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Abstract

We consider a 3d multi-structure composed of two joined perpendicular thin films: a vertical
one with small thickness 4{ and a horizontal one with small thickness hf’l. We study the
asymptotic behavior, as h¢ and h® tend to zero, of an eigenvalue problem for the Laplacian

defined on this multi-structure. We shall prove that the limit problem depends on the value
b

g = lim h—Z Precisely, we pinpoint three different limit regimes according to g belonging to
n

10, +o0l, ; equal to 400, or ¢ equal to 0. We identify the limit problems and we also obtain

H'-strong convergence results.

Mathematics Subject Classification 35J05 - 35P05 - 35P20 - 74K20 - 74K30 - 74K35

1 Introduction

Let ©,, n in N, be a 3d multi-structure composed of two joined perpendicular thin films
(see Fig. 1): a vertical one Q¢ with small thickness /¢ and a horizontal one 2% with small
thickness hﬁ (from now on, the exponent ’a’ stands for above, while ’b’ for below).
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In 2, consider the following eigenvalue problem with mixed boundary conditions
—AU, =AU, in Q,,
U,=0onT},, (1.1)

oU,

=0on a2, \ Iy,

where I',, denotes the part of the boundary of €2,, having small thickness (see dotted area in
Fig. 1) and v denotes the exterior unit normal to €2, (see Sect. 2 for the rigorous definition
of 2, and I, and for the weak formulation of problem (1.1)).

For any n in N, problem (1.1) has a discrete positive spectrum {A, x }xen With correspond-
ing eigenfunctions {U,, i }xen forming an orthonormal basis in L2(Q,) (see Sect. 2), equipped
with the inner product

U.V) € (L2Q)* — hl/ UV,

n

This means that the following normalization
1Un k72, = his Yk €N, (1.2)

is considered, but it does not restrict the generality of our results.

Problem (1.1) arises, for instance, from the Fourier analysis in the study of the heat problem
or the propagation of sound waves (cf. [23], see also [14] in connection with elastic waves).

For reasons of simplicity and economy, especially from a numerical point of view, one
tries to remodel the 3d problem with a problem defined on a multi-structure composed of 2d
components. In this paper, it will be obtained by an asymptotic process based on the so-called
“dimensional reduction”, i.e., by the study of the asymptotic behavior of problem (1.1) as ¢
and h% tend to zero.

Fig.1 The thin domain €2, X3
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We shall prove that the limit problem depends on a nonegative parameter ¢ defined by

— lim =1
q = hrrln -
Precisely, we pinpoint three different limit regimes according to ¢ belonging to ]0, +ool, ¢
equal to 400, or g equal to 0.
e When ¢ belongs to ]0, +o0[, i.e., when the thicknesses of the two thin films vanish with
the same rate, we obtain the following limit eigenvalue problem,

—Ay, u = Au® in 0,

b _4.b i b
—Axl,x2u+ = Ay In w7y,

—Ayy nu? = ru? ine”,

(1.3)
uﬁ:Oonyb,
ub —Oony’j,
ut :ui:u on vy,

deyu = gy, u’ — d5,ul) ony.

where w“ is the cross-section of the vertical film, a)_b|r and w? are the two parts into which
@, the cross-section of the horizontal film, is divided by the intersection with dw® (see Fig.
2),

y=8w”ﬂaa)iﬁaw}i, y4 =00"\ vy, yﬁ:Ba)Ij_\y, y2 =00? \ y.

Problem (1.3) is a 2d — 2d — 2d eigenvalue problem with coupled conditions on y (see
the last two lines of (1.3)).

The weak formulation of (1.3) is given by (3.4) (see also (3.1), (3.2), and (3.3)). This
problem has a discrete positive spectrum {A;}xen With the corresponding eigenfunctions
{(ug, u@, uii)}keN forming a basis in L% (0%) x Lz(wﬁ) x L2 (w?) subjected to the orthonor-
mal condition

/ ugujdxadxs + g (/’ uf+u2+dx1dx2 + fh ui_uﬁ_dxldm) = Sk,
w4 u)_:_ w_

where d;, x denotes the Kronecker delta.

In Theorem 3.1 we prove the convergence of the eigenvalues of problem (1.1), as n —
~+00, to the eigenvalues of problem (1.3) with conservation of the multiplicity. We prove also
astrong H 1—convergence result for the corresponding eigenfunctions (see (3.5), (3.6), (3.7),
and Corollary 3.2).

e When ¢ = +00, i.e., when the thickness of the vertical thin film vanishes faster than
the thickness of the horizontal thin film, the limit spectrum is the union of the spectra of
the following two uncoupled 2d eigenvalue problems with homogeneous Dirichlet boundary
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Fig.2 The limit domain

condition

By

/

X1

— Ay, i = Au in 0%,

u® =0ondw?,

—Axlyxzuh = xub in o,

u? = 0on dw’.

b

Precisely, one has to collect together the eigenvalues of these two problems and order the
obtained set in an increasing sequence {Ax}xeN With the convention of repeated eigenvalues.
The corresponding eigenfunctions form an orthonormal basis in L (%) x L?(w?).

In Theorem 3.3 we prove the convergence of the eigenvalues of problem (1.1), as n —
400, to the sequence {A}xen With conservation of the multiplicity. Moreover, by means
of renormalization in Qf’l, we prove a strong H'-convergence result for the corresponding
eigenfunctions (see (3.10), (3.11), (3.12), and Corollary 3.5).

e When g = 0, i.e., when the thickness of the horizontal thin film vanishes faster than
the thickness of the vertical thin film, we choose the sequence {U, x }ken of eigenfunctions
associated to the discrete positive spectrum {A, i }xen of problem (1.1) such that it forms an
orthonormal basis in L2(£2,,) equipped with the inner product

i.e., the following normalization

is considered.

(U, V) e (LX) —

hy

1
/ UVdx,
Qp

1Un il 72, = o Yk €N,

(1.4)

In this case, the limit spectrum is the union of the spectra of the following three uncoupled
2d eigenvalue problems, the first one with mixed boundary condition, while the other two
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with homogeneous Dirichlet boundary condition

—Ayy = Au in 0,

—Axl,muﬁ_ :kuf_ ina)f’,_, —Aynu? =rub ine,
u® =0on y4,

ui:Ooani, u? =0ondw”.
Ou* =0ony,

As above, one has to collect together the eigenvalues of these three problems and order the
obtained set in an increasing sequence {A }rcny With the convention of repeated eigenvalues.
The corresponding eigenfunctions form an orthonormal basis in Lz(w“) x L? (wi) X Lz(a)]i ).

In Theorem 3.6 we prove the convergence of the eigenvalues of problem (1.1), as n —
400, to the sequence {A;}ren With conservation of the multiplicity. Also in this case we
prove a strong H !-convergence result for the corresponding eigenfunctions, but by means of
a renormalization in Q¢ (see (3.16), (3.17), (3.18), and Corollary 3.8).

Notice that, when g belongs to ]0, +oo[, choosing (1.2) or (1.4) as normalization leads
to the same limit result. Instead, to obtain a meaningful result, normalization (1.2) must be
used when ¢ is +00 and normalization (1.4) when ¢ is 0.

In Sect. 2, following [3], problem (1.1) is rescaled on a fixed domain. Section 4 is devoted
to obtaining a priori estimates of the eigenvalues A, x of problem (1.1): below by a positive
constant independent of n and k, and above by an explicit constant independent of n but
dependent on k (see also Remark 4.2). The upper bound of A, x implies H'-a priori estimates
of the eigenfunctions. In Sect. 3, the main results are stated. Section 5 contains some results
that are crucial for proving the main results, i.e., Theorems 3.1, 3.3, and 3.6. Precisely, in
Proposition 5.1 we give a trace convergence result, written in a very general way, which will
allow us to identify junction and boundary conditions in the limit problems. In Proposition
5.2, we prove a density result for approximating the elements of the space of setting of the
limit problem, when ¢ belongs to ]0, +oo[, with regular functions. Although this result was
used in other works, to our knowledge, there are no previous proofs of it. Our proof is rather
technical and it works also for domains which are not "symmetric". Proposition 5.3 is devoted
to building a recovery sequence which will be used in the proof of all three main results.
Sections 6, 7, and 8 are devoted to proving the main results in the case where g belongs to
10, +o0l, g equal to 400, or ¢ equal to 0, respectively. The three proofs follow the same
pattern. In them, we highlight the novelties and refer to [9] and [22] for the classical parts.

