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Abstract
We construct extremal metrics on the total space of certain destabilising test con-
figurations for strictly semistable Kähler manifolds. This produces infinitely many
new examples of manifolds admitting extremal Kähler metrics. It also shows for such
metrics a new phenomenon of jumping of the complex structure along fibres.

Mathematics Subject Classification 53C55 · 32Q15 · 32Q20 · 32Q26

1 Introduction

A central theme in complex geometry is the search for canonical metrics, such as
Kähler–Einstein metrics, constant scalar curvature Kähler (cscK) metrics, or, more
generally, extremal Kähler metrics. Such metrics are solutions to highly complicated
non-linear PDEs, and their existence question is very involved. There are examples
of Kähler manifolds that admit extremal metrics in all, some, or none of its Kähler
classes. The main question one would like to answer is if there is an extremal metric
in a given Kähler class on a Kähler manifold.

A central conjecture in the field is the Yau–Tian–Donaldson (YTD) conjecture,
which links this purely differential geometric PDE question to algebraic geometry
[30, 37, 38]. More precisely, this says that the existence of a cscK metric should
be equivalent to a notion of stability called K-(poly)stability. It was extended to the

Cristiano Spotti have contributed equally to this work.

B Lars Martin Sektnan
lars.martin.sektnan@gu.se

Cristiano Spotti
c.spotti@math.au.dk

1 Department of Mathematical Sciences, University of Gothenburg, Gothenburg 412 96, Sweden

2 Institut for Matematik, Aarhus University, Aarhus C 8000, Denmark

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-023-02601-1&domain=pdf
http://orcid.org/0000-0001-6416-5873


L. M. Sektnan, C. Spotti

extremal setting by Székelyhidi [33], where the relevant algebraic notion is relative
K-stability. Despite a huge amount of work over many years, the conjecture remains
open apart from a few cases, such as the Kähler–Einstein case [14–16] and the toric
case [12, 32].

Producing extremal metrics is in general very hard. Even if the YTD conjecture is
proved, this will continue to be the case, as the stability criterion is also difficult to
check with the present technology, at least outside the case of Fano varieties. Onemain
avenue for actually producing extremal metrics has been to directly solve the equation,
working with an ansatz that simplifies the PDE (see e.g. [1, 8, 26]). This requires one
to work under certain symmetry assumptions. Another method is to construct new
extremal metrics from old ones, via perturbative techniques. There have been many
different such constructions, for example on blowups via gluing [2–4, 35], or on the
total spaces of fibrations, working in so-called adiabatic Kähler classes, that make the
base direction large compared to the fibres [7, 18, 20, 23, 25]. The current work falls
into the latter category.

Previous fibration constructions have all been focused on constructing cscK or
extremal metrics when the fibration has cscK fibres. The main reason for this assump-
tion is that an asymptotic expansion of the scalar curvature with respect to metrics of
the form ω + kωB , where ω is a relatively Kähler metric on the total space, and ωB

is pulled back from the base, yields the scalar curvature of the induced metric on the
fibres as the leading order term. Thus, if working with a fixed relatively Kähler metric
initially, one needs a relatively cscK metric in order to have constant scalar curvature
to leading order.

In [23], it was assumed that the total space and the fibres have no automorphisms.
In fact, when there is a discrepancy between the automorphism group of the fibres and
the automorphisms of the total space of the fibration, the existence question becomes
much more subtle. For example, on projective bundles, any hermitian metric on the
bundle gives a fibrewise Fubini-Study metric on the projectivised bundle. Ideas going
back to Hong in [25] say that one should use a Hermite–Einstein metric as a good
choice of relatively cscK metric, in this setting. This issue was considered by many
authors before Dervan and the first named author in [18] introduced an equation for
the fibrewise cscK metric, called the optimal symplectic connection (OSC) equa-
tion, that picks out a canonical choice of fibrewise cscK metric, when the fibres have
automorphism.

In the present work, we relax the condition that every fibre admits a cscK metric,
and consider a special type of fibration where the general fibre does not admit such
metrics. In fact, in our construction, all but one fibre does not admit a cscK met-
ric. We will construct extremal metrics on the total space of this fibration, and this
shows that relative stability of the fibres is not a necessary condition (although relative
semistability is, see [19]).

Suppose that (X , L) is an analytically K-semistable manifold, meaning that there
exists a degeneration of (X , L) to some (X0, L0) which admits a cscK metric. That
is, we have a smooth test configuration

π : X → P
1
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and a Q-line bundle L on X whose restriction to non-zero fibres equals L and whose
central fibre is (X0, L0), where X0 admits a cscK metric in c1(L0). Note that analytic
K-semistability implies K-semistability [31].

We will letLk = L+π∗ (O(k)). Under certain conditions, we produce an extremal
metric on X in c1(Lk) for k � 0.

Theorem 1 Suppose (X , L) is a smooth analytically strictly K-semistable manifold
such that the automorphism group of (X , L) is discrete and the cscK central fibre
(X0,L0) has C∗ as its maximal torus. Then there exists an extremal metric on X in
c1 (L + π∗ (O(k))) for all k � 0.

The key issue to overcome in this situation is that working with a fixed relatively
Kähler metric on the total space will never yield a good approximate solution to the
extremal equation, as the leading order term in the expansion of the scalar curvature
will not be a holomorphy potential. Thus one has to work with a sequence of relatively
Kähler metrics, and constructing a good such sequence is a key step in the argument.

The fact that one should be able to choose such a sequence for a generalK-semistable
manifold follows from a conjecture of Donaldson [31], which states that for a polarised
manifold (Y , H),

inf
ω∈c1(H)

‖S(ω) − Ŝ‖ = sup
Y t.c.

−DF(Y)

‖Y‖ ,

where the supremum on the right hand side goes over all test configurations for (Y , H)

and ‖ · ‖ is a norm on test configurations. In particular, if (Y , H) is strictly semistable,
this supremum should be zero, and so we should be able to find metrics that are arbi-
trarily close to being cscK, even if no actual cscKmetric exists. Under our assumption
that (X , L) is analytically K-semistable, it is automatic that we can produce such a
sequence near the central fibre. Thus the main step for us in this part of the argument
is to extend this relatively Kähler metric defined near the central fibre, to the full test
configuration.

Our assumption on the automorphism group can be thought of as analogous to the
assumptions of Fine mentioned above. While the total space of the test configuration
always has to have non-trivial automorphism group, our assumption says that there is
no discrepancy between the automorphism group of the central fibre and that of the
total space of the test configuration. In particular, we see no issue related to the choice
of cscK metric on the central fibre, and so see nothing like the OSC equation coming
in. It should be possible to relax these conditions, introducing an OSC like equation
in the semistable setting, and, indeed, such a theory is currently under development
by Annamaria Ortu [29]. See Remark 4 for further details.

The result also has some consequences and applications. A natural question to ask
is about what happens from a metric viewpoint to the extremal metrics when k → ∞.
Our construction shows that a phenomenon of jumping of the complex structureswithin
the fibres is occurring. More precisely:

Proposition 2 For any p ∈ X the pointed Gromov–Hausdorff limits based at p is
isometric to X0 × R

2, where X0 is the cscK central fibre.
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Importantly, we can use our result to actually produce many new manifolds admit-
ting extremal metrics. Often in the construction of extremal metrics on fibrations, it
is difficult to actually generate examples. This is because the constructions requires
one to solve a complicated PDE on the base of the fibration, at least when the fibres
are not all isomorphic. In our case, the fibres are not all isomorphic, as there is a jump
of biholomorphism class between the central fibre and the general fibre. However, the
base equation just reduces to the equation for the Fubini-Study metric on P

1, and so
we see no issues coming from the base.

To obtain examples, we therefore have to find explicit families of K-semistable
manifolds degenerating to a cscK manifold. In general, this is a hard question, but
a plethora of examples are known to exist, due to massive recent progress on the
study of K-stability for Fano manifolds, and in particular for threefolds (see [5] and
the references therein). This allows us to produce many new manifolds admitting
extremal metrics, see Theorem 25.

Outline

In Sect. 2 we recall some basic theory on cscK metrics relevant to our problem. In
Sect. 3, we provide a starting point for the construction, by defining a good relatively
Kähler metric on the test configuration. Our main result, Theorem 1, is proved in
Sect. 4. In Sect. 5we provide applications toGromov–Hausdorff limits ofK-semistable
manifolds, and finally in Sect. 6, we provide multiple examples of manifolds to which
our construction applies.

2 Background on cscKmetrics

In this section we recall some general theory regarding the cscK/extremal equation,
its linearisation, and the deformation theory for cscK metrics. A good reference for
most of the material in this section is the book of Székelyhidi [36].

2.1 Constant scalar curvature and extremal metrics

Let X be a compact Kähler manifold of dimension n, with ω the Kähler form of
a Kähler metric on X . Any other Kähler form on X in the same class as ω can be
described via a function, called a Kähler potential. More precisely, if we let ωφ for a
real-valued function φ denote

ωφ = ω + i∂∂̄φ,

then the space of Kähler potentials K parametrising the Kähler forms in the class [ω]
is given by

K = {φ : ωφ > 0}.
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Associated to ωφ is the Ricci form

ρφ = −i∂∂̄ log(ωn
φ).

