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Abstract
Given asymptotic counts in number theory, a question of Venkatesh asks what is the topo-
logical nature of lower order terms. We consider the arithmetic aspect of the inertia stack
of an algebraic stack over finite fields to partially answer this question. Subsequently, we
acquire new sharp enumerations of quasi-admissible odd-degree hyperelliptic curves over
Fq(t) ordered by discriminant height.

1 Introduction

In [11, Problem 5], Venkatesh asks the following question:

What is the topological meaning of secondary terms
appearing in asymptotic counts in number theory?

As explained therein by Venkatesh, in many interesting number theory problems (e.g.,
counting number fields, arithmetic curves or abelian varieties over a number field) one has
not only amain term in the asymptotic count, but a secondary termormore.We have very little
understanding of these lower order terms. They are not just of theoretical interest: when one
tries to verify the conjectures numerically, one finds that the secondary terms are dominant
in the computational range. For example, the number of cubic number fields of height ≤ B
for certain constants a, b > 0 is

aB + bB5/6 + o(B
5
6 ).

Themoduli functors wewish to enumerate are often represented by algebraic stacks rather
than by schemes (or algebraic spaces) due to the presence of non-trivial automorphisms of
the objects we wish to parameterize. If we consider a finite field analogue, the traditional
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approaches to count the number of rational points on the moduli spaces do not render every
lower order term. This is because the Grothendieck–Lefschetz trace formula (relating point
counts and �-adic cohomologies) for algebraic stacks as in [3] counts the rational points with
weights (given a rational point x , its weight is 1

Aut(x) ). Instead, we must acquire the number
|X (Fq)/ ∼ | of Fq -isomorphism classes of Fq -points of the algebraic stack X , i.e., the non-
weighted point count of X over Fq . In this regard, the coarse moduli space c : X → X is
insufficient as |X(Fq)| �= |X (Fq)/ ∼ |.

This discrepancy naturally raises the following question:

Which arithmetic invariant of a specific geometric object Y is equal to the
non-weighted point count |X (Fq)/ ∼ | of the algebraic stack X over Fq?

We clarify the arithmetic role of the inertia stack I(X ) of an algebraic stack X over Fq

which parameterizes pairs (x, ξ), where x ∈ X and ξ is the conjugacy class of g ∈ Aut(x).

Theorem 1.1 Let X be an algebraic stack over Fq of finite type with quasi-separated finite
type diagonal and let I(X ) be the inertia stack of X . Then,

|X (Fq)/ ∼ | = #q(I(X ))

where #q(I(X )) is the weighted point count of the inertia stack I(X ) over Fq .

Before drawing the connection of this Theorem to the question of lower order terms, let us
instead first consider a simpler problem: find the non-weighted point count |X (Fq)/ ∼ | of a
Deligne–Mumford moduli stackX/Fq of finite type with affine diagonal. In a given counting
problem of number theory, one must be aware of the discriminant involved as the relevant
moduli stackX is often not quasi-compact (so cannot be of finite type), but is rather a disjoint
union of clopen substacks XB of finite type, indexed by ranges of values 0 < ht(�) ≤ B of
height of discriminant up to B. In this regard the question over finite fields is then equivalent
to understanding the lower order terms of the counting function N (B) as a function of B

N (B) := |X̂B(Fq)/ ∼ | = #q(I(X̂B)) =
∑

B′≤B

#q(I(XB′)), X̂B :=
⊔

B′≤B

XB′ .

Therefore, the lower order terms of N (B) are determined by the growth pattern of #q(I(X̂B))

with respect to B. Here, we note that the geometry of I(X ) can be quite complicated.
For example, even if X is irreducible, I(X ) can be disconnected, with many irreducible
components of different dimensions corresponding to different automorphisms. Also, I(X )

may have intersecting irreducible components which are possibly singular. And crucially,
I(X ) could contain lower-dimensional irreducible components (non-existent on either X or
X ) which will contribute to various lower order terms. Coming back to understanding the
algebro-topological meaning of the lower order terms of N (B), we see that the weighted
point count of the inertia stack #q(I(X̂B)) over Fq is naturally equal to the alternating sum
of trace of geometric Frobenius via the Grothendieck-Lefschetz trace formula for algebraic
stacks as in Theorem 2.2 by [3, 28]

N (B) =
2 dim I(X̂B )∑

i=0

(−1)i · tr(Frob∗
q : Hi

ét,c
(I(X̂B)/Fq

; Q�) → Hi
ét,c

(I(X̂B)/Fq
; Q�)

)
.

It is natural to consider the grading determined by degree i of compactly-supported coho-
mologies. Observe that the top degree cohomology (when i = 2 dim I(X )) can be interpreted
as the main leading term. Then the rest of the lower order terms of N (B) corresponds to the
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lower degree, compactly-supported, �-adic cohomologies of I(X̂B) with geometric Frobe-
nius weights. However, the general mechanism that precisely determines which connected
component(s) of I(X̂B) contribute(s) to a given lower order term of a specific order remains
unclearwithout fixing the counting/moduli problem X̂B and studying the arithmetic geometry
of I(X̂B) with regard to #q(I(X̂B)) = |X̂B(Fq)/ ∼ |.

Under the framework of the Weil conjectures, this analysis provides a partial answer to
the nature of lower order terms through the lower-dimensional irreducible components of
I(X ) corresponding to different conjugacy classes of automorphisms as in Definition 2.6.

Due to the inherent complexity of inertia stacks in general, we instead focus on irreducible
algebraic stacks X of finite type (with conditions on the diagonal). Furthermore, we restrict
to the case when X ∼= [U/G] is a quotient stack, which is a testing ground for the strategy
above. Then, the inertia stack I(X ) turns out to be a quotient stack as well, of the form
[R�/G] (see Corollary 2.5). If X is furthermore Deligne–Mumford with affine diagonal,
then I(X ) decomposes into a disjoint union ofX and other components, which are fixed loci
of nontrivial elements of G (see (6) and Definition 2.6 for more details).

In particular, we consider the special case when X is the Hom stack Homn(P
1,P(	λ))

parameterizing the degree n ∈ Z≥1 morphisms f : P
1 → P(	λ) of rational curves on a

weighted projective stack P(	λ) (see Definition 3.1) with f ∗OP(	λ)(1) � OP1(n). In fact,

both P(	λ) and Homn(P
1,P(	λ)) are quotient stacks of a special kind by Definition 3.1 and

Proposition 3.5. These stacks are important because some interesting moduli stacks are of
that form: for example, both authors in [15] showed that L1,12n := Homn(P

1
Fq

,PFq (4, 6))

represents the moduli stack of stable elliptic fibrations over P
1
Fq

with discriminant degree

12n (as (M1,1)Fq
∼= PFq (4, 6) is the moduli stack of stable elliptic curves when 2, 3 � q).

This observation was crucial in loc. cit. for computing the exact non-weighted point count1

|L1,12n(Fq)/ ∼ | over Fq (see also [26]).
To obtain the non-weighted point count of the Hom stack Homn(P

1
Fq

,PFq (
	λ)), it is

equivalent to find the weighted point count of its inertia stack I
(
Homn(P

1
Fq

,PFq (
	λ))
)

by Theorem 1.1. It turns out that the computation of the non-weighted point count of

I
(
Homn(P

1
Fq

,PFq (
	λ))
)
reduces to finding the general formula for for weighted point count

#q
(
Homn(P

1
Fq

,PFq (
	λ))
)
for any 	λ.

Theorem 1.2 Fix the weight 	λ = (λ0, . . . , λN ), and let R be the set of positive integers r
(including r = 1) that divide q − 1. For every r ∈ R, define 	λr to be the subtuple of 	λ
consisting of elements that are divisible by r . Then,

|Homn(P
1,P(	λ))(Fq)/ ∼ | =

∑

r∈R

ϕ(r) · #q(Homn(P
1,P(	λr )))

where ϕ is the Euler ϕ-function.

To compute the weighted point count of any Hom stack of the form Homn(P
1,P(	λ)),

we use the Grothendieck ring of stacks K0(StckFq ) (see Definition 4.1 and the discussion
thereafter, also Proposition 4.5). As a result, we obtain the following formula:

1 The same point count has also been established in the past by [5, Proposition 4.16] via a different method
which works also in characteristic 2 and 3.
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Theorem 1.3 Fix the weight 	λ = (λ0, . . . , λN )with |	λ| :=∑N
i=0 λi . Then the weighted point

count of the Hom stack Homn(P
1,P(	λ)) over Fq is

#q
(
Homn(P

1,P(	λ))
)

=
(

N∑
i=0

qi
)

·
(
q |	λ|n − q |	λ|n−N

)

= q |	λ|n−N · (q2N + · · · + qN+1 − qN−1 − · · · − 1
)

We would like to apply the ideas behind the two Theorems above, as an algorithm for
finding non-weighted point counts, to other moduli stacks, such as the moduli stack of genus
g ≥ 2 fibrations over P

1
Fq
. However, it is difficult to acquire the arithmetic invariants of

I (Hom(P1,Mg)
)
due to the global geometry of the Deligne–Mumford moduli stack Mg

of stable genus g curves formulated in [6]. Moreover, the moduli stack Mg of stable genus
g ≥ 2 curves are not weighted projective stacks in general. Henceforth, the goal is to find a
weighted projective stack that is a substitute for a special substack ofMg , in order to easily
apply the said algorithm discussed above.

Thus, we focus on hyperelliptic genus g ≥ 2 curves,2. Firstly, all smooth genus 2 curves
are hyperelliptic, thus M2 ∼= H2. In general, recall that an odd-degree hyperelliptic curve
has a marked rationalWeierstrass point at∞. In this paper, we will concentrate on the moduli
substack Hg,1 ⊂ Mg,1 of hyperelliptic genus g ≥ 2 curves with 1 marked rational Weier-
strass point (which has the same dimension as Hg) as we focus on counting odd-degree
hyperelliptic genus g ≥ 2 curves. Since Hg,1 is not proper, we consider the proper moduli
stackHg,1 := Hg,1 ⊂ Mg,1 (meaning the reduced closure) of stable odd-degree hyperellip-
tic curves. Similar to Mg , extracting the exact arithmetic invariants of Homn(P

1,Hg,1) is
challenging andHg,1 is not a weighted projective stack in general, so we consider (upto some
conditions on characteristic of Fq ) a different extension of smooth odd-degree hyperelliptic
curves such that the compactified moduli stack is a weighted projective stack, originally
introduced as a special case of [8, Definition 2.5]:

Definition 1.4 Fix an integral reduced K -scheme B, where char(K ) �= 2. A flat family
u : C → B of genus g ≥ 2 curves is quasi-admissible if every geometric fiber has at worst
A2g−1-singularities (i.e., étale locally defined by x2+ ym for some 0 < m ≤ 2g), and factors
through a separable morphism φ : C → H of degree 2 where H is a P

1-bundle over B with
a distinguished section (often called∞) which is a connected component of the branch locus
of u.

The notion of quasi-admissible covers whereby the general member of C is not an admis-
sible cover of P

1 is natural and have been studied in depth by [27, §2.4.] as the closest covers
to the original families of stable curves. For example, if char(K ) > 2g + 1 or 0, then a
quasi-admissible curve over any K -scheme B can be written as an odd-degree hyperelliptic
curve via generalized Weierstrass equation:

y2 = f (x) = x2g+1 + a4x
2g−1 + a6x

2g−2 + a8x
2g−3 + · · · + a4g+2, (1)

where ai ’s are appropriate sections of suitable line bundles on B where not all of them simul-
taneously vanish at anywhere on B. Here, we identify the section at ∞ as the locus missed
by the above affine equation. This identification is a consequence of Proposition 5.9, where

2 However, similar to elliptic curves, due to the presence of the generic non-trivial automorphism of hyperel-
liptic involution the fine moduli space for hyperelliptic curves does not exist and we must work with the fine
moduli stack especially for the existence of the universal family of hyperelliptic curves.
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we show that the Deligne–Mumford moduli stackH2g[2g−1] of quasi-admissible curves of
genus g is isomorphic to the weighted projective stackP( 	λg) for 	λg := (4, 6, 8, . . . , 4 g+2)
over base field K with char(K ) = 0 or > 2g + 1. AssigningH2g[2g − 1] as the target stack
which naturally carries the universal family, we can now formulate the moduli stack Lg of
quasi-admissible hyperelliptic genus g fibrations with a marked Weierstrass section.

