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Abstract
We consider a 3d multi-structure composed of two joined perpendicular thin films: a vertical
one with small thickness han and a horizontal one with small thickness hbn . We study the
asymptotic behavior, as han and hbn tend to zero, of an eigenvalue problem for the Laplacian
defined on this multi-structure. We shall prove that the limit problem depends on the value

q = lim
n

hbn
han

. Precisely, we pinpoint three different limit regimes according to q belonging to

]0,+∞[, q equal to +∞, or q equal to 0. We identify the limit problems and we also obtain
H1-strong convergence results.

Mathematics Subject Classification 35J05 · 35P05 · 35P20 · 74K20 · 74K30 · 74K35

1 Introduction

Let �n , n in N, be a 3d multi-structure composed of two joined perpendicular thin films
(see Fig. 1): a vertical one �a

n with small thickness han and a horizontal one �b
n with small

thickness hbn (from now on, the exponent ’a’ stands for above, while ’b’ for below).
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In �n consider the following eigenvalue problem with mixed boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−�Un = λUn in �n,

Un = 0 on �n,

∂Un

∂ν
= 0 on ∂�n \ �n,

(1.1)

where �n denotes the part of the boundary of �n having small thickness (see dotted area in
Fig. 1) and ν denotes the exterior unit normal to �n (see Sect. 2 for the rigorous definition
of �n and �n , and for the weak formulation of problem (1.1)).

For any n inN, problem (1.1) has a discrete positive spectrum {λn,k}k∈N with correspond-
ing eigenfunctions {Un,k}k∈N forming an orthonormal basis in L2(�n) (see Sect. 2), equipped
with the inner product

(U , V ) ∈ (L2(�n))
2 → 1

han

∫

�n

UVdx .

This means that the following normalization

‖Un,k‖2L2(�n)
= han, ∀k ∈ N, (1.2)

is considered, but it does not restrict the generality of our results.
Problem (1.1) arises, for instance, from theFourier analysis in the study of the heat problem

or the propagation of sound waves (cf. [23], see also [14] in connection with elastic waves).
For reasons of simplicity and economy, especially from a numerical point of view, one

tries to remodel the 3d problem with a problem defined on a multi-structure composed of 2d
components. In this paper, it will be obtained by an asymptotic process based on the so-called
“dimensional reduction”, i.e., by the study of the asymptotic behavior of problem (1.1) as han
and hbn tend to zero.

Fig. 1 The thin domain �n
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We shall prove that the limit problem depends on a nonegative parameter q defined by

q = lim
n

hbn
han

.

Precisely, we pinpoint three different limit regimes according to q belonging to ]0,+∞[, q
equal to +∞, or q equal to 0.

• When q belongs to ]0,+∞[, i.e., when the thicknesses of the two thin films vanish with
the same rate, we obtain the following limit eigenvalue problem,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−�x2,x3u
a = λua in ωa,

−�x1,x2u
b+ = λub+ in ωb+,

−�x1,x2u
b− = λub− in ωb−,

ua = 0 on γ a,

ub+ = 0 on γ b+,

ub− = 0 on γ b−,

ua = ub+ = ub− on γ,

∂x3u
a = q(∂x1u

b− − ∂x1u
b+) on γ.

(1.3)

where ωa is the cross-section of the vertical film, ωb+ and ωb− are the two parts into which
ωb, the cross-section of the horizontal film, is divided by the intersection with ∂ωa (see Fig.
2),

γ = ∂ωa ∩ ∂ωb+ ∩ ∂ωb−, γ a = ∂ωa \ γ, γ b+ = ∂ωb+ \ γ, γ b− = ∂ωb− \ γ.

Problem (1.3) is a 2d − 2d − 2d eigenvalue problem with coupled conditions on γ (see
the last two lines of (1.3)).

The weak formulation of (1.3) is given by (3.4) (see also (3.1), (3.2), and (3.3)). This
problem has a discrete positive spectrum {λk}k∈N with the corresponding eigenfunctions
{(uak , ubk+, ubk−)}k∈N forming a basis in L2(ωa)×L2(ωb+)×L2(ωb−) subjected to the orthonor-
mal condition

∫

ωa
uaku

a
hdx2dx3 + q

(∫

ωb+
ubk+u

b
h+dx1dx2 +

∫

ωb−
ubk−u

b
h−dx1dx2

)

= δhk,

where δh,k denotes the Kronecker delta.
In Theorem 3.1 we prove the convergence of the eigenvalues of problem (1.1), as n →

+∞, to the eigenvalues of problem (1.3) with conservation of the multiplicity. We prove also
a strong H1-convergence result for the corresponding eigenfunctions (see (3.5), (3.6), (3.7),
and Corollary 3.2).

• When q = +∞, i.e., when the thickness of the vertical thin film vanishes faster than
the thickness of the horizontal thin film, the limit spectrum is the union of the spectra of
the following two uncoupled 2d eigenvalue problems with homogeneous Dirichlet boundary
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Fig. 2 The limit domain

condition ⎧
⎨

⎩

−�x2,x3u
a = λua in ωa,

ua = 0 on ∂ωa,

⎧
⎨

⎩

−�x1,x2u
b = λub in ωb,

ub = 0 on ∂ωb.

Precisely, one has to collect together the eigenvalues of these two problems and order the
obtained set in an increasing sequence {λk}k∈N with the convention of repeated eigenvalues.
The corresponding eigenfunctions form an orthonormal basis in L2(ωa) × L2(ωb).

In Theorem 3.3 we prove the convergence of the eigenvalues of problem (1.1), as n →
+∞, to the sequence {λk}k∈N with conservation of the multiplicity. Moreover, by means
of renormalization in �b

n , we prove a strong H1-convergence result for the corresponding
eigenfunctions (see (3.10), (3.11), (3.12), and Corollary 3.5).

• When q = 0, i.e., when the thickness of the horizontal thin film vanishes faster than
the thickness of the vertical thin film, we choose the sequence {Un,k}k∈N of eigenfunctions
associated to the discrete positive spectrum {λn,k}k∈N of problem (1.1) such that it forms an
orthonormal basis in L2(�n) equipped with the inner product

(U , V ) ∈ (L2(�n))
2 → 1

hbn

∫

�n

UVdx,

i.e., the following normalization

‖Un,k‖2L2(�n)
= hbn, ∀k ∈ N, (1.4)

is considered.
In this case, the limit spectrum is the union of the spectra of the following three uncoupled

2d eigenvalue problems, the first one with mixed boundary condition, while the other two
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with homogeneous Dirichlet boundary condition
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−�x2,x3u
a = λua in ωa,

ua = 0 on γ a,

∂x3u
a = 0 on γ,

⎧
⎨

⎩

−�x1,x2u
b+ = λub+ in ωb+,

ub+ = 0 on ∂ωb+,

⎧
⎨

⎩

−�x1,x2u
b− = λub− in ωb−,

ub− = 0 on ∂ωb−.

As above, one has to collect together the eigenvalues of these three problems and order the
obtained set in an increasing sequence {λk}k∈N with the convention of repeated eigenvalues.
The corresponding eigenfunctions form an orthonormal basis in L2(ωa)×L2(ωb+)×L2(ωb−).

In Theorem 3.6 we prove the convergence of the eigenvalues of problem (1.1), as n →
+∞, to the sequence {λk}k∈N with conservation of the multiplicity. Also in this case we
prove a strong H1-convergence result for the corresponding eigenfunctions, but by means of
a renormalization in �a

n (see (3.16), (3.17), (3.18), and Corollary 3.8).
Notice that, when q belongs to ]0,+∞[, choosing (1.2) or (1.4) as normalization leads

to the same limit result. Instead, to obtain a meaningful result, normalization (1.2) must be
used when q is +∞ and normalization (1.4) when q is 0.

In Sect. 2, following [3], problem (1.1) is rescaled on a fixed domain. Section 4 is devoted
to obtaining a priori estimates of the eigenvalues λn,k of problem (1.1): below by a positive
constant independent of n and k, and above by an explicit constant independent of n but
dependent on k (see also Remark 4.2). The upper bound of λn,k implies H1-a priori estimates
of the eigenfunctions. In Sect. 3, the main results are stated. Section 5 contains some results
that are crucial for proving the main results, i.e., Theorems 3.1, 3.3, and 3.6. Precisely, in
Proposition 5.1 we give a trace convergence result, written in a very general way, which will
allow us to identify junction and boundary conditions in the limit problems. In Proposition
5.2, we prove a density result for approximating the elements of the space of setting of the
limit problem, when q belongs to ]0,+∞[, with regular functions. Although this result was
used in other works, to our knowledge, there are no previous proofs of it. Our proof is rather
technical and it works also for domains which are not "symmetric". Proposition 5.3 is devoted
to building a recovery sequence which will be used in the proof of all three main results.
Sections 6, 7, and 8 are devoted to proving the main results in the case where q belongs to
]0,+∞[, q equal to +∞, or q equal to 0, respectively. The three proofs follow the same
pattern. In them, we highlight the novelties and refer to [9] and [22] for the classical parts.

In this paper we consider the Laplace operator in order to investigate the effect of the
junction condition on the limit problem. It is of course possible to replace the Laplacian
by an elliptic operator with a symmetric and positive definite thermal conductivity matrix.
Taking into account our analysis and arguing as in [10] easily lead to the limit problem.
Moreover, we just considered two perpendicular thin films. Of course, the whole analysis
works with the appropriate modifications if the two films form an angle other than π

2 . We
leave the study of these cases to an interested reader.

The asymptotic behavior of a spectral problem for an homogeneous isotropic elastic body
consisting of two folded and perpendicular plates with the same thickness h but with the
requirement of large elastic coefficients, of order O(h−2), was studied in [12] (see also [13]).
This assumption technically avoids a rescaling of the eigenvalues and gives very different
asymptotic behaviors from our problem.Also, we refer to [4], [11], [16], and [17] for different
eigenvalue problems in plate theory.