In this paper we consider the Laplace operator in order to investigate the effect of the
junction condition on the limit problem. It is of course possible to replace the Laplacian
by an elliptic operator with a symmetric and positive definite thermal conductivity matrix.
Taking into account our analysis and arguing as in [10] easily lead to the limit problem.
Moreover, we just considered two perpendicular thin films. Of course, the whole analysis
works with the appropriate modifications if the two films form an angle other than 7. We
leave the study of these cases to an interested reader.

The asymptotic behavior of a spectral problem for an homogeneous isotropic elastic body
consisting of two folded and perpendicular plates with the same thickness & but with the
requirement of large elastic coefficients, of order O (h™2), was studied in [12] (see also [13]).
This assumption technically avoids a rescaling of the eigenvalues and gives very different
asymptotic behaviors from our problem. Also, we refer to [4], [11], [16], and [17] for different
eigenvalue problems in plate theory.

The modelling of spectral problems for the Laplace operator in joined 1d — 1d and 1d —2d
multi-structures were obtained in [7], [9], [10], [15], and [20]. The modelling of the spectrum
for the linear water-wave system in a joined 1d — 2d multi-structure was obtained in [1].
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For other problems in joined thin films, we refer to [2], [6], and [8].
Eventually, we refer to [5], [18], [19], and references therein, for problems on thin struc-
tures.

2 Position of the problem and rescalings

Let!/ {F, 17", I, and [3 be four positive real numbers such that

1
l]i>f.
2

Set (see Fig. 2)

? =10, L[x10, 5[, o’ =1—17, 1 [x10,b[, @& =10,1[x10, k[, o’ =]1—1;,0[x]0, L,
y* =30\ (10, [x{0}) .

Let {h¢ }nEN b }neN be two sequences in ]0, 1] such that
hh
lirEnhZ:O:lirIthz, lim % = g € [0, +o0]. 2.1)

n

For every n in N set (see Fig. 1)

he e he e
QZ:}—%,%[X@”, ngwbx]—hﬁ,o[, Qn:szguszguG—f,f[x}o,zz[xm}),

a h(l
rg:] - 7"[ x y?, Th=3ub x ] —nb, o[, r,=réurt.

For every n in N, consider the space L?(S2,) equipped with the inner product

1
(U, V) e (L*())* — }7/ UVdx, 2.2)
n n
and the space
Va={VeH" (Q):V=0onT,} (2.3)
equipped with the inner product
1
o,vyev, xv, » h—ﬂ/ DUDVdx. 2.4)
n n

The classical spectral theory (for instance, see [21]) ensures the existence of an increasing
diverging sequence of positive numbers {A, i }xen forming the set of all the eigenvalues of
Problem (1.1), i.e.,

U}’l E Vl’l?

2.5
/ DU,DVdx = A/ U,Vdx, Vv e,

Moreover, there exists a LZ(Q,,)—Hilbert orthonormal basis {U, k}ken such that, for every

k in N, U, belongs to V, and it is an eigenvector of (2.5) with eigenvalue X, x; hence,

_1
{ Ay i Uy, k} is a V,,-Hilbert orthonormal basis.
’ keN
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Set now

11 11
Q“:]fi,i[xwa, szwbx]fl,O[, F“:]fi,i[xy“, rb=awbx}71,o[.

From now on,
HL Q) ={ve H(Q):v=00onT"}, H.(Q)={veH (@) :v=00nT?}
Hu(0") = {ve H (@) :v=0ony"}.
As it is usual (see [3]), problem (2.5) will be reformulated on the fixed domain Q¢ U Qbu
(] — %, %[X]O, I [) through the following maps
(x1, X2, x3) € Q" —> (hjx1, X2, x3) € U, (x1, %2, x3) € Q —> (x1, %2, h)x3) € Q.

To this aim, for every n in N, let H,, be the space L2(Q%) x L(Qb) equipped with the inner
product

o s @, 0) = (%, u?), (09, 0)) € (L2(Q7) x L2(QY))” —
(2.6)

ha

n

hb
u,v), = / u®vdx + —”/ ubvldx,
a Qb
and let V,, be the space defined by

V, = {v = (", v") € HE(QY) x HL, (@)
(2.7)
a bipa 11
v (x1, x2,0) = v (hy,x1, x2,0) ae. (x1,x2) € | — 35 % 0,0

equipped with the inner product

an : (u, v) = (W4, ub), @9, %) e Vn2 —> a,(u,v) =

1
La <W8x,u“8x, v+ Oy, udy, 0! + 8x3u”8x3v“> dx

2.8)
h,

i o

1
<8X1ub8xl VP 4 0,,ub 8,00 + W&Bubax} vb> dx.
n

Moreover, for every n and k in N, set

Upn i (hoxi, x2, x3), a.e.in Q4,
Uk = (2.9)
Up k(x1, x2, h2x3), a.e.in Q.

Then, for every n in N, {4, }xen is an increasing diverging sequence of positive numbers
forming the set of all the eigenvalues of the following problem

u, €V,
(2.10)
an(p, v) = Aup, v)y, Yv eV,
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{un k}ren is a H,-Hilbert orthonormal basis such that, for every k in N, u,, x belongs to V,, and

_1
it is an eigenvector of (2.10) with eigenvalue A, x. Moreover, {An; Un k } is a V,,-Hilbert
' keN
orthonormal basis. In particular, one has

Unpk € Vi,
Vn,k € N, 2.11)
an(un,ka V) = )\n,k(un,ka V), YveV,
(un,kv un,h)n = 5h,k7 Vn,k,h,eN, (2.12)
_1 _1
an()»n,]% Un ks )‘n,}zz Unh) =06k, Yn,k,h,eN. (2.13)

Furthermore, for every k in N, A, x is characterized by the following min-max Principle

) an (v, v)
Apk = min  max ,
ExeFi vel, vA0 (v, V),

(2.14)

where Fj is the set of the subspaces & of V,, with dimension & (for instance, see [21]).

Problem (2.10) is obtained from (2.5) by means of rescaling of variables, once multiplied

by —.
}’hz

3 The main results

This section is devoted to stating the main results of this paper.

The limit problem will depend on ¢ defined by (2.1) which acts as a weight on »” in the
scalar product. Precisely, three different limit regimes will appear according to g belonging
to ]0, 4+-o0l, g equal to +00, or g equal to 0.

3.1 The case qin ]0, +o0o[

Fix ¢ in ]0, +o00[.
Consider L?(w%) x L*(»") equipped with the inner product

[ (e v) = (@9, ub), 0%, v2) € (L2 (@) x L2(w"))’
3.1
— / u’vtdxrdx; +q/b ubvPdx dxs.

Moreover, let
V== 00" € Hlu@) x Hi@P) 1 090,00 =070, x2) ae.in 10, b} (32)
be equipped with the inner product

ag : (w,v) = (W, ub), @ 0vP) e V x V — a,(u,v)

= / (axzuaa,Qv“ + 3x3u”3x3va) dxydxs +q / <3xlub8X] Wb + 8xzub3xzvb> dxidx,.
»? wb
3.3)
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Both are Hilbert spaces. Moreover, the norm induced on V' by the inner product o (-, -) is
equivalent to the usual (H Lw?) x HY (o ))—norm, and the norm induced on L2 (%) x L2 (w?)
by the inner product [+, -], is equivalent to the usual (L2 (w%) x L*(w? )) -norm. Consequently,
V is continuously and compactly embedded into L2(w®) x L2(w?). Furhtermore, V is dense
in L?(0") x L?(?) since C°(0®) x {v € C°(@’) : v = 0 on {0}x]0, o[} is included in
V. Then, all classic results hold true for the eigenvalue problem (see [21])

uev,
(3.4)
ag(u,v) = Alu,vly, YveV,

and the following result will be proved.

Theorem 3.1 For every n in N, let H,, be the space L*(Q%) x L*(Q0) equipped with the
inner product (-, -), defined by (2.6) and V,, be the space defined by (2.7) equipped with the
inner product a, (-, -) defined by (2.8).

ForeveryninN, let {1, i }keN be the increasing diverging sequence of all the eigenvalues of

_1
Problem (2.10) and let {u,, i }keN be a H,-Hilbert orthonormal basis such that {)Ln,,i Un k }
keN

is a V,-Hilbert orthonormal basis and, for everyk € N, u, = (uz’k, uZ,k) is an eigenvector
of Problem (2.10) with eigenvalue X, .