Proposition 1.5 Assume char(K ) = 0 or > 2g + 1. Then, the moduli stack Lg of quasi-
admissible odd-degree hyperelliptic genus g fibrations over P

1 with a marked Weierstrass
section is the tame Deligne–Mumford stack Hom>0(P

1,H2g[2g − 1]) parameterizing the
K -morphisms f : P

1 → H2 g[2 g − 1] with deg f ∗OH2 g[2 g−1](1) > 0.

Above proposition shows thatLg is awell-behaving object parametrizing quasi-admissible
curves of genus g over P

1
K . The proposition below signifies the importance of this stack in

regard to understanding the moduli of stable odd-degree hyperelliptic genus g curves over
P
1
K (with smooth generic fiber):

Theorem 1.6 Fix a base field K with char(K ) > 2g + 1. Then there is a canonical fully
faithful functor of groupoids F : Sg(K ) → Lg(K ) from the groupoid Sg(K ) of stable odd-
degree hyperelliptic genus g ≥ 2 curves over P

1
Fq

with a marked Weierstrass point and
generically smooth fibers to Lg(K ).

To effectively count the non-weighted Fq -points of the moduli stack Lg , we need to
impose a notion of bounded height on those Fq -points. Thanks to the works of Lockhart
and Liu, we have a natural definition (see Definition 5.14) of a hyperelliptic discriminant
�g of quasi-admissible curves as in [19, 20]. It is a homogeneous polynomial of degree
4g(2g + 1) on variables ai ’s, where each ai has degree i (ai ’s are as in equation (1) where
B = P

1
Fq

in this case). Moreover, since P(4, 6, 8, . . . , 4g + 2) carries a primitive ample line
bundle OP(4,6,8,...,4g+2)(1), the degree of the discriminant �g of a given quasi-admissible
fibration f : P

1 → H2 g[2 g − 1] ∼= P(4, 6, 8, . . . , 4 g + 2) is equal to 4g(2g + 1)n where
f ∗OP(4,6,8,...,4 g+2)(1) ∼= OP1(n). Therefore, the Hom stack Homn(P

1,P(4, 6, 8, . . . , 4g+
2)) parameterizing such morphisms is the moduli stack Lg,|�g |·n of quasi-admissible genus
g ≥ 2 fibrations of a fixed discriminant degree |�g| · n = 4g(2g + 1)n. Consequently,
we acquire the exact weighted point count I (Lg,|�g |·n

)
over Fq which is equal to the exact

non-weighted point count
∣∣Lg,|�g |·n(Fq)/ ∼∣∣ over Fq by Theorem 1.1.

Theorem 1.7 If char(Fq) > 2g + 1, the number
∣∣Lg,|�g |·n(Fq)/ ∼∣∣ of Fq -isomorphism

classes of quasi-admissible odd-degree hyperelliptic genus g fibrations over P
1
Fq

with a
marked Weierstrass point and discriminant of degree |�g| · n = 4g(2g + 1)n is equal to

∣∣L2,40n(Fq)/ ∼∣∣ = 2 · q28n · p3(q) + δ(4, q − 1) · 2 · q12n · p1(q)
∣∣L3,84n(Fq)/ ∼∣∣ = 2 · q54n · p5(q) + δ(4, q − 1) · 2 · q24n · p2(q)

+ δ(6, q − 1) · 4 · q18n · p1(q)
∣∣L4,144n(Fq)/ ∼∣∣ = 2 · q88n · p7(q) + δ(4, q − 1) · 2 · q40n · p3(q)

+ δ(6, q − 1) · 4 · q36n · p2(q)

+ δ(8, q − 1) · 4 · q24n · p1(q)

where pd(q) := (qd + qd−1 + · · · + q1 − q−1 − q−2 − · · · − q−d
)
and

δ(a, b) :=
{
1 if a divides b,

0 otherwise.
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For genus g ≥ 5, the corresponding exact non-weighted point count
∣∣Lg,|�g |·n(Fq)/ ∼∣∣ of

the moduli stack Lg,|�g |·n over Fq can be similarly worked out.

Given an odd-degree hyperelliptic genus g ≥ 2 curve X over P
1
Fq

with char(Fq) > 2g+1,

define the height of hyperelliptic discriminant �g(X) to be ht(�g(X)) := qdeg�g(X) =
q4g(2g+1)n (see Definition 6.3). Then, we define the counting function Zg,Fq (t)(B) as

Zg,Fq (t)(B) := |{Quasi-admissible odd-degree hyperelliptic curves over

P
1
Fq

with 0 < ht(�g) ≤ B}|.
We acquire the following sharp enumerations via Theorem 1.7 in §6.

Main Theorem 1.8 (Sharp enumeration on Zg,Fq (t)(B)) If char(Fq) > 2g + 1, then the
function Zg,Fq (t)(B), which counts the number of quasi-admissible odd-degree hyperelliptic

genus g ≥ 2 curves X over P
1
Fq

ordered by 0 < ht(�g(X)) = q4 g(2 g+1)n ≤ B, satisfies:

Z2,Fq (t)(B) = a2,2 · B 7
10 + a2,4 · B 3

10 + b2,4,

Z3,Fq (t)(B) = a3,2 · B 9
14 + a3,4 · B 2

7 + a3,6 · B 3
14 + b3,6,

Z4,Fq (t)(B) = a4,2 · B 11
18 + a4,4 · B 5

18 + a4,6 · B 1
4 + a4,8 · B 1

6 + b4,8,

where δ(a, b) is as inTheorem1.7, and for each g,m ∈ N≥2, ag,2(q), ag,2m(q, δ(2m, q−1)),
and bg,2m(q, δ(4, q − 1), δ(6, q − 1), . . . , δ(2m, q − 1)) are explicit rational functions of q
as in Theorem 6.4.

For higher genus g ≥ 5, the sharp enumeration onZg,Fq (t)(B) rendering a closed-form for-
mula with non-constant lower order terms can be similarly worked out through Theorem 6.4.
Over number fields, the work of [4] counts the hyperelliptic curves.

As we have seen by Theorem 1.6, whenever char(Fq) > 2g + 1, counting the number
Zg,Fq (t)(B) of quasi-admissible odd-degree hyperelliptic genus g ≥ 2 curves over P

1
Fq

renders an upper bound for counting the number Z ′
g,Fq (t)(B) of stable odd hyperelliptic

genus g ≥ 2 curves over P
1
Fq

with generically smooth fibers. That is,

Z ′
g,Fq (t)(B) ≤ Zg,Fq (t)(B) . (2)

Using this, we obtain another application regarding the enumeration of abelian varieties
of dimension 2, i.e., abelian surfaces over global function fields. By the local (i.e., infinites-
imal) Torelli theorem in [24, Theorem 2.6 and 2.7] and [21, Theorem 12.1], the Torelli map
τ2 : M2 ↪→ A2, which sends a smooth projective genus 2 curve X defined over a field K to
its principally polarized Jacobian (Jac(X), λθ )/K (where λθ is the theta divisor of Jac(X)),
is an open immersion. Furthermore, it is shown in [25, 4. Theorem] (see also [31, Satz 2]) that
given a principally polarized abelian surface (A, λ) over a field K , after a finite extension of
scalars, is isomorphic to the canonically principally polarized (generalized) Jacobian variety
(Jac(X), λθ ) of a stable genus 2 curve X . Recall that if a curve X has good reduction at a
place v ∈ S then so does its Jacobian Jac(X).

Theorem 1.9 (Estimate onN2,Fq (t)(B)) If char(Fq) �= 2, 3, 5, then the functionN2,Fq (t)(B),
which counts the number of principally polarized abelian surfaces A = Jac(X) where X is a
stable genus 2 curve with a marked Weierstrass point over P

1
Fq

ordered by 0 < ht(�2(X)) =
q40n ≤ B, satisfies:
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N2,Fq (t)(B) ≤ a2,2 · B 7
10 + a2,4 · B 3

10 + b2,4 ,

a2,2(q) = 2 · (q31 + q30 + q29 − q27 − q26 − q25)

(q28 − 1)
, a2,4(q) = δ(4, q − 1) · 2 · (q13 − q11)

(q12 − 1)
,

b2,4(q) = −2 · (q31 + q30 + q29 − q27 − q26 − q25)

(q28 − 1)
− δ(4, q − 1) · 2 · (q13 − q11)

(q12 − 1)
,

where

δ(4, q − 1) :=
{
1 if 4 divides q − 1,

0 otherwise.

Proof Main Theorem 1.8 combined with Theorem 1.6 provides an explicit upper bound
on the number of stable genus 2 curves with a marked Weierstrass point over P

1
Fq

with
char(Fq) �= 2, 3, 5. The upper bound follows from the properties of the Torelli map τ2 as
all principally polarized abelian surfaces are isomorphic to Jacobians of genus 2 curves of
compact type (c.f., [24, Theorem 2.6 and 2.7] and [25, 4. Theorem]). ��

Organization

In Sect. 2,we establish the arithmetic geometric properties of the inertia stackI(X ) of an alge-
braic stackX thereby proving the Theorem 1.1 and describing various decompositions of the
inertia stacks of quotient stacks. In Sect. 3, we formulate the Hom stack Homn(P

1,P(	λ)) of
rational curves on a weighted projective stack P(	λ) and provide a clear decomposition of the
inertia stack I(Homn(P

1,P(	λ))) (i.e., each summand is the Hom stack Homn(P
1,P(	λIg ))).

In Sect. 4, we use the Grothendieck ring of K -stacks K0(StckK ) to acquire the motive{
Homn(P

1,P(	λ))
}
(Proposition 4.5) which provides the class

{
I
(
Homn(P

1
K ,PK (	λ))

)}
.

As a result, we prove Theorems 1.2 and 1.3. Afterwards in Sect. 5, we formulate the moduli
stack Lg,|�g |·n of quasi-admissible hyperelliptic genus g fibrations over P

1 with the hyper-
elliptic discriminant �g via the birational geometry of surfaces. We use birational geometry
to prove Theorem 1.6. Then we compute the related non-weighted point count of the moduli
stack Lg,|�g |·n over Fq there, proving Theorem 1.7. In Sect. 6, we finally establish the sharp
enumerations with precise lower order terms thereby proving Main Theorem 1.8.

Notation and conventions

In the present paper, schemes/stacks are assumed to be defined over a field K , if K is not
mentioned explicitly or if such scheme is obviously not defined over any field (e.g., Spec Z).
Given a point x of a scheme/stack, κ(x) means the field of definition of x (i.e., the residue
field). Given a group scheme G defined over a field K , then Cl(G) is the set of conjugate
classes of closed points g of G (here, κ(g) is not necessarily K ); this in general is a strictly
larger set than the conjugacy class Cl(G(K )) of the group of K -rational points of G.

Here, we use the convention in [23, §8] that the diagonal of an algebraic stack is rep-
resentable (by algebraic spaces). For any T -point x of a stack X , Aut(x) is the group of
automorphisms of x ∈ X (T ) (defined over T ). We denote Autx to be the automorphism
space (as an algebraic space) of x ∈ X (see (4) in §2).

We identify the Weil divisors and the associated divisorial sheaves implicitly (e.g., if X
is a Cohen–Macaulay scheme, then the canonical divisor KX corresponds to the dualizing
sheaf ωX ∼= O(KX ) of X ). Given a finite morphism f : X → Y of reduced equidimensional
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schemes, a branch divisor of f on Y means the pushforward of the ramification divisor of f
on X . Given a morphism f : X → Y of schemes with an isolated subset Z ⊂ Y (i.e., Y as a
topological space is Z � (Y\Z) under the Zariski topology), the preimage of Z in X refers
to the components of X with their image supported on Z .

2 Arithmetic geometry of the inertia stackI(X ) of an algebraic stackX
Given an algebraic stack X defined over a field K , its inertia stack I(X ) is defined as:

1. objects: (x, α) where x ∈ X (T ) for some scheme T (i.e. x : T → X ) and α ∈ Aut(x).
2. morphisms: ψ : (x, α) → (y, β) is given by φ : x → y in Mor(X )(T ) such that φ ◦ α =

β ◦ φ, i.e., β = φ ◦ α ◦ φ−1 .

Also, I(X ) is characterized by the following Cartesian diagram (by [23, Definition 8.1.17]):

I(X ) X

X X × X .

�

�

(3)

Note that if the representable morphism � satisfies a property (such as finite type, quasi-
separated, etc.), then this property is also satisfied for the representablemorphismI(X ) → X .
In particular, I(X ) is a X -algebraic space, i.e., I(X ) ×X T is an algebraic space for any
morphism T → X from a scheme T .

