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Abstract
This article is a natural continuation of the paper Tiwari, D., Giordano, P.,Hyperseries
in the non-Archimedean ring of Colombeau generalized numbers in this journal. We
study one variable hyper-power series by analyzing the notion of radius of convergence
and proving classical results such as algebraic operations, composition and reciprocal
of hyper-power series. We then define and study one variable generalized real analytic
functions, considering their derivation, integration, a suitable formulation of the iden-
tity theorem and the characterization by local uniform upper bounds of derivatives. On
the contrary with respect to the classical use of series in the theory of Colombeau real
analytic functions, we can recover several classical examples in a non-infinitesimal
set of convergence. The notion of generalized real analytic function reveals to be less
rigid both with respect to the classical one and to Colombeau theory, e.g. including
classical non-analytic smooth functions with flat points and several distributions such
as the Dirac delta. On the other hand, each Colombeau real analytic function is also a
generalized real analytic function.
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1 Introduction

In this article, the study of hyperseries in the non-Archimedean ring of Colombeau
generalized numbers (CGN), as carried out in [25], is applied to the corresponding
notion of hyper-power series. As wewill see, this yields results which are more closely
related to classical ones, such as, e.g. the equality ρ

∑
n∈ρ

Ñ

xn
n! = ex that holds for

all x ∈ ρ
R̃ where the exponential is moderate, i.e. if |x | ≤ log

(
dρ−R

)
for some

R ∈ N. On the other hand, wewill see that classical smooth but non-analytic functions,
e.g. smooth functions with flat points, and Schwartz distributions like the Dirac delta,
are now included in the related notion of generalized real analytic function (GRAF).
This implies that necessarily we cannot have a trivial generalization of the identity
theorem (see e.g. [20, Corollary 1.2.6, 1.2.7]) but, on the contrary, only a suitable
sufficient condition (see Theorem 40 below). The notion of generalized real analytic
function hence reveals to be less rigid than the classical concept, by including a large
family of non-trivial generalized functions (e.g. Dirac delta δ, Heaviside function H ,
but also powers δk , k ∈ N, and compositions δ ◦ δ, δk ◦ Hh , Hh ◦ δk , etc., for h, k ∈ N.

Conversely, GRAF preserve a lot of classical results: they can be thought of as
infinitely long polynomials f (x) = ρ

∑
n∈σ

Ñ
an(x − c)n , with uniquely determined

coefficient an = f (n)(c)
n! , they can be added, multiplied, composed, differentiated,

integrated term by term, are closed with respect to inverse function, etc. This lays
the foundation for a potential interesting generalization of the Cauchy-Kowalevski
theorem which is able to include many non-analytic (but generalized real analytic)
generalized functions.

Concerning the theory of analytic Colombeau generalized functions, as developed
in [23] for the real case and in [1, 2, 5–7, 18, 22, 26] for the complex one, it is worth to
mention that several properties have been proved in both cases: closure with respect
to composition, integration over homotopic paths, Cauchy integral theorem, existence
of analytic representatives, identity theorem on a set of positive Lebesgue measure,
etc. (cf. [23, 26] and references therein). On the other hand, even if in [26] it is also
proved that each complex analyticColombeau generalized functions can bewritten as a
Taylor series, necessarily this result holds only in an infinitesimal neighborhoodof each
point. The impossibility to extend this property to a finite neighborhood is a general
drawback of the use of ordinary series in a (Cauchy complete) non-Archimedean
framework instead of hyperseries, as explained in details in [25].

We refer to [21] for basic notions such as the ring of Robinson-Colombeau, sub-
points, hypernatural numbers, supremum, infimum and hyperlimits, and [25] for the
notion of hyperseries as well as their notations and properties. Once again, the ideas
presented in the present article can be useful to explore similar ideas in other non-
Archimedean settings, such as [3, 4, 15–17, 19, 24].
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2 Hyper-power series and its basic properties

2.1 Definition of hyper-power series

In the entire paper, ρ and σ are two arbitrary gauges; only when it will be needed, we
will assume a relation between them, such as σ ≤ ρ∗ or σ ≥ ρ∗ (see [25]).

A power series of real numbers is usually simply defined as “a series of the form∑
n∈N an(x − c)n , where x , c, an ∈ R for all n ∈ N”. Actually, this (informal)

definition does not state explicitly whether a non-convergent series is included or not.
However, unlike the real case where finite sums can always be considered, this does
not hold for hyperfinite sums in the ring ρ

R̃, see [25]. For this reason, we consider
the ρ

R̃-module ρ

σ
R̃s of sequences for hyperseries exactly as the space where we can

consider hyperfinite sums regardless of convergence. This is the idea to define the
space ρ

σ
R̃�x − c� of formal hyper-power series (HPS):

Definition 1 Let x , c ∈ ρ
R̃. We say (bn)n ∈ ρ

σ
R̃�x − c� if and only if there exist

(anε)n,ε ∈ R
N×I and representatives [xε] = x , [cε] = c such that

(bn)n = [anε · (xε − cε)
n]

s ∈ ρ

σ
R̃s. (2.1)

For the notation [−]s, see [25, Defi 1]. Elements of ρ

σ
R̃�x − c� are called formal HPS

because here we are not considering their convergence. In other words, a formal HPS
is a hyper series (i.e. an equivalence class (bn)n ∈ ρ

σ
R̃s in the space of sequences for

hyperseries) of the form
[
anε · (xε − cε)

n]
s.

Remark 2 i We explicitly note that x − c is not an indeterminate, like in the case
of formal power series R�x�, but a generalized number of ρ

R̃. For example, in
Lemma 10 below, wewill prove that if x−c = y−d, then ρ

σ
R̃�x−c� = ρ

σ
R̃�y−d�.

ii On the contrary with respect to the case of real numbers, being a formal HPS,
i.e. an element of ρ

σ
R̃�x − c�, depends on the interplay of the two gauges ρ and

σ : take e.g. an = 1
n2

and x−c = 2, so that for all N ∈ σ
Ñwe have

∑N
n=1 an(x−

c)n ≥ ∑N
n=0

1
n ∼ log(N ). Therefore, taking e.g. σε = exp

(
− exp

(
1
ρε

))
and

Nε := int (σε), we have that (log Nε) /∈ Rρ and hence we cannot even consider
hyperfinite sums of this form. Informally stated, for this gauge σ , we have that
ρ
∑

n∈σ
Ñ

1
n2
2n is not a formal HPS, i.e. even before considering its convergence

or not, we cannot compute σ -hyperfinite sums and get a number in ρ
R̃.

iii In [25], we proved that if x is finite, then
[
xn
n!
]

s
∈ ρ

σ
R̃�x� is a formal HPS for

all gauges ρ, σ . In Sect. 14, we will prove that

[(
dρ−1

)n

n!
]

s
/∈ ρ

ρ
R̃�dρ−1�; on the

other hand, we will also see that if x ≤ log
(
dρ−N

)
and dσ Q ≤ dρN for some

Q ∈ N, then
[
xn
n!
]

s
∈ ρ

σ
R̃�x� is a formal HPS.

The previous Definition 1 sets immediate problems concerning independence of
representatives: every time we start from [anε] ∈ ρ

R̃, for all n ∈ N, [xε] = x , [cε] = c
andwehave that

[
anε · (xε − cε)

n]
s ∈ ρ

σ
R̃s,we can considerwhether the corresponding
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formal HPS ρ
∑

n∈σ
Ñ

[anε] · ([xε] − [cε])n converges or not. On the other hand, we
also have to prove that it is well-defined, i.e. that taking different representatives
[ānε] = [anε], [x̄ε] = x , [c̄ε] = c, we have

[
anε · (xε − cε)

n]
s = [

ānε · (x̄ε − c̄ε)
n]

s.
However, from [25, Sec. 2] it follows that we can have x−c = 1 and [anε] = [ānε] = 0
for all n ∈ N, but

[ Nε∑

n=0

anε(xε − cε)
n

]

�=
[ Nε∑

n=0

ānε(xε − cε)
n

]

.

This means that (bn)n := [
anε(xε − cε)

n
]
s and (b̄n)n := [

ānε(xε − cε)
n
]
s yield two

different formal HPS (see [25, Theorem 4]) and hence, in general, the operation

(
(anε)n,ε, (xε), (cε)

) ∈ ρ
R̃
N × ρ

R̃
2 	→ (bn)n := [anε(xε − cε)

n]
s ∈ ρ

σ
R̃s

is not well-defined.
The problem can also be addressed differently: what notion of equality do we have

to set on a suitable subring of RN×I so as to have independence on representatives?
This notion of equality naturally emerges in proving that the following definition
of radius of convergence is well-defined (see Lemma 4). What subring we need to

consider arises from the idea to include
(

δ
(n)
ε (0)
n!
)

n,ε
in it, where δ = [δε(−)] is a

suitable embedding of Dirac’s delta function (see Example 5.v).

2.2 Radius of convergence

The idea to define the radius of convergence corresponding to coefficients (anε)n,ε ∈
R
N×I is that it does not matter if

(

lim sup
n→+∞

|anε|1/n
)−1

∈ R ∪ {+∞}

yields a non ρ-moderate net (for example for ε ∈ L ⊆0 I ) because this case would
intuitively identify a radius of convergence larger than any infinite number in ρ

R̃:

Definition 3
(i) Let R := R ∪ {−∞,∞} be the extended real number system with the usual

(partially defined) operations but where we define ∞ − ∞ = ∞ + (−∞) =
−∞+∞ = −∞− (−∞) = 0. We set ρ

R := R
I
/ ∼ρ , where for arbitrary (xε),

(yε) ∈ R
I
, as usual we define

(xε) ∼ρ (yε) : ⇐⇒ ∀q ∈ N∀0ε : |xε − yε| ≤ ρq
ε .

Note that, e.g., (∞) ∼ρ (∞) because of our definition of ∞−∞. In ρ
R, we can

also consider the standard order relation

x ≤ y : ⇐⇒ ∃[xε] = x, [yε] = y ∀0ε : xε ≤ yε.
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Note that
(

ρ
R,+,≤

)
is an ordered group but, since we are considering arbitrary

nets R
I
, the set ρ

R is not a ring: e.g. +∞ · 0 is still undefined and +∞ · [zε] =
[+∞] for all (zε) ∈ R

I
>0.

(ii) Moreover, we denote by ρ
R̃c := (RN×I

)
ρ

/ �ρ the quotient ring of coefficients
for HPS, where

(anε)n,ε ∈
(
R
N×I

)

ρ
:⇐⇒ ∃Q, R ∈ N∀0ε ∀n ∈ N : |anε| ≤ ρ−nQ−R

ε

(2.2)

is the ring of weakly ρ-moderate nets, and

(anε)n,ε �ρ (ānε)n,ε :⇐⇒ ∀q, r ∈ N∀0ε ∀n ∈ N : |anε − ānε| ≤ ρnq+r
ε ,

(2.3)

in this case, we say that these two nets are strongly ρ-equivalent. Equivalence
classes of ρ

R̃c are denoted by (an)c := [anε]c ∈ ρ
R̃c.

(iii) Finally, if (an)c = [anε]c ∈ ρ
R̃c, then we set rad (an)cε := rε, and rad (an)c =:

[rε] ∈ ρ
R, where

rε :=
(

lim sup
n→+∞

|anε|1/n
)−1

∈ R ∪ {+∞}. (2.4)

In the following lemma, we prove that rad (an)c is well-defined:

Lemma 4 Let (an)c = [anε]c = [ānε]c ∈ ρ
R̃c. Define rε as in (2.4) and similarly

define r̄ε using ānε. Then (rε) ∼ρ (r̄ε), and hence [rε] = [r̄ε] in ρ
R.

Proof For all ε ∈ I and all n ∈ N>0, we have |ānε|1/n ≤ (|ānε − anε| + |anε|)1/n .
The binomial formula yields (x + y) ≤ (

x1/n + y1/n
)n

for all x , y ∈ R≥0, so that
|ānε|1/n ≤ |ānε − anε|1/n + |anε|1/n . Setting r = 0 in (2.3), for all q ∈ N and for ε

small we have

∀n ∈ N : |anε − ānε| ≤ ρnq
ε .