Assume that (2.1) holds true with q in 10, +ool.

Let L2(w%) x L%*(w?) be equipped with the inner product [-, -1, defined by (3.1) and V
be the space defined by (3.2) equipped with the inner product cy (-, -) defined by (3.3).

Then, there exists an increasing diverging sequence of positive numbers { i }xeN, depend-
ing on q, such that

limAnx = Ak, Vk €N,
n

and {Mi}keN is the set of all the eigenvalues of Problem (3.4). Moreover, there exist an
increasing sequence of positive integer numbers {n;}icN and a (L% (0 x L% (o®), [, 19)-
Hilbert orthonormal basis {uy }xen (depending possibly on the selected subsequence {n;};cN
and q) such that, for every k in N, uy belongs to V and it is an eigenvector of Problem (3.4)
with eigenvalue A, and

Un; x — uy strongly in H'(Q%) x HY(QP), Vk eN, (3.5)
as i diverges,
éax, u . — 0strongly in L*(Q“), Vk €N, 3.6)
L oeul 0 strongly in L>(Q?), Vk € N (3.7)
hZ X3%n,k ’ ’

_1
as n diverges. Furthermore, {A, 2upken is a (V, ag)-Hilbert orthonormal basis.

As far as the original problem (1.1) is concerned, one has the following result which is an
immediate corollary of Theorem 3.1, by change of variable.

Corollary 3.2 For every n in N, let L*(,,) be equipped with the inner product defined by
(2.2) and let V,, be the space defined by (2.3) equipped with the inner product defined by
2.4).
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For every n in N, let {A, i }ken be the increasing diverging sequence of all the eigen-
values of Problem (2.5) and let {U, i}keN be a L2(Q,)-Hilbert orthonormal basis such

_1

that {)Lm,f Un i is a V,-Hilbert orthonormal basis and, for every k € N, U,y is an
keN

eigenvector of Problem (2.5) with eigenvalue A, .

Assume that (2.1) holds true with q in 10, +ool.

Let L*(w®) x L*(w?) be equipped with the inner product |-, ‘14 defined by (3.1) and 'V
be the space defined by (3.2) equipped with the inner product o (-, -) defined by (3.3).

Then, there exists an increasing diverging sequence of positive numbers {\y }recN, depend-
ing on q, such that

limA, x =Xk, VkeN,
n

and {Mi}keN is the set of all the eigenvalues of Problem (3.4). Moreover, there exist an
increasing sequence of positive integer numbers {n;}icn and a (L2(@%) x L%(?), [ 19)-
Hilbert orthonormal basis {uy }renN (depending possibly on the selected subsequence {n;}icN
and q) such that, for every k in N, uy = (uf, ui) belongs to V and it is an eigenvector of
Problem (3.4) with eigenvalue Ay, and

“{“][ (1Uni ke = P + 185 U 6l + 10, Uni ke = Dy + 1003 Un & — Dot ) dx = 0,
Qa

nj

lim][ , (|Uni,k —uR 1 4 192, Uny sk — Oy uf 1 + 100y Un, ke — yup* + 192 Un,.,k|2) dx =0,
1 QV’[

1 1
where, from now on, ][ means — and means — — .
o) 1€25, 1 Jog, b €21 Jaa

Furthermore, {}\k_§ ugtken is a (V, ag)-Hilbert orthonormal basis.

3.2 Thecaseq = +¢

Let [+, -]; be the inner product on L*(w%) x L*(w?) defined by (3.1) with ¢ = 1. Moreover,
still denote by « the inner product on HO1 (%) x H& (") defined by (3.3) withg = 1, i.e.,

ar s (u, v) = (W, ub), 9, v%) € (Hl(@®) x Hl ()" — a1, v)

= / (8x2u” Dy U 4 Oy u By, v”) dxydx; +/
@ b

w

<8x, ubaxl vP + 8X2ub8x2 vb) dxidx,.
(3.8)
Then, both are Hilbert spaces and all classic results hold true for the eigenvalue problem

S Hol(a)a) X H(%(wb),
(3.9)
ap(u,v) = Alu,v];, Yve H&(w“) X Hol(a)b),

(see [21]) and the following result will be proved when g is equal to +o0.

Theorem 3.3 For every n in N, let H, be the space L3(Q9) x L2(QY) equipped with the
inner product (-, -), defined by (2.6) and V), be the space defined by (2.7) equipped with the
inner product ay (-, -) defined by (2.8).
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ForeveryninN, let {Ay, i }ken be the increasing diverging sequence of all the eigenvalues of

_1
Problem (2.10) and let {u,, i }ken be a H,-Hilbert orthonormal basis such that [An i Un k }
' keN
is a V,-Hilbert orthonormal basis and, for everyk € N, u, = (”(rf,k’ ”Z,k) is an eigenvector

of Problem (2.10) with eigenvalue X, .

Assume that (2.1) holds true with g = +00.

Let L2(0%) x L*(&?) be equipped with the inner product [-, ]| defined by (3.1) and
HO1 (0%) x HO1 (w?) be equipped with the inner product o1 (-, -) defined by (3.8).

Then, there exists an increasing diverging sequence of positive numbers { Ay }ren such that

limAnx = Ak, Vk €N,
n

and { i }keN is the set of all the eigenvalues of Problem (3.9). Moreover, there exist an
increasing sequence of positive integer numbers {n;}icn and a (L2 (@%) x L2(@"), [, -]1)-
Hilbert orthonormal basis {uy }rcN (depending possibly on the selected subsequence {n;}ien)
such that, for every k in N, uy belongs to HO1 (w®) x HO1 (w?) and it is an eigenvector of Problem
(3.9) with eigenvalue \i, and

b
ul h% ub o | = ux stronglyin H'(Q“) x H'(Q"), Vk €N, (3.10)

ni

as i diverges,

1
h—aaxluﬁ’k — 0 strongly in L>(Q%), Vk €N, 3.11)
n
1 [ht
i /h—g dsutl . — O strongly in L*(Q"), Vk €N, (3.12)
n n

_1
as n diverges. Furthermore, {}, 2uplren is a (H(} (w?) x HO1 (0?), ay)-Hilbert orthonormal

basis.

Remark 3.4 Notice that (3.10) and (3.12) imply that

1
“ﬁ,k — 0 strongly in H!(Q?), h—bBXBqu — 0 strongly in L*(Q%), Vk € N.
n
As far as the original problem (1.1) is concerned, one has the following result which is an
immediate corollary of Theorem 3.3, by change of variable.

Corollary 3.5 For every n in N, let L*(,,) be equipped with the inner product defined by
(2.2) and let V,, be the space defined by (2.3) equipped with the inner product defined by
2.4).

For every n in N, let {A, }keN De the increasing diverging sequence of all the eigen-
values of Problem (2.5) and let {U, i}reN be a L2(2,)-Hilbert orthonormal basis such

_1

that [An,i Un,k’ is a V,-Hilbert orthonormal basis and, for every k € N, U,y is an
keN

eigenvector of Problem (2.5) with eigenvalue Ay, i.

Assume that (2.1) holds true with ¢ = +o00.
Let L2(0%) x L%(&®) be equipped with the inner product [-, 11 defined by (3.1) and
H(} (w%) x HOl () be equipped with the inner product o (-, -) defined by (3.8).
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Then, there exists an increasing diverging sequence of positive numbers { Ay }ren such that
limA, = i, Vk €N,
n
and { i }keN is the set of all the eigenvalues of Problem (3.9). Moreover, there exist an
increasing sequence of positive integer numbers {n;}icn and a (L*(w®) x L2(o?), [-, -11)-
Hilbert orthonormal basis {uy }rcN (depending possibly on the selected subsequence {n;}icn)

suchthat, foreveryk inN, uy = (”Z» uf) belongs to H(} (%) x HO1 (w”) and itisan eigenvector
of Problem (3.9) with eigenvalue \x, and

lim][ (1Un k= U 1P 4 182, Ung * + 185, Upy ke — 3, 12 + 1843 Uny & — sug?) dx = 0,
1 in

lim][ (|Uasl* +DUw[?) dx =0,

n Qz
hb
ni b
- Unj ke — ug
h.
4

lim ][
i in

2

dx =0,

2 2 2

. hy, b h, b h,
hmf 718)51 Ull,’,k - axluk + 7lax2 Un,',k - axzuk + 7lax; U”ivk dx = O
A N e, h,
_1
Furthermore, {\, > uj}ken is a (HO1 (w%) x HO1 (w?), a1)-Hilbert orthonormal basis.
3.3 Thecaseq=0
Let [-, -]; be the inner product on L%(w%) x L?(w?) defined by (3.1) with ¢ = 1.
Set
Wo = {v” € H (@) : v2(0,x2) = 0ae.in 10, L[}, (3.13)

and still denote by « the inner product on H)}(, (w®) x Wy defined by (3.3) withg = 1, i.e.,

ar: (u,v) = (@, ub), v, ) e (H)fu () x WO)2 — aq(u,v)