To understand I(X ) → X , we first pay attention to �. Given an object x : T → X of
X from a scheme T , recall that the automorphism space Autx of x is defined to be the fiber
product X ×� x×x T . This means that S-points of Autx are characterized by pairs (s, α) of
maps s : S → T and automorphisms α : s∗x → s∗x in the groupoid X (T ). Since x × x
factors through �, Autx fits into the following Cartesian diagram:

Autx I(X )

T X .
x

(4)

As before, representability of � implies that Autx → T is a morphism of algebraic spaces,
and the group algebraic space structure on Autx lifts, realizing I(X ) as a group algebraic
space over X .

Before proving Theorem 1.1, we recall the definition of a weighted point count of an
algebraic stack X over Fq :

Definition 2.1 The weighted point count of X over Fq is defined as a sum:

#q(X ) :=
∑

x∈X (Fq )/∼

1

|Aut(x)| ,

where X (Fq)/ ∼ is the set of Fq -isomorphism classes of Fq -points of X (i.e., the set of
non-weighted points of X over Fq ), and we take 1

|Aut(x)| to be 0 when |Aut(x)| = ∞.

A priori, the weighted point count can be ∞, but when X is of finite type, then the
stratification of X by schemes as in [3, Proof of Lemma 3.2.2] implies that X (Fq)/ ∼ is a
finite set, so that #q(X ) < ∞.

We recall the Grothendieck–Lefschetz trace formula for Artin stacks by [3, 28].
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Theorem 2.2 (Theorem 1.1. of [28]) LetX be an Artin stack of finite type over Fq . Let Frobq
be the geometric Frobenius on X . Let � be a prime number different from the characteristic
of Fq , and let ι : Q�

∼→ C be an isomorphism of fields. For an integer i , let Hi
ét,c

(X/Fq
; Q�)

be the cohomology with compact support of the constant sheaf Q� on X . Then the infinite
sum regarded as a complex series via ι

∑

i∈Z

(−1)i · tr(Frob∗
q : Hi

c (X/Fq
; Q�) → Hi

c (X/Fq
; Q�)

)
(5)

is absolutely convergent to the weighted point count #q(X ) of X over Fq .

When the stackX is a Deligne–Mumford stack of finite type over Fq with affine diagonal,
then the corresponding compactly-supported, �-adic étale cohomology for prime number �

invertible in Fq is finite dimensional as a Q�-algebra, making the above trace formula to hold
in Q�-coefficients.

We are now ready to prove Theorem 1.1:

Proof of Theorem 1.1 Choose any x ∈ X (Fq)/ ∼. Then the morphism x : Spec(Fq) → X
factors through a representable morphism x : [Spec(Fq)/Autx ] → X . Note that for any Fq -
scheme T and any y, z ∈ X (T ) such that y ∼ xT and z ∼ xT in X (T ), y and z factor
through x and IsomX (y, z) ∼= Isom[Spec(Fq )/Autx ](y

′, z′), where y = x ◦ y′ and z = x ◦ z′.
Thus, [Spec(Fq)/Autx ] is a substack of X via x .

Now consider I(X )x defined by the following Cartesian square:

I(X )x I(X )

[
Spec(Fq)/Autx

] X .
x

This is a substack ofI(X ), and (y, β) ∈ (I(X )x )(Fq) iff y ∼ x inX (Fq). Since x contributes
1 on the unweighted point count |X (Fq)/ ∼ |, it suffices to show that #q(I(X )x ) = 1.

Observe that two points (x, α) and (x, β) in I(X )x are equivalent iff β = φ ◦ α ◦ φ−1

for some φ ∈ Aut(x). This holds in general if we replace x by y : U → X that factors
thru x . Thus, I(X )x ∼= [Autx/Autx ], where the group space action is the conjugation. Since
the diagonal of X is quasi-separated and of finite type, Autx is a quasi-separated group
algebraic space of finite type over Fq by Diagram (4); henceforth, Aut(x) = Autx (Fq) is a
finite group since Autx admits a finite stratification by schemes of finite type by [18, II.6.6].
Moreover, Aut(x, α) is the finite centralizer subgroup CAut(x)(α) ⊂ Aut(x), and the set
(I(X )x )(Fq)/ ∼ is exactly the set Cl(Aut(x)) of orbits of Aut(x) under the conjugation.
Then, the Orbit-Stabilizer Theorem implies that as a set,

Aut(x) ∼=
⊔

α∈Cl(Aut(x))
Aut(x)/CAut(x)(α).

Finally, we can divide the cardinality of both sides by the finite number |Aut(x)|; then right
hand side becomes #q(I(X )x ), proving the statement. ��

The following Lemma shows that certain nice property of X carries over to I(X ) as well.

Lemma 2.3 If X is an algebraic stack of finite type with affine finite type diagonal, then so
is I(X ).
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Proof Since X is of finite type with finite type diagonal, I(X ) must be of finite type as
well by Diagram (3). It remains to show that I(X ) has an affine finite type diagonal. This
is equivalent to showing that for any scheme T and any pairs (x, α), (y, β) ∈ I(X )(T ), the
Isom space IsomI(X )((x, α), (y, β)) is an affine T -scheme and is of finite type relative to T
by the following Cartesian diagram:

IsomI(X )((x, α), (y, β)) T

I(X ) I(X ) × I(X ).

(x,α)×(y,β)

�

To see the structure of IsomI(X )((x, α), (y, β)) → T , observe that IsomX (x, y) → T
and Autx → T are affine morphisms of finite type by the conditions on the diagonal of
X . Then IsomI(X )((x, α), (y, β)) is the preimage under the closed subscheme 1x ∈ Autx ,
which is of finite type, of a morphism between affine T -schemes:

IsomX (x, y) → Autx

φ �→ φ ◦ α ◦ φ−1 ◦ β−1.

Therefore, IsomI(X )((x, α), (y, β)) is an affine T -scheme and is of finite type relative to T
as well. ��

In practice, an algebraic stack X can be characterized by its smooth cover U → X by
an algebraic space U (most of the time, U is assumed to be a scheme) with the space of
equivalence relations R, i.e., R is defined via the following Cartesian diagram

R U

U X
s

t

where s(r) = x and t(r) = y for any directed equivalence relation r : x → y of x, y ∈ U
via r ∈ R. In this case, X ∼= [U/R] (technically, [U/R] is the stackification of the prestack
U/R of groupoids over Sch). Note that the following Cartesian square

R U ×U

X X × X

s×t

�

implies that R is an algebraic space as well, since� : X → X ×X is representable. Given
this presentation, we obtain the following presentation of I(X ):

Proposition 2.4 I(X ) ∼= [R�/(R� ×s R)], where R� is defined by the following Cartesian
square:

R� R

U U ×U .
�

Proof By [30, Tag 06PR], R� (denoted G in loc.cit.) is a smooth cover of I(X ). To see that
R�×I(X ) R� is isomorphic to R� ×t s R, it suffices to compare their T -points for any scheme

123



Enumerating odd-degree hyperelliptic curves... Page 11 of 32     5 

T . Recall by the Cartesian diagram above that any T -point of R� is characterized by a pair
(u, r) ∈ U × R where r : u → u. Then, given any ((u1, r1), (u2, r2)) ∈ (R� ×I(X ) R�)(T ),
there is τ : u1 → u2 in R(T ) such that τ ◦ r1 = r2 ◦ τ . This gives an element ((u1, r1), τ ) ∈
(R� ×t s R)(T ). The converse can be recovered, as u2 is the target of r1 and r2 = τ ◦r1 ◦τ−1.
This establishes the bijection between T -points of R� ×I(X ) R� and R� ×t s R. ��

Sometimes, we will denote R(X ) (resp., R�(X )) instead of R (resp, R�) when we need
to emphasize the algebraic stack X in question.

Recall that a quotient stack, denoted [U/G], corresponds to U a scheme with the action
of a group scheme G. In this case, R = U × G with s being the first projection and t
being the G-action map t : (u, g) �→ g · u. Then R� ⊂ U × G consists of (u, g) with
t(u, g) = g · u = u.

Corollary 2.5 If X ∼= [U/G] is a quotient stack, then I(X ) is also a quotient stack [R�/G],
where R ∼= U × G and G acts on R� ⊂ R by g · (u, h) = (g · u, ghg−1).

Proof By the proof of Proposition 2.4, it suffices to show that R� ×t s R ∼= R� ×G and that
the action map

R� ×t s R → R�

((u, r), τ ) �→ (t(r), τ ◦ r ◦ τ−1),

which coincides with the second projection of R� ×I(X ) R�, coincides with the conjugate
G-action described above. The isomorphism R� ×t s R ∼= R� × G is given by:

R� × G → R� ×t s R

((u, g), h) �→ ((u, g), (g · u = u, h)).

By the description of the action map above, G acts on R� by the conjugation. ��
Now assume that a quotient stack X ∼= [U/G] of finite type has the affine finite type

diagonal. Then, R� is not irreducible in general; in fact, not even connected. Since the image
of the second projection π2 : U ×G ⊃ R� → G can have many irreducible components Gi ,
we have the decomposition R� = ∪π−1

2 (G · Gi ) (where G acts on itself by conjugation).
Note that when π2(R�) is disconnected, so is R�.

Thus, assume furthermore that X is a Deligne–Mumford (DM) stack. Since the diagonal
of X is affine of finite type (by the previous assumption) and formally unramified (by DM),
the diagonal must be finite; this implies that π2(R�) lies in torsion subset of G. Instead of
stratifyingπ2(R�) byG-orbits of its irreducible components as above, Abramovich–Graber–
Vistoli in [1, Definition 3.1.5] stratify I(X ) by looking at orders of automorphism elements:
in our language, this induces a coarser stratification of R�:

R�(X ) =
⊔

r∈Z>0

R�,μr (X )

I(X ) =
⊔

r∈Z>0

Iμr (X ) =
⊔

r∈Z>0

[R�,μr (X )/G]
(6)

where R�,μr (X ) is the preimage under π2 of the subscheme of order r elements of G.
However, R�,μr (X ) can still be disconnectedwithmany components of different dimensions.

Instead, assume that we have chosen a nice presentation of X as a quotient stack [U/G]
such that the support of π2(R�) consists of finitely many closed points of G. In this case,
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π2(R�) is, as a set, a disjoint union of conjugate classes of some closed points in π2(R�).
Let’s use our initial decomposition of R� as above by G-orbits of connected components of
π2(R�). This induces the following stratification:

Definition 2.6 Let X ∼= [U/G] be a Deligne–Mumford quotient stack of finite type with
affine finite type diagonal and let R� be as in Corollary 2.5 such that the support of the second
projection π2(R�) inG consists of finitely many closed points ofG. Then the decomposition
of the inertia stack I(X ) via the conjugacy classes is as follows:

R�(X ) =
⊔

α∈Cl(G)

R�,α(X ),

I(X ) =
⊔

α∈Cl(G)

Iα(X ) =
⊔

α∈Cl(G)

[R�,α(X )/G],

where R�,α(X ) is the preimage under π2 of a conjugate class α ∈ Cl(G), as a finite subset
of G.

Note that R�,α = �g∈αR�,g where R�,g is the preimage under π2 of g ∈ G; it is the
base change by κ(g)/K of the fixed locus in U of g ∈ G (i.e., every point is fixed under the
action of g). Observe that R�,hgh−1 = h · R�,g , which is itself R�,g (then h ∈ CG(g)) or is
disjoint from R�,g by the finiteness of π2(R�). Therefore, Iα(X ) = [R�,g/CG(g)] for any
generator g ∈ α, i.e. α = G · g.

As a summary, the decomposition in Definition 2.6 is finer than (6) when it exists, but
assumes the finiteness of π2(R�) ⊂ G as a subset. We will see that weighted projective
stacks (and Hom stacks) defined in §3 satisfy this condition.

Remark 2.7 When X ∼= [U/G], U , G in Definition 2.6 are defined over a perfect field K ,
the condition, that the support of π2(R�) in G consists of finitely many closed points of G,
is equivalent to the finiteness of the following set:

{g is a geometric point of G | g · u = u for some geometric point u of U } .

When X is Deligne–Mumford and G is an abelian group (such as Gm), this is easy to check.
However, when G is a non-abelian group (examples are GIT constructions of moduli of
smooth/stable curves), this condition puts a restriction on what kind of g can fix an element
of U , even when X is a Deligne–Mumford stack. If g · u = u, then hgh−1 · hu = hu, so
that this set above is a union of conjugacy classes as sets. Whenever the centralizer subgroup
scheme CG(g) has lower dimension than G, the conjugacy class (i.e., the orbit of g under
conjugation) forms a positive dimensional subscheme, contained in the set above. Since the
algebraic closure K is infinite, such positive dimensional subschemes have infinitely many
geometric points by Bertini’s Theorem.