Therefore, for the same ε we get |ānε|1/n ≤ ρ
q
ε + |anε|1/n . Taking the limit superior

we obtain lim supn→+∞ |ānε|1/n ≤ ρ
q
ε + lim supn→+∞ |anε|1/n . Inverting the role of

(anε)n,ε and (ānε)n,ε we finally obtain

∀0ε : −ρq
ε ≤ lim sup

n→+∞
|anε|1/n − lim sup

n→+∞
|ānε|1/n ≤ ρq

ε ,

which proves the claim. ��
Remark 5 (i) If (an)c = [anε]c ∈ ρ

R̃c, then for each fixed n ∈ N, we have that
[(anε)ε] ∈ ρ

R̃, i.e. the net (anε)ε is ρ-moderate. This is the main motivation to
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consider the exponent “−R” in (2.2) (recall that in our notation 0 ∈ N): without
the term “−R”, the only possibility to have (an)c ∈ ρ

R is that |a0| ≤ 1, which is
an unnecessary limitation. Similarly, we can motivate why we are considering the
quantifier “∀n ∈ N” in the same formula (instead of, e.g., “∃N ∈ N∀n ∈ N≥N ”).
The proof of the next Lemma10willmotivatewhy in (2.2)we consider the uniform
property “∀0ε ∀n ∈ N” and not “∀n ∈ N∀0ε”.

(ii) Note that ρ
R̃ ⊆ ρ

R because the notion of equality ∼ρ in the two quotient sets is
the same and because if (xε) is ρ-moderate and (xε) ∼ρ (yε), then also (yε) is
ρ-moderate.

(iii) Condition (2.2) of being weakly ρ-moderate represents a constrain on what
coefficients an we can consider in a hyperseries. For example, if (an)n∈N is a
sequence of real numbers satisfying |an| ≤ p(n), where p ∈ R[x] is a poly-
nomial, then p(n) ≤ ρ

−nQ
ε for all ε sufficiently small and for all n ∈ N if

Q ≥ max
(
1,max

{
− log n

p(n) log ρε
| n < N1

})
, where log n

P(n)
≤ 1 for all n ≥ N1 and

− 1
log ρε

≤ 1. Hence (an)n,ε ∈ (RN×I
)
ρ
is weakly ρ-moderate. On the contrary,

we cannot have nn ≤ ρ
−nQ−R
ε = ρ−R

ε

(
1

ρ
Q
ε

)n
for all n ∈ N. Similarly (n!)n∈N is

not weakly ρ-moderate and hence our theory does not apply to a “hyperseries”
of the form ρ

∑
n∈σ

Ñ
n! ·xn . On the other hand, in Lemma 7.(i) we will show that,

as a consequence of considering only weakly moderate coefficients, the radius
of convergence of our hyperseries is always strictly positive.

iv Let anε = ρ
n+1

ε
ε , so that [anε]c = 0. The corresponding radius of convergence

is rε = limn→+∞ |anε|1/n = ρ
1/ε
ε which is not ρ-moderate. In general, if

rad (an)c = [rε] =: r ∈ ρ
R, we can have different behavior on different sub-

points, e.g. r |L1 = +∞, r |L2 ∈ ρ
R̃, r |L3 non ρ-moderate, etc., where Li ⊆0 I .

This behavior is studied in Lemma 7 below.
v Let μ := F−1(β) ∈ S(R) be a Colombeau mollifier defined as the inverse
Fourier transform of a smooth, supported in [−1, 1]R, even bump function
0 ≤ β ≤ 1 which identically equals 1 in a neighborhood of 0 (see e.g. [14]).
Let ib

R
be the embedding of Schwartz distributions into generalized smooth

functions (GSF) defined by μ and by the infinite number b ∈ ρ
R̃ (see e.g.

[12]). The Schwartz’s Paley-Wiener theorem implies that μ is an entire func-
tion and we know that if dρ−Q ≥ b = [bε] ≥ dρ−R , for some Q, R ∈ R>0,
then the embedding of Dirac delta δ := ιb

R
(φ 	→ φ(0)) ∈ ρGC∞(ρ

R̃, ρ
R̃) is

defined by the net δε(x) = bεμ(bεx) (see e.g. [12]). For n ∈ N, we have

μ(n)(0) = 1
2π

∫
β(x)(i x)n dx = 0 if n is odd and

∣
∣μ(n)(0)

∣
∣ ≤ 1

2π

[
xn+1

n+1

]1

−1
≤ 1

if n if even. Thereby
∣
∣
∣
δ
(n)
ε (0)
n!
∣
∣
∣ =

∣
∣
∣
μ(n)(0)

n! bn+1
ε

∣
∣
∣ ≤ 1

n!ρ
−nQ−Q
ε ≤ ρ

−nQ−Q
ε .

This inequality shows that
(

δ(n)(0)
n!
)

c
∈ ρ

R̃c and motivates our definition of

weakly ρ-moderate nets. The corresponding radius of convergence is r−1
ε =

lim supn→+∞
∣
∣
∣
δ
(n)
ε (0)
n!
∣
∣
∣
1/n

= lim supn→+∞ b1+1/n
ε

∣
∣
∣
μ(n)(0)

n!
∣
∣
∣
1/n = bε · 0 = 0,

i.e. rad
(

δ(n)(0)
n!
)

c
= +∞.
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vi et (an)c = [anε]c ∈ ρ
R̃c, and assume that for all ε there exists rε :=

(
limn→+∞ |anε|1/n

)−1
such that r := [rε] ∈ ρ

R̃. Then from [21, Theorem 28],
for some gauge σ ≤ ρ we have ρ limn∈σ

Ñ
|an|1/n = 1

r and r = rad (an)c ∈ ρ
R̃.

In Corollary 17, we will see the relationship between our definition of radius of
convergence and the least upper bound of all the radii where the HPS converges.

In the following lemma, we show that ρ
R̃c is a ring:

Lemma 6 With pointwise operations, ρ
R̃c is a quotient ring.

Proof Actually, the result follows from [13, Theorem 3.6] because the set

B :=
{(

ρ−nQ−R
ε

)

n,ε
∈ R

N×I | Q, R ∈ N

}

is an asymptotic gauge with respect to the order (n, ε) ≤ (n̄, ε̄) if and only if ε ≤ ε̄.
However, an independent proof follows the well-known lines of the corresponding
proof for the ring ρ

R̃, and depends on the following properties of B:
(a) ∀p, q ∈ B ∃r , s ∈ B : p + q ≤ r , p · q ≤ s;
(b) ∀p ∈ B ∃r , s ∈ B : r−1 + s−1 ≤ p−1;
(c) ∀p, q, r ∈ B ∃u, v ∈ B : u−1 · q + v−1 · r ≤ p−1,

where p = (pnε)n,ε ≤ (qnε)n,ε = q means ∀0ε ∀n ∈ N : pnε ≤ qnε. ��
The following lemma represents a useful tool to deal with the radius of convergence.
It essentially states that the radius of convergence equals +∞ on some subpoint, or it
is moderate on some subpoint or it is greater than any power dρ−P .

Theorem 7 Let (an)c ∈ ρ
R̃c and r = [rε] = rad (an)c ∈ ρ

R, then we have

(i) r > 0.
(ii) r < +∞ or r =s +∞.
(iii) If r < +∞, then the following alternatives hold

(a) ∀P ∈ N : r > dρ−P or
(b) setting

[
r ≤ ρ−P

]
:=
{
ε | rε ≤ ρ−P

ε

}
=: LP

Pm := min
{
P ∈ N |

[
r ≤ ρ−P

]
⊆0 I

}
(2.5)

we have
(b.1) I =⋃P∈N

[
r ≤ ρ−P

]
;

(b.2) ∀P ≥ Pm : [r ≤ ρ−P
] ⊆0 I , r ≤LP dρ−P;

(b.3) ∀P < Pm : dρ−P ≤ r;
(b.4) If Pm = 0 and Lc

0 ⊆0 I , then 1 ≤Lc
0
r; if Lc

0 �⊆0 I , then r ≤ 1.
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(iv) Assume that for all L ⊆0 I , the following implication holds

(
∃Q ∈ N : r ≤L dρ−Q

)
or
(
∀Q ∈ N : r >L dρ−Q

)
⇒ ∀0ε ∈ L : P {rε} .

(2.6)

Then ∀0ε : P {rε}, i.e. the property P {rε} holds for all sufficiently small ε.
(v) If q ∈ ρ

R̃ and q < r , then ∃s ∈ ρ
R̃ : q < s ≤ r .

Proof (i): Assume that |anε| ≤ ρ
−nQ−R
ε for all ε ≤ ε0 and for all n ∈ N. Then

lim supn→+∞ |anε|1/n ≤ limn→+∞ ρ
−Q− R

n
ε = ρ

−Q
ε , i.e. rε ≥ ρ

Q
ε .

(ii): Set L := {ε | rε = +∞}. If L ⊆0 I , then r =L +∞. Otherwise (0, ε0]∩L = ∅
for some ε0, i.e. rε < +∞ for all ε ≤ ε0.

(iii): Since we assume that r < +∞, without loss of generality we can take rε <

+∞ for all ε. We also assume that (a) is false, i.e. r ≤M dρ−P̄ for some P̄ ∈ N and
some M ⊆0 I . We first prove (b.1): take ε ∈ ⋂P∈N

[
r > ρ−P

]
, then rε > ρ−P

ε for
all P ∈ N, so that rε = +∞ for P → +∞, and this is not possible. We also note that
[
r ≤ ρ−P

] ⊆ [
r ≤ ρ−Q

]
for all Q ≥ P . From M ⊆0 I and r ≤M dρ−P̄ , we have

(0, ε0] ∩ M ⊆
[
r ≤ ρ−(P̄+1)

]
⊆0 I , and hence definition (2.5) yields Pm ∈ N and

also proves (b.2). For all P ∈ N<Pm, we hence have
[
r ≤ ρ−P

] �⊆0 I , i.e. (0, εP ] ⊆
[
r > ρ−P

]
for some εP . This implies dρ−P ≤ r and proves (b.3). Finally, if Pm = 0

and Lc
Pm

= Lc
0 ⊆0 I , then 1 ≤Lc

0
r because Lc

0 = [r > 1]. If Lc
0 �⊆0 I , then

(0, ε0] ⊆ L0 for some ε0, i.e. r ≤ 1.
(iv): By contradiction, assume that ¬P {rε} for all ε ∈ L and for some L ⊆0 I . As

usual, we assume that all the results we proved for ρ
R can also be similarly proved for

the restriction ρ
R|L . From (ii) for ρ

R|L , we have r <L +∞ or r =K +∞ for some
K ⊆0 L . The second case implies r >L dρ−Q for all Q ∈ N. Since K ⊆0 I , we can
apply the second alternative in the implication (2.6) to get ∀0ε ∈ K : P {rε}, which
gives a contradiction because K ⊆ L . We can hence consider the first case r <L +∞
and apply the subcase (a), i.e. r >L dρ−P for all P ∈ N, andwehenceproceed as above
applying the second alternative of the implication (2.6). In the remaining subcase, we
can use (b.2) (with L instead of I ). This yields LPm ⊆0 L and r ≤LPm

dρ−Pm. Since
LPm ⊆0 I , we can apply the first alternative in the implication (2.6) to get once again
a contradiction.

(v): Assume that r > q and take s := min(q + 1, r) ∈ ρ
R̃>0. ��

Explicitly note the meaning of Lemma 7(iv): on an arbitrary subpoint r |L of the radius
of convergence r = rad (an)c, we have to consider only two cases: either r |L is ρ-
moderate or it is greater than any power dρ−Q (the latter case including also the case
r |L = +∞); if in both cases we are able to prove the property P {rε} for ε ∈ L
sufficiently small, then this property holds for all ε sufficiently small.
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2.3 Set of convergence

Even if the radius of convergence of the exponential hyperseries is rad
( 1
n!
)
c = +∞,

we have that ex = ρ
∑

n∈σ
Ñ

xn
n! ∈ ρ

R̃ implies |x | ≤ log
(
dρ−R

)
for some R ∈ N: in

other words, the constraint to get a ρ-moderate number implies that even if ρ
∑

n∈σ
Ñ

xn
n!

converges at x , the exponential HPS does not converge in the interval [x, rad ( 1n!
)
c) =

[x,+∞) ⊆ ρ
R̃.

Moreover, in all our examples, if the HPS ρ
∑

n∈σ
Ñ
an(x − c)n ∈ ρ

R̃ converges,
then it converges exactly to

[∑+∞
n=0 anε(xε − cε)

n
] ∈ ρ

R̃. The following definition of
set of convergence closely recalls the definition of GSF:

Definition 8 Let (an)c ∈ ρ
R̃c and c ∈ ρ

R̃. The set of convergence

conv ((an)c , c)

is the set of all x ∈ ρ
R̃ satisfying

(i) |x − c| < rad (an)c,

and such that there exist representatives [xε] = x , [anε]c = (an)c and [cε] = c
satisfying the following conditions:

(ii)
[
anε · (xε − cε)

n]
s ∈ ρ

σ
R̃�x − c�, i.e. we have a formal HPS;

(iii) ρ
∑

n∈σ
Ñ
an(x − c)n = [∑+∞

n=0 anε(xε − cε)
n
] ∈ ρ

R̃;
(iv) For all representatives [x̄ε] = x and all k ∈ N>0, the k-th derivative net is ρ-

moderate:
⎛

⎝ dk

dxk

(+∞∑

n=0

anε(x − cε)
n

)

x=x̄ε

⎞

⎠ ∈ Rρ.