The corresponding bilinear form is the Ricci curvature of the metric associated to ωφ .
The scalar curvature of this metric is given by contracting with respect to the metric,

S(ωφ) = �ωφ(ρφ).

We say ωφ has constant scalar curvature if there exists a constant c such that

S(ωφ) = c.

The constant c is predetermined by the topology of X and the class [ω].
A generalisation of constant scalar curvature metrics is extremal Kähler metrics,

introduced by Calabi ([8]). These are defined as the critical points of the functional

φ �→
∫
X
S(ωφ)ωn

φ.

Since X is compact, this is equivalent to

D(S(ωφ)) = 0,

where D( f ) = ∂̄(∇1,0
ωφ

( f )). This says that the gradient of the scalar curvature is a
holomorphic vector field. Such functions are referred to as holomorphy potentials.

The holomorphic vector fields that admit a complex-valued holomorphy poten-
tial are precisely given by the holomorphic vector fields with a zero somewhere [28,
Theorem 1]. On the other hand, the space of holomorphic vector fields with a real
holomorphy potential may depend on the metric. However, if the metric is invariant
under the action of a fixed maximal torus, then the space of real holomorphic vector
field does not depend on the metric, and the holomorphy potentials change in a pre-
dictable way. If we let h denote the space of real holomorphy potentials with respect
to ω, then a holomorphy potential for ∇1,0h with respect to ωφ is given by

h + 1

2
〈∇h,∇φ〉.

Thus, if our background metric is torus invariant, this means that to solve the extremal
equation we seek a torus invariant function φ and a holomorphy potential h with
respect to ω such that

S(ωφ) = h + 1

2
〈∇h,∇φ〉.
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2.2 The linearisation of the scalar curvature operator

The linearisation of the scalar curvature operator

φ �→ S(ωφ)

will be key in our construction. This operator is closely linked to the Lichnerowicz
operator, defined as follows.

Let D = Dω : C∞(X) → �(T 1,0X ⊗ �0,1X) be the operator

D( f ) = ∂̄(∇1,0
ω ( f )),

as above. Let D∗
ω : �(T 1,0X ⊗ �0,1X) → C∞(X) be its formal adjoint, with respect

to ω. The Lichnerowicz operator is then the fourth order self-adjoint operator

Lω : C∞(X) → C∞(X)

defined as

Lω = D∗
ωDω.

This operator admits an expansion

Lω( f ) = 	2( f ) + 〈Ric(ω), i∂∂̄( f )〉ω + 1

2
〈∇S(ω),∇ f 〉ω,

which in particular shows that it is elliptic. Note also that the kernel, and hence the
cokernel, of Lω consists precisely of the space h of real holomorphy potentials with
respect to ω.

The linearisation of the scalar curvature map at 0 is then given by

dS0( f ) = −Lω( f ) + 1

2
〈∇ωS(ω),∇ω f 〉ω.

At a non-zero value of φ, the linearisation is given by the same formula, but with
respect to ωφ instead of ω.

2.3 Kuranishi theory

The construction relies on Kuranishi theory [27]. We follow the exposition of
Székelyhidi [34]. Let (M, ω) be a symplectic manifold. We will denote by

J (M, ω) = {J ∈ End(T M) : J 2 = − Id, J ∗ω = ω}
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the space of ω-compatible almost complex structures on M . Here J ∗ω(v,w) =
ω(Jv, Jw). The tangent space to J (M, ω) at J is given by

TJJ (M, ω) = {A ∈ End(T M) : A ◦ J = −J ◦ A, ω(A(·), ·) = −ω(·, A(·))}.

The space J (M, ω) is in itself a complex manifold, with complex structure at J given
by A �→ J ◦ A.

Kuranishi used the above framework to construct a versal deformation space of a
cscK (X0,L0). This is a complex space V together with a holomorphic map

f : V → J (M, ω)

coming from a universal family

Y → V .

If T0 is a maximal compact subgroup T0 of Aut0(X0,L0), then this can be taken to be
equivariant under the T0 action. We assume that (X0,L0) is the central fibre of a test
configuration of some semistable (X , L) and we can then also assume that T0 contains
a maximal torus of the reduced automorphism group of (X , L).

As a smooth manifold, Y is simply V × M , and the action is the product action.
If we have some initial deformation of (X , L) to (X0,L0), this then arises, near the
central fibre, from a map to V . That is, there exists a map


 : 	 → V

such that, if we let J0 be the complex structure of the central fibre, then

f ◦ 
(0) =J0
f ◦ 
(t) ∼=J if t �= 0.

In fact, one obtains a family

(X ,L) → 	

over a disk	 ⊂ C, containing 0, such that the central fibre is (X0,L0), and the complex
structure of the non-zero fibres Xt are Jt = f ◦ 
(t). Without loss of generality, we
may assume the disk 	 has size 2. The fact that such a family exists follows by [34]
and the fact that the central fibre remains (X0,L0) follows by uniqueness of cscK
degenerations [13]. Note that this is a smooth family, so Jt = f ◦ 
(t) → J0 as
t → 0.

Since the Jt are all isomorphic to J and we can trivialise the test configuration
over 	∗, we can pull back the Jt with t �= 0 to the fixed complex structure J , using
diffeomorphisms of the underlying smooth manifold. Pulling back ω via these maps,
we then obtain symplectic forms αt on M such that the Kähler structures (M, Jt , ω)

and (M, J , αt ) are isomorphic. To pass between these two points of view, we use
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Moser’s trick. We have that αt and ω are in the same cohomology class, which in
particular means we can write

αt = ω + i∂∂̄(φt )

for some function φt . We can realise the diffeomorphism ft : M → M such that
Jt = f ∗

t J as the time 1 flow of the vector field νt satisfying Jdφt + ινtαt = 0. The
equation comes from the fact that ω and αt are related by αt = ω + d(Jdφt ), see e.g.
[17, Sect. 7.2].

The upshot is that we have two points of view of the family over 	∗. The first is
simply as the restriction of (X ,L) → 	, equipped with the relatively Kähler form ω,
to 	∗. The other is as X ×	∗ with a relatively Kähler form α such that the restriction
αt to X × {t} is ω + i∂∂̄(φt ). The Kähler structures on the fibres over 	∗ in the two
points of view are therefore:

• (M, Jt , ω), viewed as the fibre over t of (X ,L) → 	;
• (M, J , αt ).

The two are related by

(M, Jt , ω) = (M, f ∗
t J , f ∗

t αt ),

where ft is the time 1 flow of the vector field νt satisfying

Jdφt + ινtαt = 0.

Ultimately, we are interested in constructing extremal metrics on the total space of
the test configuration over P1 we obtain from the above. The family (X ,L) has a local
C

∗ action, and we can equivariantly glue the restriction ofX to 	\ {0} to X ×C, with
the trivial action on the first component. We thus obtain a test configuration

π : (X ,L) → P
1

over P1. Over the disk 	, we have a relatively Kähler metric on X , given simply by
the symplectic form ω, which is cscK on the central fibre. In the next section, we will
modify this metric so that it extends to the whole total space of this test configuration,
not just the preimage of the disk	. Note that the stabiliser of the T0 action on V at the
point corresponding to (X , L) is a torus T inside the automorphism group of (X , L),
and if we assume T0/T ∼= C

∗, which is the C
∗ action on the total space of the test

configuration, then we have a T0 action on the total space X of the test configuration
as well.

3 Extendingmetrics

Here we will explain how to obtain a family of global S1-invariant metrics on X from
a local deformation. We will also study their fibrewise properties, and in particular
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the goal is to show that we can do the extension so that the fibrewise average scalar
curvature goes to 0 in the family.

The point is to take the family we have over the disk 	 and modify it so that it is
independent of t outside a smaller disk. We can then trivially extend it to all of P1.
The initial Kähler metrics we have over t ∈ 	 are O(|t |) away from a cscK metric.
We now want to preserve this globally. That is, for every ε > 0, we want to construct a
fibrewise Kähler metric ωε on the family over P1 such that fibrewise scalar curvature
of ωε is O(ε) is O(ε) on every fibre. The key to this extension procedure will be to
go between the two points of view on the family given in Sect. 2.3.

The test configurations we consider arise in the manner described in Sect. 2.3. We
have a trivialisation of X over C∗ and diffeomorphisms ft : M → M such that
f ∗
t Jt = J and Kähler metrics

αt = f ∗
t ω = ω0 + i∂∂̄φt ,

for some background Kähler form ω0 on X , which as in Sect. 2.3 we may assume is
ω. Let χ(s) : [0,∞) → [0, 1] be a cut-off function which is 1 when s ≤ 1

2 and 0
when s ≥ 3

4 . Define a new 2-form ωε by

ωε = ω + i∂∂̄

(
χ

( |t |
ε

)
φt + (1 − χ

( |t |
ε

)
)φε

)
.

The form ωε is a smooth relative Kähler form over a disk around the origin. The
Kähler condition on the fibres Xt of the test configuration is immediate: on a given
fibre, we are taking a convex combination of Kähler forms (χ is only dependent on the
base variable, and so its derivatives won’t enter into showing positivity in the vertical
direction).