3 Hom stack Homn(P
1,P(��)) of rational curves on a weighted

projective stack

In this section, we formulate the Hom stack Homn(P
1,P(	λ)) over a base field K . First, we

recall the definition of a weighted projective stack P(	λ) with the weight 	λ over K .
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Definition 3.1 Fix a tuple of nondecreasing positive integers 	λ = (λ0, . . . , λN ). The N -
dimensional weighted projective stack P(	λ) = P(λ0, . . . , λN ) with the weight 	λ is defined
as a quotient stack

P(	λ) :=
[
(AN+1

x0,...,xN \0)/Gm

]

where ζ ∈ Gm acts by ζ · (x0, . . . , xN ) = (ζ λ0 x0, . . . , ζ λN xN ). In this case, the degree of
xi ’s are λi ’s respectively. A line bundle OP(	λ)(m) is defined to be the line bundle associated

with the sheaf of degree m homogeneous rational functions without poles on A
N+1
x0,...,xN \0.

Note that P(	λ) is not an (effective) orbifold when gcd(λ0, . . . , λN ) �= 1. In this case, the
finite cyclic group scheme μgcd(λ0,...,λN ) is the generic stabilizer of P(	λ). When we need to
emphasize the field K of definition of P(	λ), we instead use the notation PK (	λ).

Lemma 3.2 The N-dimensional weighted projective stack P(	λ) = P(λ0, . . . , λN ) over any
field K is of finite type with finite type affine diagonal.

Proof Since the smooth schematic cover A
N+1
x0,...,xN \0 of P(	λ) is of finite type over K , P(	λ)

is of finite type over K as well. It remains to prove the properties of the diagonal of P(	λ).
Choose any T -point x = (x0, . . . , xN ) ofU := A

N+1
K \0. The fiber over x of R� → U as in

Corollary 2.5 is a proper subgroup scheme of Gm (over T ), which is always affine of finite
type over T . Henceforth, the diagonal of P(	λ) satisfies the desired properties. ��

However,when K = Fp for someprime p,P(1, p) is notDeligne–Mumford, asAut[0:1] ∼=
μp , which is not formally unramified over Fp . Nevertheless, the following proposition shows
that any P(	λ) behaves well in most characteristics as a tame Deligne–Mumford stack:

Proposition 3.3 The weighted projective stack P(	λ) = P(λ0, . . . , λN ) is a tame Deligne–
Mumford stack over K if char(K ) does not divide λi ∈ N for every i .

Proof For any algebraically closed field extension K of K , any point y ∈ P(	λ)(K ) is
represented by the coordinates (y0, . . . , yN ) ∈ A

N+1
K

with its stabilizer group as the subgroup

of Gm fixing (y0, . . . , yN ). Hence, any stabilizer group of such K -points is Z/uZ where u
divides λi for some i . Since the characteristic of K does not divide the orders ofZ/λiZ for any
i , the stabilizer group of y is K -linearly reductive. Hence, P(	λ) is tame by [2, Theorem 3.2].
Note that the stabilizer groups constitute fibers of the diagonal � : P(	λ) → P(	λ) ×K P(	λ).
Since P(	λ) is of finite type and Z/uZ’s are unramified over K whenever u does not divide
λi for some i , � is unramified as well. Therefore, P(	λ) is also Deligne–Mumford by [23,
Theorem 8.3.3]. ��

The tameness is analogous to flatness for stacks in positive/mixed characteristic as it
is preserved under base change by [2, Corollary 3.4]. Moreover, if a stack X is tame and
Deligne–Mumford, then the formation of the coarse moduli space c : X → X commutes
with base change as well by [2, Corollary 3.3].

Example 3.4 When the characteristic of the field K is not equal to 2 or 3, [14, Proposition 3.6]
shows that one example is givenby theproperDeligne–Mumford stackof stable elliptic curves
(M1,1)K ∼= [(Spec K [a4, a6] − (0, 0))/Gm] = PK (4, 6) by using the short Weierstrass
equation y2 = x3 + a4x + a6x , where ζ · ai = ζ i · ai for ζ ∈ Gm and i = 4, 6. Thus, ai ’s
have degree i’s respectively. Note that this is no longer true if characteristic of K is 2 or 3,
as the Weierstrass equations are more complicated.
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In the proof of Lemma 3.2, we have shown that R� → U is proper, implying that
π2(R�) ⊂ Gm is a proper subgroup scheme, i.e., supported on finitely many closed points.
Thus, we can apply the decomposition in Definition 2.6 to the inertia stack I(P(	λ)):

Proposition 3.5 For any N-dimensional weighted projective stack PK (	λ), Definition 2.6
describes connected components of I(PK (	λ)):

I(PK (	λ)) ∼=
⊔

g∈|(Gm )K |
Pκ(g)(	λIg )

where |(Gm)K | is set of closed points of (Gm)K , Ig is the largest subset of {0, . . . , N } such that
ord(g) divides λi for every i ∈ Ig, and 	λIg is the subtuple of 	λ indexed by Ig ⊂ {0, . . . , N }.
Note that Ig = Ig′ when ord(g) = ord(g′), as any subgroup of Gm is cyclic. Also, when
|Ig| = 0, then P(	λIg ) = ∅ vacuously.

Proof of Proposition 3.5 It suffices to show that R�,g is the subspace

{(x0, . . . , xN , g) ∈ (AN+1\0) × Gm | xi = 0 if ord(g) does not divide λi }
as commutativity of Gm implies that CG(g) = Gm for any g ∈ Gm (here, g as a closed
point of Gm in above coordinates is equivalent to taking a Galois orbit of a representative
of g as a κ(g)-point of Gm). Note that this space is a κ(g)-variety as its projection onto
Gm maps to g ∈ Gm . For any g ∈ |(Gm)K |, x = (x0, . . . , xN ) ∈ A

N+1 is fixed by g iff
gλi xi = xi for all i . Whenever gλi �= 1, xi must be zero. Thus, x lies in the closed subscheme
{xi = 0 : ∀i, gλi �= 1}, which is exactly the desired subspace. ��

We now generalize the Hom stack formulation to P(	λ) as follows:

Proposition 3.6 The Hom stack Homn(P
1,P(	λ)) with weight 	λ = (λ0, . . . , λN ), which

parameterize degree n ∈ N K-morphisms f : P
1 → P(	λ) with f ∗OP(	λ)(1)

∼= OP1(n) over
a base field K with char(K ) not dividing λi ∈ N for every i , is a smooth separated tame

Deligne–Mumford stack of finite type with dimK

(
Homn(P

1,P(	λ))
)

= |	λ|n + N where

|	λ| :=∑N
i=0 λi .

Proof Homn(P
1,P(	λ)) is a smooth Deligne–Mumford stack by [22, Theorem 1.1]. It

is isomorphic to the quotient stack [T /Gm], admitting a smooth schematic cover T ⊂(
N⊕
i=0

H0(OP1(λi · n))

)
\0, parameterizing the set of tuples (u0, . . . , uN ) of sections with

no common zero (here, we interpret H0(OP1(λi · n)) as an affine space over K of appro-
priate dimension, induced by its K -vector space structure). The Gm action on T is given by
ζ · (u0, . . . , uN ) = (ζ λ0u0, . . . , ζ λN uN ). Note that

dim T =
N∑

i=0

h0(OP1(λi · n)) =
N∑

i=0

(λi · n + 1) = |	λ|n + N + 1,

implying that dim Homn(P
1,P(	λ)) = |	λ|n + N since dimGm = 1.

As Gm acts on T properly with positive weights λi ∈ N for every i , the quotient stack
[T /Gm] is separated. It is tame as in [2, Theorem 3.2] since char(K ) does not divide λi for
every i . ��
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Remark 3.7 In the proof of Proposition 3.6, we showed that Homn(P
1,P(	λ)) ∼= [T /Gm]

where T is an open denseGm-invariant subscheme of⊕H0(OP1(λi ·n)) not containing zero,
where for each i , Gm acts on H0(OP1(λi · n)) with weight λi . In fact, this remains true even
when the characteristic assumption fails, as the arguments still follow. Since h0(OP1(λi ·n)) =
nλi + 1, Homn(P

1,P(	λ)) is an open substack of P( 	�) where

	� := (λ0, . . . , λ0︸ ︷︷ ︸
nλ0+1 times

, . . . , λN , . . . , λN︸ ︷︷ ︸
nλN+1 times

).

Furthermore, (u0, . . . , uN ) ∈ ⊕H0(OP1(λi · n)) lies in T iff ui ’s have no common zero on
P
1. By Lemma 3.2, Homn(P

1,P(	λ)) is of finite type with finite type affine diagonal (without
any condition on the base field K ) ��

Similar to P(	λ), the inertia stack I(Homn(P
1,P(	λ))) admits a clear decomposition (i.e.,

each summand is the Hom stack Homn(P
1,P(	λIg ))) that plays a crucial role.

Proposition 3.8 The inertia stack of the Hom stack Homn(P
1,P(	λ)) admits the following

decomposition into connected components as in Definition 2.6, where Ig and 	λIg are the
same as in Proposition 3.5:

I(Homn(P
1
K ,PK (	λ))) ∼=

⊔

g∈|(Gm )K |
Homn(P

1
κ(g),Pκ(g)(	λIg )).

Note that Homn(P
1,P(	λIg )) = ∅whenever |Ig| ≤ 1, as there are no maps from P

1 toP(	λIg )

where the pullback of O(1) to P
1 has degree n.

Proof of Proposition 3.8 By Remark 3.7, Homn(P
1,P(	λ)) is an open substack of P( 	�).

Restricting the decomposition of I(P( 	�)) as in Proposition 3.5 to Homn(P
1,P(	λ)),

I(Homn(P
1,P(	λ)))∼=

⊔

g∈|(Gm )K |

[
T ∩{	u∈⊕H0(OP1(λi · n)) : ui =0 if gλi �= 1}/Gm

]
κ(g)

Since 	u ∈ T iff ui ’s have no common zeroes, each summand is isomorphic to
Homn(P

1,P(	λIg )). ��

4 Motive/point count of Hom and inertia stacks

First, we recall the definition of the Grothendieck ring of algebraic stacks following [7].

Definition 4.1 [7, §1] Fix a field K . Then the Grothendieck ring K0(StckK ) of algebraic
stacks of finite type over K all of whose stabilizer group schemes are affine is an abelian
group generated by isomorphism classes of K -stacks {X } of finite type, modulo relations:

• {X } = {Z} + {X\Z} for Z ⊂ X a closed substack,
• {E} = {X × A

n} for E a vector bundle of rank n on X .

Multiplication on K0(StckK ) is induced by {X }{Y} := {X ×K Y}. There is a distinguished
element L := {A1} ∈ K0(StckK ), called the Lefschetz motive.

Given an algebraic K -stack X of finite type with affine diagonal, the motive of X refers
to {X } ∈ K0(StckK ).
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As the Grothendieck ring K0(StckK ) is the universal object for additive invariants, it is
easy to see that when K = Fq , the assignment {X} �→ #q(X) gives a well-defined ring
homomorphism #q : K0(StckFq ) → Q (c.f. [7, §2]) rendering the weighted point count of
a stack X over Fq . Note that #q(X ) < ∞ when X is of finite type (see the discussion right
below Definition 2.1).

Sincemany algebraic stacks can bewritten locally as a quotient of a scheme by an algebraic
group Gm , the following lemma (a special case of [7, §1]) is very useful:

Lemma 4.2 [15, Lemma 15] For any Gm-torsor X → Y of finite type algebraic stacks, we
have {Y} = {X }{Gm}−1.

The subsequent proofs involves the following variety of its own interest (a slight general-
ization of [10, Definition 1.1]):

Definition 4.3 Fix m ∈ Z>0 and d1, . . . , dm ≥ 0. Define Poly(d1,...,dm )
1 as the set of tuples

( f1, . . . , fm) of monic polynomials in K [z] so that

1. deg fi = di for each i , and
2. f1, . . . , fm have no common roots in K .

Since the set Poly(d1,...,dm )
1 is open inside the affine space (complement of the resul-

tant hypersurface) parameterizing the tuples of monic coprime polynomials of degrees
(d1, . . . , dm), we can endow Poly(d1,...,dm )

1 with the structure of an affine variety defined
over Z.