Note that condition (ii) is necessary because in (iii) we use a HPS; on the other hand,
conditions (iii) and (iv) state that the function

x ∈ ρ

σ
conv ((an)c , c) 	→ ρ

∑

n∈σ
Ñ

an(x − c)n ∈ ρ
R̃

is a GSF defined by the net of smooth functions
(∑+∞

n=0 anε(xε − cε)
n
)
. As for GSF,

see [12, Theorem 16], condition (iv) will be useful to prove that we have independence
from representatives of x in all the derivatives. In Corollary 25, we will see that under
very general assumptions and if σ ≤ ρ∗, condition (iv) can be omitted.

In Sect. 14 wewill show that log
(
dρ−1

) ∈ ρ

σ
conv

(( 1
n!
)
c , 0
)
(the set of convergence

of the exponential HPS at the origin), but dρ−1 /∈ conv
(( 1

n!
)c
n , 0

)
. We immediately

note that x ∈ conv
(
(an)cn , c

)
if and only if x − c ∈ conv

(
(an)cn , 0

)
, and because of

this property without loss of generality we will frequently assume c = 0.
We also note that condition (iii) states that the hyperseries ρ

∑
n∈σ

Ñ
anxn converges,

and it does exactly to the generalized number
[∑+∞

n=0 anεxnε
]
. It is hence natural to
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wonder whether it is possible that it converges to some different quantity. This is the
problem of the relation between hyperlimit and ε-wise limit:

ρ lim
N∈σ

Ñ

⎡

⎣
ni(N )ε∑

n=0

anεx
n
ε

⎤

⎦ , lim
N→+∞

N∑

n=0

anεx
n
ε ,

which has been already addressed in [25, Theorems 12, 13]. Intuitively speaking, if
the gauge (σε) is not sufficiently small, and hence the infinite nets (σ−N

ε ) are not
sufficiently large, it can happen that ni(N )ε → +∞ as ε → 0 only very slowly,
whereas the ε-wise limit could require N → +∞ at a greater speed to converge. This
can be stated more precisely in the following way: Let

[
anε · xnε

]
s ∈ ρ

σ
R̃�x� be a formal

HPS and assume that
∑+∞

n=0 anεxnε < +∞ for ε small. Then, for all q ∈ N and for all
ε small, we can find Nq

ε ∈ N such that

∣
∣
∣
∣
∣
∣

Nq
ε∑

n=0

anεx
n
ε −

+∞∑

n=0

anεx
n
ε

∣
∣
∣
∣
∣
∣
≤ ρq

ε ∀n ∈ N≥Nq
ε
.

However, only if
(∑+∞

n=0 anεxnε
) ∈ Rρ and (Nq

ε ) ∈ Rσ , i.e.
[
Nq

ε

] ∈ σ
Ñ, then this also

implies ρ
∑

n∈σ
Ñ
anxn = [∑+∞

n=0 anεxnε
]
.

As expected, for HPS the set of convergence is never a singleton:

Theorem 9 Let (an)c ∈ ρ
R̃c and c ∈ ρ

R̃. Then

∃q ∈ N : (c − dρq , c + dρq) ⊆ ρ

σ
conv ((an)c , c) . (2.7)

Proof From Theorem 7(i), we have r := rad (an)c ≥ dρq1 for some q1 ∈ N. We
also have |anε| ≤ ρ

−nQ−R
ε from (2.2). Assume that |x − c| < dρq : we want to find

q ∈ N≥q1 so that x ∈ ρ

σ
conv ((an)c , c). To prove property Definition 8(ii), for Nε,

Mε ∈ N and for ε small, we estimate

∣
∣
∣
∣
∣
∣

Mε∑

n=Nε

anε(xε − cε)
n

∣
∣
∣
∣
∣
∣
≤

Mε∑

n=Nε

ρ−nQ−R
ε ρnq

ε = ρ−R
ε

Mε∑

n=Nε

ρ−nQ+nq
ε .

Therefore, taking q = max(1 + Q, q1), we get

∣
∣
∣
∣
∣
∣

Mε∑

n=Nε

anε(xε − cε)
n

∣
∣
∣
∣
∣
∣
≤ ρ−R

ε

Mε∑

n=Nε

ρn
ε ≤ ρ−R

ε

1 − ρε

,

and this proves Definition 8(ii). Similarly, we have

∣
∣
∣
∣
∣

Mε∑

n=0

anε(xε − cε)
n −

+∞∑

n=0

anε(xε − cε)
n

∣
∣
∣
∣
∣
≤

+∞∑

n=Mε+1

ρn
ε ≤ ρ

Mε+1
ε

1 − ρε

.
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Since ρ limM∈σ
Ñ
dρM+1 = 0, this proves Definition 8(iii). Finally, for all k ∈ N>0

and all representatives [x̄ε] = x , we have

dk

dxk

(+∞∑

n=0

anε(x − cε)
n

)

x=x̄ε

=
+∞∑

n=k

anε(x̄ε − cε)
n−k

k−1∏

j=0

(n − j) (2.8)

= k!
+∞∑

n=k

anε(x̄ε − cε)
n−k
(
n

k

)

, (2.9)

and hence

∣
∣
∣
∣
∣

dk

dxk

(+∞∑

n=0

anε(x̄ε − cε)
n

)∣
∣
∣
∣
∣
≤

+∞∑

n=k

ρ−nQ−R
ε ρ(n−k)q

ε

k−1∏

j=0

(n − j)

= ρ−R−kQ
ε

+∞∑

n=k

ρ(q−Q)(n−k)
ε

k−1∏

j=0

(n − j)

= ρ−R−kQ
ε

k!
(1 − ρ

q−Q
ε )k+1

∈ Rρ.

In the last step we used q ≥ Q+1 and the binomial series
∑+∞

n=k y
n−k∏k−1

j=0(n− j) =
k!∑+∞

n=k

(n
k

)
yn−k = k!

(1−y)k+1 for |y| < 1. ��

We can now prove independence from representatives both in Definition 8 and in
Definition 1:

Lemma 10 Let (an)c = [anε]c = [ānε]c ∈ ρ
R̃c, x = [xε] = [x̄ε], c = [cε] = [c̄ε] ∈

ρ
R̃. Assume that x ∈ ρ

σ
conv ((an)c , c). Then

(i) The nets (anε)n,ε, (xε) and (cε) also satisfy all the conditions of Definition 8 of
set of convergence.

(ii)
[
anε · (xε − cε)

n]
s = [ānε · (x̄ε − c̄ε)

n]
s, where the equality is in

ρ

σ
R̃s.

Proof (i): Since we have similar steps for several claims, let Nε ∈ N and Mε ∈
N ∪ {+∞}, so that a term of the form

∑Mε

n=Nε
bnε represents both the ordinary series

∑+∞
n=0 bnε or the finite sum

∑Mε

n=Nε
bnε. From Definition 8 of set of convergence, we

get the existence of representatives [x̂ε] = x ∈ ρ
R̃,
[
ânε

]
c = (an)cn and [ĉε] = c

satisfying Definition 8. Set ŷε := x̂ε − ĉε, ŷ := [ŷε]. Let r := [rε] := rad (an)c be the
radius of convergence. From Lemma 7(v), take s ∈ ρ

R̃ satisfying |ŷ| < s ≤ r and a
representative [sε] = s such that |ŷε| < sε ≤ rε for all ε small. Set znε := anε − ânε

and ẑε := yε − ŷε. For all k ∈ N, we have
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Mε∑

n=Nε

anε y
n−k
ε

(
n

k

)

=
Mε∑

n=Nε

(
ânε + znε

) (
ŷε + ẑε

)n−k
(
n

k

)

=
Mε∑

n=Nε

ânε

(
ŷε + ẑε

)n−k
(
n

k

)

+
Mε∑

n=Nε

znε

(
ŷε + ẑε

)n−k
(
n

k

)

.

(2.10)

Since ẑ = 0, we also have |ŷε|+ |ẑε| < sε ≤ rε for all ε small. For the same ε, assume
that |znε| ≤ ρ

np+q
ε for fixed arbitrary p, q ∈ N. We first consider the second summand

in (2.10):

∣
∣
∣
∣
∣
∣

Mε∑

n=Nε

znε

(
ŷε + ẑε

)n−k
(
n

k

)
∣
∣
∣
∣
∣
∣
≤

Mε∑

n=Nε

ρnp+q
ε sn−k

ε

(
n

k

)

= ρq+kp
ε

Mε∑

n=Nε

(
ρ p

ε sε
)n−k

(
n

k

)

≤ ρq+kp
ε

+∞∑

n=k

(
ρ p

ε sε
)n−k

(
n

k

)

− ρq+kp
ε

Nε−1∑

n=k

(
ρ p

ε sε
)n−k

(
n

k

)

≤ 2ρq+kp
ε

+∞∑

n=k

(
ρ p

ε sε
)n−k

(
n

k

)

.

Since s ∈ ρ
R̃, we can take p ∈ N sufficiently large so that ρ p

ε sε < 1. This implies

∣
∣
∣
∣
∣
∣

Mε∑

n=Nε

znε

(
ŷε + ẑε

)n−k
(
n

k

)
∣
∣
∣
∣
∣
∣
≤ 2ρq+kp

ε
(
1 − ρ

p
ε sε
)k+1 .

Thereby, for q → +∞, this summand defines a negligible net. For the first summand
of (2.10), we can use the mean value theorem to get

∣
∣
∣
∣
∣
∣

Mε∑

n=Nε

ânε

(
ŷε + ẑε

)n−k
(
n

k

)

−
Mε∑

n=Nε

ânε ŷ
n−k
ε

(
n

k

)
∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

Mε∑

n=Nε

ânε(n − k)ξn−k−1
ε

(
n

k

)

ẑε

∣
∣
∣
∣
∣
∣
= ∣∣ẑε

∣
∣

∣
∣
∣
∣
∣
∣

Mε∑

n=Nε

ânε(n − k)ξn−k−1
ε

(
n

k

)
∣
∣
∣
∣
∣
∣

(2.11)

for some ξε ∈ [ŷε, ŷε + ẑε] ∪ [ŷε + ẑε, ŷε]. Thereby, the right hand side of (2.11) is
negligible because of Definition 8(iv).
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We can hence state that for all k ∈ N

⎛

⎝
Mε∑

n=Nε

anε (yε + zε)
n−k

(
n

k

)
⎞

⎠ ∼ρ

⎛

⎝
Mε∑

n=Nε

ânε ŷ
n−k
ε

(
n

k

)
⎞

⎠ .

(2.12)

In the case Mε < +∞ for all ε and k = 0, this proves that
[
anε · ynε

]
s ∈ ρ

σ
R̃s because

(ânε)n,ε and (ŷε) satisfy Definition 8(ii). In the case Mε = +∞ and Nε = 0 =
k, it proves the moderateness of

(∑+∞
n=0 anε ynε

)
too, i.e. the implicit moderateness

requirement of Definition 8(iii). Finally, for k > 0, from property (2.12) we have that
Definition 8(iv) holds for (anε) and (yε) because of (2.8). We can apply (2.12) with
k = 0 to [ānε]c = (an)c, [x̄ε] = x , [c̄ε] = c, ȳε := x̄ε − c̄ε and with Mε < +∞, to
get

⎛

⎝
Mε∑

n=Nε

anε y
n
ε

⎞

⎠ ∼ρ

⎛

⎝
Mε∑

n=Nε

ânε ŷ
n
ε

⎞

⎠ ∼ρ

⎛

⎝
Mε∑

n=Nε

ānε ȳ
n
ε

⎞

⎠ .

This proves claim (ii) and hence also Definition 8(iii) because ρ
∑

n∈σ
Ñ

[
ânε

] · [ŷε
]n

converges to
[∑+∞

n=0 ânε ŷnε
] = [∑+∞

n=0 anε ynε
] = [∑+∞

n=0 ānε ȳnε
] ∈ ρ

R̃ from (2.12). ��

2.4 Examples

We start studying geometric hyperseries, which in general are convergent HPS if
σ ≤ ρ∗:

Example 11 (Geometric hyperseries) Assume that x ∈ (−1, 1) ⊆ ρ
R̃. We have:

[∣
∣
∣
∣
∣

Nε∑

n=0

xnε

∣
∣
∣
∣
∣

]

≤
[∣
∣
∣
∣
∣

1 − |xNε+1
ε |

1 − xε

∣
∣
∣
∣
∣

]

≤ 2

1 − x
∈ ρ

R̃.