Themodelling of spectral problems for the Laplace operator in joined 1d−1d and 1d−2d
multi-structures were obtained in [7], [9], [10], [15], and [20]. The modelling of the spectrum
for the linear water-wave system in a joined 1d − 2d multi-structure was obtained in [1].
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For other problems in joined thin films, we refer to [2], [6], and [8].
Eventually, we refer to [5], [18], [19], and references therein, for problems on thin struc-

tures.

2 Position of the problem and rescalings

Let l+1 , l
−
1 , l2, and l3 be four positive real numbers such that

l±1 >
1

2
.

Set (see Fig. 2)

ωa =]0, l2[×]0, l3[, ωb =] − l−1 , l+1 [×]0, l2[, ωb+ =]0, l+1 [×]0, l2[, ωb− =] − l−1 , 0[×]0, l2[,
γ a = ∂ωa \ (]0, l2[×{0}) .

Let
{
han
}

n∈N ,
{
hbn
}

n∈N be two sequences in ]0, 1[ such that

lim
n

han = 0 = lim
n

hbn, lim
n

hbn
han

= q ∈ [0,+∞]. (2.1)

For every n in N set (see Fig. 1)

�a
n=
]

− han
2

,
han
2

[

× ωa , �b
n=ωb ×

]

− hbn , 0

[

, �n=�a
n ∪ �b

n ∪
(]

− han
2

,
han
2

[

×
]

0, l2

[

× {0}
)

,

�a
n=
]

− han
2

,
han
2

[

× γ a , �b
n=∂ωb ×

]

− hbn , 0

[

, �n=�a
n ∪ �b

n .

For every n in N, consider the space L2(�n) equipped with the inner product

(U , V ) ∈ (L2(�n))
2 → 1

han

∫

�n

UVdx, (2.2)

and the space
Vn = {V ∈ H1(�n) : V = 0 on �n

}
(2.3)

equipped with the inner product

(U , V ) ∈ Vn × Vn → 1

han

∫

�n

DUDVdx . (2.4)

The classical spectral theory (for instance, see [21]) ensures the existence of an increasing
diverging sequence of positive numbers {λn,k}k∈N forming the set of all the eigenvalues of
Problem (1.1), i.e.,

⎧
⎪⎪⎨

⎪⎪⎩

Un ∈ Vn,

∫

�n

DUnDVdx = λ

∫

�n

UnVdx, ∀v ∈ Vn .

(2.5)

Moreover, there exists a L2(�n)-Hilbert orthonormal basis {Un,k}k∈N such that, for every
k in N, Un,k belongs to Vn and it is an eigenvector of (2.5) with eigenvalue λn,k ; hence,{

λ
− 1

2
n,k Un,k

}

k∈N
is a Vn-Hilbert orthonormal basis.
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Set now

�a =
]

− 1

2
,
1

2

[

× ωa, �b = ωb ×
]

− 1, 0

[

, �a =
]

− 1

2
,
1

2

[

× γ a, �b = ∂ωb ×
]

− 1, 0

[

.

From now on,

H1
�a (�

a) = {v ∈ H1(�a) : v = 0 on �a}, H1
�b (�

b) = {v ∈ H1(�b) : v = 0 on �b},
H1

γ a (ω
a) = {v ∈ H1(ωa) : v = 0 on γ a}.

As it is usual (see [3]), problem (2.5) will be reformulated on the fixed domain �a ∪�b ∪(] − 1
2 ,

1
2 [×]0, l2[

)
through the following maps

(x1, x2, x3) ∈ �a −→ (hanx1, x2, x3) ∈ �a
n, (x1, x2, x3) ∈ �b −→ (x1, x2, h

b
nx3) ∈ �b

n .

To this aim, for every n in N, let Hn be the space L2(�a) × L2(�b) equipped with the inner
product

(·, ·)n : (u, v) = ((ua, ub), (va, vb)) ∈ (L2(�a) × L2(�b)
)2 −→

(u, v)n =
∫

�a
uavadx + hbn

han

∫

�b
ubvbdx,

(2.6)

and let Vn be the space defined by

Vn =
{

v = (va, vb) ∈ H1
�a (�

a) × H1
�b (�

b) :

va(x1, x2, 0) = vb(hanx1, x2, 0) a.e. (x1, x2) ∈
]

− 1

2
,
1

2

[

×
]

0, l2

[}
(2.7)

equipped with the inner product

an : (u, v) = ((ua, ub), (va, vb)) ∈ V 2
n −→ an(u, v) =

∫

�a

(
1

(han)
2 ∂x1u

a∂x1v
a + ∂x2u

a∂x2v
a + ∂x3u

a∂x3v
a
)

dx

+hbn
han

∫

�b

(

∂x1u
b∂x1v

b + ∂x2u
b∂x2v

b + 1

(hbn)
2 ∂x3u

b∂x3v
b
)

dx .

(2.8)

Moreover, for every n and k in N, set

un,k =
⎧
⎨

⎩

Un,k(hanx1, x2, x3), a.e. in �a,

Un,k(x1, x2, hbnx3), a.e. in �b.

(2.9)

Then, for every n in N, {λn,k}k∈N is an increasing diverging sequence of positive numbers
forming the set of all the eigenvalues of the following problem

⎧
⎨

⎩

un ∈ Vn,

an(un, v) = λ(un, v)n, ∀v ∈ Vn,
(2.10)
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{un,k}k∈N is a Hn-Hilbert orthonormal basis such that, for every k inN, un,k belongs to Vn and

it is an eigenvector of (2.10) with eigenvalue λn,k . Moreover,

{

λ
− 1

2
n,k un,k

}

k∈N
is a Vn-Hilbert

orthonormal basis. In particular, one has
⎧
⎨

⎩

un,k ∈ Vn,

an(un,k, v) = λn,k(un,k, v)n, ∀v ∈ Vn,
∀n, k ∈ N, (2.11)

(un,k, un,h)n = δh,k, ∀n, k, h,∈ N, (2.12)

an(λ
− 1

2
n,k un,k, λ

− 1
2

n,h un,h) = δh,k, ∀n, k, h,∈ N. (2.13)

Furthermore, for every k in N, λn,k is characterized by the following min-max Principle

λn,k = min
Ek∈Fk

max
v∈Ek , v 	=0

an(v, v)

(v, v)n
, (2.14)

where Fk is the set of the subspaces Ek of Vn with dimension k (for instance, see [21]).

Problem (2.10) is obtained from (2.5) by means of rescaling of variables, once multiplied

by
1

han
.

3 Themain results

This section is devoted to stating the main results of this paper.
The limit problem will depend on q defined by (2.1) which acts as a weight on ωb in the

scalar product. Precisely, three different limit regimes will appear according to q belonging
to ]0,+∞[, q equal to +∞, or q equal to 0.

3.1 The case q in ]0,+∞[

Fix q in ]0,+∞[.
Consider L2(ωa) × L2(ωb) equipped with the inner product

[·, ·]q : (u, v) = ((ua, ub), (va, vb)) ∈ (L2(ωa) × L2(ωb)
)2

−→
∫

ωa
uavadx2dx3 + q

∫

ωb
ubvbdx1dx2.

(3.1)

Moreover, let

V =
{
v = (va, vb) ∈ H1

γ a (ω
a) × H1

0 (ωb) : va(x2, 0) = vb(0, x2) a.e. in ]0, l2[
}

(3.2)

be equipped with the inner product

αq : (u, v) = ((ua, ub), (va, vb)) ∈ V × V −→ αq(u, v)

=
∫

ωa

(
∂x2u

a∂x2v
a + ∂x3u

a∂x3v
a) dx2dx3 + q

∫

ωb

(
∂x1u

b∂x1v
b + ∂x2u

b∂x2v
b
)
dx1dx2.

(3.3)
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Both are Hilbert spaces. Moreover, the norm induced on V by the inner product αq(·, ·) is
equivalent to the usual

(
H1(ωa) × H1(ωb)

)
-norm, and thenorm inducedon L2(ωa)×L2(ωb)

by the inner product [·, ·]q is equivalent to the usual
(
L2(ωa) × L2(ωb)

)
-norm.Consequently,

V is continuously and compactly embedded into L2(ωa)× L2(ωb). Furhtermore, V is dense
in L2(ωa) × L2(ωb) since C∞

0 (ωa) × {v ∈ C∞
0 (ωb) : v = 0 on {0}×]0, l2[} is included in

V . Then, all classic results hold true for the eigenvalue problem (see [21])
⎧
⎨

⎩

u ∈ V ,

αq(u, v) = λ[u, v]q , ∀v ∈ V ,

(3.4)

and the following result will be proved.

Theorem 3.1 For every n in N, let Hn be the space L2(�a) × L2(�b) equipped with the
inner product (·, ·)n defined by (2.6) and Vn be the space defined by (2.7) equipped with the
inner product an(·, ·) defined by (2.8).

For every n inN, let {λn,k}k∈N be the increasing diverging sequence of all the eigenvalues of

Problem (2.10) and let {un,k}k∈N be a Hn-Hilbert orthonormal basis such that

{

λ
− 1

2
n,k un,k

}

k∈N
is a Vn-Hilbert orthonormal basis and, for every k ∈ N, un,k = (uan,k, u

b
n,k) is an eigenvector

of Problem (2.10) with eigenvalue λn,k .
Assume that (2.1) holds true with q in ]0,+∞[.
Let L2(ωa) × L2(ωb) be equipped with the inner product [·, ·]q defined by (3.1) and V

be the space defined by (3.2) equipped with the inner product αq(·, ·) defined by (3.3).
Then, there exists an increasing diverging sequence of positive numbers {λk}k∈N, depend-

ing on q, such that

lim
n

λn,k = λk, ∀k ∈ N,

and {λk}k∈N is the set of all the eigenvalues of Problem (3.4). Moreover, there exist an
increasing sequence of positive integer numbers {ni }i∈N and a (L2(ωa) × L2(ωb), [·, ·]q)-
Hilbert orthonormal basis {uk}k∈N (depending possibly on the selected subsequence {ni }i∈N
and q) such that, for every k in N, uk belongs to V and it is an eigenvector of Problem (3.4)
with eigenvalue λk , and

uni ,k → uk strongly in H1(�a) × H1(�b), ∀k ∈ N, (3.5)

as i diverges,

1

han
∂x1u

a
n,k → 0 strongly in L2(�a), ∀k ∈ N, (3.6)

1

hbn
∂x3u

b
n,k → 0 strongly in L2(�b), ∀k ∈ N, (3.7)

as n diverges. Furthermore, {λ− 1
2

k uk}k∈N is a (V , αq)-Hilbert orthonormal basis.