Note that this form is equal to αt when |t |≤ ε
2 and equal to αε when |t |≥ 3ε

4 . With
respect to the original structure, we then have a path It of complex structures such that
It = Jt when |t |≤ ε

2 and equal to Jε when |t |≥ 3ε
4 . Thus we can fill in to a family

over P1 by putting It = Iε when |t |> ε too. Put differently, the relatively Kähler form
ωε defined originally on the test configuration over a disk around the origin in C, can
be extended to a relatively Kähler form, still denoted ωε, on the total space of the
compactified test configuration over P1.

The initial metrics determined by (J , αt ) ∼= (Jt , ω) on the fibres Xt approach a
cscKmetric as t → 0, namely the one determined by (J0, ω), since Jt → J0 as t → 0.
We want to see that this holds for ωε on every fibre as ε → 0. A key estimate in order
to establish this is the following comparison between the Kähler potentials φt for the
αt = ω + i∂∂̄(φt ).

Proposition 3 Under a suitable normalisation for the φt , there exists a positive
constant C > 0 such that for all ε > 0 sufficiently small,

‖φt − φε‖C4,α(X) ≤ Cε

for t ∈ [ ε
2 , ε].
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The key to establishing this result is to relate φt − φε to Jt − Jε, where we already
know such bounds.

Proof From Sect. 2.3, we have that (Jt , ω) = f ∗
t (J , αt ), for a diffeomorphism ft :

M → M produced fromMoser’s trick as the time 1 flowof the vector field νt satisfying

Jdφt + ινtαt = 0. (1)

Now,

Jt − Jε = ( f ∗
t − f ∗

ε )(J ),

so f ∗
t − f ∗

ε is mutually bounded with Jt − Jε. On the other hand, the norm of f ∗
t

(computed with respect to any fixed Kähler metric on X ) can be mutually bounded
with the norm of νt , since ft is the time 1 flow of this vector field. This vector field
can in turn be mutually bounded with the C1 and C2-semi-norms of φt , since νt is
determined by Eq. (1). In particular, the higher semi-norms of φt − φε are mutually
bounded the norms of Jt − Jε. Since the latter goes to zero as both complex structures
approach J0 (smoothly, so we get bounds in any Ck,α-norm we would like), we get
the same behaviour for the Ck+1,α and Ck+2,α-semi-norms of φt − φε.

The last remaining point is to make sure we can bound the full norms, not just the
semi-norms that do not involve the C0-norm of φt −φε. Here we use that we have not
normalised the φt ’s yet, i.e. we are allowed to replace φt by φt + ct for a constant ct
depending on t . A-posteriori we see that we should normalise the φt so that the φt are
of average 0 with respect to ω, as this allows us to bound the C0-norm uniformly by
the C1 and C2-semi-norms. Thus we can bound the full Ck+2,α-norm of φt − φε in
terms of the Ck,α-norm of Jt − Jε. Picking k = 2, we get the required statement. ��

The next goalwill be to understand the expansion of the scalar curvature onX , when
choosing a certain relationship between the rate of the parameter ε of the approximate
solution and the parameter k for the polarisation. To understand the dependence on
the rate ε, we use techniques reminiscent of the blowup situation, since our method of
gluing metrics over an annular region is the construction being utilised there. Specif-
ically, we are following the line of proof given in [35, Proposition 20, Lemma 21,
Lemma 24].

In the vertical directions, we have the following estimate for the initial metric ωε.

Lemma 4 [27, 34] Let Ŝ be the average scalar curvature of the fibres of X → P
1.

Then

S(αε) − Ŝ = O(ε).

In fact, from [34, Proof of Proposition 8], this can be improved so that S(αε)− Ŝ =
O(ε2), and, moreover, the O(ε2)-term is the restriction to the fibre of a holomorphy
potential of the S1-action on the test configuration X → P

1. However, we will not
need this for our construction.
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We next want to show that the perturbed Kähler forms ωε satisfy a similar bound.
From the mean value theorem, the scalar curvature of ωε can be controlled using the
linearisation. More precisely, we have that

ωε|Xt= αε + i∂∂̄

(
χ

( |t |
ε

)
(φt − φε)

)
.

Therefore, by the mean value theorem,

S(ωε) = S(αε) + Lr

(
χ

( |t |
ε

)
(φt − φε)

)
,

where Lr is the linearisation of the scalar curvature operator at the metric

αε + r · i∂∂̄

(
χ

( |t |
ε

)
(φt − φε)

)
,

for some r ∈ [0, 1].
Our goal is to show that S(ωε) is sufficiently close to S(αε). The above shows that

it will be key to understand the linearised operator of a perturbation of ωε, which we
now do. We emphasise that the below is a fibrewise statement, as the αε are not even
Kähler, only relatively Kähler.

Proposition 5 There exists c,C > 0 such that if ‖φ‖C4,α ≤ c, then

‖Lαε+i∂∂̄φ( f ) − Lαε ( f )‖C0,α ≤ C‖φ‖C4,α‖ f ‖C4,α

on each fibre of X → P
1.

Proof This is a direct consequence of the fact that, with respect to some/any
background metric ω0, we have the uniform lower bound

αε ≥ Cω0.

This follows because each member of the corresponding family of metrics αε(J (·), ·)
are isometric to ω(Jε(·), ·), and this is a smooth family of metrics, for a compact set
of parameter values (themetric also makes sense when ε = 0). The result then follows
by expanding the metric quantities involved in the expression of Lαε , using standard
techniques e.g. as in [36, Lemma 8.13]. ��

The above proposition reduces the bound on S(ωε) to understanding the mapping
properties of Lαε . For now all we need is that Lαε is an operator that is uniformly
bounded in ε on the fibres. However, we prove a more refined result that will be need
later. Let h be the space of holomorphy potentials on the cscK central fibre X0, with
respect to ω. Then h = 〈h, 1〉, for some average zero holomorphy potential h on X0.
We then have the following.
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Proposition 6 There is an expansion

Lαε = Lω + O(ε),

where Lω is the linearisation of the scalar curvature of ω at J0. In particular, Lαε is
surjective modulo h to leading order.

Proof The scalar curvature of αε is constant to order ε, so it suffices to establish the
above for the Lichnerowicz operator.

We have that the Lichnerowicz operator is D∗
εDε, where

Dε = ∂̄Jε (∇1,0
αε

).

We therefore have that

Dε − D0 = O(ε).

This uses that the metrics gε produced from the αε satisfy

gε − g0 = O(ε)

and hence the same holds for the inverses, and the gradient. Again using this prop-
erty, it follows that we have the same property for the adjoint, and hence for the full
Lichnerowicz operator. ��

With this in place, we finally have the estimate on the fibrewise scalar curvature
that we need.

Proposition 7 Let Ŝ be the average scalar curvature of the fibres of X → P
1. Then

S(ωε|Xt ) − Ŝ = O(ε).

for any t ∈ P
1.

Proof From Proposition 3, we know that φε − φt is O(ε). Since we are interested in
the scalar curvature on the fibre only, the term χ(

|t |
ε
) is a constant. We can then apply

Proposition 5 to estimate S(ωε|Xt ). As remarked above, the scalar curvature is given
by

S(ωε) = S(αε) + Lr

(
χ

( |t |
ε

)
(φt − φε)

)
,

where Lr is the linearisation of the scalar curvature operator at the metric

αε + r · i∂∂̄

(
χ

( |t |
ε

)
(φt − φε)

)
,
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for some r ∈ [0, 1]. From Proposition 5, we therefore get that

‖S(ωε|Xt ) − Ŝ‖
≤

∥∥∥∥S(αε) − Ŝ‖ + ‖Lr

(
χ

( |t |
ε

)
(φt − φε)

)∥∥∥∥
≤

∥∥∥S(αε) − Ŝ
∥∥∥ + ‖L0(

χ

( |t |
ε

)
(φt − φε)

)∥∥∥∥ +
∥∥∥∥(Lr − L0)

(
χ

( |t |
ε

)
(φt − φε)

)∥∥∥∥
≤ ‖S(αε) − Ŝ‖ +

∥∥∥∥L0

(
χ

( |t |
ε

)
(φt − φε)

)∥∥∥∥ + C‖φt − φε‖2.

Since L0 = Lαε is a bounded operator independently of ε, the above is an O(ε) term,
as required. ��

4 Constructing the extremal metrics

In this section, we prove the main result of the paper, Theorem 18. We first relate the
parameter ε for the relative Kähler metrics on the test configurationX to the parameter
k describing the polarisation. We then produce Kähler metrics on X , that moreover
are approximately extremal. We continue to improve these approximate solutions,
before finally perturbing to a genuine solution, when the approximate solutions are
sufficiently good.

4.1 Kähler metrics on the test configuration

We now relate the parameters k and ε. We define a closed 2-form
�ε = ωε + λε−δπ∗ωFS

on X , where δ, λ > 0 are constant parameters and ωFS is the Fubini–Study metric on

P
1. So the relationship between the two parameters is ε = (λ/k)

1
δ . A priori, this is

just a closed 2-form, but we will prove that when ε is sufficiently small, it is Kähler,
provided δ is sufficiently large so that it compensates for the horizontal contribution
of ωε.