(2.13)

This shows that (xn)n = [xnε ] ∈ ρ

σ
R̃s for all gauges ρ, σ . Hence byDefinition 1, [xnε ]s ∈

ρ

σ
R̃�x�, i.e. the geometric series is a formal hyper-series. Since coefficients anε = 1,
we have [anε]c ∈ ρ

R̃c (see Definition 3(i)). Now, by Definition 3(iii), rad (1)c = 1.
From Definition 8(i), we have ρ

σ
conv ((1)c , 0) ⊆ (−1, 1). Now, take x = [xε] ∈

(−1, 1), with −1 < xε < 1 for all ε. From [25, Example 8], if σ ≤ ρ∗ (i.e. if
∃Q ∈ R>0 ∀0ε : σε ≤ ρ

Q
ε ), we have Definition 8(iii). Finally, if [x̄ε] = x is another

representative and k ∈ N>0, then −1 < x̄ε < 1 for ε small, and from (2.8) we get∑+∞
n=k k!

(n
k

)
x̄n−k
ε = k!

(1−x̄ε)k+1 ∈ Rρ because 1 − x > 0 is invertible.
Note explicitly that σ ≤ ρ∗ is a sufficient condition ensuring the convergence of any

geometric hyperseries with |x | < 1. However, we already used (see e.g. Theorem 9)
the convergence of the geometric hyperseries ρ

∑
n∈σ

Ñ
dρn = 1

1−dρ for all gauges
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ρ, σ . More generally, exactly as proved in [25, Example 8], it is easy to see that
ρ
∑

n∈σ
Ñ
xn = 1

1−x if σε ≤
(
log xε

log ρε

)Q
for ε small and some Q ∈ R>0.

Example 12 (A smooth function with a flat point) Consider the GSF corresponding to
the ordinary smooth function

f (x) :=
{
e−1/x if x ∈ R>0

0 otherwise
.

It is not hard to prove that | f (x)| ≤ |x |q for all x ≈ 0 and all q ∈ N. Thereby,
f (x) = 0 for all x such that |x | ≤ dρr for some r ∈ R>0. Therefore, we trivially
have f (x) = ρ

∑
n∈σ

Ñ
0 · xn only for all x in this infinitesimal neighborhood of

0. On the other hand, ρ

σ
conv ((0)c , 0) = ρ

R̃. Moreover, rad
(

f (n)(c)
n!
)

c
= +∞ and

ρ

σ
conv

((
f (n)(c)
n!
)

c
, c
)

= ρ
R̃ for all c ∈ ρ

R̃ such that |c| � 0, i.e. satisfying |c| ≥ r

for some r ∈ R>0, but f (x) = ρ
∑

n∈σ
Ñ

f (n)(c)
n! · (x − c)n only for all x ∈ ρ

R̃ such

that |x | � 0, which is a strict subset of ρ

σ
conv

((
f (n)(c)
n!
)

c
, c
)

= ρ
R̃. The GSF f is

therefore a candidate to be a GRAF, but not an entire GRAF.

Example 13 (A nowhere analytic smooth function) A classical example of an
infinitely differentiable function which is not analytic at any point is F(x) =
∑

k∈2N e−√
k cos(kx), where 2N := {2n | n ∈ N}. Since for all x = π

p
q , with p ∈ N

and q ∈ 2N and for all n ∈ 2N, n ≥ 4, n > q, we have F (n)(x) ≥ e−2n(4n2)n +O(qn)

as n → +∞, we have that
(
F (n)(x)

n!
)

n,ε
/∈ (RN×I

)
ρ
, i.e. they are not coefficients for

a HPS. Note that this also proves that not even all smooth functions can be embedded
as GRAF.

Example 14 (Exponential) We clearly have
( 1
n!
)
c ∈ ρ

R̃c and rad
( 1
n!
)
c = +∞, i.e. we

have coefficients for an HPS with infinite radius of convergence. Set

C := {x ∈ ρ
R̃ | ∃K ∈ N : |x | < −K log dρ

}
.

For all x = [xε] ∈ C and all Nε, Mε ∈ N, we have
∣
∣
∣
∑Mε

n=Nε

xnε
n!
∣
∣
∣ ≤ e|xε | ≤ ρ−K

ε

for ε small, and this shows that
[
xn
n!
]

s
∈ ρ

σ
R̃�x�, i.e. for all x ∈ C , we have a formal

HPS. We finally want to prove that C = ρ

σ
conv

(( 1
n!
)
c , 0
)
if σ ≤ ρ∗. The inclusion ⊇

follows directly fromDefinition 8(iii). If x = [xε] ∈ C , then condition Definition 8(iv)

holds because the k-th derivative HPS
(
k!∑+∞

n=k

(n
k

) · xn−k
ε

n!
)

= (exε ) ∈ Rρ . To prove

Definition 8(iii), assume that |xε| < −K log ρε =: Mε for all ε and set M := [Mε] ∈
ρ
R̃. Take N = [Nε] ∈ σ

Ñ such that M
N+1 < 1

2 , so that, exactly as in [25, Example 8],

we can prove that Mn+1

(n+1)! < 1
2n+1 and hence

∣
∣
∣
∑+∞

n=Nε+1
xnε
n!
∣
∣
∣ ≤ ∑

n≥Nε

1
2n → 0 as

N → +∞, N ∈ σ
Ñ, if σ ≤ ρ∗. Similarly, we can consider trigonometric functions

whose set of convergence is the whole of ρ
R̃.
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Example 15 (Dirac delta) In Remark 5(v), we already proved that
(

δ(n)(0)
n!
)

c
∈ ρ

R̃c

and rad
(

δ(n)(0)
n!
)

c
= +∞. For all x = [xε] ∈ ρ

R̃ and all Nε, Mε ∈ N, we have
∣
∣
∣
∑Mε

n=Nε

δ
(n)
ε (0)
n! xnε

∣
∣
∣ ≤ bε ·∑+∞

n=0
|μ(n)(0)|

n! |bεxε|n . But |μ(n)(0)| = inμ(n)(0) because

μ(n)(0) = 0 if n is odd, so that
∣
∣
∣
∑Mε

n=Nε

δ
(n)
ε (0)
n! xnε

∣
∣
∣ ≤ bε · ∑+∞

n=0
μ(n)(0)

n! |ibεxε|n =
bεμ(i |bεxε|) ∈ Rρ , and this proves that

(
δ(n)(0)
n!
)

c
∈ ρ

σ
R̃�x�, i.e. we always have a

formal HPS. Condition Definition 8(iv) follows because derivativesδ(k)(x) ∈ ρ
R̃ are

always moderate. It remains to prove Definition 8(iii) for all x = [xε] ∈ ρ
R̃ to show

that ρ

σ
conv

((
δ(n)(0)
n!
)

c
, 0
)

= ρ
R̃:

N∑

n=0

δ(n)(0)

n! xn =
[

bε

Nε∑

n=0

μ(n)(0)

n! bnε x
n
ε

]

= δ(x) − b

[

μ(Nε+1)(x̄ε)
xNε+1
ε

(Nε + 1)!

]

where the existence of x̄ε ∈ [0, xε] ∪ [xε, 0] is derived from Taylor’s formula. Since
|μ(k)(y)| ≤ 1

2π

∫
β(x)|x |k dx =: C ∈ R>0 for all k ∈ N and all y ∈ R, we obtain

∣
∣
∣
∣
∣

N∑

n=0

δ(n)(0)

n! xn − δ(x)

∣
∣
∣
∣
∣
≤ bC

[ |xε|Nε+1

(Nε + 1)!
]

.

Using Stirling’s approximation, we have |xε |Nε+1

(Nε+1)! ≤ 2
( |xε |e

Nε

)N ≤ ρ
Nε
ε for all N ∈ σ

Ñ

such that N > |x |edρ−1, which is always possible if σ ≤ ρ∗. Since ρ limN∈σ
Ñ
dρN =

0, this proves the claim.

A different way to include a large class of examples is to use the characterization
Theorem 37 by factorial growth of derivatives of GRAF.

When we say that a HPS ρ
∑

n∈σ
Ñ
an(x−c)n is convergent, we already assume that

its coefficients are correctly chosen and that the point x is in the set of convergence,
as stated in the following

Definition 16 We say that ρ
∑

n∈σ
Ñ
an(x − c)n is a convergent HPS if

(i) (an)c ∈ ρ
R̃c are coefficients for HPS.

(ii) x ∈ ρ

σ
conv ((an)c , c).

In all the previous examples, we recognized that dealing with HPS is more involved
than working with ordinary series, where we only have to check that the final result
is a convergent series “of the form”

∑∞
n=0 an(x − c)n . On the contrary, for HPS we

have to control the following steps:

(1) We have to check that the net (anε)n,ε defines coefficients for HPS (Definition 3(i)),
i.e. that

∀0ε ∀n ∈ N : |anε| ≤ ρ−nQ−R
ε
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for some Q, R ∈ N>0. This allows us to talk about the radius of convergence
rad (an)c and of the set of convergence ρ

σ
conv ((an)c , c) (Definition 8). Because

of Theorem 9, this set is always non-trivial

(c − dρq , c + dρq) ⊆ ρ

σ
conv ((an)c , c) ⊆ (c − rad (an)c , c + rad (an)c), (2.14)

but in general is not an interval, like the case of the exponential function clearly
shows. This step already allows us to say that the HPS ρ

∑
n∈σ

Ñ
an(x − c)n is

convergent, i.e. Definition 16, if x ∈ ρ

σ
conv ((an)c , c).

(2) At this point, we can study the set of convergence, e.g. to arrive at an explicit form
C = ρ

σ
conv ((an)c , c) ⊆ (c − rad (an)c , c + rad (an)c). This depends mainly on

three conditions:

(a) For all x ∈ C , we must have a formal HPS (Definition 1) because this allows
us to talk of any hyperfinite sum

∑M
n=N an(x − c)n for M , N ∈ σ

Ñ. Here, the

main step is to prove that the net
(∑Mε

n=Nε
anε(xε − cε)

n
)

∈ Rρ .

(b) For all x ∈ C , we have to check Definition 8. (iii), i.e. the equality:

ρ
∑

n∈σ
Ñ

an(x − c)n =
[+∞∑

n=0

anε(xε − cε)
n

]

∈ ρ
R̃.

(2.15)

(c) Finally, we have to prove that for all representatives x = [x̄ε] ∈ C , all the

derivatives dk

dxk
(∑+∞

n=0 anε(x̄ε − cε)
n
)
are ρ-moderate.

(d) After the previous three steps, we get C ⊆ ρ

σ
conv ((an)c , c), and hence it

remains to prove the opposite inclusion.

See Corollary 25 for sufficiently general conditions under which only (2.15) suf-
fices to prove that x lies in the set of convergence.

Note explicitly that we never formally defined what is a HPS: we have formal HPS
(Definition 1), the notion of coefficients for HPS (Definition 3(i)), which always have
a strictly positive radius of convergence (Definition 3(iii)) and a non trivial set of
convergence (Definition 8 andTheorem9), andfinally convergentHPS (Definition 16).

2.5 Topological properties of the set of convergence

The first consequence of our definition of convergent HPS Definition 16 and radius of
convergence Definition 3, is the following

Lemma 17 Let ρ
∑

n∈σ
Ñ
an(x − c)n be a convergent HPS. If the following least upper

bound exists

lub
{|x̄ − c| | ρ

∑
n∈σ

Ñ
an(x̄ − c)n is a convergent HPS

} =: r ∈ ρ
R̃, (2.16)

then r ≤ rad (an)c.
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Proof In fact, if ρ
∑

n∈σ
Ñ
an(x̄ − c)n is a convergent HPS, then ρ

∑
n∈σ

Ñ
an(x̄ − c)n =

[∑+∞
n=0 anε(x̄ε − cε)

n
]
, and hence |x̄ε − cε| ≤ (lim supn |anε|1/n)−1 for all ε small,

i.e. |x̄ − c| ≤ rad (an)c. ��

Note that from Example 14, we have that the least upper bound of

{
x ∈ ρ

R̃ | ρ
∑

n∈σ
Ñ

xn
n! is a convergent HPS

}

(2.17)

does not exist in ρ
R̃, whereas Definition 3 yields the value rad

( 1
n!
)
c = +∞. Therefore,

Definition 3 allows us to consider the exponential HPS even if the supremum of (2.17)
does not exist. It remains an open problem whether r = rad (an)c, at least if the least
upper bound (2.16), or the corresponding sharp supremum, exists.