Generalizing the proof of [10, Theorem 1.2] with the correction from [26, Proposition
3.1.], we find the motive of Poly(d1,...,dm )

1 :

Proposition 4.4 (Motive of the Poly space Poly(d1,··· ,dm )
1 over K ) Fix 0 ≤ d1 ≤ d2 ≤ · · · ≤

dm. Then,

{
Poly(d1,··· ,dm )

1

}
=
{

L
d1+···+dm − L

d1+···+dm−m+1 if d1 �= 0

L
d1+···+dm if d1 = 0.

Proof The proof is analogous to [10, Theorem 1.2 (1)], with the correction from [26, Proposi-
tion 3.1.], and is a direct generalization of [15, Proposition 18]. Here, we recall the differences
to the work in [10, 15, 26].
Step 1: The space of ( f1, . . . , fm) monic polynomials of degree d1, . . . , dm is instead the
quotient A

d1 × · · · × A
dm /(Sd1 × · · · × Sdm ) ∼= A

d1+···+dm . We have the same filtration

of A

∑
di by R(d1,...,dm )

1,k : the space of monic polynomials ( f1, . . . , fm) of degree d1, . . . , dm
respectively forwhich there exists amonic h ∈ K [z]with deg(h) ≥ k andmonic polynomials
gi ∈ K [z] so that fi = gi h for any i . The rest of the arguments follow analogously, keeping
in mind that the group action is via Sd1 × · · · × Sdm .

Step 2: Here, we prove that {R(d1,...,dm )
1,k − R(d1,...,dm )

1,k+1 } = {Poly(d1−k,...,dm−k)
1 × A

k}. Just as
in [10], the base case of k = 0 follows from the definition (in fact, loc.cit. shows that the two
schemes are indeed isomorphic). For k ≥ 1, [26, Proposition 3.1] proves that the map

� : Poly(d1−k,...,dm−k)
1 × A

k → R(d1,...,dm )
1,k \R(d1,...,dm )

1,k+1

induces a piecewise isomorphism (where each piece is a locally closed subset, see [26,
Proposition 3.1] for more details); this immediately implies the claim by the definition of the
Grothendieck Ring.
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Step 3: By combining Step 1 and 2 as in [10], we obtain
{
Poly(d1,...,dm )

1

}
= L

d1+···+dm −
∑

k≥1

{
Poly(d1−k,...,dm−k)

1

}
L
k .

For the induction on the class
{
Poly(d1,...,dm )

1

}
, we use lexicographic induction on the pair

(d1, . . . , dm). For the base case, consider when d1 = 0. Here the monic polynomial of degree
0 is nowhere vanishing, so that any tuple of polynomials of degree di for i > 1 constitutes a
member of Poly(0,d2,...,dm )

1 , so that Poly(0,d2,...,dm )
1

∼= A
d2+···+dm .

Now assume that d1 > 0. Then, we obtain
{
Poly(d1,...,dm )

1

}

= L
d1+···+dm −

∑

k≥1

{
Poly(d1−k,...,dm−k)

1

}
L
k

= L
d1+···+dm −

(
d1−1∑

k=1

(L(d1−k)+···+(dm−k) − L
(d1−k)+···+(dm−k)−m+1)Lk

+L
(d2−d1)+···+(dm−d1)Ld1

)

= L
d1+···+dm −

(
d1−1∑

k=1

(Ld1+···+dm−(m−1)k − L
d1+···+dm−(m−1)(k+1))

+L
d1+···+dm−(m−1)d1

)

= L
d1+···+dm − L

d1+···+dm−m+1.

��

4.1 Motive of Hom stack

Now we are ready to find the class in Grothendieck ring of the Hom stack Homn(P
1,P(	λ)):

Proposition 4.5 Fix theweight 	λ = (λ0, . . . , λN )with |	λ| :=∑N
i=0 λi . Then themotive of the

Hom stack Homn(P
1,P(	λ)) in the Grothendieck ring of K -stacks K0(StckK ) is equivalent

to
{
Homn(P

1,P(	λ))
}

=
(

N∑
i=0

L
i
)

·
(
L

|	λ|n − L
|	λ|n−N

)

= L
|	λ|n−N · (L2N + · · · + L

N+1 − L
N−1 − · · · − 1

)

where L
1 := {A1

K } is the Lefschetz motive.
Proof Let 	λ = (λ0, . . . , λN ) and λi ∈ N for every i with |	λ| := ∑N

i=0 λi . Then the Hom
stack Homn(P

1,P(	λ)) ∼= [T /Gm] is the quotient stack by the proof of Proposition 3.6. By
Lemma 4.2, we have {Homn(P

1,P(	λ))} = (L − 1)−1{T }. Henceforth, it suffices to find the
motive {T }, and not worry about the originalGm-action on T . To do so, we need to reinterpret
T as follows.

Fix a chart A
1 ↪→ P

1 with x �→ [1 : x], and call 0 = [1 : 0] and ∞ = [0 : 1]. It comes
from a homogeneous chart of P

1 by [Y : X ] with x := X/Y away from ∞. Then for any
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u ∈ H0(OP1(d)) with d ≥ 0, u is a homogeneous polynomial of degree d in X and Y . By
substituting in Y = 1, we obtain a representation of u as a polynomial in x with degree at
most d . For instance, deg u < d as a polynomial in x if and only if u(X , Y ) is divisible by
Y (i.e., u vanishes at ∞). From now on, deg u means the degree of u as a polynomial in x .
Conventionally, set deg 0 := −∞.

Therefore, T parameterizes a (N + 1)-tuple ( f0, . . . , fN ) of polynomials in K [x] with
no common roots in K , where deg fi ≤ nλi for each i with equality for some i . We use this
interpretation to construct � : T → A

N+1\0,
�( f0, . . . , fN ) = (a0, . . . , aN ), where ai is the coefficient of the degree nλi term of fi .
Now, we stratify T by taking preimages under � of a stratification of A

N+1\0 by �EJ ,
where J is any proper subset of {0, . . . , N } and

EJ = {(a0, . . . , aN ) | a j = 0 ∀ j ∈ J } ∼= G
N+1−|J |
m .

Observe that EJ has the natural freeG
N+1−|J |
m -action, which lifts to�−1(EJ ) via multiplica-

tion on Gm-scalars on fi for i /∈ J . The action is free on �−1(EJ ) as well, so that �|�−1(EJ )

is a Zariski-locally trivial fibration with base EJ . Each fiber is isomorphic to FJ (n	λ) defined
below:

Definition 4.6 Fix m ∈ N and 	d := (d0, . . . , dN ) ∈ Z
N+1
≥0 . Given J � {0, . . . , N }, FJ ( 	d)

is defined as a variety consisting of tuples ( f0, . . . , fN ) of K -polynomials without common
roots such that

• for any j /∈ J , then f j is monic of degree nλ j , and
• for any j ∈ J , then deg f j < nλ j ( f j is not necessarily monic).

If instead J = {0, . . . , N }, then we define FJ ( 	d) := ∅
This implies that {�−1(EJ )} = {EJ }{FJ (n	λ)} = (L − 1)N+1−|J |{FJ (n	λ)}. Since

{T } =
∑

J�{0,...,N }
{�−1(EJ )} =

∑

J�{0,...,N }
{EJ }{FJ (n	λ)}, (7)

it suffices to find {FJ (n	λ)} as a polynomial of L.

Proposition 4.7 {FJ (n	λ)} = {Poly(nλ0,··· ,nλN )
1 } =

(
L

|	λ|·n − L
|	λ|·n−N

)
, where |	λ| :=∑i λi .

In other words, {FJ (n	λ)} only depends on n	λ.
Proof Set di := nλi > 0 for the notational convention. Up to SN+1-action on {0, . . . , N }
(forgetting that λ0 ≤ · · · ≤ λN ), consider instead F〈m〉( 	d) with 〈m〉 = {0, · · · ,m − 1} and
	d = (d0, · · · , dN ) with | 	d| :=∑N

i=0 di . We now want to show that

{F〈m〉( 	d)} = {Poly(d0,··· ,dN )
1 } =

(
L

| 	d| − L
| 	d|−N

)
. (8)

In order to prove this, we first check that if we set di = 0 for some i ≥ m, then

{F〈m〉( 	d)} = {Poly(d0,··· ,dN )
1 } = L

| 	d|.

To see this, note that i /∈ 〈m〉, so that fi is monic of degree di = 0 for any ( f0, . . . , fN ) ∈
F〈m〉( 	d); so fi = 1. Therefore, the common root condition from Definition 4.6 is vacuous,

so that {F〈m〉( 	d)} = L
| 	d| (as the space of monic polynomials of degree d is isomorphic to A

d

and so is the space of polynomials of degree < d).
We prove equation (8) by lexicographical induction on the ordered pairs (N ,m) such that

N > 0 and 0 ≤ m < N + 1. There are two base cases to consider:
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1. If m = 0, then 〈0〉 = ∅, so that F∅( 	d) ∼= Poly(d0,...,dN )
1 =: Poly 	d

1 by Definition 4.3.
2. If N = 1, then m is 0 or 1. Note that the m = 0 case follows from above. Now assume

m = 1. Then ( f0, f1) ∈ F〈1〉( 	d) if and only if deg f0 < d0 and deg f1 = d1 > 0 with
f1 monic. Observe that f0 cannot be 0, otherwise f1 has no roots while having positive
degree, which is a contradiction. Since f0 can be written as a0g0 for g0 monic of degree
deg f0 and a0 ∈ Gm , F〈1〉( 	d) decomposes into the following locally closed subsets:

F〈1〉( 	d) =
d0−1⊔

l=0

Gm × F∅(l, d1) = Gm ×
d0−1⊔

l=0

Poly(l,d1)
1 .

Therefore,

{F〈1〉( 	d)} = {Gm}
d0−1∑

l=0

{
Poly(l,d1)

1

}
= (L − 1)

(
L
d1 +

d0−1∑

l=1

(Ll+d1 − L
l+d1−1)

)

= (L − 1)(Ld1 + L
d0+d1−1 − L

d1) = (L − 1)Ld0+d1−1

= L
d0+d1 − L

d0+d1−1.

In general, assume that the statement is true for any (N ′,m′)whenever N ′ < N or N ′ = N
and m′ ≤ m. If m + 1 < N + 1, then we want to prove the assertion for (N ,m + 1). We
can take the similar decomposition as the base case (1, 1), except that we vary the degree
of fm , which is the (m + 1)-st term of ( f0, . . . , fN ) ∈ F〈m+1〉( 	d), and fm can be 0. If
fm = 0, then ( f0, . . . , f̂m, . . . , fN ) have no common roots, so that ( f0, . . . , f̂m, . . . , fN ) ∈
F〈m〉(d0, . . . , d̂m, . . . , dN ) (and vice versa). Henceforth, as a set,

F〈m+1〉( 	d) = F〈m〉(d0, . . . , d̂m, . . . , dN )
⊔

(Gm × F〈m〉(d0, . . . , 0, . . . , dN ))

⊔
(

Gm ×
dm−1⊔

�=1

F〈m〉(d0, . . . , �, . . . , dN )

)
.

By induction,
{
F〈m+1〉( 	d)

}
= {F〈m〉(d0, · · · , d̂m, · · · , dN )

}+ (L − 1)
{
F〈m〉(d0, · · · , 0, · · · , dN )

}

+ (L − 1)
dm−1∑

�=0

{
F〈m〉(d0, · · · , �, · · · , dN )

}

= L
| 	d|−dm − L

	d−dm−N+1 + (L − 1) · L
| 	d|−dm

+ (L − 1)
dm−1∑

�=1

(
L

| 	d|−dm+� − L
| 	d|−dm+�−N

)

= L
| 	d|−dm − L

| 	d|−dm−N+1 + L
| 	d|−dm+1 − L

| 	d|−dm

+ (L − 1)L(L| 	d|−dm − L
| 	d|−dm−N )(1 + L + · · · + L

dm−2)

= L
| 	d|−dm+1 − L

| 	d|−dm−N+1 + L(L| 	d|−dm − L
| 	d|−dm−N )(Ldm−1 − 1)

= L
| 	d|−dm+1 − L

| 	d|−dm−N+1 + L
| 	d| − L

| 	d|−dm+1 − L
| 	d|−N + L

| 	d|−dm−N+1

= L
| 	d| − L

| 	d|−N .

��
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Combining (7) and Proposition 4.7 with
∑

J�{0,...,N }
EJ = (AN+1\0), we finally acquire

{Homn(P
1,P(	λ))} = {Gm}−1{T } = (L − 1)−1

∑

J�{0,...,N }
{EJ }{Poly(n	λ)

1 }

= (L − 1)−1(LN+1 − 1){Poly(n	λ)
1 } =

(
N∑

i=0

L
i

)
·
(
L

|	λ|·n − L
|	λ|·n−N

)
.