Now,

ωε = χ

( |t |
ε

)
αt + (1 − χ

( |t |
ε

)
)αε

+ i∂χ

( |t |
ε

)
∧ ∂̄(φt − φε)

+ i∂(φε − φt ) ∧ ∂̄χ

( |t |
ε

)

+ (φt − φε)i∂∂̄χ

( |t |
ε

)
.
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The first line is a convex combination of relative Kähler forms, hence it is relatively
Kähler. Since Jε − J0 = O(ε), we therefore have that the horizontal contribution is
O(ε). We want to understand the contribution from the remaining terms, first to able
to construct Kähler metrics, and then to understand the scalar curvature.

We first consider the term

∂χ

( |t |
ε

)
= χ ′

( |t |
ε

)
· ∂(|t |)/ε.

Note that this is zero if |t | < ε
2 , since χ ′ vanishes then. Note also that χ is uniformly

bounded in C1, as it is a fixed function. Finally,

∂(|t |2) = t̄∂(t),

and so

∂(|t |) = 1

2|t |∂(|t |2) = t̄

2|t |∂(t),

which is O(1) for t ∈ ( ε
2 , ε). The term ∂χ

( |t |
ε

)
is therefore an O(ε−1)-term. Similarly

for ∂̄χ(
|t |
ε
).

Finally, we consider i∂∂̄χ
( |t |

ε

)
. Continuing from the calculations above, we have

i∂∂̄χ

( |t |
ε

)
= − i ∂̄

(
χ ′

( |t |
ε

)
· t̄

2ε|t |∂(t)

)

= − iχ ′′
( |t |

ε

)
· ∂̄(|t |)

ε
∧ t̄

2ε|t |∂(t) − iχ ′
( |t |

ε

)
∂̄

(
t̄

2ε|t |∂(t)

)

= 1

4ε2
χ ′′

( |t |
ε

)
i∂(t) ∧ ∂̄(t̄) + 1

4ε|t |χ
′
( |t |

ε

)
i∂(t) ∧ ∂̄(t̄)

=1

8

(
1

ε2
χ ′′

( |t |
ε

)
+ 1

ε|t |χ
′
( |t |

ε

))
idt ∧ d(t̄),

which is an O(ε−2)-term.
The above calculations allow us to prove the following.

Lemma 8 For any δ ≥ 1, there exists ε0, λ > 0 such that for all ε ∈ (0, ε0), �ε is
Kähler on X . When δ > 1, the same conclusion holds for any λ, with ε0 depending
on λ.

Proof The ωε are relatively Kähler, so all that needs to be checked is the horizontal
component with respect to the fibration structure

π : X → P
1.
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It follows from Proposition 3 that the horizontal component of ωε is O(ε−1). More
precisely, it is bounded below by a constant multiple of −ε−1π∗ωFS when ε is suffi-
ciently small. Thus if δ = 1, we can pick λ > 0 sufficiently large to make �ε Kähler.
If δ > 1, we can do so for any λ. ��

4.2 Expansion of the scalar curvature

We now want to understand the scalar curvature of the above metric.

Proposition 9 Let Ŝ denote the average scalar curvature of the fibres of X → P
1.

Suppose δ > 1. Then

S(�ε) − Ŝ = O(ετ )

for some τ > 0, which can be taken to be 1 if δ ≥ 2. Moreover, the horizontal
component of S(ωε) satisfies

(S(�ε) − Ŝ)H = εδ

λ
S(ωFS) + O(εδ+τ ′

),

for some τ ′ > 0, which again can be taken to be 1 if δ ≥ 2.

Proof We follow the strategy of [23, Lemma 3.3] to compute the expansion of the
scalar curvature. We begin with the Ricci curvature. The Ricci curvature of �ε is
the sum of the curvatures of the induced metrics on �nV and H, where V = ker π∗
is the vertical subbundle of the tangent bundle and H ∼= π∗TP1 is its orthogonal
complement with respect to �ε, due to the short exact sequence

0 → V → TX → π∗TP1 → 0.

We will denote by ρε the curvature on �nV . Note that the vertical component ρε,V
of this is nothing but the Ricci curvature of the restriction of ωε to the fibres, so that
�ωε(ρε) = S(ωε) is the fibrewise scalar curvature. We will deal with its horizontal
component ρε,H at the end of the proof.

For the curvature FH on H, we also have another metric, namely π∗ωFS . The
curvature of this metric is simply the pullback of the curvature on B, and the two
curvatures differ by an exact term. We therefore have that the curvatures compare as

i FH − Ric(ωFS) = i∂∂̄ log

(
ωε + λε−δωFS

ωFS

)

= i∂∂̄ log

(
1 + εδ

λ
�ωFS (ωε)

)

= εδ

λ
i∂∂̄�ωFS (ωε) + O(ε2(δ−1)).
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Note that εδ

λ
i∂∂̄�ωFS (ωε) is an O(εδ−1) term, since ωε is O(ε−1). This is why the

error term is O(ε2(δ−1)) above.
The upshot is that we have the expansion

Ric(�ε) = ρε + Ric(ωFS) + εδ

λ
i∂∂̄�ωFS (ωε) + O(ε2(δ−1)).

Next, we contract to obtain the scalar curvature. We have

��ε = �V + εδ

λ
�ωFS + O(εδ+1),

since the restriction of the metric to V is the restriction of ωε, and the metric on H
is λε−δωFS to leading order, the subleading order terms coming from the horizontal
component of ωε. Therefore,

S(�ε) =S(ωε) + εδ�ωFS (ρε,H)

+ εδ

λ
S(ωFS) + εδ

λ
	V (�ωFS (ωε)) + O(εmin{3δ−2,δ+1}).

Note that εδ

λ
	V (�ωFS (ωε)) is a vertical O(εδ−1) term. Since δ > 1, this is therefore

a decaying vertical term, and is ε to an integer power if δ > 1 is an integer.
The term ρε,H is the horizontal component of the curvature of �nV induced from

ωε. We claim that �ωFS (ρε,H) decays with ε, which gives the required expansion
of the scalar curvature. Now, ρε is determined by restricting ωε to a fibre Xt and
then taking the Ricci curvature. When |t |> ε, ωε restricted to Xt is simply αε, which
is constant in the horizontal direction, and so the horizontal contribution is entirely
contained in the ball of radius ε in the base direction. In this region, ωε is a convex
combination of αt and αε, both of which are O(ε) perturbations of ω. Thus, to leading
order in ε, ρε is simply the Ricci curvature of the central fibre, and so does not vary
in the horizontal direction. Therefore, the term �ωFS (ρε,H) decays with ε, and so the
required expansion holds. ��
Remark 1 The above explains why we picked the Fubini–Study metric on P

1. This
means that the leading order term in the horizontal direction is a constant.

4.3 Improving the approximate solution

Proposition 9 shows that �ε is approximately extremal. We now want to show that
we can perturb to a genuine solution of the extremal equation, for sufficiently small
ε. The next step is to improve the approximate solution �ε.

We first describe the holomorphy potential for the S1-action on X with respect to
our metrics. Recall that χ was the cut-off function used in the definition of the relative
Kähler ωε.
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Lemma 10 Let hε be the average 0 holomorphy potential of the S1-action on X with
respect to �ε. Then, after potentially changing the potentials φt by a function pulled
back from C, we have that

hε = χ(|t |/ε) · h0 + λε−δhFS,

where

• h0 is the average 0 potential with respect to the central fibre, thought of as a
vertical function on X ;

• hFS is the average 0 potential of the corresponding action on P
1 with respect to

ωFS, pulled back to X .

Proof Note that �ε is an S1-invariant Kähler form on X , and as such we know the
existence of hε. Note that because of the linearity of the holomorphy potential of a
fixed vector field with respect to the symplectic form, we therefore have the existence
of a potential with respect to the relative Kähler form ωε. Note that the notion of a
hamiltonian makes sense even if a 2-form is not symplectic – it is just not guaranteed
to exist. Now, if ηε denotes this potential with respect to ωε, it suffices to show that
ηε = χh0, again by the linearity of the potential (λε−δhFS is the potential with respect
to λε−δπ∗ωFS).

We now prove that ηε = χ(|t |/ε) · h0. Since h0 is a holomorphy potential for the
generator ν of the S1-action on the central fibre, we have that

dX0(h0) = ινω.

Recall the description of ωε. We have aC∗ equivariant biholomorphism F : (M, J )×
C

∗ → X|π−1C∗ , giving diffeomorphisms ft = F|Xt : M → M such that f ∗
t Jt = J

and Kähler metrics αt = f ∗
t ω = ω + i∂∂̄φt , for some background Kähler form ω on

X . The cut-off function χ(s) : [0,∞) → [0, 1] is 1 when s ≤ 1
2 and 0 when s ≥ 3

4 ,
and ωε is defined by

ωε = ω + i∂∂̄

(
χ

( |t |
ε

)
φt + (1 − χ

( |t |
ε

)
)φε

)
.

Note that this is exactly equal to αε for all fibres t with |t |≥ 3
4ε. It follows that

(ινωε)π−1(P1\B 3
4 ε

) = 0 and so we have (hε)|π−1(P1\B 3
4 ε

) = 0. In other words, ηε is

supported on the preimage of the ball of radius 3
4ε.

