] = 1

1− ε
E

[
ÑX ′
]
≤ 2NX ′

1− ε
= 4(d − 1)

1− ε
,

where we have used Proposition 33 for the inequality. Therefore, from Proposition 33,
we obtain

1

2ε
≤ 1

2
E

[
ÑX

]
≤ NX ≤ 2E

[
ÑX

]
≤ 2

ε
+ 8(d − 1)

1− ε
. (21)

123



744 S. Hayakawa et al.

We finally compare the naive general estimate NX ≤ n
pn,X

in Proposition 5 with
this example. From (21), we have

NX p2d,X

2d
≥ p2d,X

4dε
≥ 1

4
+ 1

8
√
d − 1

+O(dε) .

Therefore, the evaluation NX ≤ 2d
p2d,X

is sharp even for small p2d,X up to constant in
the sense that

lim
ε→0

sup
X :d-dimensional

p2d,X<ε

NX p2d,X

2d
≥ 1

4
+ 1

8
√
d − 1

holds.
Also in this example, we have αX = ε for ε ∈ (0, 1/3). Hence, combined with

(21), we have

αX NX ≤ ε

(
2

ε
+ 8(d − 1)

1− ε

)

= 2+ 8(d − 1)ε

1− ε
→ 2 (ε → 0).

Therefore, we have inf X :d-dim αX NX ≤ 2.

We next evaluate the value of E
[∥
∥V−1/2X

∥
∥3
2

]
, where V = (V i j ) is the covariance

matrix of X with respect to the basis {e1, . . . , ed}. Then, for (i, j) ∈ {1, . . . , d − 1}2,
we obtain

V i j = E

[
Y 2Zi Z j

]
= E

[
Y 2
]
E

[
Zi Z j

]
= 1− ε

2
δi j , (δi j : Kronecker’s delta)

V id = E

[

Y Zi
(

− Y

1− ε
+ 1− Y

ε

)]

= E

[
Zi
]
E

[

Y

(

− Y

1− ε
+ 1− Y

ε

)]

= 0

by using the independence of Y , Z1, . . . , Zd−1. For the V dd , we have

V dd = 1

1− ε
+ 1

ε
= 1

ε(1− ε)
.

Therefore, V−1/2X can be explicitly written as

V−1/2X = Y

(√
2

1− ε

d−1∑

i=1

Ziei −
√

ε

1− ε
ed

)

+
√
1− ε

ε
(1− Y )ed .

Thus we have

∥
∥
∥V−1/2X

∥
∥
∥
2

2
≤ Y

2(d − 1) + ε

1− ε
+ (1− Y )

1− ε

ε
,

and so
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E

[∥
∥
∥V−1/2X

∥
∥
∥
3

2

]

≤ (2(d − 1) + ε)3/2√
1− ε

+ (1− ε)3/2√
ε

≤ 4d3/2 + ε−1/2

holds when 0 < ε < 1/2. By using (21), we obtain

NX

E

[∥
∥V−1/2X

∥
∥3
2

]2 ≥ 1

2ε(4d3/2 + ε−1/2)2
= 1

2(4d3/2ε1/2 + 1)2
.

Therefore, by taking ε → 0, we finally obtain the estimate

sup

⎧
⎪⎨

⎪⎩

NX

E

[∥
∥V−1/2X

∥
∥3
2

]2

∣
∣
∣
∣
∣
∣
∣

X is d-dimensional, E[X ] = 0,

V = E
[
X2
]
is nonsingular, E

[∥
∥V−1/2X

∥
∥3
]

< ∞

⎫
⎪⎬

⎪⎭
≥ 1

2

as mentioned in Remark 6.
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