= / (8)(21,{“ Ox, v+ 8)(31,{“ O U“) dxydx; + / <3xl l/tbaxl P + axzubaxz vb) dxidx,.
a ) ) b
¢ ¢ (3.14)
Then, both are Hilbert spaces and all classic results hold true for the following eigenvalue
problem
u e H;a(a)a) x Wo,
(3.15)
op(u,v) = Au,v];, Yve H}}a () x Wy,
(see [21]) and the following result will be proved when g = 0.
Theorem 3.6 With an abuse of notation, for every n in N, let L2(4) x L2(Q?) be equipped
a

h
with the inner product h—Z(-, In, where (-, ), is defined by (2.6), still denoted by H, and
n

a

h
be the space defined by (2.7) equipped with the inner product h—Zan (-, ), where a, (-, ) is
defined by (2.8), still denoted by V,,.

n
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ForeveryninN, let {Ay, i }ken be the increasing diverging sequence of all the eigenvalues of

_1
Problem (2.10) and let {u,, i }ken be a H,-Hilbert orthonormal basis such that [An i Un k }
' keN
is a V,-Hilbert orthonormal basis and, for everyk € N, u, = (”(rf,k’ ”Z,k) is an eigenvector

of Problem (2.10) with eigenvalue X, .

Assume that (2.1) holds true with g = 0.

Let L*(w®) x L*(w?) be the space equipped with the inner product [-, -11 defined by (3.1),
Wo be defined by (3.13), and HJ}“ () x Wy be the space equipped with the inner product
a1 (-, -) defined by (3.14).

Then, there exists an increasing diverging sequence of positive numbers {Ay }rcN such that

limA, = Ak, VkeN,
n

and {Ap}ren is the set of all the eigenvalues of Problem (3.15). Moreover, there exist an
increasing sequence of positive integer numbers {n;}ieN and a (L%(0%) x LZ(wb), [, -11)-
Hilbert orthonormal basis {uy }xeN (depending possibly on the selected subsequence {n;};icn)
such that, for every k in N, uy belongs to H;a (%) x Wy and it is an eigenvector of Problem
(3.15) with eigenvalue Ay, and

he.
( h% Up. k> ”2,-,k> — ug strongly in H'(Q%) x H'(Q"), Vk €N, (3.16)
nj
as i diverges,
1 a
— |3y ul . — 0 strongly in L*(Q%Y), VkeN, (3.17)
g\ By
1
h—bamuﬁk — 0 strongly in L*(Q%), Vk €N, (3.18)
n

_1
asn diverges. Furthermore, {},, 2urkenisa (H]}u (%) x Wy, ay)-Hilbert orthonormal basis.

Remark 3.7 Notice that (3.16) and (3.17) imply that

1
h—aax,u;k — 0 strongly in L?(2%), Vk € N.

n

uy ;. — 0 strongly in HY(QY),

As far as the original problem (1.1) is concerned, one has the following result which is an
immediate corollary of Theorem 3.6, by change of variable.

Corollary 3.8 Foreveryn inN, let L%(S2,) be equipped with the inner product defined

U, V) e (L*Q)* - ibf UVdx
hn Qp

and let V,, be the space defined by (2.3) equipped with the inner product defined by

(U. V) €Vy X Vo~ o
n

1
— / DUDVdx.

For every n in N, let {A, k}reN be the increasing diverging sequence of all the eigen-
values of Problem (2.5) and let {U, i}ren be a Lz(Q,,)—Hilbert orthonormal basis such
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_1
that [An i Uy .k is a V,-Hilbert orthonormal basis and, for every k € N, U,y is an

keN
eigenvector of Problem (2.5) with eigenvalue A, j.

Assume that (2.1) holds true with g = 0.

Let L*(0%) x L?(w") be the space equipped with the inner product [-, 11 defined by (3.1),
Wo be defined by (3.13), and H)}a (w*) x Wy be the space equipped with the inner product
«o1(-, -) defined by (3.14).

Then, there exists an increasing diverging sequence of positive numbers { Ay }ren such that

limA, = Ak, VkeN,
n
and {Ag}ren is the set of all the eigenvalues of Problem (3.15). Moreover, there exist an
increasing sequence of positive integer numbers {n;}icN and a (Lz(a)“) X Lz(wb), [-,-11)-
Hilbert orthonormal basis {uy }xeN (depending possibly on the selected subsequence {n;};icn)

such that, for every k € N, uy = (u, ui) belongs to H]}a (w*) x Wy and it is an eigenvector
of Problem (3.15) with eigenvalue Ay, and

lim][ (tasl* +DU[P) dx =,
n Qg

1' h;il a
1’m ][Qg lh—ZIUni,k —uy
lim (' l%E) U 2 2) dx =0

| fﬂgi hzi x1 Yn; k X =V,

lim ][ ) (\Un,.,k — P PP + 10y Ung ke = 0y uR 1> + 10, Uny & — 071 + \a,mun,.,uz) dx =0.
Q”i

2
dx =0,

2
+

a
ni

b
hb,

a
ni

+ Oy Uny k — Dyl Oy Un ke = s
n;

4 A priori estimates on the eigenvalues

This section is devoted to proving lower and upper bounds for the eigenvalues of Problem
(2.10)

Proposition 4.1 For every n in N, let H,, be the space L*(Q%) x L*(Q") equipped with the
inner product (-, -), defined by (2.6), V,, be the space defined by (2.7) equipped with the inner
product ay (-, -) defined by (2.8), and {A, i }reN be the increasing diverging sequence of all
the eigenvalues of Problem (2.10). Then,

1
Ank = 7 Vk,n € N. 4.1
2
Vk e N, Fcx €]0,+00[ @ Apk <ck, VneN, 4.2)
where I, is the positive real number involved in the definition of @® and w® (see Sect. 2).

Proof As far as the proof of (4.1) is concerned, at first note that the boundary conditions on
uy . and ”Z « provide that

b b
||MZ,1<||L2(QG) = 12||3xzuz,k||L2(Qa)y ||Mn,k||L2(Qb) = ZZHaxzun,k”Lz(Qb)v Vn,k e N,

(4.3)

where [, is the positive real number involved in the definition of w® and .
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Combining now (2.13), (4.3), and (2.12) gives

hb
Mk = Qn (ks Un ) = f sty PP+ |0
Qa n Qb
1 h? 1 1
- — a 24 _n b 24 = = =— Vn,keN
2 2 (/Q o+ G [Qb P ) = Gl tnn = Ynok €N,

i.e., (4.1) holds true.
As far as the proof of (4.2) is concerned, let {A ;} jen be the increasing diverging sequence
of all the eigenvalues of the following problem

—Ay(x2,x3) = Ay(x2, x3) in 0,
“4.4)
y =0on dw“.

Then, for every j € N there exists an eigenvector y; in HOl (w®) of (4.4) with eigenvalue
_1
Aj such that {y;}enisa L?(w%)-Hilbert orthonormal basis and {AJ. *yj } isa HO1 (w*)-
jeN
Hilbert orthonormal basis.
For every j in N, set

vj(x2, x3), if (x1, x2, x3) € @4,
¢i(x1, x2,x3) =
0, if (x1, x2, x3) € QP.

Fix k in N and set
k
Zr = Zajgj cop, -0 €R
j=1

Then, for every n in N, Z is a subspace of V,, with dimension k. Consequently, the min-max
Principle (2.14) provides that

k 2
, sk o2,
Ank < M (€. §) = max % <Ak, VneN,
C€Zi=l0) (5,0 (@ aneRE—(0) D o
i.e. (4.2) holds true with ¢ = Ag. O

Remark 4.2 1t is possible to give an estimate of the constant ¢, in Proposition 4.1. Indeed, it
is well known that the set of all the eigenvalues of problem (4.4) is given by

i m? 5
a2t |7 ~
12 l3 i,meN

kK2 k2
Vk € N, cr < = + ' 7T2.
Iy I3

Then,
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Recall that A;,, sin <ll£x2> sin <nz—ﬂx3> , with A;;, in R, is an eigenfunction of (4.4)
2 3

] ) l'2 m2 5
with eigenvalue | — + .