As far as the original problem (1.1) is concerned, one has the following result which is an
immediate corollary of Theorem 3.1, by change of variable.

Corollary 3.2 For every n in N, let L2(�n) be equipped with the inner product defined by
(2.2) and let Vn be the space defined by (2.3) equipped with the inner product defined by
(2.4).
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For every n in N, let {λn,k}k∈N be the increasing diverging sequence of all the eigen-
values of Problem (2.5) and let {Un,k}k∈N be a L2(�n)-Hilbert orthonormal basis such

that

{

λ
− 1

2
n,k Un,k

}

k∈N
is a Vn-Hilbert orthonormal basis and, for every k ∈ N, Un,k is an

eigenvector of Problem (2.5) with eigenvalue λn,k .
Assume that (2.1) holds true with q in ]0,+∞[.
Let L2(ωa) × L2(ωb) be equipped with the inner product [·, ·]q defined by (3.1) and V

be the space defined by (3.2) equipped with the inner product αq(·, ·) defined by (3.3).
Then, there exists an increasing diverging sequence of positive numbers {λk}k∈N, depend-

ing on q, such that

lim
n

λn,k = λk, ∀k ∈ N,

and {λk}k∈N is the set of all the eigenvalues of Problem (3.4). Moreover, there exist an
increasing sequence of positive integer numbers {ni }i∈N and a (L2(ωa) × L2(ωb), [·, ·]q)-
Hilbert orthonormal basis {uk}k∈N (depending possibly on the selected subsequence {ni }i∈N
and q) such that, for every k in N, uk = (uak , u

b
k) belongs to V and it is an eigenvector of

Problem (3.4) with eigenvalue λk , and

lim
i

∫

−
�a
ni

(|Uni ,k − uak |2 + |∂x1Uni ,k |2 + |∂x2Uni ,k − ∂x2u
a
k |2 + |∂x3Uni ,k − ∂x3u

a
k |2
)
dx = 0,

lim
i

∫

−
�b
ni

(
|Uni ,k − ubk |2 + |∂x1Uni ,k − ∂x1u

b
k |2 + |∂x2Uni ,k − ∂x2u

b
k |2 + |∂x3Uni ,k |2

)
dx = 0,

where, from now on,
∫

−
�a
ni

means
1

|�a
ni |
∫

�a
ni

and
∫

−
�b
ni

means
1

|�b
ni |
∫

�a
ni

.

Furthermore, {λ− 1
2

k uk}k∈N is a (V , αq)-Hilbert orthonormal basis.

3.2 The case q = +∞

Let [·, ·]1 be the inner product on L2(ωa) × L2(ωb) defined by (3.1) with q = 1. Moreover,
still denote by α1 the inner product on H1

0 (ωa) × H1
0 (ωb) defined by (3.3) with q = 1, i.e.,

α1 : (u, v) = ((ua, ub), (va, vb)) ∈ (H1
0 (ωa) × H1

0 (ωb)
)2 −→ α1(u, v)

=
∫

ωa

(
∂x2u

a∂x2v
a + ∂x3u

a∂x3v
a) dx2dx3 +

∫

ωb

(
∂x1u

b∂x1v
b + ∂x2u

b∂x2v
b
)
dx1dx2.

(3.8)
Then, both are Hilbert spaces and all classic results hold true for the eigenvalue problem

⎧
⎨

⎩

u ∈ H1
0 (ωa) × H1

0 (ωb),

α1(u, v) = λ[u, v]1, ∀v ∈ H1
0 (ωa) × H1

0 (ωb),

(3.9)

(see [21]) and the following result will be proved when q is equal to +∞.

Theorem 3.3 For every n in N, let Hn be the space L2(�a) × L2(�b) equipped with the
inner product (·, ·)n defined by (2.6) and Vn be the space defined by (2.7) equipped with the
inner product an(·, ·) defined by (2.8).

123



A spectral problem for the Laplacian... Page 11 of 31   129 

For every n inN, let {λn,k}k∈N be the increasing diverging sequence of all the eigenvalues of

Problem (2.10) and let {un,k}k∈N be a Hn-Hilbert orthonormal basis such that

{

λ
− 1

2
n,k un,k

}

k∈N
is a Vn-Hilbert orthonormal basis and, for every k ∈ N, un,k = (uan,k, u

b
n,k) is an eigenvector

of Problem (2.10) with eigenvalue λn,k .
Assume that (2.1) holds true with q = +∞.
Let L2(ωa) × L2(ωb) be equipped with the inner product [·, ·]1 defined by (3.1) and

H1
0 (ωa) × H1

0 (ωb) be equipped with the inner product α1(·, ·) defined by (3.8).
Then, there exists an increasing diverging sequence of positive numbers {λk}k∈N such that

lim
n

λn,k = λk, ∀k ∈ N,

and {λk}k∈N is the set of all the eigenvalues of Problem (3.9). Moreover, there exist an
increasing sequence of positive integer numbers {ni }i∈N and a (L2(ωa) × L2(ωb), [·, ·]1)-
Hilbert orthonormal basis {uk}k∈N (depending possibly on the selected subsequence {ni }i∈N)
such that, for every k inN, uk belongs to H1

0 (ωa)×H1
0 (ωb) and it is an eigenvector of Problem

(3.9) with eigenvalue λk , and
⎛

⎝uani ,k,

√
√
√
√hbni

hani
ubni ,k

⎞

⎠→ uk strongly in H1(�a) × H1(�b), ∀k ∈ N, (3.10)

as i diverges,

1

han
∂x1u

a
n,k → 0 strongly in L2(�a), ∀k ∈ N, (3.11)

1

hbn

√

hbn
han

∂x3u
b
n,k → 0 strongly in L2(�b), ∀k ∈ N, (3.12)

as n diverges. Furthermore, {λ− 1
2

k uk}k∈N is a (H1
0 (ωa) × H1

0 (ωb), α1)-Hilbert orthonormal
basis.

Remark 3.4 Notice that (3.10) and (3.12) imply that

ubn,k → 0 strongly in H1(�b),
1

hbn
∂x3u

b
n,k → 0 strongly in L2(�b), ∀k ∈ N.

As far as the original problem (1.1) is concerned, one has the following result which is an
immediate corollary of Theorem 3.3, by change of variable.

Corollary 3.5 For every n in N, let L2(�n) be equipped with the inner product defined by
(2.2) and let Vn be the space defined by (2.3) equipped with the inner product defined by
(2.4).

For every n in N, let {λn,k}k∈N be the increasing diverging sequence of all the eigen-
values of Problem (2.5) and let {Un,k}k∈N be a L2(�n)-Hilbert orthonormal basis such

that

{

λ
− 1

2
n,k Un,k

}

k∈N
is a Vn-Hilbert orthonormal basis and, for every k ∈ N, Un,k is an

eigenvector of Problem (2.5) with eigenvalue λn,k .
Assume that (2.1) holds true with q = +∞.
Let L2(ωa) × L2(ωb) be equipped with the inner product [·, ·]1 defined by (3.1) and

H1
0 (ωa) × H1

0 (ωb) be equipped with the inner product α1(·, ·) defined by (3.8).
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Then, there exists an increasing diverging sequence of positive numbers {λk}k∈N such that

lim
n

λn,k = λk, ∀k ∈ N,

and {λk}k∈N is the set of all the eigenvalues of Problem (3.9). Moreover, there exist an
increasing sequence of positive integer numbers {ni }i∈N and a (L2(ωa) × L2(ωb), [·, ·]1)-
Hilbert orthonormal basis {uk}k∈N (depending possibly on the selected subsequence {ni }i∈N)
such that, for every k inN, uk = (uak , u

b
k) belongs to H

1
0 (ωa)×H1

0 (ωb) and it is an eigenvector
of Problem (3.9) with eigenvalue λk , and

lim
i

∫

−
�a
ni

(|Uni ,k − uak |2 + |∂x1Uni ,k |2 + |∂x2Uni ,k − ∂x2u
a
k |2 + |∂x3Uni ,k − ∂x3u

a
k |2
)
dx = 0,

lim
n

∫

−
�b
n

(∣
∣Un,k

∣
∣2 + ∣∣DUn,k

∣
∣2
)
dx = 0,

lim
i

∫

−
�b
ni

∣
∣
∣
∣
∣
∣

√
√
√
√hbni

hani
Uni ,k − ubk

∣
∣
∣
∣
∣
∣

2

dx = 0,

lim
i

∫

−
�b
ni

⎛

⎜
⎝

∣
∣
∣
∣
∣
∣

√
√
√
√hbni

hani
∂x1Uni ,k − ∂x1u

b
k

∣
∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣
∣

√
√
√
√hbni

hani
∂x2Uni ,k − ∂x2u

b
k

∣
∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣
∣

√
√
√
√hbni

hani
∂x3Uni ,k

∣
∣
∣
∣
∣
∣

2⎞

⎟
⎠ dx = 0.

Furthermore, {λ− 1
2

k uk}k∈N is a (H1
0 (ωa) × H1

0 (ωb), α1)-Hilbert orthonormal basis.

3.3 The case q = 0

Let [·, ·]1 be the inner product on L2(ωa) × L2(ωb) defined by (3.1) with q = 1.
Set

W0 = {vb ∈ H1
0 (ωb) : vb(0, x2) = 0 a.e. in ]0, l2[}, (3.13)

and still denote by α1 the inner product on H1
γ a (ω

a) × W0 defined by (3.3) with q = 1, i.e.,

α1 : (u, v) = ((ua, ub), (va, vb)) ∈
(
H1

γ a (ω
a) × W0

)2 −→ α1(u, v)

=
∫

ωa

(
∂x2u

a∂x2v
a + ∂x3u

a∂x3v
a) dx2dx3 +

∫

ωb

(
∂x1u

b∂x1v
b + ∂x2u

b∂x2v
b
)
dx1dx2.