This finishes the proof of Proposition 4.5. ��

4.2 Point count of Hom stack

Using Proposition 4.5, we immediately obtain the proof of Theorem 1.3, which is about the
weighted point count of the Hom stack Homn(P

1
Fq

,PFq (
	λ)):

Proof of Theorem 1.3 The Theorem follows as #q : K0(StckFq ) → Q is a ring homomor-
phism with #q(L) = q as L = {A1

Fq
}. ��

4.3 Point count of inertia of Hom stack

We compute the class
{
I
(
Homn(P

1
K ,PK (	λ))

)}
, which renders the non-weighted point

count of the moduli stack Lg,|�g |·n over Fq .

Proposition 4.8 Take the same notation as in Proposition 3.5. Then,
{
I
(
Homn(P

1
K ,PK (	λ))

)}
=

∑

g∈|(Gm )K |

{
Homn(P

1
κ(g),Pκ(g)(	λIg ))

}

Proof This directly follows from Proposition 3.8 and the definition of the Grothendieck Ring.
��

Above definition combined with the proof of Theorem 1.3 gives an algorithm for com-
puting |Homn(P

1,P(	λ))(Fq)/ ∼ |, which is exactly the Theorem 1.2:

Proof of Theorem 1.2 Recall that the multiplicative group F
∗
q of a finite field Fq is a cyclic

group of order q − 1. By the primitive root condition, we see that ζr ∈ Gm(Fq) iff r |(q − 1).
Nevertheless, λr is exactly the 	λIζr as in Proposition 3.8. This implies that the substack

Homn(P
1
κ(ζr )

,Pκ(ζr )(
	λr )) contributes Fq -rational points iff r divides q − 1, hence the defi-

nition of the set R. As 	λr is independent of the choice of a primitive r th root of unity and

there are ϕ(r) number of them, simplifying #q
{
I
(
Homn(P

1
K ,PK (	λ))

)}
gives the desired

formula by Theorem 1.1. ��

Remark 4.9 Note that writing a closed-form formula for |Homn(P
1,P(	λ))(Fq)/ ∼ | is

difficult in general, as Euler ϕ-function is used, the sum is over all possible positive factors of
q−1, and the length of 	λr can vary.Nevertheless, it is possible to obtain a closed-form formula
by hand for special cases with mild assumptions on q (Theorem 1.7 is a good example).
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5 Moduli stackLg,|1g|·n of quasi-admissible odd-degree hyperelliptic
genus g fibrations over P

1

Recall that a hyperelliptic curve C is a separable morphism φ : C → P
1 of degree 2. In order

to extend the notion of hyperelliptic curve C into family, we first generalize the notion of
rational curve P

1 into family.

Definition 5.1 A rational fibration with a marked section is given by a flat proper morphism
h : H → P

1 of pure relative dimension 1 with a marked section s′ : P
1 → H such that

1. any geometric fiber h−1(c) is a connected rational curve (so that arithmetic genus is 0),
2. s′(P1) is disjoint from the non-reduced locus of any geometric fiber, and
3. s′(P1) is disjoint from the singular locus of any geometric fiber of H (this implies that

s′(P1) is also disjoint from the singular locus of H ).

If the geometric generic fiber of h is a smooth rational curve, then we call (H , h, s′) a
P
1-fibration.

We will occationally call (H , h, s′) a rational fibration when there is no ambiguity on the
marked section s′. Note that we allow a rational fibration H to be reducible (when generic
fiber is a nodal chain), and the total space of a P

1-fibration can be singular. A certain double
cover of the rational fibration gives us the hyperelliptic genus g fibration with a marked
Weierstrass section.

Definition 5.2 A hyperelliptic genus g fibration with a marked Weierstrass section consists
of a tuple (X , H , h, f , s, s′) of a rational fibration h : H → P

1, a flat proper morphism
f : X → H of degree 2 with X connected and reduced, and sections s : P

1 → X and
s′ : P

1 → H such that

1. each geometric fiber (h ◦ f )−1(c) is a connected 1-dimensional scheme of arithmetic
genus g,

2. s(P1) is contained in the smooth locus of h ◦ f and is away from the non-reduced locus
of any geometric fiber,

3. s′ = f ◦ s and s(P1) is a connected component of the ramification locus of f (i.e., s′(P1)

is a connected component of the branch locus of f ),
4. if p is a node of a geometric fiber h−1(c), then any q ∈ f −1(p) is a node of the fiber

(h ◦ f )−1(c), and
5. if the branch divisor of f contains a node e of a fiber h−1(t) with t a closed geometric

point of P
1, then the branch divisor contains either an irreducible component of h−1(t)

containing e or an irreducible component of the singular locus of H containing e.

The underlying genus g fibration is a tuple (π := h ◦ f , s) with π : X → P
1 a flat proper

morphism with geometric fibers of arithmetic genus g with a markedWeierstrass point given
by s.

Note 5.3 An isomorphism between hyperelliptic genus g fibrations (X1, H1, h1, f1, s1, s′
1)

and (X2, H2, h2, f2, s2, s′
2) is given by a pair of isomorphisms α : X1 → X2 and β : H1 →

H2 such that

1. h2 ◦ β = h1 and f2 ◦ α = β ◦ f1 (P1–isomorphism criteria), and
2. β ◦ s = s′ (compatibility with sections).
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From now on, we only consider non-isotrivial hyperelliptic fibrations, i.e., the underlying
genus g fibrations must be non-isotrivial. Thus, non-isotrivialness will be assumed on every
statement and discussions below.

Recall that a fibration with a section is said to be stable if all of its fibers are stable pointed
curves. This leads to the following definition in the hyperelliptic case:

Definition 5.4 A stable hyperelliptic genus g fibration with a marked Weierstrass section is
a hyperelliptic genus g fibration (X , H , h, f , s, s′)with KX + s(P1) is π-ample. We assume
that X is not isotrivial, i.e., the trivial hyperelliptic fiber bundle over P

1 with no singular
fibers.

Moreover, if the geometric generic fiber is smooth, then (X , H , h, f , s, s′) is called a
stable odd hyperelliptic genus g model over P

1.

Conditions in the above definition imply that (X , s(P1))/P
1 is log canonical. In classical

language, this means that there are no smooth rational curves of self-intersection −1 and −2
in a fiber without meeting s(P1).

Example 5.5 Suppose that (X , H , h, f , s, s′) is a stable odd hyperelliptic genus g model
with a marked Weierstrass section. Then, it is possible that f : X → H in a étale local
neighborhood of p ∈ H is the map A

2
x,y → A

2
x,y/μ2, where μ2 acts on A

2
x,y by (x, y) �→

(−x,−y). In this case, π can be given by A
2
x,y → A

1
z by z = xy. Note that H admits an

A1-singularity at p, f −1(p) is a node of a fiber of π , but X is nonsingular. In general, X
and H admit at worst Al -singularities for some l (because geometric fibers of X are nodal
curves), where Au-singularities of surfaces are étale locally given by w2 + x2 + yu+1 = 0.
This follows from the fact that 1-parameter deformations of nodes create such singularities.
Note that on the neighborhood of such an isolated singular point of H , the branch locus of f
is concentrated at the point if it contains the point, which only appears possibly at singular
points of the fibers of h : H → P

1.

Example 5.6 Suppose that (X , H , h, f , s, s′) is a stable odd hyperelliptic genus gmodel with
a markedWeierstrass section over a field K . The goal is to classify singularities of the branch
divisor of f . By the definition, the branch divisor decomposes into B � s′(P1

K ), which is
contained in the smooth locus of H by the definition. First, consider a geometric point c in
the intersection B ∩ Ht , where t is a geometric point of P

1
K and Ht is the fiber h−1(t). Since

the corresponding double cover Xt (which is a fiber over t of h ◦ f ) only admits nodes as
singularities, the multiplicitym of B ∩ Ht at c is at most 2, as ft : Xt → Yt étale locally near
c is given by the equation

Spec(K [y, z]/(z2 − ym)) → Spec(K [y]), where y is the uniformizer of c ∈ Ht .

Since B does not contain any irreducible component of geometric fibers of h (as any geometric
fiber of h ◦ f is reduced), above implies that the multiplicity of B at any geometric point is at
most 2. Thus, the support of B possibly admits plane double point curve singularities, étale
locally of the form y2 − xm = 0 with m ∈ N≥2, on the geometrically reduced locus of B,
and is smooth elsewhere. Those singularities are in fact Am−1 (curve) singularities.

Examples 5.5 and 5.6 illustrate that a general stable odd hyperelliptic genus g model
often gives a mildly singular P

1-fibration and mildly singular branch divisor on it. On the
other hand, we could instead consider the hyperelliptic fibrations with smooth P

1-bundle
H , but with X and the branch divisor having worse singularities. Then, each fiber of X is
irreducible and is a double cover of P

1 branched over 2g + 2 number of points, where many
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of these points could collide. For instance, if l branch points collide, then the preimage has
Al−1-singularity on the fiber, given étale locally by an equation y2 − xl = 0. Such a curve is
called the quasi-admissible hyperelliptic curve, defined in Definition 1.4. Quasi-admissible
hyperelliptic curves over P

1
K (which are non-isotrivial) are equivalent to the following:

Definition 5.7 A hyperelliptic fibration (X , H , h, f , s, s′) is quasi-admissible if for every
geometric point c ∈ C , f restricted to the fibers of X and H is quasi-admissible. We assume
that X is not isotrivial over P

1, i.e., all geometric fibers are isomorphic.

Remark 5.8 Observe that the Definitions 5.1, 5.2, 5.4, and 5.7 should be interpreted as
rational/hyperelliptic/stable/quasi-admissible curves over P

1
K , instead of a point Spec K

(just as in Definition 1.4). Thus, these definitions can be extended to corresponding curves
over a general scheme T , assuming that any geometric point t of T has the property that the
characteristic of the residue field is 0 or larger than 2g+1 (when instead g = 1, the standard
definition of semistable over T is more delicate whenever the characteristic of geometric
point is 2 or 3, and is not analogous to the definitions proposed in this paper).

In particular, a quasi-admissible hyperelliptic fibration (X , H , h, f , s, s′) has the property
that H is a P

1-bundle, and on each geometric fiber of H , each point of the branch divisor
away from s′ has the multiplicity at most 2g. Moreover, X is the double cover of H branched
along the branch divisor (which coincides with the branch locus).

To parameterize such fibrations, we first consider the moduli stackH2g[2g − 1] of quasi-
admissible hyperelliptic genus g curves characterized by [8, Proposition 4.2(1)]:

Proposition 5.9 If p := char(K ) is 0 or > 2g + 1, then the moduli stack H2g[2g − 1] of
quasi-admissible hyperelliptic genus g curves is a tame Deligne–Mumford stack isomorphic
to P(4, 6, 8, . . . , 4g + 2), where a point (a4, a6, a8, . . . , a4g+2) of P(4, 6, 8, . . . , 4g + 2)
corresponds to thequasi-admissible hyperelliptic genus g curvewith theWeierstrass equation

y2 = x2g+1 + a4x
2g−1 + a6x

2g−2 + a8x
2g−3 + · · · + a4g+2 (9)

Proof Proof of [8, Proposition 4.2(1)] is originally done when p = 0, so it suffices to show
that the proof in loc.cit. extends to the case when p > 2g + 1.

When p = 0, the proof of loc.cit. shows that the quasi-admissible hyperelliptic curves are
characterized by the base P

1 with the branch locus of degree 2g + 1 on A
1 = P

1\∞, of the
form

x2g+1 + a2x
2g + a4x

2g−1 + a6x
2g−2 + a8x

2g−3 + · · · + a4g+2 = 0

where a2 = 0 and not all of the rest of ai ’s vanish. When p > 2g+1, any monic polynomial
of degree 2g + 1 with not all roots being identical can be written in the same way (via same
method) by replacing x by x − a2

(2g+1) (this is allowed as 2g + 1 < p is invertible). Hence,
the moduli stack is indeed isomorphic to P(4, 6, 8, . . . , 4g + 2), with a2i ’s referring to the
standard coordinates of P(4, 6, 8, . . . , 4g + 2) of degree 2i .

Since p > 2g + 1. P(4, 6, 8, . . . , 4g + 2) is tame Deligne–Mumford by Proposition 3.3.
��

We are now ready to prove Proposition 1.5.