We now study absolute convergence of HPS, and sharply boundedness of the sum-
mands of a HPS. We first show that the hypersequence (an(x − c)n)n∈σ

Ñ
of the terms

of a HPS is sharply bounded:

Lemma 18 Let x, c ∈ ρ
R̃. If ρ

∑
n∈σ

Ñ
an(x − c)n is a convergent HPS, then

∃K ∈ ρ
R̃ ∀n ∈ σ

Ñ : |an(x − c)n| < K . (2.18)

Proof We recall that because of the definition of formal HPS (Definition 1) and [25,
Lemma 7] the term an(x − c)n ∈ ρ

R̃ is well-defined for all n ∈ σ
Ñ. Set x̄ := x − c,

i.e. without loss of generality we can assume c = 0. Since ρ
∑

n∈σ
Ñ
an x̄n converges,

from [25, Lemma 15] we have

∃N ∈ σ
Ñ ∀n ∈ σ

Ñ≥N : |an x̄n| < 1. (2.19)

Let us consider an arbitrary n ∈ σ
Ñ. From [21, Lemma 13], we have either n ≥ N

or n <L N for some L ⊆0 I . In the latter case, |an x̄n| ≤L s := ∑N−1
n=0 |an x̄n| <

max(s + 1, 1) =: K . From [21, Lemma 7(iii)] and from (2.19), the claim follows. ��

The previous proof is essentially the generalization in our setting of the classical one,
see e.g. [20]. However, property (2.18) does not allow us to apply the direct comparison
test [25, Theorem 22]. Indeed, let us imagine that we only prove |anxn| < Khn , with
h < 1, for all n ∈ σ

Ñ and with K coming from (2.18); as we already explained in [25,
Sec. 3.3], this would imply

∀n ∈ N ∃ε0n ∀ε ≤ ε0n : ∣∣anεx
n
ε

∣
∣ ≤ Kεh

n
ε ,

and the dependence of ε0n from n ∈ N is a problem in estimating inequalities of the
form

∑Nε

n=0

∣
∣anεxnε

∣
∣ ≤ Kε

∑Nε

n=0 h
n
ε , see [25]. A solution of this problem is to consider

a uniform property of n ∈ N with respect to ε:
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Definition 19 Let (an)c ∈ ρ
R̃c and x , c ∈ ρ

R̃, then we say that (an(x − c)n)n∈N is
eventually ρ

R̃-bounded in ρ
R̃c, if there exist representatives (an)c = [anε]c, [xε] = x ,

[cε] = c such that

∃[Rε] ∈ ρ
R̃ ∃N ∈ N∀0ε ∀n ∈ N≥N : ∣∣anε(xε − cε)

n
∣
∣ < Rε. (2.20)

Remark 20 (i) The adverb eventually clearly refers to the validity of the uniform
inequality in (2.20) only for n sufficiently large.

(ii) If for ε small, the series
∑+∞

n=0 |anε(xε − cε)
n| =: Rε of absolute values terms

converges to a ρ-moderate net, then (2.20) holds for N = 0. This includes
Example 11 of geometric hyperseries, Example 12 of a function with a flat point
if both x , c are finite, and Example 14 of the exponential hyperseries at c = 0 if
x is finite.

(iii) In Example 15 of Dirac delta at c = 0, if |bx | ≤ 1 (therefore, x is an infinitesimal

number) we have
∣
∣
∣
δ
(n)
ε (0)
n! xnε

∣
∣
∣ =

∣
∣
∣
μ(n)(0)

n! bn+1
ε xnε

∣
∣
∣ ≤ bε for all n ∈ N such that

∣
∣
∣
μ(n)(0)

n!
∣
∣
∣ ≤ 1. Therefore,

(
δ(n)(0)
n! xn

)

n∈N is eventually ρ
R̃-bounded in ρ

R̃c if

|bx | ≤ 1. If x � 0, i.e. x ≥ s ∈ R>0, then
∣
∣
∣
δ
(n)
ε (0)
n! xnε

∣
∣
∣ =

∣
∣
∣
μ(n)(0)

n! bn+1
ε xnε

∣
∣
∣ ≥

∣
∣
∣
μ(n)(0)

n!
∣
∣
∣ snbn+1

ε and hence condition (2.20) does not hold for any [Rε] ∈ ρ
R̃

because b ≥ dρ−a for some a ∈ R>0 (see e.g. [12, Sec. 3.0.2]).

The last example also shows that property (2.20) does not hold for all points x ∈
ρ

σ
conv ((an)c , c). However, it always holds for any c if x is sufficiently near to c:

Lemma 21 Let (an)c ∈ ρ
R̃c and c ∈ ρ

R̃, then there exists σ ∈ ρ
R̃>0 such that for all

x ∈ Bσ (c), the sequence of summands (an(x − c)n)n∈N is eventually ρ
R̃-bounded in

ρ
R̃c.

Proof Using the same notation as above, since (an)c ∈ ρ
R̃c, we have ∀0ε ∀n ∈ N :

|anε| ≤ ρ
−nQ−R
ε . Therefore, forσ := dρQ , we have |anε(xε−cε)

n| ≤ ρ
−nQ−R
ε ρ

nQ
ε =

ρ−R
ε . ��

The following result is a stronger version of the previous Lemma 18, and allows us to
apply the dominated convergence test:

Lemma 22 Let (an)c ∈ ρ
R̃c, x, c ∈ ρ

R̃, and assume that (an(x − c)n)n∈N is eventually
ρ
R̃-bounded in ρ

R̃c, then

∃K ∈ ρ
R̃ : ((an(x − c)n

))
c < K in ρ

R̃c,

(2.21)

i.e. for all representatives (an)c = [anε]c, [xε] = x, [cε] = c, [Kε] = K, we have

∀0ε ∀n ∈ N : ∣∣anε(xε − cε)
n
∣
∣ < Kε.

(2.22)
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Since ρ
R̃ ⊆ ρ

R̃c by Remark 5(ii), property (2.21) also shows that Definition 19 does
not depend on the representatives involved.

Proof It suffices to set K := R ∨ maxn≤N an , where R ∈ ρ
R̃ and N ∈ N come from

(2.20). ��
Even if the case of the exponential HPS (see Example 14) shows that in general the
set of convergence is not an interval, it has very similar properties, at least if the gauge
σ is sufficiently small:

Theorem 23 Letσ ≤ ρ∗ and ρ
∑

n∈σ
Ñ
an(x̄−c)n be a convergentHPSwhose sequence

of summands (an(x̄ − c)n)n∈N is eventually ρ
R̃-bounded in ρ

R̃c. Then for all x ∈
B|x̄−c|(0) we have:

(i) The HPS converges absolutely at x, and hence uniformly on every functionally
compact K �f B|x̄−c|(c);

(ii) (an(x − c)n)n∈N is eventually ρ
R̃-bounded in ρ

R̃c.
(iii If |x̂ − c| = |x̄ − c|, then not necessarily ρ

∑
n∈σ

Ñ
an(x̂ − c)n converges.

If ρ
∑

n∈σ
Ñ
an(x − c)n = [∑∞

n=0 anε(xε − cε)
n] ∈ ρ

R̃, then:

(iv) x ∈ ρ

σ
conv ((an)c , c);

(v) x is a sharply interior point, i.e. Bs(x) ⊆ ρ

σ
conv ((an)c , c) for some s ∈ ρ

R̃>0;
(vi) ρ

σ
conv ((an)c , c) is ρ

R̃-convex, i.e. if also y ∈ ρ

σ
conv ((an)c , c), then ∀t ∈ [0, 1] :

y + t(x̄ − y) ∈ ρ

σ
conv ((an)c , c);

(vii) The set of convergence ρ

σ
conv ((an)c , c) is strongly connected, i.e. it is not pos-

sible to write it as union of two non empty strongly disjoint sets, i.e. such that

(a) A, B ⊆ ρ
R̃, A �= ∅ �= B,

(b) ∃ sup(A), ∃ inf(B), sup(A) ≤ inf(B),
(c) ρ

σ
conv ((an)c , c) = A ∪ B,

(d) ∃m ∈ N : Bdρm (A) ∩ Bdρm (B) = ∅.
Proof Without loss of generality we can assume c = 0. From [21, Lemma 5(ii)], we
have either x̄ =L 0 or |x̄ | > 0 for some L ⊆0 I . The first case is actually impossible
because 0 ≤ |x | < |x̄ | =L 0. We can hence work only in the latter case |x̄ | > 0. From
Lemma 22, we have ∀0ε ∀n ∈ N : |anε x̄nε | ≤ Kε. Setting h := ∣

∣ x
x̄

∣
∣, we have h < 1

because |x | ∈ B|x̄ |(0), and

∀0ε ∀n ∈ N : |anεx
n
ε | = ∣∣anε x̄

n
ε

∣
∣ .

∣
∣
∣
∣
xε

x̄ε

∣
∣
∣
∣

n

< Kεh
n
ε .

(2.23)

Thereby,
∑M

n=N |anxn| ≤ ∑M
n=N Khn for all N , M ∈ σ

Ñ. By the direct compar-
ison test [25, Theorem 22], the HPS ρ

∑
n∈σ

Ñ
anxn converges absolutely because

ρ
∑

n∈σ
Ñ
Khn converges since σ ≤ ρ∗ and h < 1. Finally, [12, Theorem 74] yields

that pointwise convergence implies uniform convergence on functionally compact
sets, see [11]. This proves (i).
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(ii): From (2.23) it follows that
∑+∞

n=0 |anεxnε | =: Rε converges and is ρ-moderate.
This implies condition (2.20).

For (iii), it suffices to consider that ρ
∑

n∈ρ
Ñ

(−1)n

n converges (see [25, Sec. 3.6])
whereas ρ

∑
n∈ρ

Ñ

1
n does not by [25, Theorem 18]. Note however, that for x = 1, we

have |x | = rad
( 1
n

)
c so that condition Definition 8(i) does not hold.

(iv): From the assumptions, x ∈ B|x̄−c|(0), |x̄ − c| < rad (an)c, and hence Defini-
tion 8(i) and Definition 8(iii follow. Note that Definition 8(ii) can be proved as above
from (2.23). Finally, if [x̂ε] = x and k ∈ N>0, we have

dk

dxk

(+∞∑

n=0

anε x̂
n
ε

)

≤
+∞∑

n=k

|anε|k!
(
n

k

) ∣
∣
∣
∣
x̂ε

x̄ε

∣
∣
∣
∣

n−k

|x̄ε|n−k

≤ Kε|x̄ε|−k
+∞∑

n=k

k!
(
n

k

) ∣
∣
∣
∣
x̂ε

x̄ε

∣
∣
∣
∣

n−k

∈ Rρ,

(2.24)

where we used Lemma 22, and hence Definition 8(iv) also holds.
(v): For s := |x̄ |− |x | > 0 and x̂ ∈ Bs(x), we have |x̂ | ≤ |x̂ − x |+ |x | < s+|x | =

|x̄ |, and hence x̂ ∈ ρ

σ
conv ((an)c , c) from (iv).

(vi): Setting x̂ := y + t(x̄ − y), we have y ≤ x̂ ≤ x̄ . We can use trichotomy
law [21, Lemma 7(iii)] to distinguish the cases y =L 0 or y >L 0 or y <L 0 for
L ⊆0 I . The latter has to be subdivided into the sub-cases x̂ >M 0 or x̂ =M 0 or
x̂ <M 0 with M ⊆0 L , i.e. using [21, Lemma 7(iii)] for the ring ρ

R̃|L . Finally, the
latter of these sub-cases has to be further subdivided into x̂ >K y or x̂ <K y or
x̂ =K y with K ⊆0 M . In all these cases (clearly, some of these subcases cannot hold
simultaneously) we can prove Definition 8 in the corresponding co-final set.

(vii): By contradiction, if a ∈ A and b ∈ B, then x := 1
2 (sup(A) + inf(B)) lies

in the segment [a, b] ⊆ ρ

σ
conv ((an)c , c) by (vi). But property Bdρm (A) ∩ Bdρm (B)

implies that sup(A) < inf(B) and hence x /∈ A ∪ B = ρ

σ
conv ((an)c , c). ��

In spite of Theorem 23(v), it remains open the problemwhether the set of convergence
is always a sharply open set or not. Using the previous theorem, this problem depends,
for each point x in the set of convergence, on the existence of a point x̄ satisfying

assumptions of Theorem 23. However, in the case x = 1 ∈ ρ

σ
conv

((
δ(n)(0)
n!
)

c
, 0
)
,

Remark 20 (iv) shows that
(

δ(n)(0)
n! xn

)

n∈N is not eventually ρ
R̃-bounded in ρ

R̃c, so

that such a point x̄ in this case does not exist and Theorem 23 cannot be applied.

Corollary 24 Let σ ≤ ρ∗ and let R be the set of all the numbers of the form s = |x̄−c|
for some x̄ ∈ ρ

R̃ satisfying:

(i) ρ
∑

n∈σ
Ñ
an(x̄ − c)n is a convergent HPS,

(ii) (an(x̄ − c)n)n∈N is eventually ρ
R̃-bounded in ρ

R̃c.