(3.14)
Then, both are Hilbert spaces and all classic results hold true for the following eigenvalue
problem

⎧
⎨

⎩

u ∈ H1
γ a (ω

a) × W0,

α1(u, v) = λ[u, v]1, ∀v ∈ H1
γ a (ω

a) × W0,

(3.15)

(see [21]) and the following result will be proved when q = 0.

Theorem 3.6 With an abuse of notation, for every n in N, let L2(�a) × L2(�b) be equipped

with the inner product
han
hbn

(·, ·)n, where (·, ·)n is defined by (2.6), still denoted by Hn and

be the space defined by (2.7) equipped with the inner product
han
hbn

an(·, ·), where an(·, ·) is
defined by (2.8), still denoted by Vn.
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For every n inN, let {λn,k}k∈N be the increasing diverging sequence of all the eigenvalues of

Problem (2.10) and let {un,k}k∈N be a Hn-Hilbert orthonormal basis such that

{

λ
− 1

2
n,k un,k

}

k∈N
is a Vn-Hilbert orthonormal basis and, for every k ∈ N, un,k = (uan,k, u

b
n,k) is an eigenvector

of Problem (2.10) with eigenvalue λn,k .
Assume that (2.1) holds true with q = 0.
Let L2(ωa)× L2(ωb) be the space equipped with the inner product [·, ·]1 defined by (3.1),

W0 be defined by (3.13), and H1
γ a (ω

a) × W0 be the space equipped with the inner product
α1(·, ·) defined by (3.14).

Then, there exists an increasing diverging sequence of positive numbers {λk}k∈N such that

lim
n

λn,k = λk, ∀k ∈ N,

and {λk}k∈N is the set of all the eigenvalues of Problem (3.15). Moreover, there exist an
increasing sequence of positive integer numbers {ni }i∈N and a (L2(ωa) × L2(ωb), [·, ·]1)-
Hilbert orthonormal basis {uk}k∈N (depending possibly on the selected subsequence {ni }i∈N)
such that, for every k in N, uk belongs to H1

γ a (ω
a) ×W0 and it is an eigenvector of Problem

(3.15) with eigenvalue λk , and
(√

hani
hbni

uani ,k, u
b
ni ,k

)

→ uk strongly in H1(�a) × H1(�b), ∀k ∈ N, (3.16)

as i diverges,

1

han

√
han
hbn

∂x1u
a
n,k → 0 strongly in L2(�a), ∀k ∈ N, (3.17)

1

hbn
∂x3u

b
n,k → 0 strongly in L2(�b), ∀k ∈ N, (3.18)

as n diverges. Furthermore, {λ− 1
2

k uk}k∈N is a (H1
γ a (ω

a)×W0, α1)-Hilbert orthonormal basis.

Remark 3.7 Notice that (3.16) and (3.17) imply that

uan,k → 0 strongly in H1(�a),
1

han
∂x1u

a
n,k → 0 strongly in L2(�a), ∀k ∈ N.

As far as the original problem (1.1) is concerned, one has the following result which is an
immediate corollary of Theorem 3.6, by change of variable.

Corollary 3.8 For every n in N, let L2(�n) be equipped with the inner product defined

(U , V ) ∈ (L2(�n))
2 → 1

hbn

∫

�n

UVdx

and let Vn be the space defined by (2.3) equipped with the inner product defined by

(U , V ) ∈ Vn × Vn → 1

hbn

∫

�n

DUDVdx .

For every n in N, let {λn,k}k∈N be the increasing diverging sequence of all the eigen-
values of Problem (2.5) and let {Un,k}k∈N be a L2(�n)-Hilbert orthonormal basis such
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that

{

λ
− 1

2
n,k Un,k

}

k∈N
is a Vn-Hilbert orthonormal basis and, for every k ∈ N, Un,k is an

eigenvector of Problem (2.5) with eigenvalue λn,k .
Assume that (2.1) holds true with q = 0.
Let L2(ωa)× L2(ωb) be the space equipped with the inner product [·, ·]1 defined by (3.1),

W0 be defined by (3.13), and H1
γ a (ω

a) × W0 be the space equipped with the inner product
α1(·, ·) defined by (3.14).

Then, there exists an increasing diverging sequence of positive numbers {λk}k∈N such that

lim
n

λn,k = λk, ∀k ∈ N,

and {λk}k∈N is the set of all the eigenvalues of Problem (3.15). Moreover, there exist an
increasing sequence of positive integer numbers {ni }i∈N and a (L2(ωa) × L2(ωb), [·, ·]1)-
Hilbert orthonormal basis {uk}k∈N (depending possibly on the selected subsequence {ni }i∈N)
such that, for every k ∈ N, uk = (uak , u

b
k) belongs to H1

γ a (ω
a) × W0 and it is an eigenvector

of Problem (3.15) with eigenvalue λk , and

lim
n

∫

−
�a
n

(∣
∣Un,k

∣
∣2 + ∣∣DUn,k

∣
∣2
)
dx = 0,

lim
i

∫

−
�a
ni

∣
∣
∣
∣
∣

√
hani
hbni

Uni ,k − uak

∣
∣
∣
∣
∣

2

dx = 0,

lim
i

∫

−
�a
ni

⎛

⎝

∣
∣
∣
∣
∣

√
hani
hbni

∂x1Uni ,k

∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣

√
hani
hbni

∂x2Uni ,k − ∂x2u
a
k

∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣

√
hani
hbni

∂x3Uni ,k − ∂x3u
a
k

∣
∣
∣
∣
∣

2
⎞

⎠ dx = 0,

lim
i

∫

−
�b
ni

(
|Uni ,k − ubk |2 + |∂x1Uni ,k − ∂x1u

b
k |2 + |∂x2Uni ,k − ∂x2u

b
k |2 + |∂x3Uni ,k |2

)
dx = 0.

4 A priori estimates on the eigenvalues

This section is devoted to proving lower and upper bounds for the eigenvalues of Problem
(2.10)

Proposition 4.1 For every n in N, let Hn be the space L2(�a) × L2(�b) equipped with the
inner product (·, ·)n defined by (2.6), Vn be the space defined by (2.7) equipped with the inner
product an(·, ·) defined by (2.8), and {λn,k}k∈N be the increasing diverging sequence of all
the eigenvalues of Problem (2.10). Then,

λn,k ≥ 1

l22
, ∀k, n ∈ N. (4.1)

∀k ∈ N, ∃ck ∈]0,+∞[ : λn,k ≤ ck, ∀n ∈ N, (4.2)

where l2 is the positive real number involved in the definition of ωa and ωb (see Sect. 2).

Proof As far as the proof of (4.1) is concerned, at first note that the boundary conditions on
uan,k and u

b
n,k provide that

‖uan,k‖L2(�a) ≤ l2‖∂x2uan,k‖L2(�a), ‖ubn,k‖L2(�b) ≤ l2‖∂x2ubn,k‖L2(�b), ∀n, k ∈ N,

(4.3)
where l2 is the positive real number involved in the definition of ωa and ωb.
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Combining now (2.13), (4.3), and (2.12) gives

λn,k = an(un,k, un,k) ≥
∫

�a
|∂x2uan,k |2dx + hbn

han

∫

�b
|∂x2ubn,k |2dx

≥ 1

l22

(∫

�a
|uan,k |2dx + hbn

han

∫

�b
|ubn,k |2dx

)

= 1

l22
(un,k, un,k)n = 1

l22
∀n, k ∈ N,

i.e., (4.1) holds true.
As far as the proof of (4.2) is concerned, let {λ j } j∈N be the increasing diverging sequence

of all the eigenvalues of the following problem
⎧
⎨

⎩

−�y(x2, x3) = λy(x2, x3) in ωa,

y = 0 on ∂ωa .

(4.4)

Then, for every j ∈ N there exists an eigenvector y j in H1
0 (ωa) of (4.4) with eigenvalue

λ j such that {y j } j∈N is a L2(ωa)-Hilbert orthonormal basis and

{

λ
− 1

2
j y j

}

j∈N
is a H1

0 (ωa)-

Hilbert orthonormal basis.
For every j in N, set

ζ j (x1, x2, x3) =
⎧
⎨

⎩

y j (x2, x3), if (x1, x2, x3) ∈ �a,

0, if (x1, x2, x3) ∈ �b.

Fix k in N and set

Zk =
⎧
⎨

⎩

k∑

j=1

α jζ j : α1, · · · , αk ∈ R

⎫
⎬

⎭
.

Then, for every n inN, Zk is a subspace of Vn with dimension k. Consequently, the min-max
Principle (2.14) provides that

λn,k ≤ max
ζ∈Zk−{0}

an(ζ, ζ )

(ζ, ζ )n
= max

(α1,··· ,αk )∈Rk−{0}

∑k
j=1 α2

jλ j
∑k

j=1 α2
j

≤ λk, ∀n ∈ N,

i.e. (4.2) holds true with ck = λk . 
�

Remark 4.2 It is possible to give an estimate of the constant ck in Proposition 4.1. Indeed, it
is well known that the set of all the eigenvalues of problem (4.4) is given by

{(
i2

l22
+ m2

l23

)

π2

}

i,m∈N
.

Then,

∀k ∈ N, ck ≤
(
k2

l22
+ k2

l23

)

π2.
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Recall that Aim sin

(
iπ

l2
x2

)

sin

(
mπ

l3
x3

)

, with Aim in R, is an eigenfunction of (4.4)

with eigenvalue

(
i2

l22
+ m2

l23

)

π2.

Remark 4.3 Proposition 4.1 is independent of the asymptotic behavior of
{
han
}

n∈N and
{
hbn
}

n∈N.

Choosing k = h in (2.13) and taking into account Proposition 4.1 provide the following
result.

Corollary 4.4 For every n in N, let Hn be the space L2(�a) × L2(�b) equipped with the
inner product (·, ·)n defined by (2.6) and Vn be the space defined by (2.7) equipped with the
inner product an(·, ·) defined by (2.8).