Using the expansion

ωε =χ

( |t |
ε

)
αt + (1 − χ

( |t |
ε

)
)αε

+ i∂χ

( |t |
ε

)
∧ ∂̄(φt − φε)

+ i∂(φε − φt ) ∧ ∂̄χ

( |t |
ε

)
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+ (φt − φε)i∂∂̄χ

( |t |
ε

)
.

we have that if we pull back to X , then

(F−1)∗(ωε) =χ

( |t |
ε

)
ω + (1 − χ

( |t |
ε

)
)τ

+ i(F−1)∗∂χ

( |t |
ε

)
∧ ∂̄(φt − φε)

+ i(F−1)∗∂(φε − φt ) ∧ ∂̄χ

( |t |
ε

)

+ (F−1)∗(φt − φε)i∂∂̄χ

( |t |
ε

)
.

Here τ is the pullback of αε, extended to a form on the whole of (M, J ) × C
∗. It is

not moving in the horizontal directions, so ιντ = 0. Similarly, ιν i∂∂̄χ
( |t |

ε

)
= 0.

Next, we have that

ιν(F
−1)∗i∂∂̄(χφt ) = − i∂χ ∧ ιν(F

−1)∗∂̄φt + i ∂̄χ ∧ ιν(F
−1)∗∂φt

+ χιν(F
−1)∗i∂∂̄(φt )

= − i∂χ ∧ ιν(F
−1)∗∂̄φt + i ∂̄χ ∧ ιν(F

−1)∗∂φt + χdh

= − i∂χ ∧ ιν(F
−1)∗∂̄φt + i ∂̄χ ∧ ιν(F

−1)∗∂φt + d(χh) − hdχ

= − ∂χ ∧ (i ιν(F
−1)∗∂̄φt − h) + ∂̄χ ∧ (i ιν(F

−1)∗∂φt + h)

+ d(χh) − hdχ.

From

dh = ιν(F
−1)∗i∂∂̄(φt )

we know that

h − i ιν(F
−1)∗∂̄φt

and

h + i ιν(F
−1)∗∂φt

are closed. Now, ν generates an S1 action, and if we restrict to the set |t | = r , for
r > 0, then this is compact (real) manifold. In particular, the above two expressions
have to be constant. In other words, there exists constants c|t | such that

h + i ιν(F
−1)∗∂φt = c|t |,
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and similarly

h − i ιν(F
−1)∗∂̄φt = c|t |

since this is just the complex conjugate of the former.
We can then get rid of this constant by changing φt by a constant, fibrewise. This of

course changes nothing for the metric on the fibre, but changes the global expression
on the total space, by i∂∂̄ of a function pulled back from P

1, which moreover is S1

invariant, as it depends on |t | only. The result follows. ��
Proposition 9 implies that the error is all vertical until order εδ .We therefore need to

correct vertical errors until this order. To make sure we are not introducing horizontal
errors interfering with the contribution from ωFS , we need to understand the mapping
properties of the linearised operator in more detail.

Proposition 11 Suppose δ ≥ 1. The linearisation Lε of the scalar curvature operator
at �ε admits an expansion

Lε = Pε + ε2δRε,

where the image of Pε is vertical and Rε is an operator bounded independently of ε.
Further, Pε and the horizontal component of Rε admit expansions

Pε = Lω + O(ε)

for any f ∈ C∞(X ), where Lω = −D∗
ωDω is the linearisation of the scalar curvature

at the central fibre, and

Rε(π
∗ f ) = − 1

λ2
· π∗ (D∗

ωFS
DωFS ( f )

) + O(ε)

for f ∈ C∞(P1).
These expansions persist upon perturbations of �ε by potentials φε which are

• O(ετ ) for τ > 0, if φε ∈ C∞
0 (X);

• O(ετ−δ) for τ > 0, if φε ∈ π∗C∞(P1).

Proof We use the standard expression

Lε( f ) = −D∗
�ε
D�ε( f ) + 1

2
〈∇S(�ε),∇ f 〉

for the linearisation of the scalar curvature.
We begin with the leading order term of the expansion. First note that, since,

by Proposition 9, S(�ε) = Ŝ + O(ε), the gradient term does not enter to leading
order in ε. We are therefore left with expanding the Lichnerowicz operator. Now, the
Lichnerowicz operator admits an expansion

L�ε( f ) = 	2
�ε

( f ) + 〈Ric(�ε), i∂∂̄( f )〉�ε + 1

2
〈∇S(�ε),∇ f 〉�ε .
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So, we need to understand the expansion of the Laplacian, the Ricci curvature and the
scalar curvature.

We begin with the Laplacian. The Laplacian operator can be written

	�ε( f )�
n+1
ε = (n + 1)i∂∂̄( f ) ∧ �n

ε .

since the base P1 is one-dimensional, we have expansions

�n+1
ε =ωn+1

ε + (n + 1)λε−δπ∗ωFS ∧ ωn
ε

�n
ε =ωn

ε + nλε−δπ∗ωFS ∧ ωn−1
ε

Thus the leading order term of the Laplacian equation is

	�ε( f )π
∗ωFS ∧ ωn

ε = ni∂∂̄( f ) ∧ π∗ωFS ∧ ωn−1
ε + O(ε−1).

In the leading order term, we therefore only get a vertical contribution from i∂∂̄( f ).
This gives that

	�ε( f ) =�ωε(i∂∂̄V ( f )) + O(ε)

=	X0( f ) + O(ε).

Here we are also using that Jε − J0 = O(ε) so that we get a similar bound for the
difference of the i∂∂̄-operators near the central fibre, and hence everywhere (since the
family of Kähler manifolds is constant for a given ε away from a small neighbourhood
of the central fibre).

For the Ricci term, we have from the proof of Proposition 9 that

Ric(�ε) = ρε + Ric(ωFS) + O(ε).

Since the inner product 〈Ric(�ε), i∂∂̄( f )〉�ε equals the inner product with respect to
the vertical metric from the central fibre to leading order, we therefore have

〈Ric(�ε), i∂∂̄( f )〉�ε = 〈Ric(ω), i∂∂̄( f )〉ω + O(ε).

Finally, the scalar curvature term vanishes to leading order, since S(�ε) is constant
to leading order. This term also does not enter in the Lichnerowicz operator on the
central fibre, since the central fibre has constant scalar curvature.

Together with the above, this shows that the leading order term of the expansion
above is the negative of the Lichnerowicz operator of the metric on the central fibre,
which gives the expansion of Pε (since δ ≥ 1, and so all the errors are O(ε)).

Next, we have a refined expansion when the function is of the form π∗( f ), i.e. the
function is pulled back from P

1. In this case, the expansion of the Laplacian becomes

λε−δ	�ε( f )π
∗ωFS ∧ ωε = ni∂∂̄( f ) ∧ ωn

ε + O(ε)
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wherewe are omitting pullback from the notation. The above equation follows because
ni∂∂̄( f ) ∧ π∗ωFS ∧ ωn−1

ε = 0, as f is pulled back from P
1. It follows that

	�ε(π
∗( f )) = εδ

λ
· π∗(	ωFS ( f )) + O(εδ+1).

and so

	2
�ε

(π∗( f )) = ε2δ

λ2
· π∗(	2

ωFS
( f )) + O(ε2δ+1).

For the Ricci curvature, we now have

〈Ric(�ε), i∂∂̄( f )〉�ε =〈Ric(ωFS), i∂∂̄( f )〉λε−δωFS+(ωε)H + O(ε3δ)

=ε2δ

λ2
〈Ric(ωFS), i∂∂̄( f )〉ωFS + O(ε3δ)

Note that here we are using the induced inner product on 2-forms, which scales like
the scaling factor to the power −2, hence the equation in the second line and that the
error is O(ε3δ).

Again, the gradient of the scalar curvature termdoes not enter either in the expansion
or in the model on P1 to leading order, as ωFS is of constant curvature (though, if we
had pulled back another metric, we would have a matching of these terms anyway, so
this does not use that we have the Fubini–Study metric in any essential way). Thus
the claimed expansion on pulled back functions also holds.

Finally, we need to check that the expansions persist under certain perturbations
of �ε. It is immediate that the O(1)-term of the expansion will be unchanged upon
perturbing�ε by ετ i∂∂̄φ, for any φ. We can also allow a negative power of ε and keep
the same expansion, when φ = π∗ f is pulled back fromP

1. The vertical component of
the metric is then unaffected. In the horizontal direction, we then need to be perturbing
ωFS , which we do provided the exponent is strictly larger than −δ. This completes
the proof. ��

As used at the end of the proof above, we can also perturb ωFS before pulling back.
This perturbs �ε by terms that at first glance look like they blow up.

Lemma 12 Let f ∈ C∞(P1). Then for any τ > 0, we have that

S
(
�ε + ετ−δi∂∂̄π∗( f )

) = S(�ε) − εδ+τ

λ2
π∗ (D∗

ωFS
DωFS ( f )

) + O(εδ+τ+1).

Proof This is exactly the same as the computations for the horizontal terms in
Proposition 11. ��
Remark 2 Of course, the above lemma can be applied iteratively. If we define �′

ε =
�ε + ετ−δi∂∂̄π∗( f ) and then perturb �′

ε to �′
ε + ετ ′−δi∂∂̄(π∗φ) for some τ ′ > τ ,
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then

S
(
�′

ε + ετ ′−δi∂∂̄π∗(φ)
)

= S
(
�′

ε

) − εδ+τ ′

λ2
π∗ (D∗

ωFS
DωFS (φ)

) + O(εδ+τ ′+1).