If ∃ sup R =: r ∈ ρ
R̃, then Br (c) ⊆ ρ

σ
conv ((an)c , c), the HPS ρ

∑
n∈σ

Ñ
an(x − c)n

converges absolutely for all x ∈ Br (c) and uniformly on every functionally compact
K �f Br (c).
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Proof Without loss of generality, we assume c = 0, and let x ∈ Br (c). Since |x | < r ,
by the definition of sharp supremum, (see [21]) there exist s = |x̄ | such that |x | <

|x̄ | ≤ r and such that (i) and (ii) hold. The conclusions then follow by Theorem 23. ��
Property Theorem 23(iv) can also be written as a characterization of the set of

convergence:

Corollary 25 Let σ ≤ ρ∗, (an)c = [anε]c ∈ ρ
R̃c, c = [cε] ∈ ρ

R̃ such
that ρ

∑
n∈σ

Ñ
an(x̄ − c)n is a convergent HPS whose sequence of summands

(an(x̄ − c)n)n∈N is eventually ρ
R̃-bounded in ρ

R̃c. If x ∈ B|x̄−c|(0), then x = [xε] ∈
ρ

σ
conv ((an)c , c) if and only if

ρ
∑

n∈σ
Ñ

an(x − c)n =
[ ∞∑

n=0

anε(xε − cε)
n

]

∈ ρ
R̃.

2.6 Algebraic properties of hyper-power series

In this section, we extend to HPS the classical results concerning algebraic operations
and composition of power series.

Theorem 26 Assume that ρ
∑

n∈σ
Ñ
an (x − c) n and ρ

∑
n∈σ

Ñ
bn (x − c) n are two con-

vergent HPS, then:

(i) For all r ∈ ρ
R̃, the product r · ρ

∑
n∈σ

Ñ
an (x − c) n is a convergent HPS with

rad (ran)c ≥ rad (an)c, and

r · ρ
∑

n∈σ
Ñ

an (x − c) n = ρ
∑

n∈σ
Ñ

ran (x − c) n . (2.25)

(ii) The sum of these HPS is a convergent HPS with

rad (an + bn)c ≥ min(rad (an)c , rad (bn)c),

and

ρ
∑

n∈σ
Ñ

(an + bn) (x − c)n = ρ
∑

n∈σ
Ñ

an (x − c) n + ρ
∑

n∈σ
Ñ

bn (x − c) n .

(2.26)

(iii) For all x̄ ∈ B|x−c|(c), the product of these HPS converges to their Cauchy
product:

⎛

⎝ρ
∑

n∈σ
Ñ

an (x̄ − c) n

⎞

⎠ ·
⎛

⎝ρ
∑

n∈σ
Ñ

bn (x̄ − c) n

⎞

⎠ = ρ
∑

n∈σ
Ñ

n∑

k=0

akbn−k (x̄ − c) n,

(2.27)
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which is still a convergent HPS with radius of convergence greater or equal to
min(rad (an)c , rad (bn)c).

(iv) Let [anε]c = (an)c and [bnε]c = (bn)c be representatives of the coefficients of
the given HPS. Assume that b0 = [b0ε] ∈ ρ

R̃ is invertible, and recursively define
(for ε small) d0ε := a0ε

b0ε
,

dnε := 1

b0ε

(

anε −
n∑

l=1

blεdn−l,ε

)

∀n ∈ N>0. (2.28)

Then coefficients (dn)c ∈ ρ
R̃c define a convergent HPS with radius of con-

vergence greater or equal to min(rad (an)c , rad (bn)c) such that for all x̄ ∈
B|x−c|(c), if ρ

∑
n∈σ

Ñ
bn (x̄ − c) n is invertible, then

ρ
∑

n∈σ
Ñ
an (x̄ − c) n

ρ
∑

n∈σ
Ñ
bn (x̄ − c) n

= ρ
∑

n∈σ
Ñ

dn (x̄ − c) n .

(2.29)

Proof Equalities (2.25) and (2.26) follow directly from analogous properties of con-
vergent hyperlimits, i.e. [21, Sec. 5.2]. All the inequalities concerning the radius
of convergence can be proved in the same way from analogous results of the clas-
sical theory, because of Definition (iii) 3. For example, from Definition 8(iii) we
have that both the ordinary series

∑+∞
n=0 anε(xε − cε)

n and
∑+∞

n=0 bnε(xε − cε)
n

converge. Thereby, their sum
∑+∞

n=0 (anε + bnε) (xε − cε)
n converges with radius

rad (an + bn)cε ≥ min
(
rad (an)cε , rad (bn)cε

)
. To prove (2.27) (assuming that x̄ lies

in the convergence set of the product HPS, see below), from Lemma 23 we have that
both the series converge absolutely because x̄ ∈ B|x−c|(c). We can hence apply the
generalization of Mertens’ theorem to hyperseries (see [25, Theorem 37]).

To complete the proof of (iii), we start by showing that the representatives of the
product

(∑n
k=0 akεbn−k,ε

)
n,ε

defines coefficients for an HPS. Let (an)c = [anε]c,

(bn)c = [bnε]c ∈ ρ
R̃c, so that:

∃Q1, R1 ∈ N∀0ε ∀n ∈ N : |anε| ≤ ρ−nQ1−R1
ε . (2.30)

∃Q2, R2 ∈ N∀0ε ∀n ∈ N : |bnε| ≤ ρ−nQ2−R2
ε .

(2.31)

Without loss of generality we can assume Q2 > Q1. We have

∣
∣
∣
∣
∣

n∑

k=0

akεbn−k,ε

∣
∣
∣
∣
∣
≤

n∑

k=0

|akε||bn−k,ε|

≤
n∑

k=0

ρ−kQ1−R1
ε .ρ−(n−k)Q2−R2

ε
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≤
n∑

k=0

ρ−kQ1+kQ2−nQ2−R1−R2
ε .

(2.32)

We have ρ
Q2−Q1
ε < 1 because Q2 > Q1, and hence

∣
∣
∣
∣
∣

n∑

k=0

akεbn−k,ε

∣
∣
∣
∣
∣
≤ ρ

−nQ2−R1−R2
ε

1 − ρ
−Q1+Q2
ε

≤ ρ−nQ−R
ε ,

where R := R1 + R2 and for a suitable Q ∈ N (that can be chosen uniformly with
respect to n ∈ N). Thereby, the product HPS has well-defined coefficients and hence
a suitable set of convergence.

Now, we want to show that x̄ lies in this set of convergence. Since Definition 8(i)
clearly holds and Definition 8(iii) follows from Mertens’ Theorem (both [25, Theo-
rem 37] and the classical version), it remains to prove that we actually have a formal
HPS (Definition 8(ii)) and moderateness of derivatives (Definition 8(iv)). The latter
follows by the general Leibniz rule for the k-th derivative of a product. For the former
one, without loss of generality we can assume c = 0; let (Mε), (Nε) ∈ Nσ , then for

suitable
(
M̄ε

)
,
(
M̂ε

)
∈ Nσ and

(
N̄ε

)
,
(
N̂ε

)
∈ Nσ such that Mε = M̄ε + M̂ε and

Nε = N̄ε + N̂ε, we have

⎛

⎝
Mε∑

n=Nε

n∑

k=0

anεbn−k,ε x̂
n
ε

⎞

⎠ =
⎛

⎝
M̄ε∑

n=N̄ε

anε x̂
n
ε

⎞

⎠ ·
⎛

⎝
M̂ε∑

n=N̂ε

bn,ε x̂
n
ε

⎞

⎠ , (2.33)

and thereby Definition 8(ii) follows.
(iv): To prove that (dn)c ∈ ρ

R̃c, without loss of generality, we can assume in (2.30)
and (2.31) that Q1 = Q2 =: Q̂ > R1 = R2 =: R̂ and Q̂ > 0. By induction on n ∈ N,
we want to prove that

∀0ε ∀n ∈ N : |dnε| ≤ ρ−nQ̂−Q̂
ε .

(2.34)

For n = 0, we have |d0ε| =
∣
∣
∣ a0εb0ε

∣
∣
∣ ≤ ρ−R̂+R̂

ε ≤ ρ
−Q̂
ε for all ε because Q̂ > 0. For the

inductive step, we assume (2.34) and use the recursive definition (2.28):

∣
∣dn+1,ε

∣
∣ ≤

∣
∣
∣
∣
an+1,ε

b0ε

∣
∣
∣
∣+
∣
∣
∣
∣
∣

∑n+1
l=1 blεdn−l,ε

b0ε

∣
∣
∣
∣
∣

≤ ρ−(n+1)Q̂−R̂
ε · ρ R̂

ε +
n+1∑

l=1

ρ−l Q̂−R̂
ε cdotρ−(n−l)Q̂−Q̂

ε · ρ R̂
ε
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= ρ−nQ̂−Q̂
ε + ρ−nQ̂−Q̂

ε ≤ 2ρ−nQ̂−Q̂
ε .

We have 2ρ−nQ̂−Q̂
ε ≤ ρ

−(n+1)Q̂−Q̂
ε if and only if 2 ≤ ρ

−Q̂
ε , which holds for ε small

(independently by n).
Finally, equality (2.29) can be proved as we did above for the product because

x̄ ∈ B|x−c|(c) and

ρ
∑

n∈σ
Ñ

an (x̄ − c) n = ρ
∑

n∈σ
Ñ

dn (x̄ − c) n .
ρ
∑

n∈σ
Ñ

bn (x̄ − c) n .

(2.35)

From this equality, it also follows Definition 16(ii) because the product of an invertible
non-moderate net (on a co-final set) by a moderate net cannot yield a moderate net.
Finally, as above, moderateness of derivatives follows fromMertens’ theorem and the
k-th derivative of the quotient. ��
The following theorem concerns the composition of HPS:

Theorem 27 Let (an)c = [anε]c, (bn)c = [bnε]c ∈ ρ
R̃c be coefficients for HPS. Set

f (y) := ρ
∑

n∈σ
Ñ

an(y − b0)
n ∀y ∈ ρ

σ
conv ((an)c , b0)

g(x) := ρ
∑

n∈σ
Ñ

bn(x − c)n ∀x ∈ ρ

σ
conv ((bn)c , c) .

Set

c0ε := a0ε

cnε :=
+∞∑

k=0

akε
∑

m1+···+mk=n

bm1ε · · · · · bmkε ∀n ∈ N>0.

If x ∈ ρ

σ
conv ((bn)c , c) and g(x) ∈ ρ

σ
conv ((an)c , b0), then

f (g(x)) = ρ
∑

n∈σ
Ñ

cn(x − c)n

is a convergent HPS.

Proof Since [anε]c, [bnε]c ∈ ρ
R̃c, we can assume that both (2.2) and (2.3) hold with

Q̂ = Q1 = Q2 > 0 and R̂ = R1 = R2 > 0. We have

∣
∣
∣
∣
∣

n∑

k=0

akε
∑

m1+···+mk=n

bm1ε · · · · · bmkε

n∑

k=0

∣
∣
∣
∣
∣
≤

n∑

k=0

|akε|
∑

m1+···+mk=n

|bm1ε| · · · · · |bmkε|
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≤
n∑

k=0

ρ−k Q̂−R̂
ε

∑

m1+···+mk=n

ρ−m1 Q̂−R̂
ε · · · · · ρ−mk Q̂−R̂

ε

=
n∑

k=0

ρ−k Q̂−R̂
ε

∑

m1+···+mk=n

ρ−nQ̂−k R̂
ε

= ρ−R̂
ε +

n∑

k=1

ρ−k Q̂−R̂
ε

∑

m1+···+mk=n

ρ−nQ̂−k R̂
ε

= ρ−R̂
ε +

n∑

k=1

ρ−k Q̂−R̂−nQ̂−k R̂
ε

(
n + k − 1

k − 1

)

≤ ρ−R̂
ε + 22nρ−R̂−nQ̂

ε · 1 − ρ
−(n+1)(Q̂+R̂)
ε

1 − ρ
−Q̂−R̂
ε

=: [∗].

For ε small, we have 4
ρ

ε−1
≤ 1, hence 22n

ρ−n
ε

≤ 1 for the same ε and for all n ∈ N. Now,

take ε small so that also 1

1−ρ
−Q̂−R̂
ε

≤ 1, and 1
ρ−1

ε
≤ 1

3 . We hence have

[∗] ≤ ρ−R̂
ε + ρ−nQ̂−R̂−n

ε + ρ−2nQ̂−n R̂−2R̂−n
ε .