For every n inN, let {λn,k}k∈N be the increasing diverging sequence of all the eigenvalues of

Problem (2.10) and let {un,k}k∈N be a Hn-Hilbert orthonormal basis such that

{

λ
− 1

2
n,k un,k

}

k∈N
is a Vn-Hilbert orthonormal basis and, for every k ∈ N, un,k is an eigenvector of Problem
(2.10) with eigenvalue λn,k . Then,

∀k ∈ N, ∃ck ∈]0,+∞[ : an(un,k, un,k) = λn,k ≤ ck, ∀n, k ∈ N. (4.5)

5 Some preliminary results

This section contains some results that are crucial for proving Theorems 3.1, 3.3, and 3.6.
Precisely, Proposition 5.1 will give a trace convergence result, written in a very general
way, which will allow us to identify junction and boundary conditions in the limit problems.
Proposition 5.2 will give a density result for approximating the elements of V defined in (3.2)
by regular functions. Although this result was used in other works, to our knowledge, there
are no previous proofs of it. Our proof is rather technical and it works also for domains which
are not “symmetric”. Proposition 5.3 is devoted to building a recovery sequence which will
be used in the proof of all three main results.

Proposition 5.1 Let {hi }i∈N be a sequence in ]0,+∞[ such that

lim
i
hi = 0. (5.1)

Let {wi }i∈N be sequence in H1(�b) such that

lim
i

(
1

hi

∫

�b
|∂x3wi (x)|2dx

)

= 0, (5.2)

and
∃w ∈ H1(�b) : wi⇀w weakly in H1(�b), as i → +∞, (5.3)

Then,

lim
i

∫

]− 1
2 , 12 [×]0,l2[

wi (hi x1, x2, 0)ϕ(x2)dx1dx2

=
∫ l2

0
w(0, x2)ϕ(x2)dx2, ∀ϕ ∈ C∞

0 (]0, l2[) .

(5.4)
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Notice that assumption (5.2) ensures that the function w given by (5.3) is independent of
x3, i.e.,

w(x1, x2, x3) = w(x1, x2), for a.e. (x1, x2, x3) ∈ �b, for a.e. (x1, x2) ∈ ωb. (5.5)

Then, it makes sense to write w(0, x2) in (5.4).

Proof At first, one proves the existence of x3 in ] − 1, 0[ and of an increasing sequence of
positive integer numbers {i j } j∈N such that

wi j (·, ·, x3)⇀w weakly in H1
(] − 1

2 ,
1
2 [×]0, l2[

)
, (5.6)

as j diverges.
Indeed, set

ρi (x3) =
∫

]− 1
2 , 12 [×]0,l2[

(
|wi (x1, x2, x3)|2 + ∣∣∂x1wi (x1, x2, x3)

∣
∣2 + ∣∣∂x2wi (x1, x2, x3)

∣
∣2
)
dx1dx2

for x3 a.e. in ] − 1, 0[, ∀i ∈ N.

Then, Fatou’s Lemma combined with assumption (5.3) provides that

∫ 0

−1
lim inf

i
ρi (x3)dx3 ≤ lim inf

i

∫ 0

−1
ρi (x3)dx3 < +∞.

Consequently, there exist two constants c in ]0,+∞[ and x3 in ]−1, 0[, and an increasing
sequence of positive integer numbers {i j } j∈N such that

ρi j (x3) < c, ∀ j ∈ N,

which provides (5.6), thanks to (5.3) and (5.5).
Now, for proving (5.4), fix ϕ in C∞

0 (]0, l2[) and split the first integral in (5.4), written
with index i j , as

∫

]− 1
2 , 12 [×]0,l2[

wi j (hi j x1, x2, 0)ϕ(x2)dx1dx2

=
∫

]− 1
2 , 12 [×]0,l2[

(
wi j (hi j x1, x2, 0) − wi j (hi j x1, x2, x3)

)
ϕ(x2)dx1dx2

+
∫

]− 1
2 , 12 [×]0,l2[

(
wi j (hi j x1, x2, x3) − wi j (0, x2, x3)

)
ϕ(x2)dx1dx2

+
∫ l2

0
wi j (0, x2, x3)ϕ(x2)dx2. ∀ j ∈ N.

(5.7)

One will pass to the limit, as j diverges, in each term of this decomposition.
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As far as the first integral on the right-hand side of (5.7) is concerned, assumption (5.2)
implies that

∣
∣
∣
∣
∣

∫

]− 1
2 , 12 [×]0,l2[

(
wi j (hi j x1, x2, 0) − wi j (hi j x1, x2, x3)

)
ϕ(x2)dx1dx2

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫

]− 1
2 , 12 [×]0,l2[

(∫ 0

x3
∂x3wi j (hi j x1, x2, x3)dx3

)

ϕ(x2)dx1dx2

∣
∣
∣
∣
∣

≤ ‖ϕ‖L∞(]0,l2[)|�b| 12
(∫

�b
|∂x3wi j (hi j x1, x2, x3)|2dx

) 1
2

≤ ‖ϕ‖L∞(]0,l2[)|�b| 12
(

1

hi j

∫

�b
|∂x3wi j (x1, x2, x3)|2dx

) 1
2

→ 0, as j → +∞.

(5.8)

As far as the second integral on the right-hand side of (5.7) is concerned, assumption (5.1)
and (5.6) imply

∣
∣
∣
∣
∣

∫

]− 1
2 , 12 [×]0,l2[

(
wi j (hi j x1, x2, x3) − wi j (0, x2, x3)

)
ϕ(x2)dx1dx2

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫

]− 1
2 , 12 [×]0,l2[

(∫ hi j x1

0
∂twi j (t, x2, x3)dt

)

ϕ(x2)dx1dx2

∣
∣
∣
∣
∣

≤ 1

2
‖ϕ‖L∞(]0,l2[)

∫ l2

0

⎛

⎝

∫ hi j
2

0

∣
∣∂twi j (t, x2, x3)

∣
∣ dt

⎞

⎠ dx2

+1

2
‖ϕ‖L∞(]0,l2[)

∫ l2

0

(∫ 0

−
hi j
2

∣
∣∂twi j (t, x2, x3)

∣
∣ dt

)

dx2

≤ ‖ϕ‖L∞(]0,l2[)

√

l2
hi j
2

(∫

]− 1
2 , 12 [×]0,l2[

|∂x1wi j (x1, x2, x3)|2dx1dx2
) 1

2

→ 0,

as j → +∞.

(5.9)

As far as the last integral on the right-hand side of (5.7) is concerned, (5.6) implies

lim
j

∫ l2

0
wi j (0, x2, x3)ϕ(x2)dx2 =

∫ l2

0
w(0, x2)ϕ(x2)dx2. (5.10)

Eventually, passing to the limit in (5.7), as j diverges, and taking into account (5.8), (5.9),
and (5.10) give (5.4) for the subsequence {ni j } j∈N. Notice that (5.4) holds true for the whole
subsequence {ni }i∈N too, since the limit ϕw does not depend on {ni j } j∈N. 
�
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The following proposition is devoted to approximating the elements of the space V defined
by (3.2) by more regular functions belonging to the space Vreg defined by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Vreg =
{ (

va, vb
) ∈ C∞

0 (]0, l2[×[0, l3[) × C0
(
ωb
) :

vb|[−l−1 ,0]×[0,l2]
∈ C∞ ([−l−1 , 0] × [0, l2]

)
, vb|[0,l+1 ]×[0,l2]

∈ C∞ ([0, l+1 ] × [0, l2]
)
,

va(x2, 0) = vb (0, x2) in ]0, l2[
}
.

(5.11)

Proposition 5.2 Let V and Vreg be defined by (3.2) and (5.11), respectively. Then, Vreg is
dense in V .

Proof Fix
(
va, vb

)
in V . The goal is to find a sequence

{(
van , v

b
n

)}

n∈N in Vreg such that
(
van , v

b
n

)→ (
va, vb

)
strongly in H1 (ωa) × H1

(
ωb
)
. (5.12)

The proof of (5.12) will be split into two steps.
Step 1. The first step is devoted to proving (5.12) when

l+1 = l−1 .

Split vb in the even part and in the odd part with respect to x1, i.e.,

vb(x1, x2) = ve(x1, x2) + vo(x1, x2), a.e. in ωb, (5.13)

where

ve(x1, x2) = vb(x1, x2) + vb(−x1, x2)

2
, vo(x1, x2) = vb(x1, x2) − vb(−x1, x2)

2
, a.e. in ωb.

As far as the approximation of vo is concerned, since it belongs to H1
0 (ωb) and

vo(0, x2) = 0, a.e. in ]0, l2[,
one has that vo|ωb−

belongs to H1
0 (ωb−) and vo|ωb+

belongs to H1
0 (ωb+) (see Sect. 2 for the

definition of ωb+ and ωb−). Consequently, there exist two sequences
{
vo−n
}

n∈N in C∞
0

(
ωb−
)

and
{
vo+n
}

n∈N in C∞
0

(
ωb+
)
such that

vo−n → vo|ωb−
strongly in H1

(
ωb−
)

, vo+n → vo|ωb+
strongly in H1

(
ωb+
)

.

Then, setting for every n in N

von : (x1, x2) ∈ ωb →

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vo+n (x1, x2), if (x1, x2) ∈ ωb+,

0, if (x1, x2) ∈ {0}×]0, l2[,

vo−n (x1, x2), if (x1, x2) ∈ ωb−,

one has that

von ∈ C∞
0

(
ωb
)

, ∀n ∈ N, (5.14)

von(0, x2) = 0, if x2 ∈]0, l2[, ∀n ∈ N, (5.15)
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and
von → vo strongly in H1

(
ωb
)

. (5.16)

As far as the approximation of va and ve is concerned, set

ωa
R =] − l3, 0]×]0, l2[,

vaR : (x1, x2) ∈ ωa
R → vaR(x1, x2) = va(x2,−x1), (5.17)

v̂ : (x1, x2) ∈ ωb+ ∪ ωa
R →

⎧
⎨

⎩

ve(x1, x2), if (x1, x2) ∈ ωb+,

vaR(x1, x2), if (x1, x2) ∈ ωa
R .