Similar statements hold when we iterate multiple times, and also when we further
perturb �′

ε by functions not necessarily pulled back from P
1, but which are decaying

with ε.

Having this understanding of the linearised operator, we can now improve the
approximate solutions to be extremal to as high order in ε as we would like.

Proposition 13 For any κ ≥ 0, there exists aKähler form�ε,κ onX and a holomorphy
potential hε,κ with respect to �ε,κ such that

S
(
�ε,κ

) = hε,κ + O(εκ+1).

Proof For κ = 0, we take �ε,0 = �ε. Proposition 9 then shows that we have the
required expansion, with hε,0 = Ŝ a constant, which is a potential for the trivial
holomorphic vector field on X .

We proceed to construct better approximate solutions inductively. For simplicity
we will assume that δ is an integer. This is not essential, and is simply for notational
convenience. We can then do induction over κ ∈ Z≥0 and assume that all terms appear
at integer values of ε. Ultimately we can choose δ = 2 to make the construction work,
so we lose nothing in the proof of the main result in assuming this.

We will inductively show that we can find

• functions f0, . . . , fκ ∈ C∞
0 (X );

• functions φ0, . . . , φκ ∈ C∞(P1);
• holomorphy potentials h0, . . . , hκ with respect to �ε;

such that, if we put

�ε,κ = �ε + i∂∂̄

⎛
⎝∑

ε j f j +
∑
j

ε j−δπ∗φ j

⎞
⎠

then �ε,κ satisfies

S
(
�ε,κ

) = hε,κ + O(εκ+1)

where

hε,κ =
κ∑
j=0

ε j h j +
〈
∇

⎛
⎝ κ∑

j=0

ε j h j

⎞
⎠ ,∇

⎛
⎝ κ∑

j=0

ε j f j +
κ∑
j=0

ε j−δπ∗φ j

⎞
⎠

〉
,
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which is a holomorphy potential with respect to �ε,κ . As remarked above, for κ = 0,
we have the required statement with f0 = 0 = φ0 and h0 = Ŝ, the average scalar
curvature of the fibres.

The argument differs depending on whether or not κ ≥ δ. So we begin with κ < δ.
In this case, we will additionally show inductively that there is no horizontal term up
to order εδ and that the horizontal term at order εδ is precisely given by the horizontal
term in the expansion of Proposition 9.

By the induction assumption,

S
(
�ε,κ

) − hε,κ = lκ+1ε
κ+1 + O(εκ+2)

for some function lκ+1 ∈ C∞
0 (X ). By the mapping properties of Lω, there exists

fκ+1 ∈ C∞
0 (X ) and a holomorphy potential hκ+1 such that

Lω( fκ+1) = −lκ+1 + hκ+1.

By Proposition 11 applied to �ε,κ , we therefore have that

S
(
�ε,κ + i∂∂̄(εκ+1 fκ+1)

)

= S(�ε,κ ) − εκ+1lκ+1 + εκ+1hκ+1 + O(εκ+2)

=
κ+1∑
j=0

ε j h j +
〈
∇

⎛
⎝ κ∑

j=0

ε j h j

⎞
⎠ ,∇

⎛
⎝ κ∑

j=0

ε j f j +
κ∑
j=0

ε j−δπ∗φ j

⎞
⎠

〉
+ O(εκ+2).

Moreover, since the terms

〈
∇

(
εκ+1h j

)
,∇

⎛
⎝κ+1∑

j=0

ε j f j +
κ+1∑
j=0

εδ− jπ∗φ j

⎞
⎠

〉

and

〈
∇

⎛
⎝κ+1∑

j=0

ε j h j

⎞
⎠ ,∇

(
εκ+1 fκ+1

)〉

are O(εκ+2) (since the κ = 0 terms are all constant), we have that the above agrees
with hε,κ+1 at order εκ+1, i.e.

S
(
�ε,κ + i∂∂̄(εκ+1 fκ+1)

)
=hε,κ+1 + O(εκ+2),
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where

hε,κ+1 =
κ+1∑
j=0

ε j h j +
〈
∇

⎛
⎝κ+1∑

j=0

ε j h j

⎞
⎠ ,∇

⎛
⎝κ+1∑

j=0

ε j f j +
κ+1∑
j=0

εδ− jπ∗φ j

⎞
⎠

〉
,

Thus we have the required expansion with fκ+1 and hκ+1 as above and φκ+1 = 0.
It remains to show that there are no horizontal terms up to order εδ , apart from our

original one at order exactly εδ . This is again a consequence of Proposition 11, since
the linearisation only hits horizontal terms at order ε2δ .

We now continue for κ ≥ δ. In this case, there will be horizontal error terms, too,
and we begin by correcting these. Suppose

S
(
�ε,κ

) − hε,κ = lκ+1ε
κ+1 + ψκ+1ε

κ+1 + O(εκ+2),

where lκ+1 ∈ C∞
0 (X ) and ψκ+1 ∈ C∞(P1). By the mapping properties of the Lich-

nerowicz operator on P
1, there exists φκ+1 ∈ C∞(P1) and a holomorphy potential

h1κ+1 on P
1, with respect ωFS , such that

D∗
ωFS

DωFS (φκ+1) = ψκ+1 − h1κ+1.

By Proposition 11 and Lemma 12, we therefore have that �ε,κ + i∂∂̄
(
εκ+1−2δ

)
is

Kähler and

S
(
�ε,κ + i∂∂̄

(
εκ+1−2δφκ+1

))
=S

(
�ε,κ

) − εκ+1ψκ+1 + εκ+1h1κ+1.

Note that Lemma 12 applies because κ ≥ δ, so κ + 1 − 2δ > −δ.
We now invoke Lemma 10, which allows us to compare h1κ+1 to an actual holo-

morphy potential for �ε on X . We have that h1κ+1 = υhFS + c for some υ constants
υ and c. If we then write

h2κ+1 = υhε = υ
(
χ(t/ε) · h0 + λε−δhFS

)

for the average zero potential for the corresponding multiple of the generator of the
circle action on X , we then have that

S
(
�ε,κ + i∂∂̄

(
εκ+1−2δφκ+1

))
=εκ+1−δh2κ+1 + εκ+1c + hε,κ

+
〈
∇hε,κ ,∇

⎛
⎝ κ∑

j=0

ε j f j +
κ+1∑
j=1

ε j−δπ∗φ j

⎞
⎠

〉

+ εκ+1lκ+1 + O(εκ+2).

We now define

h̃ε,κ+1 = hε,κ + εκ+1c + εκ+1−δh2κ+1,
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so we have added an O(εκ+1) constant term, but also altered the εκ+1−δ-term,
compared to hε,κ . If we then compare

S
(
�ε,κ + i∂∂̄

(
εκ+1−2δφκ+1

))

to

h̃ε,κ+1 +
〈
∇h̃ε,κ+1,∇

⎛
⎝ κ∑

j=0

ε j f j +
κ+1∑
j=1

ε j−δπ∗φ j

⎞
⎠

〉

we have no horizontal term to up and including order εκ+1: the only horizontal term
that could appear comes from

〈
εκ+1−δh2κ+1,∇

⎛
⎝κ+1∑

j=1

ε j−δπ∗φ j

⎞
⎠

〉

whose horizontal component to leading order is

〈
εκ+1h1κ+1,∇

⎛
⎝κ+1∑

j=1

ε j−δπ∗φ j

⎞
⎠

〉

ε−δωFS

= ε(κ+1)+(1−δ)+δ
〈
h1κ+1, φ1

〉
ωFS

= εκ+2
〈
h1κ+1, φ1

〉
ωFS

.

So the horizontal terms appearing in the difference of the two terms are at least
O(εκ+2), as claimed.

On the other hand, we have introduced new vertical terms at smaller orders. These
come from accounting for the inner product of

∇
⎛
⎝ κ∑

j=0

ε j f j +
κ+1∑
j=1

ε j−δπ∗φ j

⎞
⎠

with the gradient of εκ+1−δh2κ+1. The leading order contribution is therefore the inner
product with the gradient of εκ+1−δ · υ · χ(t/ε) · h0. Since f0 = 0, this means we get
new vertical contributions to all orders starting from order εκ+2−δ . The upshot is that
we have an expansion

S
(
�ε,κ + i∂∂̄

(
εκ+1−2δφκ+1

))

=h̃ε,κ+1 +
〈
∇h̃ε,κ+1,∇

⎛
⎝ κ∑

j=0

ε j f j +
κ+1∑
j=1

ε j−δπ∗φ j

⎞
⎠

〉
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+
δ∑

j=0

εκ+2+ j−δlκ+1
j + O(εκ+2),

where all the lκ+1
j ∈ C∞

0 (X ) are vertical.
Following exactly the same argument as for the case when κ < δ, we can remove

these errors without reintroducing horizontal terms until order εκ+2. This relies on
the fact that when using vertical functions added at order εi , we are not introducing
any horizontal terms until order εi+δ . The upshot is that by altering the f j ’s in the
previous steps and adding a suitable function fκ+1 at order εκ+1, we get an expansion
of the required type. This completes the proof. ��

4.4 Perturbing to a solution

We are now ready to perturb the approximate solution constructed above to a genuine
solution.