5B
Remark 4.3 Proposition 4.1 is independent of the asymptotic behavior of {hfl}n oy and
{hZ} neN’

Choosing k = h in (2.13) and taking into account Proposition 4.1 provide the following
result.

Corollary 4.4 For every n in N, let H, be the space L*(Q%) x L*(QP) equipped with the
inner product (-, -), defined by (2.6) and V,, be the space defined by (2.7) equipped with the
inner product ay (-, -) defined by (2.8).

ForeveryninN, let {1, i }ren be the increasing diverging sequence of all the eigenvalues of

_1
Problem (2.10) and let {u,, i }ken be a H,-Hilbert orthonormal basis such that {Anﬁi Un k }
keN

is a V,-Hilbert orthonormal basis and, for every k € N, u, i is an eigenvector of Problem
(2.10) with eigenvalue A, k. Then,

Vk € N, dcx €]0, 400l 1 an(un i, Unk) = Ank <ck, Yn,k eN. 4.5)

5 Some preliminary results

This section contains some results that are crucial for proving Theorems 3.1, 3.3, and 3.6.
Precisely, Proposition 5.1 will give a trace convergence result, written in a very general
way, which will allow us to identify junction and boundary conditions in the limit problems.
Proposition 5.2 will give a density result for approximating the elements of V defined in (3.2)
by regular functions. Although this result was used in other works, to our knowledge, there
are no previous proofs of it. Our proof is rather technical and it works also for domains which
are not “symmetric”’. Proposition 5.3 is devoted to building a recovery sequence which will
be used in the proof of all three main results.

Proposition 5.1 Let {h;}icn be a sequence in 10, +oo[ such that

lim h; = 0. (5.1)
1

Let {w;}ien be sequence in H' (92P) such that

1
lim (7/ |8x3w,-(x)|2dx> =0, (5.2)
i hi Qb l
and

Jw e HY(QP) : wi—w weakly in H'(Q°), asi — +o0, (5.3)

Then,

1im/ w; (hixy, x2, 0)p(x2)dx1dxs
i 1-1. 310,00

(5.4)

)
:/o w(0, x2)@(x2)dxa, Yo € C5° (10, 2]) .
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Notice that assumption (5.2) ensures that the function w given by (5.3) is independent of
x3,1.e.,

w(x, X2, x3) = w(xy, x2), forae. (x1, %2, x3) € @, forae. (x,x2) € @”. (5.5

Then, it makes sense to write w (0, x2) in (5.4).

Proof At first, one proves the existence of X3 in ] — 1, O[ and of an increasing sequence of
positive integer numbers {i;} jen such that

wy; (-, - ¥3)—w weakly in H' (] — 3, 1[x10, 1»[) , (5.6)

as j diverges.
Indeed, set

2 2
pi(x3) =/ (Iwi(X1,Xz,X3)|2 + [0y wi (1, x2, 03) [+ 85 wi (x1, 32, x3) | )dX1dXz
1= 5. 51x10.5(
forxza.e.in] —1,0[, VieN.

Then, Fatou’s Lemma combined with assumption (5.3) provides that

0
pi(x3)dx3 < +00.
1

0
/ lim inf p; (x3)dx3 < lim inf /
—1 1 l

Consequently, there exist two constants ¢ in ]0, +oo[ and X3 in ] — 1, O[, and an increasing
sequence of positive integer numbers {i;} ;e such that

pi;(X3) <c, VjeN,
which provides (5.6), thanks to (5.3) and (5.5).

Now, for proving (5.4), fix ¢ in C3° (10, I2[) and split the first integral in (5.4), written
with index i, as

/ wi; (hi;x1, x2, 0)@(x2)dx1dxs
1-4.5[x10.05

= / (wi; (hi;x1, x2,0) — i (hi; X1, X2, %3)) @(x2)dx1dx2
1= 1.3 [x10.5(
5.7)
+/ (wi; (hi;x1, x2, %3) — w;; (0, x2, X3)) @(x2)dx1dxs
1-1.30x10.02[

6]
+/ wj; (0, x2, X3)p(x2)dxz. Vj € N.
0
One will pass to the limit, as j diverges, in each term of this decomposition.
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As far as the first integral on the right-hand side of (5.7) is concerned, assumption (5.2)
implies that

/ o (wi; (hijx1, x2,0) — wi; (hijx1, X2, X3)) @(x2)dx1dx2
]_jaj[xlo»lz[

0
/ </ Oxywi; (hijx1, x2, X3)dx3> p(x2)dx1dxy
1-1.31x10.00 \Jx3

1
< llellieqo.nn Q812 </b [0x; wi; (hi_,-xl,xz,x3)|2dx>
Q

(5.8)

1

11 ? .
< lellieqonn |22 (h /1 |3x3wi,(X1,x2,X3)|2dx> — 0, as j > +o0.
Q)

Lj

As far as the second integral on the right-hand side of (5.7) is concerned, assumption (5.1)
and (5.6) imply

f (wi; (hijx1, x2, %3) — w;; (0, X2, X3)) @(x2)dx1dxy
1-1. 310,15

hi.x1
/ (f ’ drw;; (t, x2, f3)d1> @(x2)dxi1dxy
1-3.41x10.21 \JoO '

hj

J

1 b = _
< §||</>||L°0(]o,12[)/0 /o |0ywi; (¢, x2,%3)| dt | dx;

(5.9)
1 153 0
+§|I¢||Lw(10,12[)/ fhfi |3twij(t,x2,f3)|dt dx
0 3
hi; — 2 :
< lellzeqonpy/ 2= [0y, wi; (X1, x2, X3)|“dx1dx2 | — 0,
2 \Ji-L 4x0.00
as j — +oo.
As far as the last integral on the right-hand side of (5.7) is concerned, (5.6) implies
b I
tim [, 0,00 et = [ w0 et (5.10)
J Jo 0

Eventually, passing to the limit in (5.7), as j diverges, and taking into account (5.8), (5.9),
and (5.10) give (5.4) for the subsequence {nij } jen. Notice that (5.4) holds true for the whole
subsequence {n;};eN too, since the limit pw does not depend on {n;,} jen. ]
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The following proposition is devoted to approximating the elements of the space V defined
by (3.2) by more regular functions belonging to the space V,., defined by

Vieg = { (v, %) € C§° (10, 1110, 15D x Co () :

v € C® ([—1;,0] x [0,2]), P € C* ([0, 11 x [0, 12]),

‘Hl*,omo,bj |10,11+1x[0.121

v9(x2,0) = v? (0, x) in 10, 12[].
(5.11)

Proposition 5.2 Let V and Vy.q be defined by (3.2) and (5.11), respectively. Then, V,q is
densein'V.

Proof Fix (v“, vb) in V. The goal is to find a sequence {(v,‘f, v,li)} in V,z, such that

neN
(v“ vb) — (v“, vb) strongly in H' (") x H! (a)”). (5.12)

n>-n

The proof of (5.12) will be split into two steps.
Step 1. The first step is devoted to proving (5.12) when

I =1y,

Split v? in the even part and in the odd part with respect to xp, i.e.,

VP (x1, x2) = v8(x1, x2) + v°(x1, x2), ae. in o’ (5.13)

where
. Vi, x) o (—x ), VP (x1, x2) — vP(—x1, x2) b
v(x1, x2) = 3 . V(xy, x2) = 3 ,ae. ino”.

As far as the approximation of v? is concerned, since it belongs to HOl (w?) and
v2(0,x2) =0, a.e.in 0, 5],

one has that v|0wl: belongs to HO1 (@) and vl‘;ér belongs to HO1 (wi) (see Sect. 2 for the

definition of @’ and w”). Consequently, there exist two sequences {v9~}, _ in C§° (")

and {vf,“‘}neN in C§° (a)i) such that

b

0 + 0 . 1
— v‘w,i strongly in H (a)Jr) .

Uy

= vlr;b strongly in H' (wf) , vy
Then, setting for every n in N
vt (x1, x2), if (x1,x2) € 0f,

vl (x1,x2) € 0’ — 10, if (x1, x2) € {0}x10, Lo,

v~ (x1, x2), if (x1, x2) € ?,
one has that
v e (o), wnen, (5.14)
(0, x2) = 0, if x3 €10, L[, Vn €N, (5.15)
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and
v? — v° strongly in H' (wb) . (5.16)

As far as the approximation of v and v is concerned, set

o =1 —13,01x]0, I,
vh (X1, x2) € 0% — vi(x1, x2) = v (x2, —x1), (5.17)

ve(x1, x2), if (x1, x2) € 0,
T (x1,x0) € 0l U — (5.18)
vi(x1, x2), if (x1, x2) € .