(5.18)

Since

vaR(0, x2) = va(x2, 0) = vb(0, x2) = ve(0, x2), a.e. in ]0, l2[,
it is easy to see that v̂ belongs to H1

0 (ωb+∪ωa
R). Consequently, there exists a sequence {̂vn}n∈N

in C∞
0 (ωb+ ∪ ωa

R), such that

v̂n → v̂ strongly in H1
(
ωb+ ∪ ωa

R

)
,

which implies, thanks to definition (5.18), that

v̂n|ωb+
→ ve|ωb+

strongly in H1
(
ωb+
)

, (5.19)

and
v̂n|ωaR

→ vaR strongly in H1 (Interior(ωa
R)
)
. (5.20)

Set now, for every n in N,

van : (x2, x3) ∈]0, l2[×[0, l3[→ van (x2, x3) = v̂n|ωaR
(−x3, x2). (5.21)

Then, the sequence
{
van
}

n∈N is included in C∞
0 (]0, l2[×[0, l3[) and, thanks to (5.21), (5.20),

and (5.17), it converges strongly in H1(ωa) to the function given by

vaR(−x3, x2) = va(x2, x3), a.e. in ωa,

i.e.

van → va strongly in H1 (ωa) .

Moreover, setting for every n in N,

ven : (x1, x2) ∈ ωb → ven(x2, x3) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v̂n(x1, x2), if (x1, x2) ∈ ωb+,

v̂n(0, x2), if x2 ∈]0, l2[,

v̂n(−x1, x2), if (x1, x2) ∈ ωb−.

(5.22)

one has

ven ∈ C0

(
ωb
)

, ven |
ωb+

∈ C∞ (ωb+
)

ven |
ωb−

∈ C∞ (ωb−
)

, ∀n ∈ N, (5.23)

ven(0, x2) = v̂n(0, x2) = van (x2, 0), if x2 ∈]0, l2[, ∀n ∈ N, (5.24)
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and by virtue of (5.19)

ven → ve strongly in H1
(
ωb
)

. (5.25)

Now, setting for every n in N,

vbn : (x1, x2) ∈ ωb → ven(x1, x2) + von(x1, x2),

(5.13), (5.14), (5.15), (5.16), (5.23), (5.24), and (5.25) imply that

vbn ∈ C0

(
ωb
)

, vbn |
ωb+

∈ C∞ (ωb+
)

vbn |
ωb−

∈ C∞ (ωb−
)

, ∀n ∈ N,

vbn(0, x2) = van (x2, 0), in ]0, l2[, ∀n ∈ N,

vbn → vb strongly in H1
(
ωb
)

.

Eventually, the sequence
{(

van , v
b
n

)}

n∈N, so built, is in Vreg and satisfies (5.12).
Step 2. The second step is devoted to proving (5.12) when

l+1 	= l−1 .

For instance, assume

l−1 > l+1 .

Let ṽb be the function defined on ] − l−1 , l−1 [×]0, l2[ by

ṽb(x1, x2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vb(x1, x2), if x1 < 0,

vb

(
l+1
l−1

x1, x2

)

, if x1 > 0.

By virtue of the previous step, there exists a sequence
{(

van , ṽ
b
n

)}

n∈N ⊂ C∞
0 (]0, l2[×

[0, l3[×C0
(] − l−1 , l−1 [×]0, l2[

)
such that

ṽbn|[−l−1 ,0]×[0,l2]
∈ C∞ ([−l−1 , 0] × [0, l2]

)
, ṽbn|[0,l−1 ]×[0,l2]

∈ C∞ ([0, l−1 ] × [0, l2]
)
,

va(x2, 0) = ṽbn (0, x2) in ]0, l2[,
for every n ∈ N, and

(
van , ṽ

b
n

)→ (
va, ṽb

)
strongly in H1 (ωa) × H1

(] − l−1 , l−1 [×]0, l2[
)
.

Now, for every n ∈ N, let vbn be the function defined on ωb =] − l−1 , l+1 [×]0, l2[ by

vbn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ṽbn(x1, x2), if x1 < 0,

ṽbn

(
l−1
l+1

x1, x2

)

, if x1 > 0.

Then, the sequence
{(

van , v
b
n

)}

n∈N belongs to Vreg and satisfies (5.12).
The proof of (5.12) is similar if l−1 < l+1 . 
�
This section concludes with the building of a recovery sequence for functions in Vreg with

functions in Vn defined by (2.7).
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Proposition 5.3 Let Vreg be defined by (5.11). Let v = (va, vb) be in Vreg. Then, there exists
a sequence {gn}n∈N ⊂ H1

�a (�
a) such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

gn → va strongly in L2(�a), as n → +∞,

(
1

han
∂x1gn, ∂x2gn, ∂x3gn

)

→ (
0, ∂x2v

a, ∂x3v
a
)
strongly in

(
L2(�a)

)3
,

as n → +∞,

gn(x1, x2, 0) = vb(hanx1, x2), for (x1, x2) ∈] − 1
2 ,

1
2 [×]0, l2[, ∀n ∈ N.

(5.26)

Proof For every n ∈ N set

gn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

va(x2, x3), if x = (x1, x2, x3) ∈] − 1
2 , 1

2 [×]0, l2[×]han, l3[,

va(x2, h
a
n)

x3
han

+ vb(hanx1, x2)
han − x3

han
, if x = (x1, x2, x3) ∈] − 1

2 , 1
2 [×]0, l2[×[0, han].

Obviously, {gn}n∈N is included in H1
�a (�

a) and the last line of (5.26) is satisfied. Moreover,
by the definition of Vreg , it is easy to see that

∫

]− 1
2 , 12 [×]0,l2[×]0,han [

|gn |2 dx ≤2(‖va‖2L∞(ωa) + ‖vb‖2L∞(ωb)
)l2h

a
n → 0,

∫

]− 1
2 , 12 [×]0,l2[×]0,han [

∣
∣
∣
∣
1

han
∂x1gn

∣
∣
∣
∣

2

dx ≤ ‖vb‖2W 1,∞(ωb)
l2h

a
n → 0,

∫

]− 1
2 , 12 [×]0,l2[×]0,han [

∣
∣∂x2gn

∣
∣2 dx ≤2(‖va‖2W 1,∞(ωa)

+ ‖vb‖2W 1,∞(ωb)
)l2h

a
n → 0,

and
∫

]− 1
2 , 12 [×]0,l2[×]0,han [

∣
∣∂x3gn

∣
∣2 dx =

∫

]− 1
2 , 12 [×]0,l2[

1

han

∣
∣
∣v

a(x2, h
a
n) − vb(hanx1, x2)

∣
∣
∣
2
dx1dx2

=
∫

]− 1
2 , 12 [×]0,l2[

1

han

∣
∣
∣v

a(x2, h
a
n) − va(x2, 0) + vb(0, x2) − vb(hanx1, x2)

∣
∣
∣
2
dx1dx2

≤ 2
(
‖va‖2W 1,∞(ωa)

+ ‖vb‖2W 1,∞(ωb)

)
l2h

a
n → 0,

as n diverges, which imply the convergences in (5.26). 
�
Eventually, introduce the space

Ṽ =
{
v = (va, vb) ∈ H1

�a (�
a) × H1

�b (�
b) : va indep. of x1, vb indep. of x3

}

� H1
γ a (ω

a) × H1
0 (ωb).

(5.27)

which will be used in the following sections.

6 Proof of Theorem 3.1

The proof will be split into several steps.
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Step 1. The first step is devoted to proving the existence of an increasing sequence of
positive integer numbers {ni }i∈N, an increasing sequence of positive numbers {λk}k∈N, a
sequence

{
uk = (uak , u

b
k)
}

k∈N in Ṽ , where Ṽ is the space defined by (5.27), and a sequence
{
(ξak , ξbk )

}

k∈N in L2(�a)×L2(�b) (depending possibly on the selected subsequence {ni }i∈N)
such that, for every k in N,

lim
i

λni ,k = λk, (6.1)

(uani ,k, u
b
ni ,k)⇀(uak , u

b
k) weakly in H1(�a)×H1(�b) and strongly in L2(�a) × L2(�b),

(6.2)
(

1

hani
∂x1u

a
ni ,k,

1

hbni
∂x3u

b
ni ,k

)

⇀(ξak , ξbk ) weakly in L2(�a) × L2(�b), (6.3)

as i diverges, and
[uk, uh]q = δh,k, ∀k, h ∈ N. (6.4)

Estimates in (4.1) and in (4.5), assumption (2.1) with q in ]0,+∞[, and a diagonal argu-
ment ensure that (6.1), (6.2), and (6.3) hold true for a suitable increasing sequence of positive
integer numbers {ni }i∈N and for suitable sequences {λk}k∈N in [ 1

l22
,+∞[, {uk = (uak , u

b
k)
}

k∈N
in Ṽ and

{
(ξak , ξbk )

}

k∈N in L2(�a) × L2(�b).
Eventually, (6.4) follows by passing to the limit in

(uni ,k, uni ,h)n = δh,k, ∀i, k, h,∈ N,

as i diverges, thanks to assumption (2.1) with q in ]0,+∞[ and the strong L2-convergence
in (6.2).

For asserting that uk = (uak , u
b
k) belongs to V , it remains to prove the following result.

Step 2.
uak (x2, 0) = ubk(0, x2) a.e. in ]0, l2[, ∀k ∈ N. (6.5)

Fix k in N.
The transmission condition in (2.7) gives
∫

]− 1
2 , 12 [×]0,l2[

uak,ni (x1, x2, 0)ϕ(x2)dx1dx2

=
∫

]− 1
2 , 12 [×]0,l2[

ubk,ni (h
a
ni x1, x2, 0)ϕ(x2)dx1dx2, ∀i ∈ N, ∀ϕ ∈ C∞

0 (]0, l2[) .

(6.6)

As far as the first integral in (6.6) is concerned, the weak H1-convergence in (6.2) and the
fact that uak is independent of x1 imply

lim
i

∫

]− 1
2 , 12 [×]0,l2[

uak,ni (x1, x2, 0)ϕ(x2)dx1dx2

=
∫ l2

0
uak (x2, 0)ϕ(x2)dx2, ∀ϕ ∈ C∞

0 (]0, l2[) .