Proposition 14 Suppose δ > 1. Let �ε,κ : Ck+4,α × h → Ck,α denote the operator

�ε,κ(φ, h) = Lε,κ (φ) − hε,κ − 1

2
〈∇�ε,κ (hε,κ ),∇φ〉,

where Lε,κ is the linearisation of the scalar curvature operator at �ε,κ . Then �ε,κ

admits a right-inverse Qε,κ satisfying

‖Qε,κ‖ ≤ Cε−2δ.

Proof The proof is very similar to analogous results for other fibrations, see [23,
Lemma 6.5, 6.6, 6.7] or [18, Lemma 6.5], and we omit the details. The precise rate
ε−2δ of the bound comes from Proposition 11, which shows that �ε,κ is surjective
modulo h at order ε2δ . ��

We are now ready to perturb to a genuine solution of the extremal equation. The
key will be the following Quantitative Inverse Function Theorem.

Theorem 15 Suppose 
 : V → W is a differentiable map of Banach spaces, with
surjective differential at 0 ∈ V . Let � be a right inverse for D
0. Let

• r ′ be the radius of the closed ball in V where 
 − d
 is Lipschitz, with Lipschitz
constant 1

2‖�‖ ;
• r = 1

2‖�‖ .

Then for all w ∈ W such that ‖w − 
(0)‖ < r , there exists a v ∈ V with ‖v‖ < r ′
such that 
(v) = w.

We will apply this to the operator


ε,κ : Ck+4,α(X ) × h → Ck,α(X )
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given by

( f , h) �→ S(�ε,κ + i∂∂̄ f ) − hε,κ − 1

2
〈∇�ε,κ (hε,κ ),∇φ〉. (2)

Notice that the linearisation of 
ε,κ is the operator �ε,κ in Proposition 14. In order to
apply Theorem 15, we need to a definite region on which 
 = 
ε,κ is Lipschitz of
Lipschitz constant 1

2‖�‖ . This is provided by the following lemma.

Lemma 16 Let Nε,κ = 
ε,κ − d
ε,κ , where 
ε,κ : Ck+4,α × h → Ck,α is the
operator given by Equation (2). There are constant c,C > 0, such that for all ε > 0
sufficiently small, if fi ∈ Ck+4,α × h for i = 1, 2 satisfy ‖ fi‖ ≤ c, then

‖Nε,κ ( f1) − Nε,κ ( f2)‖ ≤ C (‖ f1‖ + ‖ f2‖) ‖ f1 − f2‖.

The proof of Lemma 16 is a direct consequence of the Mean Value Theorem, using
that the �ε,κ are bounded, independently of ε, and the following result, which is a
global version of Proposition 5, and whose proof is similar.

Proposition 17 For each k, α, there exists c,C > 0 such that if ‖φ‖Ck+4,α ≤ c, then

‖L�ε+i∂∂̄φ( f ) − L�ε( f )‖Ck,α ≤ C‖φ‖Ck+4,α‖ f ‖Ck+4,α .

We are now ready to prove ourmain result. The remaining argument follows exactly
similar arguments in e.g. [21, 23]. The statement below is just rephrasing Theorem 1,
using the parameter ε instead of k.

Theorem 18 For all ε > 0 sufficiently small, there exists an extremal metric �̃ε ∈
[�ε].
Proof Lemma 16 implies thatNε,κ is Lipschitz on the ball of radius �, with Lipschitz
constant c�, for all � sufficiently small. Letting r ′ be as in Theorem 15 for the extremal
operator, we therefore have that r ′ ≥ cε2δ , for some constant c > 0, by Proposition 14.
Letting r = r ′

2‖Qε,κ‖ , we then have that

r ≥ Cε4δ,

for some constant C > 0. In particular, Theorem 15 implies that we can perturb the
scalar curvature, up to a holomorphy potential, to anything in the ball of radius Cε4δ

about S(�ε,κ ). SinceC depends only on κ, not ε, we see that if κ is chosen sufficiently
large (we need κ > 4δ), then we can solve the extremal equation, since S(�ε,κ ) is
extremal to order εκ+1. ��
Remark 3 In fact, as used e.g. in [21, Remark 3.8], the actual solutions can be ensured
to be an O(εκ−2δ) perturbation of �ε,κ . In particular, we can, for any κ , choose a
κ ′ > κ such that the actual solutions produced from �ε,κ ′ agree with �ε,κ ′ to order
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εκ . In particular, for any desired k and α, and for all ε sufficiently small, the solution
will agree with

�ε = ωε + λε−δπ∗ωFS .

in Ck,α , up to terms that are decaying in ε in both the horizontal and vertical direction.

Remark 4 Treating δ as a parameter is not strictly speaking necessary in our construc-
tion. One could e.g. choose δ = 2. On the other hand, under more general assumptions
on the relationship between the automorphism group of the central fibre and the gen-
eral fibre, constructions like ours should be possible. This is the main reason we have
treated δ as a parameter.

These constructions should be obstructed, as there is no longer an action of the full
maximal torus T0 of the central fibre, on the total space of the test configuration. It is
likely that there one needs a more specific choice of δ to make the construction work.
For example, if one would need to pick δ to be minimal, i.e. δ = 1, in the construction,
one would potentially get a different equation than the cscK equation for the metric
on P

1 by looking at the horizontal term at this order – this would likely be a twisted
cscK equation, with twisting term coming from the pushforward of certain terms from
the total space of the test configuration. This would also lead to obstructions at order
ε in the vertical direction, that one cannot deal with using the linearised operator.

In fact, at the time of writing, a general framework for attacking these questions on
fibrations with only semistable fibres is being developed by Annamaria Ortu ([29]).
Her work studies the analogue of the optimal symplectic connection equation in this
setting, and constructs extremal metrics on the total space of such fibrations, when
this equation and a suitable equation on the base can be solved. This requires one to
see the total space of the fibration as a deformation of a cscK fibration, which is very
different from the approach taken in our specific case.

It seems possible that our work could fit into her framework. The key to this would
be to show that the test configuration we consider can be seen as a deformation of a
product test configuration over P1 for (X0,L0). The likely choice is to use the product
test configuration produced from the C∗ action on X0, that we used to define the C∗
action on the initial local test configuration we have considered. This means that we
would not see this as a deformation of X0 × P

1, in general. Showing that indeed this
is the case may be the better avenue to pursue in order to extend our results to cases
with more general automorphism groups.

5 Metric limits of the adiabatic extremal metrics

It is interesting to analyze from the metric viewpoint what happens to the extremal
metrics �̃ε when ε → 0.

Proposition 19 For any point p ∈ X , the metrics �̃ε converge as ε → 0 in the pointed
Gromov-Hausdorff sense to the product X0 ×R

2, with X0 equipped with its constant
scalar curvature metric and flat R2.
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Remark 5 This shows that a phenomenon of jumping of complex structures in metric
limits happens in the strictly K-semistable fibres Xt as t �= 0. Indeed, instead of
converging to some Kähler metric on the product Xt × R

2, as ε goes to 0, these
extremal metrics �̃ε are resembling in all the vertical directions more and more the
constant scalar curvature Kähler metric at the central fibre of the test configuration.

Proof The result follows by observing that this limit behavior happens for the back-
ground model metric �ε. At any fixed fibre as ε → 0, the vertical part of �ε, namely
ωε, gets metrically closer and closer to the cscK manifold (X0, ω0). Indeed, the verti-
cal backgroundmetrics on the fibres for |t | ≥ ε get smoothly closer to the cscKmetric,
thanks to their construction as smooth equivariant deformations in [34]. Moreover, the
horizontal part gets more and more dominated by a large multiple of the Fubini-Study
metric. Then the analytic estimates in the perturbative analysis, see Remark 3, show
that the two metrics tensors corresponding to �ε and �̃ε are point-wise getting closer
as ε → 0, so the difference of the distances measured with the two metrics goes to
zero. Hence, passing to the limit, both the model metrics �ε and the extremal metrics
�̃ε converge in the pointed Gromov-Hausdorff sense to the same space X0 ×R

2, with
X0 equipped with its constant scalar curvature metric and flat R2, as claimed. ��

Finally, note that if insteadwewould have rescaled themetrics so that the horizontal
direction remains of fixed diameter (while the fibres shrink to zero) the metrics would
converge to the Fubini-Study metric on the base P1.

6 Examples

In this final section we show that our construction can be used to produce many new
extremal metrics. In order to apply the construction, we need to find a destabilising
test configuration to a smooth cscK central fibre, for a strictly semistable manifold.
Moreover, we need the C∗ discrepancy condition to hold. All the examples we give
here will come from explicit such families of Fano manifolds.

We begin with a useful lemma for providing examples where the reduced auto-
morphism group of the central fibre is C∗ and the strictly K-semistable manifold has
discrete automorphism group. This will be used in a few different specific instances
below.

Lemma 20 Let X0 be a Fano manifold with connected component of the identity of
the automorphisms group Aut0(X0) ∼= C

∗. Assume Aut0(X0) acts non-trivially on
H1(T X0). Then there exist a smooth compactified test configuration π : X → P

1

with X0 as central fibre and Aut0(Xt ) trivial for t �= 0.