Since
V%0, x2) = v (x2, 0) = v7(0, x2) = v(0, x2), ae.in 10, o[,

itis easy to see that v belongs to HOl (a)f’|r Uw%). Consequently, there exists a sequence (U }nen
in C3° (. U %), such that

D, — U strongly in H' (a)i U a)‘}e) ,

which implies, thanks to definition (5.18), that

By, — v, stronglyin H' (wi), (5.19)
[ (28
and
ﬁnlw,;e — v strongly in H ! (Interior(w%)) . (5.20)

Set now, for every n in N,

v (x2, x3) €10, L[X[0, 3[— vj (x2, x3) Z’U\n‘w%(—xm x2). (5.21)

Then, the sequence {v,‘f }neN is included in C§° (J0, I2[ [0, I3[) and, thanks to (5.21), (5.20),
and (5.17), it converges strongly in H'(w?) to the function given by

VR(—x3, x2) = v?(x2, x3), a.e.in @,

v? — v* strongly in H' (7).
Moreover, setting for every n in N,
Vu(xr,x2), if (1, x2) € o,

b

vyt (xg, x2) € 00 — vy (x2,x3) = { 0,(0,x2),  ifxp €]0, 5[, (5.22)

u(—=x1, x2), if (x1, x2) € ..

one has

n|—
‘w‘l

v e Co (o), U;E ec®(of) vy _ec® (o), VneN, (523

v (0, x2) = 0,(0, x2) = v, (x2,0), ifxp €]0, L[, Vn €N, (5.24)
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and by virtue of (5.19)
v — v¢ strongly in H' (wb> . (5.25)
Now, setting for every n in N,
vl (1, x00) € 0f = vi(x, x2) + V5 (x1, X2),

(5.13), (5.14), (5.15), (5.16), (5.23), (5.24), and (5.25) imply that
vfi € Cy (a)b) , vﬁlT e C™® (E) US‘T e C™® (E) , VneN,
[Cor w_
v2(0, x2) = v (x2,0), in]0, 15[, Vn €N,
vb b strongly in H' (wb> .

n

Eventually, the sequence {(vz, vﬁ) }neN’ so built, is in V;.., and satisfies (5.12).

Step 2. The second step is devoted to proving (5.12) when
IF#1

For instance, assume
Iy > 1
Let v}, be the function defined on ] — 17,17 [x]0, o[ by

P (x1, x2), ifx; <0,

9 (x1, x2) = I+
Ub l%xl,xz , ifxl > 0.

1

By virtue of the previous step, there exists a sequence {(v;‘l, ’172)}n€N C C3°(0, Io[x
[0, 13[xCo (1 — 17, 17 [x]0, I2[) such that

~b 00 (1_jJ— ~b 00 _
vn‘[—lf,O]x[O,lz] eC ([ ;7,01 x [0, 12]), U,,\[O’ll,]x[o.lzl eC ([0711 ] x [0,12]),
v (x2,0) = (0, x2) in 10, Lo,
for every n € N, and
(ve,92) — (v, 9%) strongly in H' (@) x H' (1 — 17,17 [x]0, 2[) -
Now, for every n € N, let vﬁ be the function defined on w” =] — I, lfL[x]O, I[ by

P (x1, x2), if x; <0,

UVl = l_
~ 1 .
vﬁ Fxl,xz s lfxl > 0.
1

Then, the sequence {(v;‘:, v,’f) }neN belongs to V.., and satisfies (5.12).
The proof of (5.12) is similarif ;" < lr. O

S

This section concludes with the building of a recovery sequence for functions in V., with
functions in V,, defined by (2.7).
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Proposition 5.3 Let V.., be defined by (5.11). Let v = (v9, v?) be in Vieg. Then, there exists
a sequence {gn}neN C Hllu (24) such that

gn — V¥ strongly in L*(Q%), as n — +00,

1 . 3
(hjaxlgnv angn, axy?n) - (Ov axzvav BX3Ua) strongly in (Lz(Qa)) ,
n

(5.26)
asn — 400,
gn(x1, x2,0) = v (héxy, x2), for (x1,x2) €] — 3, 5[x10, [, Vn e N,
Proof For every n € N set
v (x2, X3), if x = (x1,x2,x3) €] — 5. 3[x10, L[x1h%, I3[,

gn(x) = ha —
V(g ) P (M, ) 83

s . ifx = (x1,x2,x3) €] — 3, $[x10, L[x[0, Ad].

ﬂ

Obviously, {g, }»en is included in Hlla (2%) and the last line of (5.26) is satisfied. Moreover,
by the definition of Vg, it is easy to see that

/] A IxI0L 13101 18l dx <2000 ey + 10 W 2P = O,
T202 ’ >
1 2
<
/]i,l[ x10,l2[x10,ha[ | g o O 8| dx < 1 ”W'°°<w")l2h — 0,

/] . ]Olz[xw[\angn\ dx <201V 1 00 gy + 107 1100 )l Tts = O,
22

2
/ |8x3g,,| dx :/
11, 3[x10,12[x10,h8[ =430

7.3l

v (x2, h9) — P (hixy, xz)‘ dx1dxs
10,50 h”

1
=/ . a |V “(x2, h%) —v° (x2,0) + v2(0, x2) — v” (h9x1, X2)’ dxidx,
1=2.3[x10,l2[ g

=2 (1 By oy + 10811 o)) 1215 = O,
as n diverges, which imply the convergences in (5.26). O
Eventually, introduce the space

~

V= {u — (v, vb) € HLM(Q%) x HY, (@) : v indep. of x1, v indep. of x3
(5.27)
~ H}.(0") x Hj (o).

which will be used in the following sections.

6 Proof of Theorem 3.1

The proof will be split into several steps.
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Step 1. The first step is devoted to proving the existence of an increasing sequence of
positive integer numbers {n; },EN, an 1ncrea§1ng sequence of positive numbers {ig}ren, a
sequence {uk = (up, u k)} en 1D V, where V is the space defined by (5.27), and a sequence
{(é‘,:k , f}k ) }keN in L2(Q9) x L2(QP) (depending possibly on the selected subsequence {n;};cN)
such that, for every k in N,

lim Ay, k = Ak, 6.1)
l
( a b —(,a b : 1,0a 1,0b : 2:0a 2:0b
Up, ko U, )= (uy, uy) weakly in H(Q%) x H () and strongly in L°(Q%) x L(22”),
(6.2)
1 1 .
(haaxlugi’k, hbaﬂu,‘;hk) — (&, £0) weakly in L2(Q%) x L*(Q), (6.3)
n; n;
as i diverges, and
(ug, uply = Snk, Vk,h eN. (6.4)

Estimates in (4.1) and in (4.5), assumption (2.1) with ¢ in ]0, +o0[, and a diagonal argu-
ment ensure that (6.1), (6.2), and (6.3) hold true for a suitable increasing sequence of positive
integer numbers {#; }; <y and for suitable sequences {Ax }xen in [liz, +o0[, {uk = (ug, u,lz) }keN

2

in V and {(£, &)}, in L2(Q9) x L2(2").
Eventually, (6.4) follows by passing to the limit in
(”ni,ka un,-,h)n = 5h,k, Vi,k,h,eN,

as i diverges, thanks to assumption (2.1) with ¢ in ]0, +-o00[ and the strong L?-convergence
in (6.2).
For asserting that uy = (uj, uf) belongs to V, it remains to prove the following result.
Step 2.
ul (x2,0) = ub(0, x2) ae. in 10, L[, Vk € N. (6.5)

Fix k in N.
The transmission condition in (2.7) gives
/ MZ,H,' (x1, x2, 0)p(x2)dx1dx;
1-1.3[x10.5(
(6.6)
= / Wl (08 1, x2, 0)p(ra)dxidxa, Vi €N, Vo e CF (10,5]) .
1= j[x]o [ '

As far as the first integral in (6.6) is concerned, the weak H 1 -convergence in (6.2) and the
fact that uj, is independent of x; imply

hm Uy, (x1, x2, 0)@(x2)dx1dxs
-5 *[><]0 b
6.7)