(6.7)
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As far as the last integral in (6.6) is concerned, note that estimate in (4.5) provides that

1

han

∫

�b
|∂x3ubk,n(x)|2dx ≤ ckh

b
n → 0, as n → +∞. (6.8)

Then, combining (6.8) with the weak H1-convergence in (6.2) and using Proposition 5.1
yield

lim
i

∫

]− 1
2 , 12 [×]0,l2[

ubk,ni (h
a
ni x1, x2, 0)ϕ(x2)dx1dx2

=
∫ l2

0
ubk(0, x2)ϕ(x2)dx2, ∀ϕ ∈ C∞

0 (]0, l2[) .

(6.9)

Eventually, the junction condition in (6.5) follows from (6.6), (6.7), and (6.9).
Step 3. This step is devoted to proving that

αq(uk, v) = λk[uk, v]q , ∀v ∈ V , ∀k ∈ N, (6.10)

αq(λ
− 1

2
k uk, λ

− 1
2

h uh) = δh,k, ∀k, h ∈ N, (6.11)

lim
k

λk = +∞. (6.12)

Fix k in N. To prove (6.10), by following the classic idea of �−convergence, a recovery
sequence will be constructed for regular function v = (va, vb) in Vreg , where Vreg is defined
by (5.11). Precisely, for v = (va, vb) in Vreg , let {gn}n∈N be a sequence in H1

�a (�
a) satisfying

(5.26) in Proposition 5.3. Choosing (gni , v
b) as test function in (2.11) written with index ni

yields
∫

�a

(
1

hani
∂x1u

a
ni ,k

1

hani
∂x1gni + ∂x2u

a
ni ,k∂x2gni + ∂x3u

a
ni ,k∂x3gni

)

dx

+hbni
hani

∫

�b

(
∂x1u

b
ni ,k∂x1v

b + ∂x2u
b
ni ,k∂x2v

b
)
dx

= λni ,k

(∫

�a
uani ,kgni dx + hbni

hani

∫

�b
ubni ,kv

bdx

)

, ∀i ∈ N.

(6.13)

Passing to the limit, as i diverges, in (6.13) and using (2.1) with q in ]0,+∞[, (6.1), (6.2),
(6.3), and (5.26) provide that
∫

ωa

(
∂x2u

a
k∂x2v

a + ∂x3u
a
k∂x3v

a) dx2dx3 + q
∫

ωb

(
∂x1u

b
k∂x1v

b + ∂x2u
b
k∂x2v

b
)
dx1dx2

= λk

∫

ωa
uakv

adx2dx3 + q
∫

ωb
ubkv

bdx1dx2, ∀(va, vb) ∈ Vreg,

which implies (6.10), thanks to the density of Vreg in V proved in Proposition 5.2.
Relations in (6.11) follow from (6.10), (6.4), and from the fact that λk are all positive.
As far as (6.12) is concerned, either (6.12) holds true, or {λk}k∈N is a finite set. In the second

case, by virtue of (6.4), Problem (6.10) would admit an eigenvalue of infinite multiplicity.
But this is not possible, due to the Fredholm’s alternative Theorem.
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Step 4. This step is devoted to proving (3.5), (3.6), and (3.7).
Fix k in N.
Combining (2.13), (6.1), and (6.11) gives the convergence of the energies

lim
ni

ani (uni ,k, uni ,k) = lim
ni

λni ,k = λk = αq(uk, uk),

which implies (3.5), (3.6), and (3.7), thanks to (2.1) with q in ]0,+∞[, (6.2), and (6.3).
Step 5. Conclusion.

It is proved that {λk}k∈N is included in [ 1
l22

,+∞[ and it is an increasing and diverging

sequence of eigenvalues of Problem (6.10), {uk}k∈N is an orthonormal sequence in (L2(ωa)×
L2(ωb), [·, ·]q), {λ− 1

2
k uk}k∈N is an orthonormal sequence in (V , αq), for every k ∈ N uk is an

eigenvector for Problem (6.10), with eigenvalue λk , and convergences (3.5), (3.6), and (3.7)
hold true.

Moreover, arguing as in [9] (see step 2 in the proof of Theorem 2.5) or as in [22] (see
Theorem 9.2), one can prove that there does not exist (u, λ) ∈ V ×R satisfying the following
problem ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u ∈ V ,

αq(u, v) = λ[u, v]q , ∀v ∈ V ,

[u, uk]q = 0, ∀k ∈ N,

[u, u]q = 1.

As in [9] (see step 3 in the proof of Theorem 2.5), this implies that the sequence {λk}k∈N
forms the whole set of the eigenvalues of Problem (3.4), that {λ− 1

2
k uk}k∈N is a (V , αq)-Hilbert

orthonormal basis, and that {uk}k∈N is a (L2(ωa)×L2(ωb), [·, ·]q)-Hilbert orthonormal basis.
In conclusion, since the sequence {λk}k∈N can be characterized by the min-max Principle,

for every k ∈ N convergence (6.1) holds true for the whole sequence {λn,k}n∈N.

7 Proof of Theorem 3.3

The proof will be split into several steps.
Step 1. The first step is devoted to proving the existence of an increasing sequence of
positive integer numbers {ni }i∈N, an increasing sequence of positive numbers {λk}k∈N, a
sequence

{
uk = (uak , u

b
k)
}

k∈N in Ṽ , where Ṽ is the space defined by (5.27), and a sequence
{
(ξak , ξbk )

}

k∈N in L2(�a)×L2(�b) (depending possibly on the selected subsequence {ni }i∈N)
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such that, for every k in N,

lim
i

λni ,k = λk, (7.1)

(

uani ,k,

√
hbni
hani

ubni ,k

)

⇀(uak , u
b
k) weakly in H1(�a) × H1(�b) and

strongly in L2(�a) × L2(�b),

(7.2)

⎛

⎝
1

hani
∂x1u

a
ni ,k,

1

hbni

√
√
√
√hbni

hani
∂x3u

b
ni ,k

⎞

⎠⇀(ξak , ξbk ) weakly in L2(�a) × L2(�b), (7.3)

as i diverges, and
[uk, uh]1 = δh,k, ∀k, h ∈ N. (7.4)

Estimates in (4.1) and in (4.5), and a diagonal argument ensure that (7.1), (7.2), and (7.3)
hold true for a suitable increasing sequence of positive integer numbers {ni }i∈N, for suitable
sequences {λk}k∈N in [ 1

l22
,+∞[ and for suitable sequences

{
uk = (uak , u

b
k)
}

k∈N in Ṽ and
{
(ξak , ξbk )

}

k∈N in L2(�a) × L2(�b).
Eventually, (7.4) follows by passing to the limit in

(uni ,k, uni ,h)n = δh,k, ∀i, k, h,∈ N,

as i diverges, thanks to the strong L2-convergence in (7.2).
For asserting that uak belongs to H1

0 (ωa), it remains to prove the following result.
Step 2.

uak (x2, 0) = 0 a.e. in ]0, l2[, ∀k ∈ N. (7.5)

Fix k in N.
The transmission condition in (2.7) ensures that
∫

]− 1
2 , 12 [×]0,l2[

uak,ni (x1, x2, 0)ϕ(x2)dx1dx2

=
∫

]− 1
2 , 12 [×]0,l2[

ubk,ni (h
a
ni x1, x2, 0)ϕ(x2)dx1dx2, ∀i ∈ N, ∀ϕ ∈ C∞

0 (]0, l2[) .

(7.6)

As far as the first integral in (7.6) is concerned, the weak H1-convergence in (7.2) and the
fact that uak is independent of x1 imply

lim
i

∫

]− 1
2 , 12 [×]0,l2[

uak,ni (x1, x2, 0)ϕ(x2)dx1dx2

=
∫ l2

0
uak (x2, 0)ϕ(x2)dx2, ∀ϕ ∈ C∞

0 (]0, l2[) .

(7.7)

As far as the last integral in (7.6) is concerned, note that estimate in (4.5) provides that

1

han

∫

�b
|∂x3ubk,n(x)|2dx ≤ ckh

b
n → 0, as n → +∞, (7.8)

123



A spectral problem for the Laplacian... Page 27 of 31   129 

moreover, weak H1-convergences in (7.2) and assumption (2.1) with q = +∞ provide

ubni ,k → 0 strongly in H1(�b), (7.9)

as i diverges. Then, combining (7.8) with (7.9) and using Proposition 5.1 yield

lim
i

∫

]− 1
2 , 12 [×]0,l2[

ubk,ni (h
a
ni x1, x2, 0)ϕ(x2)dx1dx2 = 0, ∀ϕ ∈ C∞

0 (]0, l2[) . (7.10)

Eventually, boundary condition (7.5) follows from (7.6), (7.7), and (7.10).
Step 3. This step is devoted to proving that

α1(uk, v) = λk[uk, v]1, ∀v = (va, vb) ∈ H1
0 (ωa) × H1

0 (ωb). (7.11)

Fix k in N.
To obtain (7.11), it is enough to prove that
∫

ωa

(
∂x2u

a
k∂x2v

a + ∂x3u
a
k∂x3v

a) dx2dx3 = λk

∫

ωa
uakv

adx2dx3, ∀va ∈ H1
0 (ωa), (7.12)

∫

ωb

(
∂x1u

b
k∂x1v

b + ∂x2u
b
k∂x2v

b
)
dx1dx2 = λk

∫

ωb
ubkv

bdx1dx2, ∀vb ∈ H1
0 (ωb), (7.13)

and to add (7.12) and (7.13).
Equation (7.12) follows immediately by passing to the limit, as i diverges, in (2.11) written

with index ni and with a test function v = (va, 0), va in H1
0 (ωa), and using (7.1) and (7.2).