Proof of Proposition 1.5 By the definition of the universal family p, any quasi-admissible
hyperelliptic genus g fibration f : Y → P

1 comes from amorphism ϕ f : P
1 → H2 g[2 g−1]

and vice versa. As this correspondence also works in families, the moduli stack Lg is a
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substack of Hom(P1,H2g[2g− 1]). AsH2g[2g− 1] is tame Deligne–Mumford by Proposi-
tion 5.9, theHom stackHom(P1,H2g[2g−1]) is tameDeligne–Mumford by Proposition 3.6.
Thus, Lg is tame Deligne–Mumford as well.

Since any quasi-admissible hyperelliptic genus g fibration f is not isotrivial, ϕ f must be
a non-trivial morphism, i.e., the image of f in H2g[2g − 1]) is 1-dimensional. Since non-
trivialness of a morphism is a clopen condition, the corresponding clopen locus (consisting
of the union of connected components) Hom>0(P

1,H2g[2g − 1]) is indeed isomorphic to
Lg . ��

We now have the following arithmetic invariant of the moduli stack Lg,|�g |·n over Fq .

Corollary 5.10 (Motive and weighted point count of Lg,|�g |·n over Fq ) If char(K ) = 0 or
> 2g + 1, then the motive of Lg,|�g |·n in the Grothendieck ring of K -stacks K0(StckK ) is
equivalent to

[Lg,|�g |·n
] =

⎛

⎝
2g−1∑

i=0

L
i

⎞

⎠ ·
(
L

| 	λg |n − L
| 	λg |n−2g+1

)

= L
2g(2g+3)n · (L2g−1

+ L
2g−2 + · · · + L

2 + L
1 − L

−1 − L
−2 − · · · − L

−2g+2 − L
−2g+1).

If K = Fq with char(Fq) > 2 g + 1, then

#q
(Lg,|�g |·n

) = q2g(2g+3)n · (q2g−1 + q2g−2 + · · · + q2 + q1

−q−1 − q−2 − · · · − q−2g+2 − q−2g+1).

Proof This follows from combining Propositions 1.5 and 5.9 with Theorem 1.3. ��
Explicitly via the birational transformation from one family of curves to another, we

construct a geometric transformation from Sg(K ) the K -points of the moduli functor Sg of
the stable odd hyperelliptic genus g ≥ 2 models (see Definition 5.4) over P

1 with a marked
Weierstrass point to Lg(K ) the K -points of the moduli functor Lg := Hom(P1,H2 g[2 g −
1] ∼= P(4, 6, 8, . . . , 4 g+ 2)). In fact, this transformation is injective as Theorem 1.6 shows.

Proof of Theorem 1.6 The key idea of proof is to construct F by using relative canonical
model, a particular birational transformation from the subject of relative minimal model
program. We prove this in a few steps, beginning with a preliminary step. We construct and
verify properties of F in the other steps:

Step 1. Log canonical singularities and log canonical models. The main reference here is
[9] when char(K ) = 0, and [29, §5–6] when char(K ) �= 0, noting that both references deal
with algebraically closed fields instead.

First, we need the following definition for types of singularities of a pair (S, D) of a
normal K -surface S and an effective R-divisor D on S:

Definition 5.11 ([9, §2.4], [29, Definition 5.1]) A pair (S, D) is log canonical if

1. the log canonical divisor KS + D is R-Cartier,
2. for any proper birational morphism π : W → S and the divisor DW defined by

KW + DW = π∗(KS + D),

then DW ≤ 1, i.e., when writing DW =∑i ai Ei as a sum of distinct irreducible divisors
Ei , ai ≤ 1 for every i .
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Moreover, if a pair (S, D) is defined over a non-algebraically closed field K , then it is called
log canonical if its base-change to K is.

For instance, if S is smooth and D is a reduced simple normal crossing divisor, then (S, D)

is log canonical. Similarly, if w ∈ R ∩ [0, 1], then (S, wD) is log canonical under the same
assumptions. Note that we cannot considerw > 1 under the same assumptions, as the weight
on each irreducible component of D must be at most 1.

For example, consider a stable odd hyperelliptic genus g model (X , H , h, f , s, s′) over
K , consider the pair (HK , wBK + (s′(P1

K ))K ) defined over K where the branch divisor of h
decomposes as B � s′(P1

K ) and w ∈ R ∩ (0, 1/2] is a weight (since B can have components
of multiplicity 2 by Example 5.6, we consider weights at most 1/2). To claim that this pair
is log canonical under additional conditions on w, it suffices to consider neighborhoods of
singular points of HK and support of BK by the above observation.

First, recall that the isolated singularities of HK away from the support of wBK +
(s′(P1

K ))K is of type Al ′ for some l ′ by Example 5.5. Hence, the pair is log canonical at
neighborhoods of such points (in fact, those points are called canonical singular points of
HK ). Also, at a singular point c of the support of BK , HK is smooth and BK is reduced
at c but BK admits Al -singularities by Example 5.6. Therefore, the pair has log canonical
singularities whenever w ≤ 1

2 + 1
l+1 by [16] (summariezd in [12, Introduction], where the

log canonical threshold is the supremum of values w that makes the pair log canonical).
To construct a log canonical model, consider a pair (S, D) as the beginning of this step

with projective K -morphism f : S → C into a K -variety C , and assume that D is Q-divisor
and S is Q-factorial. If (S, D) is log canonical with KS + D not f -antinef, then [15, Pages
1750–1751] uses key birational geometry results from [9, 29] to construct the f -log canonical
model, defined below. In fact, analogous arguments from [15, Proof of Proposition 11] implies
that the same procedure can be applied to f : (S, D) → C over a field K , leading to the
following definition:

Definition 5.12 Suppose that (S, D) is a log canonical pair over a field K where S is a normal
projective Q-factorial surface and D is a Q-divisor. Assume that f : S → C is a projective
morphism into a K -variety C with KS + D not f -antinef. If K is algebraically closed, then
the f -log canonical model is a pair (S′, D′) with a projective morphism f ′ : S′ → C , where

S′ := Proj
⊕

m∈N

f∗OS(m(KS + D))

and D′ := φ∗D where φ : S → S′ is the induced birational morphism.
If K is not algebraically closed, then the f -log canonical model is the Gal(K/K )-fixed

locus of the fK -log canonical model of (SK , DK ).

Step 2. Construction of faithful F : Sg(K ) → Lg(K ). Fix any member of Sg(K ), i.e.,
a stable odd hyperelliptic genus g model (X , H , h, f , s, s′). Denote B � s′(P1

K ) to be the
divisorial part of the branch locus of f : X → H (B is also called a branch divisor in
literature). Notice that h restricted to B has degree 2g+1. By Step 1 above, (H , 1

2g B+s′(C))

is log canonical. Take h-log canonical model of (H , 1
2g B + s′(C))/P

1
K to obtain a birational

P
1
K -morphism ϕ : (H , 1

2 g B + s′(P1
K )) → (H ′, D′) where H ′ is a rational fibration over K

and D′ is a R-divisor of H ′ defined over K (c.f. Definition 5.12). Since the only canonical
rational curve, defined over an algebraically closed field with 1

2g weights on (2g + 1) points
and weight 1 on another point, is a smooth rational curve where the point of weight 1 is
distinct from the other points (of weight 1

2g ), H
′ is a P

1-bundle (given by h′ : H ′ → P
1
K ).
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This description shows that D′ decomposes into 1
2g A

′ +T ′ where A′ is a divisor of H ′ and T ′

consists of weight 1 points on each geometric fiber of H ′/P
1
K . Thus, T

′ comes from a section
t ′ of h′. We will show that H ′ is the P

1-fibration associated to the desired quasi-admissible
hyperelliptic genus g fibration.

To finish the construction of the quasi-admissible fibration, take the Stein factorization of
ϕ◦ f . This gives a finitemorphism f ′ : X ′ → H ′ and amorphismψ : X → X ′ with geometri-
cally connected fibers such thatϕ◦ f = f ′ ◦ψ . Since f is finite of degree 2 andϕ is birational,
f ′ is finite of degree 2 and ψ is birational. Moreover, B ′ := A′ + T ′ is the branch locus of
f ′. By calling t to be the unique lift of t ′ on h′ ◦ f ′, (X ′, H ′, h′, f ′, t, t ′) is the desired quasi-
admissible hyperelliptic fibration. Define F(X , H , h, f , s, s′) := (X ′, H ′, h′, f ′, t, t ′).

To see that F is faithful, suppose that there are two isomorphisms

(αi , βi ) : (X1, H1, h1, f1, s1, s
′
1) → (X2, H2, h2, f2, s2, s

′
2)

between stable odd hyperelliptic genus g models that induce the same isomorphism under
F :

(α′, β ′) : F(X1, H1, h1, f1, s1, s
′
1) → F(X2, H2, h2, f2, s2, s

′
2).

Denote (X ′
j , H

′
j , h

′
j , f ′

j , t j , t
′
j ) = F(X j , Hj , h j , f j , s j , s′

j ) for j = 1, 2. From the con-
struction of F shown above, induced morphisms X j → X ′

j and Hj → H ′
j are birational for

each j . Since they are separated varieties over K , (α1, β1) must be equal to (α2, β2), hence
F is faithful.

Step 3. Fullness of F . Given any isomorphismψ between (X ′
i , H

′
i , h

′
i , f ′

i , ti , t
′
i )’s in Lg(K )

as images of (Xi , Hi , hi , fi , si , s′
i ) ∈ Sg(K ) under F , notice that h′

i ’s and h′
i ◦ f ′

i ’s have
smooth geometric generic fibers for i = 1, 2 and ψ comes in pairs of isomorphisms
ψ1 : X ′

1 → X ′
2 and ψ2 : H ′

1 → H ′
2 (so denote ψ = (ψ1, ψ2)). Then, ψ lifts to a pair of

birational maps ψ = (ψ1, ψ2) between Xi ’s and Hi ’s which induce isomorphisms on geo-
metric generic fibers and irreducible components of any geometric fiber meeting the sections
si ’s or s′

i ’s. To claim that those extend to isomorphisms that induce ψi ’s, it suffices to under-
stand geometric properties of related moduli stacks, as we claim that ψi ’s can be interpreted
as an element of I som spaces of such stacks.

Observe first that for each i = 1, 2, Hi is a Z/2Z-quotient of Xi , and KXi + si (P1
K )

is ample over P
1
K by the defintion. Since the branch divisor of fi is Bi � s′

i (P
1
K ), the log

canonical divisor KHi + 1
2 Bi + s′

i (P
1
K ) is also ample over P

1
K as f ∗

i (KHi + 1
2 Bi + s′

i (P
1
K )) =

KXi + si (P1
K ). Since Xi admits nodes as the only singularities of geometric fibers, Bi on

each fiber has multiplicity at most 2 at any K -points in the support. Therefore, fibers of the
pair (Hi ,

1
2 Bi + s′

i (P
1
K )) are (( 12 , 2g+1), (1, 1))-stable curves of genus 0 in the sense of [13,

§2.1.3], meaning that Hi for each i is a family of such curves over P
1
K . Note that the moduli

stack M0,(( 12 ,2 g+1),(1,1)) of (( 12 , 2 g + 1), (1, 1))-stable curves of genus 0 is a proper (so
separated) Deligne–Mumford stack (it easily follows from loc.cit. and [13, Theorem 2.1]),
and Hi is realized as αi : P

1
K → M0,(( 12 ,2 g+1),(1,1)). Since there is a nonempty open subset

U ⊂ P
1
K such that ψ2 induces an isomorphism between h−1

i (U )’s, ψ2 is an element of
I somM

0,(( 12 ,2g+1),(1,1))
(α1, α2)(U ). Then, separatedness ofM0,(( 12 ,2g+1),(1,1)) implies that ψ2

extends to an isomorphism between Hi ’s.
A similar argument shows that ψ1 also extends to an isomorphism between Xi ’s (as

Hg,1 ⊂ Mg,1 is a separated Deligne–Mumford stack by [17]), so it suffices to show that
ψ i ’s commute with fi ’s and induce ψ . The commutativity of ψ i ’s follows because Hi ’s
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are Z/2Z-quotients of Xi ’s and any isomorphism between families of stable hyperelliptic
curves with marked Weierstrass points commute with Z/2Z-actions. Because the birational
morphisms Xi → X ′

i and Hi → H ′
i for any i contract all but irreducible components of

fibers over P
1
K meeting marked sections, ψ := (ψ1, ψ2) induce ψ as well. Henceforth, ψ

maps to ψ under F , proving that F is full. ��
Remark 5.13 Due to log abundance being a conjecture for higher dimensions, which is a
key ingredient of the existence of log canonical models (c.f. [15, Remark 13]), it is unclear
whetherF in the proof above extends to a functor from the moduli of stable odd hyperelliptic
genus g models to Lg . If it extends, we expect the functor to be still fully faithful, as opposed
to [15, Remark 13] for birational transformations between semistable elliptic surfaces and
stable elliptic curves over P

1. The key obstruction on [15, Remark 13], assuming that the
functor discussed in loc.cit. (which is an equivalence) extends, is that the essential surjectivity
may not hold on the extension, whereas the functor from Theorem 1.6 is not even essentially
surjective to begin with.