I
:/o u (x2, 0)p(x2)dxz, Yo € C3° (10, 1)) .
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As far as the last integral in (6.6) is concerned, note that estimate in (4.5) provides that
i |0xsuf , (x)[*dx < cxhl) — 0, asn — +oc. (6.8)
n JQb
Then, combining (6.8) with the weak H'-convergence in (6.2) and using Proposition 5.1
yield
tim [ ul . (h 31, x2, 0)p(xa)dxidxs
1-4.41x10,(

1

(6.9)
153
= f 1 (0, x2)@(x2)dxz, Vo € C3° (10, 12]) .
0
Eventually, the junction condition in (6.5) follows from (6.6), (6.7), and (6.9).
Step 3. This step is devoted to proving that
ag(ug, v) = Aklug, vly, YveV, Vk € N, (6.10)
_1 _1

ag (A 2uk,)»hzuh) =0k, Vk,heN, (6.11)
lil?l Ak = 4o00. (6.12)

Fix k in N. To prove (6.10), by following the classic idea of I'—convergence, a recovery
sequence will be constructed for regular function v = (v¢, v? )in V,.q, where V., is defined
by (5.11). Precisely, forv = (v¢, v?)in Vyeg, let {gn}nen be a sequence in Hll“ (%) satisfying
(5.26) in Proposition 5.3. Choosing (g, , v?) as test function in (2.11) written with index n;
yields

1 1
/ (htla)cluz,-,khaamgm + axzuz,-,k Oxy8n; + O3 ”Z;,k8X3gn[> dx
Qa ni n;

h?
+ ”l/ (axluﬁ, 0+ Bul k8x2vh> dx (6.13)
hZ[ Qb i i

b
a hni b b :
= An; k (/ ”n,-,kgmdx"‘ha / Uy, 1V dx), Vi € N.
Qo n; JQb

Passing to the limit, as i diverges, in (6.13) and using (2.1) with ¢ in ]0, 4+-o00[, (6.1), (6.2),
(6.3), and (5.26) provide that

/ (BXZMZ 3x2 v+ 8x3uz 3x3 va) dxadxsz +q /b (8)(] uiaxl vb + axzuia)Q vb> dxidxy
wa

[0}

= Ak/ ugv?dxadx; —|—q/ ufvbdxldxz, Y, vb) € Vyeg,
w? wb

which implies (6.10), thanks to the density of V,., in V proved in Proposition 5.2.
Relations in (6.11) follow from (6.10), (6.4), and from the fact that A are all positive.
Asfaras (6.12)is concerned, either (6.12) holds true, or {1, } e is a finite set. In the second

case, by virtue of (6.4), Problem (6.10) would admit an eigenvalue of infinite multiplicity.

But this is not possible, due to the Fredholm’s alternative Theorem.
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Step 4. This step is devoted to proving (3.5), (3.6), and (3.7).
Fix k in N.
Combining (2.13), (6.1), and (6.11) gives the convergence of the energies

l%r_na"i (un[,ks un,-,k) = 1}111’1 )‘-n[,k =Ar = aq(”k7 ug),
v v

which implies (3.5), (3.6), and (3.7), thanks to (2.1) with ¢ in ]0, +o0[, (6.2), and (6.3).
Step 5. Conclusion.
It is proved that {A}ren is included in [é, ~+o0[ and it is an increasing and diverging

sequence of eigenvalues of Problem (6.10), {uy }xen is an orthonormal sequence in (L (") x

1
Lz(wb), [ -1g), {)»k_juk}keN is an orthonormal sequence in (V, o), for every k € Nuy is an
eigenvector for Problem (6.10), with eigenvalue Ay, and convergences (3.5), (3.6), and (3.7)
hold true.

Moreover, arguing as in [9] (see step 2 in the proof of Theorem 2.5) or as in [22] (see
Theorem 9.2), one can prove that there does not exist (i, A) € V x R satisfying the following
problem
uevy,

ag(u,v) = A, vly, Yvev,

i@, urly =0, Vk €N,

[, @, = 1.

As in [9] (see step 3 in the proof of Theorem 2.5), this implies that the sequence {Aj}ren
1

forms the whole set of the eigenvalues of Problem (3.4), that {A,; 2uihkenisa (V, a4 )-Hilbert
orthonormal basis, and that {uy }ren isa (L2 (0®) x LZ(0?), [+, -] 4)-Hilbert orthonormal basis.

In conclusion, since the sequence {1 }xcn can be characterized by the min-max Principle,
for every k € N convergence (6.1) holds true for the whole sequence {A, k}nen-

7 Proof of Theorem 3.3

The proof will be split into several steps.

Step 1. The first step is devoted to proving the existence of an increasing sequence of
positive integer numbers {n; }zeN, an 1ncreas1ng sequence of positive numbers {Ag}ren, a
sequence {uk = (uy, ”k)}keN in V where V is the space defined by (5.27), and a sequence

{(“;‘k & )}keN in L?(Q%) x L*>(22") (depending possibly on the selected subsequence {1; }; )
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such that, for every k in N,

lim A, g = Ak (7.1)
1

ni

hh
(”Z,-,k» ’42,-,k> — (¢, ub) weakly in H'(Q%) x H'(Q") and

a
hg.

(7.2)
strongly in L2(92%) x L*(QP),

1 1 | A _
W By, n,k,hb hZ'a uh o | =& ED) weakly in L*(Q%) x L*(Q"), (7.3)

n;

as i diverges, and
[k, uply = énk, Yk, h eN. (7.4)

Estimates in (4.1) and in (4.5), and a diagonal argument ensure that (7.1), (7.2), and (7.3)
hold true for a suitable i 1ncreasmg sequence of positive integer numbers {n; };cn, for suitable
sequences {Ag}ren in [12, ~+o0[ and for suitable sequences {uk = (uk, uk)}k N in V and

(&0 £0)) oy in L2(Q%) x L2(@D).
Eventually, (7.4) follows by passing to the limit in

(uni,k, un,-,h)n = (Sh,k, Vi,k,h,eN,

as i diverges, thanks to the strong L2-convergence in (7.2).
For asserting that uj, belongs to HO1 (w%), it remains to prove the following result.
Step 2.

ug(x2,0) =0ae.in]0, o[, VkeN. (7.5)

Fix k in N.
The transmission condition in (2.7) ensures that

/ Uy, (x1, x2, 0)@(x2)dx1dx2
-1, 30x10.050

(7.6)
=f . up , (s x1,x2,00¢(x2)dxidxy, Vi €N, VYo e 5 (10,h[).
1-1.31x10.0

T2l

As far as the first integral in (7.6) is concerned, the weak H 1 -convergence in (7.2) and the
fact that uj, is independent of x; imply

hm/ Mk,,,l. (x1, x2, 0)p(x2)dx1dxs
3.50x
7.7)
I
= / ufp (x2, 0)p(x2)dxa, VYo € CG° (10, 1)) .
0
As far as the last integral in (7.6) is concerned, note that estimate in (4.5) provides that
10,1l (0)|2dx < cxhb — 0, asn — +oo, (7.8)
. ,

hg,
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moreover, weak H l-convergences in (7.2) and assumption (2.1) with ¢ = +o0 provide

”2[,k — 0 strongly in Hl(Qh), (7.9)
as i diverges. Then, combining (7.8) with (7.9) and using Proposition 5.1 yield
lim / ui,n,. (hp,x1, %2, 0)p(x2)dx1dx2 = 0, Yo € C3°(10,D).  (7.10)
i -1 L x10.n]

Eventually, boundary condition (7.5) follows from (7.6), (7.7), and (7.10).
Step 3. This step is devoted to proving that

o1 (g, v) = Mlug, v]i, Yo = % 0") € Hy (@) x Hy (o). (7.11)

Fix k in N.
To obtain (7.11), it is enough to prove that

/ (Oxyf Dy U + Oy uf 04y v7) dxodxz = Ay / uividxadxs, Vo € H) (o), (7.12)
23 o}

/ (Bu1f 0 0" + D00, 0" ) dxidx = kk/ ubrPdxidx,, W' e Hl(o?). (7.13)
wb b

and to add (7.12) and (7.13).
Equation (7.12) follows immediately by passing to the limit, as i diverges, in (2.11) written
with index n; and with a test function v = (v¢, 0), v¥ in HO1 (w?), and using (7.1) and (7.2).
As far as the proof of (7.13) is concerned, for v? in Cgo (@), it is easy to construct v¢ in
C5°0, Io[x[0, I3]) such that
v (x2,0) = v’ (0, x2) in 10, Lo[.