As far as the proof of (7.13) is concerned, for vb in C∞
0 (ωb), it is easy to construct va in

C∞
0 (]0, l2[×[0, l3[) such that

va(x2, 0) = vb (0, x2) in ]0, l2[.
Then, v = (va, vb) belongs to Vreg , where Vreg is defined by (5.11). Let {gn}n∈N be a

sequence in H1
�a (�

a) satisfying (5.26) in Proposition 5.3. Choosing

(√
hani
hbni

gni ,

√
hani
hbni

vb
)

as test function in (2.11) written with index ni yields
√
hani
hbni

∫

�a

(
1

hani
∂x1u

a
ni ,k

1

hani
∂x1gni + ∂x2u

a
ni ,k∂x2gni + ∂x3u

a
ni ,k∂x3gni

)

dx

+
∫

�b

(

∂x1

(√
hbni
hani

ubni ,k

)

∂x1v
b + ∂x2

(√
hbni
hani

ubni ,k

)

∂x2v
b

)

dx =

= λni ,k

(√
hani
hbni

∫

�a
uani ,kgni dx +

∫

�b

√
hbni
hani

ubni ,kv
bdx

)

, ∀i ∈ N.

(7.14)

Passing to the limit, as i diverges, in (7.14) and using (2.1) with q = +∞, (5.26), (7.1),
(7.2), and (7.3) provide (7.13) with vb in C∞

0 (ωb). Then, (7.13) holds true for any vb in
H1
0 (ωb), by a density argument.

Step 4. Conclusion.
By arguing as in the proof of Theorem 3.1, one proves that

α1(λ
− 1

2
k uk, λ

− 1
2

h uh) = δh,k, ∀k, h ∈ N,

lim
k

λk = +∞,

123



  129 Page 28 of 31 A. Gaudiello et al.

and that (3.10), (3.11), and (3.12) hold true.
Moreover in a classical way (for instance, see [9] or [22]) one can prove that the

sequence {λk}k∈N forms the whole set of the eigenvalues of Problem (3.9), that {λ− 1
2

k uk}k∈N
is a (H1

0 (ωa) × H1
0 (ωb), α1)-Hilbert orthonormal basis, and that {uk}k∈N is a (L2(ωa) ×

L2(ωb), [·, ·]1)-Hilbert orthonormal basis.
In conclusion, since the sequence {λk}k∈N can be characterized by the min-max Principle,

for every k ∈ N convergence (7.1) holds true for the whole sequence {λn,k}n∈N.

8 Proof of Theorem 3.6

The proof will be split into several steps.
Step 1. The first step is devoted to proving the existence of an increasing sequence of
positive integer numbers {ni }i∈N, an increasing sequence of positive numbers {λk}k∈N, a
sequence

{
uk = (uak , u

b
k)
}

k∈N in Ṽ , where Ṽ is the space defined by (5.27), and a sequence
{
(ξak , ξbk )

}

k∈N in L2(�a)×L2(�b) (depending possibly on the selected subsequence {ni }i∈N)
such that, for every k in N,

lim
i

λni ,k = λk, (8.1)
(√

hani
hbni

uani ,k, u
b
ni ,k

)

⇀(uak , u
b
k) weakly in H1(�a) × H1(�b) and

strongly in L2(�a) × L2(�b),

(8.2)

(
1

hani

√
hani
hbni

∂x1u
a
ni ,k,

1

hbni
∂x3u

b
ni ,k

)

⇀(ξak , ξbk ) weakly in L2(�a) × L2(�b), (8.3)

as i diverges, and
[uk, uh]1 = δh,k, ∀k, h ∈ N. (8.4)

Thanks to Proposition 4.1,

∀k ∈ N, ∃ck ∈]0,+∞[ : han
hbn

an(un,k, un,k) = λn,k ≤ ck, ∀n, k ∈ N. (8.5)

Then, a diagonal argument ensures that (8.1), (8.2), and (8.3) hold true for a suitable increasing
sequence of positive integer numbers {ni }i∈N, for suitable sequences {λk}k∈N in [ 1

l22
,+∞[

and for suitable sequences {uk}k∈N in Ṽ and
{
(ξak , ξbk )

}

k∈N in L2(�a) × L2(�b).
Eventually, (8.4) follows by passing to the limit in

hani
hbni

(uni ,k, uni ,h)n = δh,k, ∀i, k, h,∈ N,

as i diverges, and using the strong L2-convergence in (8.2).
For asserting that ubk belongs to W0, it remains to prove the following result.
Step 2.

ubk(0, x2) = 0 a.e. in ]0, l2[, ∀k ∈ N. (8.6)
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Fix k in N.
The transmission conditions in (2.7) gives
√
√
√
√hbni

hani

∫

]− 1
2 , 12 [×]0,l2[

√
hani
hbni

uak,ni (x1, x2, 0)ϕ(x2)dx1dx2

=
∫

]− 1
2 , 12 [×]0,l2[

ubk,ni (h
a
ni x1, x2, 0)ϕ(x2)dx1dx2, ∀i ∈ N, ∀ϕ ∈ C∞

0 (]0, l2[) .

(8.7)

As far as the first integral in (8.7) is concerned, the weak H1-convergence in (8.2), the
fact that uak is independent of x1 and that assumption (2.1) holds true with q = 0 imply

lim
i

⎛

⎝

√
√
√
√hbni

hani

∫

]− 1
2 , 12 [×]0,l2[

√
hani
hbni

uak,ni (x1, x2, 0)ϕ(x2)dx1dx2

⎞

⎠

= 0 ·
∫ l2

0
uak (x2, 0)ϕ(x2)dx2 = 0, ∀ϕ ∈ C∞

0 (]0, l2[) .

(8.8)

As fas as the last integral in (8.7) is concerned, note that estimate (8.5) and assumption
(2.1) with q = 0 provide that

1

han

∫

�b
|∂x3ubk,n(x)|2dx = hbn

han

1

hbn

∫

�b
|∂x3ubk,n(x)|2dx ≤ hbn

han
ckh

b
n → 0, as n → +∞.

(8.9)
Then, combining the weak H1-convergence in (8.2) with (8.9), and using Proposition 5.1
yield

lim
i

∫

]− 1
2 , 12 [×]0,l2[

ubk,ni (h
a
ni x1, x2, 0)ϕ(x2)dx1dx2 =

∫ l2

0
ubk (0, x2)ϕ(x2)dx2, ∀ϕ ∈ C∞

0 (]0, l2[) .

(8.10)
Eventually, boundary condition (8.6) follows from (8.7), (8.8), and (8.10).

Step 3. This step is devoted to proving that

α1(uk, v) = λk[uk, v]1, ∀v = (va, vb) ∈ H1
γ a (ω

a) × W0. (8.11)

Fix k in N.
To obtain (8.11), it is enough to prove that
∫

ωa

(
∂x2u

a
k∂x2v

a + ∂x3u
a
k∂x3v

a) dx2dx3 = λk

∫

ωa
uakv

adx2dx3, ∀va ∈ H1
γ a (ω

a), (8.12)
∫

ωb

(
∂x1u

b
k∂x1v

b + ∂x2u
b
k∂x2v

b
)
dx1dx2 = λk

∫

ωb
ubkv

bdx1dx2, ∀vb ∈ W0(ω
b), (8.13)

and to add (8.12) and (8.13).
As far as the proof of (8.12) is concerned, for va in C∞

0 (]0, l2[×[0, l3[), it is easy to
construct vb in C∞

0 (ωb) such that

va(x2, 0) = vb (0, x2) in ]0, l2[.
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Then, v = (va, vb) belongs to Vreg , where Vreg is defined by (5.11). Let {gn}n∈N be a

sequence in H1
�a (�

a) satisfying (5.26) in Proposition 5.3. Choosing

(√
hani
hbni

gni ,

√
hani
hbni

vb
)

as test function in (2.11) written with index ni yields
∫

�a

(
1

hani

√
hani
hbni

∂x1u
a
ni ,k

1

hani
∂x1gni + ∂x2

(√
hani
hbni

uani ,k

)

∂x2gni + ∂x3

(√
hani
hbni

uani ,k

)

∂x3gni

)

dx

+
√
hbni
hani

∫

�b

(
∂x1u

b
ni ,k∂x1v

b + ∂x2u
b
ni ,k∂x2v

b
)
dx =

= λni ,k

(∫

�a

√
hani
hbni

uani ,kgni dx +
√
hbni
hani

∫

�b
ubni ,kv

bdx

)

, ∀i ∈ N.

(8.14)
Passing to the limit, as i diverges, in (8.14) and using (2.1) with q = 0, (5.26), (8.1), (8.2),

and (8.3) provide (8.12) with va in C∞
0 (]0, l2[×[0, l3[). Then, (8.12) holds true for any va

in H1
γa

(ωa), by a density argument.
As far as the proof of (8.13) is concerned, set

W̃0 = {v ∈ C∞
0 (ωb) : vb| ωb−

∈ C∞
0 (ωb−), vb| ωb+

∈ C∞
0 (ωb+)}

(see Sect. 2 for the definition of ωb+ and ωb−). Obviously, W̃0 is dense in W0.
Passing to the limit, as i diverges, in (2.11) written with index ni and with a test function

hani
hbni

(0, vb), vb in W̃0 (note that (0, vb) belong to Vni , for i large enough), and using (8.1) and

(8.2) provide (8.13) with vb in W̃0. Then, (8.13) holds true for any vb in W0, by a density
argument.
Step 4. Conclusion.

By arguing as in the proof of Theorem 3.1, one proves that

α1(λ
− 1

2
k uk, λ

− 1
2

h uh) = δh,k, ∀k, h ∈ N,

lim
k

λk = +∞,

and that (3.16), (3.17), and (3.18) hold true.
Moreover in a classical way (for instance, see [9] or [22]) one can prove that the

sequence {λk}k∈N forms the whole set of the eigenvalues of Problem (3.15), that {λ− 1
2

k uk}k∈N
is a (H1

γ a (ω
a) × W0, α1)-Hilbert orthonormal basis, and that {uk}k∈N is a (L2(ωa) ×

L2(ωb), [·, ·]1)-Hilbert orthonormal basis.
In conclusion, since the sequence {λk}k∈N can be characterized by the min-max Principle,

for every k ∈ N convergence (8.1) holds true for the whole sequence {λn,k}n∈N.
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