Since

ρ−R̂
ε

ρ
−n(2Q̂+R̂+1)−2R̂−1
ε

≤ 1

ρ−1
ε

≤ 1

3

ρ
−nQ̂−R̂−n
ε

ρ
−n(2Q̂+R̂+1)−2R̂−1
ε

≤ 1

ρ−1
ε

≤ 1

3

ρ
−2nQ̂−n R̂−2R̂−n
ε

ρ
−n(2Q̂+R̂+1)−2R̂−1
ε

≤ 1

ρ−1
ε

≤ 1

3
,

we finally get

∀0ε ∀n ∈ N :
∣
∣
∣
∣
∣

n∑

k=0

akε
∑

m1+···+mk=n

bm1ε · · · · · bmkε

∣
∣
∣
∣
∣
≤ ρ−n(2Q̂+R̂+1)−2R̂−1

ε ,

which proves that (cnε)n,ε defines coefficients for an HPS.
To prove that x ∈ ρ

σ
conv ((cn)c , c), we can proceed as follows: Definition 8(i) can

be proved like in the classical case; Definition 8(ii) is a consequence of composition
of polynomials if Mε < +∞ or it can be proved proceeding like in the case of
composition of GSF if Mε = +∞: Definition 8(iii) and Definition 8(iv) can be proved
like for GSF (see [12] and Theorem 28 below). ��
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3 Generalized real analytic functions and their calculus

A direct consequence of Definition 8 of set of convergence is the following

Theorem 28 Let [anε]c = (an)c ∈ ρ
R̃c and c = [cε] ∈ ρ

R̃. Set

f (x) := ρ
∑

n∈σ
Ñ

an(x − c)n =
[ ∞∑

n=0

anε(xε − cε)
n

]

=: [vε(xε)]

for all x = [xε] ∈ ρ

σ
conv ((an)c , c). Then f ∈ ρGC∞ (ρ

σ
conv ((an)c , c) , ρ

R̃
)
is a GSF

defined by (vε).

Before defining the notion of GRAF, we need to prove that the derived HPS has the
same set of convergence of the original HPS:

Theorem 29 Assume σ ≤ ρ∗, (an)c ∈ ρ
R̃c and c ∈ ρ

R̃. Then the set of convergence
of the derived series ρ

∑
n∈σ

Ñ>0
nan(x − c)n−1 = ρ

∑
n∈σ

Ñ
(n + 1)an+1(x − c)n is

the same as the set of convergence of the original HPS ρ
∑

n∈ρ
Ñ
an(x − c)n. Thereby,

recursively, all the derivatives have the same set of convergence of the original HPS
and define a GSF.

Proof By Definition 3(iii) of radius of convergence and the classical theory, we have

rad (an)cε =
(

lim sup
n→+∞

|anε|1/n
)−1

=
(

lim sup
n→+∞

∣
∣(n + 1)an+1,ε

∣
∣1/n+1

)−1

= rad ((n + 1)an+1)cε ,

so Definition 8(i) for the original HPS and the derived one are equivalent. From the
condition

[
anε · (xε − cε)

n]
s ∈ ρ

σ
R̃�x − c� and σ ≤ ρ∗, in the usual way it follows

that
[
(n + 1)an+1,ε · (xε − cε)

n]
s ∈ ρ

σ
R̃�x − c�. Vice versa, from (n + 1)

∣
∣an+1,ε

∣
∣ ≥∣

∣an+1,ε
∣
∣ the opposite implication follows. The condition Definition 8(iv) about mod-

erateness of derivatives for the original HPS clearly implies the analogue condition
for the derived one. For the opposite inclusion, we can distinguish the case x =s c or
|x − c| > 0, the former one being trivial. We have

∣
∣
∣
∣
∣

+∞∑

n=1

anεn(xε − cε)
n−1

∣
∣
∣
∣
∣
= |xε − cε|−1

∣
∣
∣
∣
∣

+∞∑

n=1

anεn(xε − cε)
n

∣
∣
∣
∣
∣

≥ |xε − cε|−1

∣
∣
∣
∣
∣

+∞∑

n=0

anε(xε − cε)
n

∣
∣
∣
∣
∣
,

so that also the net
(∑+∞

n=0 anε(xε − cε)
n
) ∈ Rρ if the derivative is moderate. ��

Theorem 28 motivates the following definition:
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Definition 30 Let σ ≤ ρ∗ and U be a sharply open set of ρ
R̃, then we say that f is a

GRAF on U (with respect to ρ, σ ), and we write f ∈ ρ

σ
GCω(U , ρ

R̃) if f : U −→ ρ
R̃

and for all c ∈ U we can find s ∈ ρ
R̃>0, (an)c ∈ ρ

R̃c such that

(i) (c − s, c + s) ⊆ U ∩ ρ

σ
conv ((an)c , c),

(ii) f (x) = ρ
∑

n∈σ
Ñ
an (x − c) n for all x ∈ (c − s, c + s).

Moreover, we say that f : ρ
R̃ → ρ

R̃ is an entire function (with respect to ρ, σ ) if we
can find c ∈ ρ

R̃ and (an)c ∈ ρ
R̃c such that

(iii) ρ
R̃ = ρ

σ
conv ((an)c , c),

(iv) f (x) = ρ
∑

n∈σ
Ñ
an(x − c)n for all x ∈ ρ

R̃.

We also say that f is entire at c if (iii) and (iv) hold.

Example 31

(a) Clearly, if (an)c ∈ ρ
R̃c, c ∈ ρ

R̃, and we set f (x) = ρ
∑

n∈σ
Ñ
an (x − c) n , then

f is a GRAF on the interior points of the set of convergence ρ

σ
conv ((an)c , c).

Vice versa, if f ∈ ρ

σ
GCω(U , ρ

R̃), thenU is contained in the union of all the sharp
interior sets int

(
ρ

σ
conv ((an)c , c)

)
, because of condition (i).

(b) Example 15 shows that Dirac δ is entire at 0 but it is not at any c ∈ ρ
R̃ such that

|c| ≥ s for some s ∈ R>0.
(c) Example 12 of a function f with a flat point shows that f is a GRAF, but if c = 0,

then s ∈ ρ
R̃>0 satisfying condition (i) is infinitesimal, whereas if c � 0, then

s � 0 is finite, and these two types of set of convergence are always disjoint.

Corollary 32 Let σ ≤ ρ∗, U ⊆ ρ
R̃ be a sharply open set and f ∈ ρ

σ
GCω(U , ρ

R̃)., then
also f ′ ∈ ρ

σ
GCω(U , ρ

R̃) and it can be computed with the derived HPS i.e. f ′(x) =
ρ
∑

n∈σ
Ñ

(n + 1)an+1(x − c)n.

Because of our definition Definition 8 of set of convergence, several classical results
can be simply translated in our setting considering the real analytic function that
defines a given GRAF.

Theorem 33 Let σ ≤ ρ∗, (an)c ∈ ρ
R̃c, c ∈ ρ

R̃, and set f (x) = ρ
∑

n∈σ
Ñ
an(x − c)n

for all interior points x ∈ ρ

σ
conv ((an)c , c), then ak = f (k)(c)

k! for all k ∈ N.

Proof From Corollary 32, we have f (k)(x) = [∑∞
n=k anεk!

(n
k

)
(xε − cε)

n−k
]
for all

the interior points x ∈ ρ

σ
conv ((an)c , c). For x = c (which is always a sharply interior

point because of Theorem 9) this yields the conclusion. ��
Corollary 34 Let σ ≤ ρ∗, U be a sharply open set of ρ

R̃, and f ∈ ρ

σ
GCω(U , ρ

R̃). Then

for all c ∈ U the Taylor coefficients
(

f (n)(c)
n!
)

c
∈ ρ

R̃c.

The definition of 1-dimensional integral of GSF by using primitives, allows us to get
a simple proof of the term by term integration of GRAF:

Theorem 35 In the assumptions of the previous theorem, set

F(x) := ρ
∑

n∈σ
Ñ

an(x − c)n+1

n + 1
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for all the interior points x ∈ ρ

σ
conv ((an)c , c). Then F(x) = ∫ x

c f (x) dx and F is a
GRAF on the interior points of ρ

σ
conv ((an)c , c).

Proof The proof that ρ
∑

n∈σ
Ñ

an(x−c)n+1

n+1 is a convergent HPS with the same set of
convergence of f can be done as in Theorem 29, and hence F is a GRAF on the interior
points of ρ

σ
conv ((an)c , c). The remaining part of the proof is straightforward by using

Corollary 32, so that F ′(x) = f (x) and F(c) = 0. and using [12, Theorem 42,
Definition 43]. ��
We close this section by first noting that, differently with respect to the classical theory,
if f (x) = ρ

∑
n∈σ

Ñ
an(x − c)n for all x ∈ ρ

σ
conv ((an)c , c), and we take another point

c̄ ∈ ρ

σ
conv ((an)c , c), we do not have that (c̄ − rad (an)c + |c − c̄|, c̄ + rad (an)c −

|c − c̄|) ⊆ ρ

σ
conv ((an)c , c); in fact for c = c̄ this would yield the false equality

(c− rad (an)c , c+ rad (an)c) = ρ

σ
conv ((an)c , c). On the other hand, in the following

result we show that ρ

σ
conv

((
f (n)(c̄)
n!
)

c
, c̄
)

⊆ ρ

σ
conv

((
f (n)(c)
n!
)

c
, c
)
:

Theorem 36 In the assumptions of Theorem 33, if c̄ ∈ ρ

σ
conv

((
f (n)(c)
n!
)

c
, c
)
, then

ρ

σ
conv

((
f (n)(c̄)
n!
)

c
, c̄
)

⊆ ρ

σ
conv

((
f (n)(c)
n!
)

c
, c
)
.

Proof In fact, since c̄ ∈ ρ

σ
conv

((
f (n)(c)
n!
)

c
, c
)
, we have

f (n)(c̄) = ρ
∑

m∈σ
Ñ≥n

f (m)(c)

m! n!
(
m

n

)

(x − c)m−n .

Thereby, if x ∈ ρ

σ
conv

((
f (n)(c̄)
n!
)

c
, c̄
)
, we have

f (x) = ρ
∑

n∈σ
Ñ

f (n)(c̄)

n! (x − c̄)n

= ρ
∑

n∈σ
Ñ

(x − c̄)n

n! · ρ
∑

m∈σ
Ñ≥n

f (m)(c)

m! n!
(
m

n

)

(x − c)m−n

=
[+∞∑

n=0

(xε − c̄ε)
n

n!
+∞∑

m≥n

f (m)
ε (cε)

m! n!
(
m

n

)

(xε − cε)
m−n

]

.

Therefore, the usual proof, see e.g. [20], yields

+∞∑

n=0

(xε − c̄ε)
n

n!
+∞∑

m≥n

f (m)
ε (cε)

m! n!
(
m

n

)

(xε − cε)
m−n =

+∞∑

n=0

f (n)
ε (c)

n! (xε − cε)
n

and hence f (x) = ρ
∑

n∈σ
Ñ

f (n)(c)
n! (x − c)n =

[
∑+∞

n=0
f (n)
ε (c)
n! (xε − cε)

n
]

, which

implies the conclusion. ��
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4 Characterization of generalized real analytic functions, inversion
and identity principle

The classical characterization of real analytic functions by the growth rate of the deriva-
tives establishes a difference between GRAF and Colombeau real analytic functions:

Theorem 37 Let σ ≤ ρ∗, U be a sharply open set of ρ
R̃, and f ∈ ρGC∞(U , ρ

R̃) be
a GSF defined by the net ( fε). Then f ∈ ρ

σ
GCω(U , ρ

R̃) if and only if for each c ∈ U
there exist s = [sε], C = [Cε], R = [Rε] ∈ ρ

R̃>0 such that Bs(c) ⊆ U and

∀[xε] ∈ Bs(c)∀0ε ∀n ∈ N :
∣
∣
∣ f (n)

ε (xε)

∣
∣
∣ ≤ Cε

n!
Rn

ε

. (4.1)

Proof We prove that condition (4.1) is necessary. For c ∈ U , we have f (x) =
ρ
∑

n∈σ
Ñ

f (n)(c)
n! (x − c) n for all x ∈ (c− s̄, c+ s̄) for some s̄ > 0 from Definition 30

andTheorem33.Wefirst note that condition (4.1) can also be formulated as an inequal-
ity in ρ

R̃c and as such it does not depend on the representatives involved. Therefore,
from Theorem 28 and Theorem 33, without loss of generality, we can assume that the

given net ( fε) is of real analytic functions satisfying fε(x) =∑+∞
n=0

f (n)
ε (cε)
n! (x − cε)

n

for all x ∈ (cε − rad (an)cε , cε + rad (an)cε). From Lemma 21, locally the Taylor

summands
(

f (n)(c)
n! (x̄ − c)n

)

n∈N are eventually ρ
R̃-bounded in ρ

R̃c if x̄ is sufficiently

near to c = [cε], i.e. there exists σ ∈ ρ
R̃>0 such that for each x̄ = [x̄ε] ∈ Bσ (c) we

have

∀0ε ∀ j ∈ N :
∣
∣
∣
∣
∣

f ( j)
ε (cε)

j ! (x̄ε − cε)
j

∣
∣
∣
∣
∣
≤ Kε,

(4.2)

for some K = [Kε] ∈ ρ
R̃. Set s := 1

2 min(σ, s̄) ∈ R>0 and S := |x̄ − c|, where x̄ is
any point such that s < |x̄ − c| < σ , so that 0 < s

S < 1 and from (4.2) we obtain

∀0ε ∀ j ∈ N :
∣
∣
∣ f ( j)

ε (cε)

∣
∣
∣ ≤ Kε

j !
S j
ε

.