Then, v = (14, v?) belongs to V;.,, where V., is defined by (5.11). Let {g,}nen be a

[ha [he
sequence in Hlla (%) satisfying (5.26) in Proposition 5.3. Choosing ( h% 8nis o - vb>
as test function in (2.11) written with index n; yields

hg"l 1 a 1 a a
nb hTaxlun,-,khTaxlgni + axz”n,-,kangﬂz + ax3”n,»,kax3gﬂ[ dx
ni N\ "n; n;
hgi b b hzi b b
—I—/S;b O, e Up, i | Ox V7 + Ox, P Uy, i | OV dx = (7.14)
n; n;
[he. [nh ,
=Am,k< hﬁi /Qa ”Zi,kg"idx"_/;zb ne u, v’dx |, VieN

Passing to the limit, as i diverges, in (7.14) and using (2.1) with ¢ = +o0, (5.26), (7.1),
(7.2), and (7.3) provide (7.13) with v¥ in C§°(w?). Then, (7.13) holds true for any v’ in
H(} ("), by a density argument.

Step 4. Conclusion.
By arguing as in the proof of Theorem 3.1, one proves that

1 1
oy (A Tug, Ay Sup) =8k, Yk, heN,
liin)»k = 400,
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and that (3.10), (3.11), and (3.12) hold true.
Moreover in a classical way (for instance, see [9] or [22]) one can prove that the

1
sequence {Ay}ren forms the whole set of the eigenvalues of Problem (3.9), that {)Lk_j Uk Y keN
is a (Hj (") x H} (o), ay)-Hilbert orthonormal basis, and that {ux}ren is a (L (0®) x
L%(w?), [-, -]11)-Hilbert orthonormal basis.

In conclusion, since the sequence {Ay }xen can be characterized by the min-max Principle,
for every k € N convergence (7.1) holds true for the whole sequence {4, i }nen-

8 Proof of Theorem 3.6

The proof will be split into several steps.

Step 1. The first step is devoted to proving the existence of an increasing sequence of
positive integer numbers {n; },eN, an 1ncreasmg sequence of positive numbers {ig}ien, a
sequence {uk = (uy, ”k)}keN in V where V is the space defined by (5.27), and a sequence
{(gk , "Ek }keN in L2(Q9) x L2(QP) (depending possibly on the selected subsequence {#;};cN)
such that, for every k in N,

lim Ay, = A, (8.1)
1

hb n, k>’

n

ha
( iy uﬁ,-.,k> —(uf, ub) weakly in H'(Q) x H' (") and
(8.2)

strongly in L2(Q%) x L%(Q"),

]’lZ’ 1 a &b : 2/0a 2.:0b
h“ hb axlun, k5 8x3u — (&, &) weakly in L=(Q") x L=(R7), (8.3)

n;

as i diverges, and
[ug, upli = Snk, Vk,heN. (8.4)

Thanks to Proposition 4.1,

d

Vk e N, dci €]0, 400l : hb

—raan (k. Un k) =k < ck, VYn,keN. 3.5

Then, adiagonal argument ensures that (8.1), (8.2), and (8.3) hold true for a suitable increasing
sequence of positive integer numbers {n;};cn, for suitable sequences {ix}ien in [Z%, 400
2

and for suitable sequences {ux }ycp in V and (€. 6D}, o in LH(QY) x LH(QD).
Eventually, (8.4) follows by passing to the limit in
(l

hb (un, ks Un;, Wn =0nk, Yik,h, e N,

as i diverges, and using the strong L2-convergence in (8.2).
For asserting that ullz belongs to Wy, it remains to prove the following result.
Step 2.
uf(O, x2) =0ae.in]0, L[, VkeN. (8.6)
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Fix k in N.
The transmission conditions in (2.7) gives

a

L (x1, x2, 0)p(x2)dx1dxs

8.7

-1, 3[x10.( 12

. up . (i x1,x2,00¢(x2)dxidxy, Vi €N, VYo e (10, h[).

1=, 110,00
As far as the first integral in (8.7) is concerned, the weak H'-convergence in (8.2), the
fact that uj; is independent of x; and that assumption (2.1) holds true with ¢ = 0 imply

tl
h’;l uf . (x1, %2, 0)p(x2)dx1dx
(8.8)

1-%.30x10.0 { A

lim
l

123
=0- /o up (x2, 0)p(x2)dxz =0, VYo € C° (10, 1))
As fas as the last integral in (8.7) is concerned, note that estimate (8.5) and assumption

(2.1) with g = 0 provide that

1 2 hb 1 b 2 hﬁ b
ng |3x3uk 2O 7dx h“ hb |8x3uk,n(x)| dx < @ckhn — 0, asn — +o0.
(8.9)
Then, combining the weak H'-convergence in (8.2) with (8.9), and using Proposition 5.1
yield
)
hm Mk,n,(hf,[xl,xz0)<P(X2)dx1dx2 =/ uf (0, x2)p(x2)dx2, Vo € C§° 0, D
0
(8.10)

—5 *[><]0 L[
Eventually, boundary condition (8.6) follows from (8.7), (8.8), and (8.10)

Step 3. This step is devoted to proving that
oy (ug, v) = Aelug, v, Yo = %00 € H}la(w”) x Wo. (8.11)

Fix k in N.
To obtain (8.11), it is enough to prove that

/ (axzuzaxz v+ ax3 u‘,ﬁBxS U“) dxydxz = )Lk/
w? e

/ <8X1u28xlvb+8mu28x2v dxldxz—kk/ ubvPdxidxy, VP e Wow®), (8.13)
@ a)

ufvidxydxs, Vv € Hj.(0), (8.12)

and to add (8.12) and (8.13).
As far as the proof of (8.12) is concerned, for v* in Cgo (10, o[ x[0, I3]), it is easy to

construct v? in Cgo (w?) such that
v (x2,0) = 1" (0, x2) in 10, Lol
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Then, v = (14, v?) belongs to V.., where V,.q is defined by (5.11). Let {g,}nen be a
[hg. [hg.
sequence in H, (Q%) satisfying (5.26) in Proposition 5.3. Choosing ( h% 8n;» h% vb>

as test function in (2.11) written with index n; yields

/ . Llﬁ[ Oy, u? —1 d +0 / —hz[ a d +0 —hg[ a 0 d
Up, k &n; Up, k &n; : Up, k &n; | dx
o hz’ ]’lﬁl X1%n hg‘ X|pé6n X2 hni n X28n X3 hgl n X3én

0k,
Z / (B0, 00" + Bl 0" ) dx =
ha Qb is is

i

hzi a /’lﬁ[ b b .
= don / fhzvuni’kg,,idx—i- m /;lbum’kv dx), VieN.
(8.14)

Passing to the limit, as i diverges, in (8.14) and using (2.1) with ¢ = 0, (5.26), (8.1), (8.2),
and (8.3) provide (8.12) with v* in C§°(10, [2[x [0, [3[). Then, (8.12) holds true for any v*
in H)}a (w?), by a density argument.

As far as the proof of (8.13) is concerned, set

Wo={veCF@): of ,eCF@b), ”'bwi € C§ ()}

(see Sect. 2 for the definition of wﬁ and w?). Obviously, VT’O is dense in Wj.

Passing to the limit, as i diverges, in (2.11) written with index n; and with a test function
a
o

(0, v?), v’ in Wg (note that (0, v?) belong to V;,,, for i large enough), and using (8.1) and

0t
(8.2) provide (8.13) with v in VT/O. Then, (8.13) holds true for any v? in Wy, by a density
argument.

Step 4. Conclusion.
By arguing as in the proof of Theorem 3.1, one proves that

1 1
oy (A Pug, hy Pup) =8pk, Vk,heN,
]i/‘gn}»k = 400,

and that (3.16), (3.17), and (3.18) hold true.
Moreover in a classical way (for instance, see [9] or [22]) one can prove that the
1

sequence {1t }xeN forms the whole set of the eigenvalues of Problem (3.15), that {k,: 2 Ui eeN
is a (H}}a (w%) x Wo, ap)-Hilbert orthonormal basis, and that {ug}rey is a (L2(0%) x
L3(w?), [-, -]11)-Hilbert orthonormal basis.

In conclusion, since the sequence {Aj }reN can be characterized by the min-max Principle,
for every k € N convergence (8.1) holds true for the whole sequence {4, i }nen-
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