5.1 Hyperelliptic discriminant1g of quasi-admissible hyperelliptic genus g fibration

As we consider the algebraic surfaces X as fibrations in genus g curves over P
1, the dis-

criminant �g(X) is the basic invariant of X . For the quasi-admissible hyperelliptic genus g
fibrations overP1, we have thework of [19, 20]which describes the hyperelliptic discriminant
�g(X).

Definition 5.14 [20, Definition 1.6, Proposition 1.10] The hyperelliptic discriminant �g of
the monic odd-degreeWeierstrass equation y2 = x2 g+1 +a4x2 g−1 +a6x2 g−2 +a8x2 g−3 +
· · · + a4 g+2 over a base field K with char(K ) �= 2 is

�g = 24g · Disc(x2g+1 + a4x
2g−1 + a6x

2g−2 + · · · + a4g+2)

which has deg(�g) := |�g| = 4g(2g+1) formally when we associate each variable ai with
degree i .

Note that when g = 1, the discriminant �1 of the short Weierstrass equation y2 =
x3 + a4x + a6 coincides with the usual discriminant −16(4a34 − 27a26) of an elliptic curve.
We can now formulate the moduli stack Lg,|�g |·n of quasi-admissible fibration over P

1 with
a fixed discriminant degree |�g| · n = 4g(2g + 1)n and a marked Weierstrass point:

Proposition 5.15 Assume char(K ) = 0 or > 2g + 1. Then, the moduli stack Lg,|�g |·n of
quasi-admissible hyperelliptic genus g fibrations over P

1
K with a marked Weierstrass point

and a hyperelliptic discriminant of degree |�g| · n = 4 g(2 g + 1)n over a base field K
is the tame Deligne–Mumford Hom stack Homn(P

1,H2g[2g − 1]) parameterizing the K -
morphisms f : P

1 → H2g[2g − 1] with H2g[2g − 1] ∼= P( 	λg) = P(4, 6, 8, . . . , 4g + 2)
such that f ∗OP(	λg)(1) ∼= OP1(n) with n ∈ N.

Proof Since deg f ∗OP(	λg)(1) = n is an open condition, Homn(P
1,H2g[2g − 1]) is an

open substack of Hom(P1,H2g[2g − 1]). Now, it suffices to show that deg f = n (i.e.,
deg f ∗OP( 	λg)(1) = n) if and only if the discriminant degree of the corresponding quasi-
admissible fibration is 4g(2g + 1)n. Note that deg f = n if and only if the quasi-admissible
fibration is given by the Weierstrass equation

y2 = x2g+1 + a4x
2g−1 + a6x

2g−2 + · · · + a4g+2
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Table 1 Table of all tuples (	λg)r of length at least two for low genus g = 2, 3, 4. Entry has—when (	λg)r has
length zero or one

r ϕ(r) g = 2 g = 3 g = 4

1, 2 1 (4, 6, 8, 10) (4, 6, 8, 10, 12, 14) (4, 6, 8, 10, 12, 14, 16, 18)

3 2 – (6, 12) (6, 12, 18)

4 2 (4, 8) (4, 8, 12) (4, 8, 12, 16)

6 2 – (6, 12) (6, 12, 18)

8 4 – – (8, 16)

where ai ’s are sections ofO(in), since ai ’s represent the coordinates of P(4, 6, . . . , 4g+2).
Then by Definition 5.14, it is straightforward to check that �g has the discriminant degree
4g(2g + 1)n. ��

Now we are ready to count the number |Lg,|�g |·n(Fq)/ ∼ | of Fq -isomorphism classes of
quasi-admissible genus g fibrations over P

1
Fq
:

Proof of Theorem 1.7 By Theorem 1.2, for a fixed g, it suffices to understand when a con-
nected component Homn(P

1,P((	λg)r )) (indexed by r ) of I(Lg,|�g |·n) is nonempty for
	λg = (4, 6, . . . , 4 g + 2); this is equivalent to finding r such that the subtuple (	λg)r has
length at least two. Table 1 describes all such possible r ’s for given low values of g = 2, 3, 4:

Summing the weighted point counts of Hom stacks from Proposition 4.5 into Theorem 1.2
gives the desired formula, where we use the division function δ(r , q − 1) (defined in Theo-
rem 1.7) to indicate that we take the contribution of #q(Homn(P

1,P(	λr ))) whenever r ∈ R
(i.e., r divides q − 1).

The same method directly applies when g ≥ 5. ��

6 Counting odd-degree hyperelliptic curves over P
1
Fq

Focusing upon the global function fields Fq(t), we need to fix an affine chart A
1
Fq

⊂ P
1
Fq

and its corresponding ring of functions Fq [t] interpreted as the ring of integers of the field
of fractions Fq(t) of P

1
Fq
. This is necessary since Fq [t] could come from any affine chart of

P
1
Fq
, whereas the ring of integers OK for the number field K is canonically determined. We

denote ∞ ∈ P
1
Fq

to be the unique point not in the chosen affine chart.
Note that for a maximal ideal p in OK , the residue field OK /p is finite. One could think

of p as a point in Spec OK and define the height of a point p.

Definition 6.1 Define the height of a point p to be ht(p) := |OK /p| the cardinality of the
residue field OK /p.

We recall the notion of bad reduction & good reduction:

Definition 6.2 Let C be an odd-degree hyperelliptic genus g curve over K given by the
odd-degree Weierstrass equation

y2 = x2g+1 + a4x
2g−1 + a6x

2g−2 + · · · + a4g+2,
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with a2i+2 ∈ OK for every 1 ≤ i ≤ 2 g. Then C has bad reduction at p if the fiber Cp over
p is a singular curve of degree 2g + 1. The prime p is said to be of good reduction if Cp is a
smooth hyperelliptic genus g curve.

Consider the case when K = Fq(t), and a quasi-admissible model f : X → P
1
Fq

(a
quasi-admissible fibration with smooth geometric generic fiber). For simplicity, assume that
X does not have a singular fiber over ∞ ∈ P

1
Fq
. Note that the primes pi of bad reductions

of f are precisely points of the discriminant divisor �g(X) = ∑
ki · pi , as the fiber Xpi

is singular over �g(X). When K = Fq(t) the global function field, we have �g(X) ∈
H0(P1,O(4g(2g + 1)n)) by the proof of Proposition 5.15.

Definition 6.3 The height ht(�g(X)) of a discriminant divisor �g(X) in P
1
Fq

is qdeg�g(X).
As a convention, if a divisor �g(X) is given as a zero section of any line bundle, then set
ht(�g(X)) = ∞.

In general, the height of a hyperelliptic discriminant �g(X) of any X (without nonsingular
fiber assumption over ∞) is defined as q |�g(X)| where deg(�g(X)) := |�g(X)| is equal
to 4g(2g + 1)n. As the hyperelliptic discriminant divisor �g(X) is an invariant of a quasi-
admissible model f : X → P

1, we count the number of Fq -isomorphism classes of quasi-
admissible hyperelliptic genus g fibrations on the function field Fq(t) by the bounded height
of �g(X)

Zg,Fq (t)(B) := |{Quasi-admissible odd-degree hyperelliptic curves over

P
1
Fq

with 0 < ht(�g) ≤ B}|.
We now prove the sharp enumerations on Zg,Fq (t)(B).

Theorem 6.4 (Sharp enumeration on Zg,Fq (t)(B)) If char(Fq) > 2g + 1, then the function
Zg,Fq (t)(B), which counts the number of quasi-admissible odd-degree hyperelliptic genus

g ≥ 2 curves X over P
1
Fq

ordered by 0 < ht(�g(X)) = q4 g(2 g+1)n ≤ B, satisfies:

Z2,Fq (t)(B) = 2
(q28 · p3(q))

(q28 − 1)
·
(
B

7
10 − 1

)
+ 2δ(4, q − 1)

(q13 − q11)

(q12 − 1)
·
(
B

3
10 − 1

)

Z3,Fq (t)(B) = 2
(q54 · p5(q))

(q54 − 1)
·
(
B

9
14 − 1

)
+ 2δ(4, q − 1)

(q26 + q25 − q23 − q22)

(q24 − 1)
·
(
B

2
7 − 1

)

+ 4δ(6, q − 1)
(q19 − q17)

(q18 − 1)
·
(
B

3
14 − 1

)

Z4,Fq (t)(B) = 2
(q88 · p7(q))

(q88 − 1)
·
(
B

11
18 − 1

)
+ 2δ(4, q − 1)

(q40 · p3(q))

(q40 − 1)
·
(
B

5
18 − 1

)

+ 4δ(6, q − 1)
(q36 · p2(q))

(q36 − 1)
·
(
B

1
4 − 1

)
+ 4δ(8, q − 1)

(q25 − q23)

(q24 − 1)
·
(
B

1
6 − 1

)
,

where pd(q) := (qd + qd−1 + · · · + q1 − q−1 − q−2 − · · · − q−d
)
and

δ(a, b) :=
{
1 if a divides b,

0 otherwise.

Proof of Main Theorem 1.8 for genus 2 Knowing the number of Fq -isomorphism classes of
quasi-admissible genus 2 fibrations of discriminant degree 40n over Fq is

|L2,40n(Fq)/ ∼ | = 2q28n · (q3 + q2 + q1 − q−1 − q−2 − q−3)
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+2δ(4, q − 1)q12n · (q1 − q−1)

by Theorem 1.7, we explicitly compute Z2,Fq (t)(B) as the following,

Z2,Fq (t)(B) =

⌊
logq B
40

⌋

∑

n=1

|L2,40n(Fq)/ ∼ |

=

⌊
logq B
40

⌋

∑

n=1

2 · q28n · p3(q) + 2δ(4, q − 1)q12n · (q1 − q−1)

= 2 · p3(q)

⌊
logq B
40

⌋

∑

n=1

q28n + 2δ(4, q − 1)(q1 − q−1)

⌊
logq B
40

⌋

∑

n=1

q12n

≤ 2 · p3(q)

(
q28 + · · · + q28·(

logq B
40 )

)

+ 2δ(4, q − 1)(q1 − q−1)

(
q12 + · · · + q12·(

logq B
40 )

)

= 2 · p3(q)

(
q28 · (B

7
10 − 1)

(q28 − 1)

)

+ 2δ(4, q − 1)(q1 − q−1)

(
q12 · (B

3
10 − 1)

(q12 − 1)

)

= 2
(q28 · p3(q))

(q28 − 1)
·
(
B

7
10 − 1

)
+ 2δ(4, q − 1)

(q13 − q11)

(q12 − 1)
·
(
B

3
10 − 1

)
.

On the fourth line of the equations above, inequality becomes an equality if and only if
n := logq B

40 ∈ N, i.e., B = q40n with n ∈ N. ��
As there are non-hyperelliptic curves for higher genus g ≥ 3 curves,Zg≥3,Fq (t)(B) counts

the quasi-admissible hyperelliptic genus g ≥ 3 curves over P
1
Fq

only.

Proof of Main Theorem 1.8 for genus 3 Knowing the number of Fq -isomorphism classes of
quasi-admissible hyperelliptic genus 3 fibrations of discriminant degree 84n over Fq is∣∣∣L3,84n(Fq)/

∼
∣∣∣ = 2 · q54n · (q5 + · · · + q1 − q−1 − · · · − q−5) + 2δ(4, q − 1)q24n · (q2 + q1 − q−1 −

q−2) + 4δ(6, q − 1)q18n · (q1 − q−1) by Theorem 1.7, we explicitly compute Z3,Fq (t)(B)

similarly as genus 2 case. ��
Proof of Main Theorem 1.8 for genus 4 Knowing the number of Fq -isomorphism classes of
quasi-admissible hyperelliptic genus 4 fibrations of discriminant degree 144n over Fq is∣∣L4,144n(Fq)/ ∼∣∣ = 2 ·q88n ·(q7+· · ·+q1−q−1−· · ·−q−7)+2δ(4, q−1)q40n ·(q3+q2+
q1−q−1−q−2−q−3)+4δ(6, q−1)q36n ·(q2+q1−q−1−q−2)+4δ(8, q−1)q24n ·(q1−q−1)

by Theorem 1.7, we explicitly compute Z4,Fq (t)(B) similarly. ��
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