(4.3)

For each [xε] ∈ Bs(c), we have

f (n)
ε (xε) =

+∞∑

j=n

f ( j)
ε (cε)

j ! n!
(
j

n

)

(xε − cε)
j−n,
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and hence from (4.3):

∣
∣
∣
∣
∣

f (n)
ε (xε)

n!

∣
∣
∣
∣
∣
≤

+∞∑

j=n

Kε

(
j

n

) |xε − cε| j−n

S j
ε

≤ Kε

Snε

∞∑

j=n

(
j

n

)(
sε
Sε

) j−n

= Kε

Snε
· 1
(
1 − sε

Sε

)n+1 = Kε
(
1 − sε

Sε

) · 1
(
Sε

(
1 − sε

Sε

))n ,

which is our claim for C := K
1− s

S
and R := S

(
1 − s

S

)
. Note that, differently with

respect to the case of Colombeau real analytic functions [23], not necessarily the
constant 1

R is finite, e.g. if s ≈ S.
We now prove that the condition is sufficient. Let c = [cε] ∈ U and s = [sε],

C = [Cε], R = [Rε] ∈ ρ
R̃>0 be the constants satisfying (4.1). Set s̄ :=

1
2 min(s, R, rad

(
f (n)(c)
n!
)

c
) and take x ∈ Bs̄(c). We first prove the equality f (x) =

ρ
∑

n∈σ
Ñ

f (n)(c)
n! (x − c)n . Let N = [Nε] ∈ σ

Ñ, with Nε ∈ N. For all ε, from Taylor’s
formula for the smooth fε, we have

∣
∣
∣
∣
∣

N∑

n=0

f (n)(c)

n! (x − c)n − f (x)

∣
∣
∣
∣
∣
=
[∣
∣
∣
∣
∣

f (Nε+1)
ε (ξε)

(Nε + 1)! (xε − cε)
Nε+1

∣
∣
∣
∣
∣

]

for some tε ∈ [0, 1]R and for ξε := (1− tε)cε + tεxε. Since |ξε − cε| = tε |xε − cε| <

s̄ε < sε, we can apply (4.1) and get ∀0ε ∀n ∈ N :
∣
∣
∣
∣
f (n)
ε (ξε)
n!

∣
∣
∣
∣ ≤ Cε

Rn
ε
. Thereby, for these

small ε and for n = Nε + 1 we obtain

∣
∣
∣
∣
∣

N∑

n=0

f (n)(c)

n! (x − c)n − f (x)

∣
∣
∣
∣
∣
≤ C

(
s̄

R

)N+1

,

and hence the claim follows by ρ limn∈σ
Ñ

( s̄
R

)N+1 = 0. Now, we prove that

ρ
∑

n∈σ
Ñ

f (n)(c)
n! (x − c)n =

[
∑+∞

n=0
f (n)
ε (cε)
n! (xε − cε)

n
]

. In fact, once again from (4.1)

we have

∣
∣
∣
∣
∣

N∑

n=0

f (n)(c)

n! (x − c)n −
[+∞∑

n=0

f (n)
ε (cε)

n! (xε − cε)
n

]∣
∣
∣
∣
∣
=
⎡

⎣

∣
∣
∣
∣
∣
∣

+∞∑

n=Nε+1

f (n)
ε (cε)

n! (xε − cε)
n

∣
∣
∣
∣
∣
∣

⎤

⎦

≤
⎡

⎣
+∞∑

n=Nε+1

Cε

Rn
ε

|xε − cε|n
⎤

⎦
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≤ C · ρ
∑

n∈σ
Ñ≥N+1

(
s̄

R

)n
→ 0

because s̄ < R and hence ρ
∑

n∈σ
Ñ

( s̄
R

)n
converges. Finally, take x̄ ∈ Bs̄(c) such that

|x − c| < |x̄ − c|. As above, we can prove that ρ
∑

n∈σ
Ñ

f (n)(c)
n! (x̄ − c)n converges;

moreover from (4.1) we also have ∀0ε ∀n ∈ N :
∣
∣
∣
∣
f (n)
ε (cε)
n! (x̄ε − cε)

n

∣
∣
∣
∣ ≤ Cε

(
s̄ε
Rε

)n ≤
Cε

1− s̄ε
Rε

. This proves that
(

f (n)(c)
n! (x̄ − c)n

)

n∈N is eventually ρ
R̃-bounded in ρ

R̃c and

hence x ∈ ρ

σ
conv

((
f (n)(c)
n!
)

c
, c
)
by Corollary 25. ��

As we have already noted in this proof, differently with respect to the definition of
Colombeau real analytic function [23], we have that, generally speaking, 1

R ∈ ρ
R̃ is

not finite. For example, for f = δ at c = 0, we have
∣
∣
∣
δ
(n)
ε (xε)
n!

∣
∣
∣ =

∣
∣
∣
μ(n)(xε)

n! bn+1
ε

∣
∣
∣ =

∣
∣
∣
μ(n)(xε)

n! bε

∣
∣
∣ 1(

b−1
ε

)n ≤ C̄bε

(b−1
ε )n

, where
∣
∣μ(n)(xε)

∣
∣ ≤ ∫ β =: C̄ and hence 1

R = b which is

an infinite number. Thereby, in the particular case when 1
R is finite, f is a Colombeau

real analytic function in a neighborhood of c. Vice versa, any Colombeau real analytic
function and any ordinary real analytic function are GRAF.

This characterization also yields the closure of GRAFwith respect to inversion. We
first recall that the local inverse function theorem holds for GSF, see [9]. Therefore, if
f ∈ ρ

σ
GCω(U , ρ

R̃) ⊆ ρGC∞(U , ρ
R̃) and at the point x0 ∈ U the derivative f ′(x0) is

invertible, we can find open neighborhoods of x0 ∈ X ⊆ U and of y0 := f (x0) ∈ Y
such that f |X : X → Y is invertible, ( f |X )−1 ∈ ρGC∞(Y , X) and f ′(x) is invertible
for all x ∈ X .

Theorem 38 If σ ≤ ρ∗ and we use notations and assumptions introduced above, then
( f |X )−1 ∈ ρ

σ
GCω(Y , X).

Proof For simplicity, set g := ( f |X )−1 and h(x) := 1
f ′(x) for all x ∈ X , so that

g′(y) = h[g(y)] for all y ∈ Y . From Corollary 32 and Theorem 26, we know that

h is a GRAF. Therefore, Theorem 37 yields ∀0ε ∀n ∈ N :
∣
∣
∣h

( j)
ε (xε)

∣
∣
∣ ≤ Cε

j !
R j

ε

for

all [xε] ∈ Bs(x0) and suitable constants s, C , R ∈ ρ
R̃>0. For [yε] ∈ f (Bs(x0))

(note that this is an open neighborhood of y0 because f is an open map) and these ε,

formula (1.15) of [20, Theorem 1.5.3] yields
∣
∣
∣g

( j)
ε (yε)

∣
∣
∣ ≤ j !(−1) j−1

(1/2
j

)
(2Cε)

j

R j−1
ε

for

all j ∈ N>0, and hence g ∈ ρ

σ
GCω(U , ρ

R̃) once again by Theorem 37. ��
Since δ is a GRAF, in general the identity principle does not hold for GRAF. From our
point of view this is a feature of GRAF because it allows to include as GRAF a large
class of interesting generalized functions and hence pave the way to a more general
related Cauchy-Kowalevski theorem. The following theorem clearly shows that the
identity principle does not hold in our framework exactly because we are in a non-
Archimedean setting: every interval is not connected in the sharp topology because
the set of all the infinitesimals is a clopen set, see e.g. [8].
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Theorem 39 Let U ⊆ ρ
R̃ be an open set and f , g ∈ ρ

σ
GCω(U , ρ

R̃). Then the set

O := int {x ∈ U | f (x) = g(x)}

is clopen in the sharp topology.

Proof For simplicity, considering f − g, without loss of generality we can assume
g = 0. We only have to show thatO is closed in U . Assume that c is in the closure of
O in U , i.e.

c ∈ U , ∀r ∈ ρ
R̃>0 ∃c̄ ∈ Br (c) ∩ O. (4.4)

We have to prove that c ∈ O. We first note that for each c̄ ∈ O, we have Bp(c̄) ⊆ O
for some p ∈ ρ

R̃>0 and hence

f (x̄) = 0 ∀x̄ ∈ Bp(c̄). (4.5)

Now, fix n ∈ N in order to prove that f (n)(c) = 0. From (4.4), for all r ∈ ρ
R̃>0 we

can find c̄r ∈ Br (c) ∩ O such that f (n)(c̄r ) = 0 from (4.5). From sharp continuity of
f (n), we have f (n)(c) = limr→0+ f (n)(c̄r ) = 0. Since f ∈ ρ

σ
GCω(U , ρ

R̃) and c ∈ U ,

we can hence find σ > 0 such that f (x) = ρ
∑

n∈σ
Ñ

f (n)(c)
n! (x − c) n = 0 for all

x ∈ Bσ (c), i.e. c ∈ O. ��
For example, if f = δ and g = 0, the set

int
{
x ∈ ρ

R̃ | δ(x) = 0
} ⊇ {x ∈ ρ

R̃ | |x | � 0
}

is clopen. Thereby, also ρ
R̃\int {x ∈ ρ

R̃ | δ(x) = 0
}
is clopen, and we have

{
x ∈ ρ

R̃ | δ(x) �= 0
} ⊆ ρ

R̃\int {x ∈ ρ
R̃ | δ(x) = 0

}

⊆ {x ∈ ρ
R̃ | ∀r ∈ R>0 : |x | ≤s r

}
.

If we assume that all the derivatives of f are finite and the neighborhoods of Defini-
tion 30 are also finite, then we can repeat the previous proof considering only standard
points c ∈ R and radii r ∈ R>0, obtaining the following sufficient condition:

Theorem 40 Let U ⊆ ρ
R̃ be an open set such that U ∩ R is connected. Let f , g ∈

ρ

σ
GCω(U , ρ

R̃) be such that f |V∩R = g|V∩R for some nonempty subset V ⊆ U such
that V ∩ R is open in the Fermat topology, i.e.

∀x ∈ V ∩ R ∃r ∈ R>0 : Br (x) ⊆ V ∩ R.

Finally, assume that all the following quantities are finite:

(i) The neighborhood length s in Definition 30 is finite for each c ∈ U ∩ R,
(ii) ∀x ∈ U ∀n ∈ N : f (n)(x) and g(n)(x) are finite.

Then f |U∩R = g|U∩R.
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Proof The proof proceeds exactly as in Theorem 39 but considering

O := intF {x ∈ U ∩ R | f (x) = g(x)} ,

where intF is the interior in the Fermat topology (i.e. the topology generated by the
balls Br (c) for c ∈ ρ

R̃ and r ∈ R>0, see [8]). We have to note that assumption (ii)
implies that all f (n) are continuous in this topology (see [11]). ��

For example, if f ∈ Cω(R) is an ordinary real analytic function and K , h ∈ ρ
R̃ are

finite numbers, the GRAF x ∈ int(c(ρ
R̃)) 	→ K f (hx) ∈ ρ

R̃, where c(ρ
R̃) is the set of

compactly supported points, satisfies the assumptions of the last theorem.

5 Conclusions

Sometimes, e.g. in the study of PDE, the class of real analytic functions is described
as a too rigid set of solutions. In spite of their good properties with respect to algebraic
operations, composition, differentiation, integration, inversion, etc., this rigidity is
essentiallywell represented by the identity principle that necessarily excludes e.g. soli-
tonswith compact support or interesting generalized functions. Thanks to Theorem39,
we can state that this rigidity is due to the banishing of non-Archimedean num-
bers from mathematical analysis. The use of hyperseries allows one to recover all
these features including also interesting non trivial generalized functions and com-
pactly supported functions. This paves the way for an interesting generalization of
the Cauchy-Kowalevski theorem for GRAF that we intend to develop in a subsequent
work. Its proof can be approached by trying a generalization of the classical method
of majorants, or using the Picard-Lindel-f theorem for PDE with GSF and then using
characterization Theorem 37 to show that the GSF solution is actually a GRAF.
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