Proof It follows by Kuranishi theory that the versal space of deformation is smooth
since H2(T X0) vanishes, as X0 is Fano, and so it can be identified with an open
neighbourhood of the origin in H1(T X0). Since the natural linear action of Aut0(X0)

is by hypothesis non-trivial, by taking a one dimensional positive weight eigenspaces
(if only negative exist just take the opposite action), eventually base changing and
completing that family over P1, we obtain a smooth compactified test configuration.
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Finally, let us show that there are no holomorphic vector fields on Xt , t �= 0.
Suppose for a contradiction that there are holomorphic vector fields on Xt . Since
χ(T Xt ) is constant, h1(T Xt ) must be equal to h1(T X0), since by Kodaira–Nakano
vanishing, hi (T Xt ) = 0 for all i > 0. By openness of versality (see, e.g., [9]), the
Kodaira–Spencer map at t �= 0 will still be surjective. On the other hand, the non-zero
fibres of the test configuration are all isomorphic, and so there is some kernel in such
a map at t �= 0. But this contradicts versality, because then, under the assumption that
h1(T X0) = h1(T Xt ), the Kodaira–Spencer map cannot be surjective either. ��
Remark 6 It should be possible to easily generalise the above lemma to other situations,
under certain assumptions. However, we will only require the above for the examples
we consider.

We now consider some different families of the Mori–Mukai classification of Fano
threefolds in turn. This relies heavily on recent work on Fano threefolds by many
authors. We will use the book [5] as our chief reference for the results relevant to our
construction.

6.1 Single members of families

In this section, we will consider several examples of a similar type. In each case, we
will consider one special member of the family and verify that it admits a degeneration
to another smooth K-polystable member of the same family, with the C∗ discrepancy
condition being satisfied.

We illustrate the method in most detail with a member of the family 3.5. We follow
[5, Sect. 7.5].

Lemma 21 Let a, b, c be complex numbers, not all 0. For t ∈ C, let C be the curve in
P
1 × P

2 given as the image of

xv5 + y(w5 + avw4 + bv2w3 + cv3w2) = 0

via the embedding P
1 × P

1 → P
1 × P

2 given by

([x, y], [v,w]) �→ ([x, y], [v2, vw,w2])

in homogeneous coordinates. Let X = BlC P
1×P

2 be the Fano threefold in the family
3.5 of the Mori–Mukai list given by blowing up P1 × P

2 in C. Then there exists a test
configuration (X ,L) for (X ,−KX ) for which the construction of Theorem 1 applies.

Proof Consider the family Xs with s ∈ C given by blowing up P
1 × P

2 in the curve
Cs which is the image of

xv5 + y(w5 + savw4 + s2bv2w3 + s3cv3w2) = 0

via the embedding P1 ×P
1 → P

1 ×P
2 above. One can show that Xs is isomorphic to

X = X1 when s �= 0 ([5, Lemma 7.5.1]). On the other hand, when s = 0, we obtain a
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Fano manifold X0 which by [5, Lemma 5.14.8] is K -polystable. Thus the family Xs is
a destabilising test configuration, showing that X is strictly K -semistable. Moreover,
by [11, Lemma 8.7, Corollary 2.7], X0 has reduced automorphism group C∗, while X
has discrete automorphism group.

Versality in the Kuranishi theory then implies that there exists a test configuration
(X ,L) for (X ,−KX ) in the Kuranishi family, whose central fibre is (X0,−KX0). The
fact that central fibre of this potentially different test configuration to the one we have
explicitly produced is (X0,−KX0) follows by uniqueness of cscK degenerations [13,
Theorem 1.3]. Since the condition on the automorphism group is satisfied, Theorem 1
applies to construct extremal metrics on (X ,L + O(d)) for all sufficiently large d. ��

One can follow the same strategy to produce examples in the remaining families
under consideration in this section. The details in each case are the same as the proof
of Lemma 21 and rely on explicit examples of destabilising test configurations given
in [5]. The only difference is that the strictly K-semistable member in each case will
have discrete automorphism group, and the central fibre has reduced automorphism
group given by C

∗.

Lemma 22 In each of the families 2.20, 2.22, 3.8, 3.12 and 4.13 of the Mori–Mukai
list of Fano threefolds, there exists at least one member that admits a test configuration
to which Theorem 1 applies.

Proof For each of these families, there is a member X with discrete automorphism
group that admits an explicit test configuration for (X ,−KX ) whose central fibre is a
smoothK-polystable Fanowith reduced automorphismgroup given byC∗. All of these
are described in [5]. For the member of family number 2.20 this is given in [5, Lemma
7.2.5], for number 2.22 in [5, Lemma 7.4.2], for number 3.5 in [5, Lemma 7.5.1], for
number 3.8 in [5, Lemma 7.6.1], for number 3.12 in [5, Sect. 7.7], and finally, for 4.13,
the test configuration is described in [5, Corollary 5.22.3]. The statement regarding
the automorphism group of X and of the central fibre is described in [5] and follows
from [11]. ��

6.2 One parameter families

We can also do the construction in families. We will begin by applying it to a one-
parameter family of strictly K-semistable manifolds in the family 3.10. Let Xc for
c �= ±1 be the Fano threefold in the family 3.10 of the Mori–Mukai list given as
follows. Endow P

4 with homogeneous coordinates [v,w, x, y, z]. Let C1 and C2 be
the curves in P4 given by

C1 ={0 = w2 + zv = y = x},
C2 ={0 = w2 + xy = v = z}.

These curves are disjoint and are both contained in the quadric surfaces

Qc = {w2 + xy + zv + c(xv + yz) + xz = 0}
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for any c. Let Xc = BlC1,C2 Qc be the blowup of Qc in the two curves C1 and C2. For
all c, the reduced automorphism group of Xc is trivial [11, Lemma 5.9].

Proposition 23 For all c �= 0,±1, there exists a test configuration (Xc,Lc) for the
member (Xc,−KXc ) of the family 3.10 for which the construction of Theorem 1
applies.

Note that the condition c �= ±1 is made just to ensure that we have a smooth
threefold. The case c = 0 is excluded because there is then a rank two maximal torus.

Proof This follows [5, Corollary 5.17.7], which gives an explicit test configuration for
Xc, given as follows. Let

Qc,s = {w2 + xy + zv + c(xv + yz) + sxz = 0}.

All the Qc,s contain C1 and C2, and so we can define Xc,s = BlC1,C2 Qc,s . Then for
all non-zero s, Xc,s is isomorphic to Xc. On the other hand, when s = 0, Yc = Xc,0
is K-polystable [5, Lemma 5.17.6]. This gives a destabilising test configuration for
(Xs,−KXs ).Moreover, provided c �= 0, by [11, Lemma 5.9], the automorphism group
of Yc is C∗, showing the construction can be applied to all of these Xc. ��
For the remaining case c = 0, the reduced automorphism group of Yc is (C∗)2, and
so the condition on the automorphism group required for the result to apply is not
satisfied in this case.

For our final examples whose fibres are Fano threefolds, we will invoke Lemma 20.
In the family 1.10 of Fano threefolds, there exists a one-parameter family of distinct
Fano manifolds with Aut0(X0) ∼= C

∗ acting non trivially on their deformation space
(see for example [22] for the explicit description of their deformation space near the
Mukai–Umemura threefold). All of these admit Kähler–Einstein metrics, by works of
Cheltsov and Shramov [10, Corollary 1.7] and Fujita [24, Theorem 1.2]. Similarly,
we have a completely analogous picture in the family 2.21, where there also is a one-
parameter family of distinct Fano manifolds with Aut0(X0) ∼= C

∗. All of these admit
Kähler–Einstein metrics [5, Proposition 5.9.11]. By Lemma 20, all of the members of
these two one-parameter families appear as the central fibre in some test configuration
to which the construction of Theorem 1 applies. We have thus shown the following.

Lemma 24 Each of the families 1.10 and 2.21 of Fano threefolds induce a one-
parameter family of distinct manifolds to which the construction of Theorem 1
applies.

6.3 Summary of examples arising from Fano threefolds

We summarise all the special cases we have considered in the following theorem.

Theorem 25 The following families from the Mori–Mukai list of Fano threefolds pro-
duce at least one test configuration for a strictly K-semistable manifold to which the
construction of Theorem 1 applies:
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• 1.10
• 2.20
• 2.21
• 2.22
• 3.5
• 3.8
• 3.10
• 3.12
• 4.13

Together, they give infinitely many projective manifolds that admit extremal Kähler
metrics in some classes.

Remark 7 The above result says that in each of the cases mentioned, we have found
at least one member, to which we can apply our construction. In some cases, we have
checked families rather than a single member, but we have not checked every possible
member of the family in order to get a complete classification. There could very well
be other members of these families from which one can obtain further examples.

Remark 8 Not all the families will give test configurations to which we can apply the
construction, even if there are strictly K-semistable members of these families. For
example, there are some strictly K-semistable members of the family 2.26, but they
degenerate to a singular K-stable Fano variety. There are no K-polystable members of
this family [5, Sect. 5.10], and so our construction cannot be applied to any members
of this family. In the family 3.13 there is a unique strictly K-semistable member [5,
Lemma 5.19.8], but the connected component of its automorphism group is the non-
reductive group (C,+), and the central fibre has automorphism group PGL2(C). Thus
the condition on the automorphism group is not satisfied in this case.
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