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Abstract

Particle systems made up of interacting agents is a popular model used in a vast array
of applications, not the least in biology where the agents can represent everything
from single cells to animals in a herd. Usually, the particles are assumed to undergo
some type of random movements, and a popular way to model this is by using Brown-
ian motion. The magnitude of random motion is often quantified using mean squared
displacement, which provides a simple estimate of the diffusion coefficient. However,
this method often fails when data is sparse or interactions between agents frequent.
In order to address this, we derive a conjugate relationship in the diffusion term for
large interacting particle systems undergoing isotropic diffusion, giving us an effi-
cient inference method. The method accurately accounts for emerging effects such as
anomalous diffusion stemming from mechanical interactions. We apply our method to
an agent-based model with a large number of interacting particles, and the results are
contrasted with a naive mean square displacement-based approach. We find a signifi-
cant improvement in performance when using the higher-order method over the naive
approach. This method can be applied to any system where agents undergo Brown-
ian motion and will lead to improved estimates of diffusion coefficients compared to
existing methods.

Keywords Interacting particle systems - Glioblastoma - Agent based modelling -
Stochastic processes - Stochastic differential equations - Diffusion - Bayesian

inference

Mathematics Subject Classification 92-10 - 62F15 - 60J60

B Gustav Lindwall
guslindw @chalmers.se

Philip Gerlee
gerlee@chalmers.se

Chalmers tvirgata 3, 412 58 Gothenburg, Sweden

Published online: 29 March 2023 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-023-01902-y&domain=pdf
http://orcid.org/0000-0002-4450-1697

64  Page2of19 G. Lindwall, P. Gerlee

1 Introduction

In many areas of the applied sciences, stochastic differential equations (SDE:s) are a
popular and well-studied model framework for modelling processes undergoing both
deterministic and random dynamics. Examples of application areas are physics (Van
Kampen 1992), chemistry (Van Kampen 1992), biology (Lewis et al. 2013), finance
(Shreve 2004) and control theory (Stengel 1986). The application in mind for this
paper is models of in vitro cell migration, with the location of a cell at time ¢ being
denoted as x(¢). In its most general form, an N-dimensional system of Itd SDE:s is
given by the equation

dx (1) = p(x(@t), Hdt + o (x(t), HAW (1) (1.1)

where 1 : RY +— RY is the drift function, o is an N x M diffusion matrix and W (¢) is
an M x N standard Wiener process. For convergence and well-posedness, i and o has
to satisfy a set of standard Lipschitz requirements (Klebaner 2012). This framework
allows for a large number of natural phenomena to be modelled and studied in a
relatively compact way, and is intrinsically linked to the macroscopic phenomena of
diffusion of gases and liquids (Krapivsky et al. 2010), where the drift term corresponds
to both external forces and intra-particle interaction.

Regression of such models to fit observed data is an active field of research among both
mathematicians (Iacus 2009) and members of the application communities, e.g. in con-
trol theory, stochastic differential equations are usually studied in the context of state
space models (Schon and Lindsten 2015). In the most basic of cases, expressions for
parameter estimates can be found exactly, such as in the seminal Ornstein-Uhlenbeck
process often used as a toy example in physics. In one dimension it is expressed as

dx(t) = —ax(t)dt + odW ().

For this equation, we have that the transition probability from a state x(s) to a future
state x () at time ¢ > s follows a normal distribution with time-dependent mean and
variance,

o o (x(@) — x(s)e @=9))2
P = [ e (- SEEE ),
(1.2)

and as such a maximum likelihood estimate is readily available for o and o given
observed data. For most real-world applications such simple models constitute impor-
tant building blocks and learning tools, but are generally insufficient to accurately
describe or forecast a real-world system. Furthermore, an expression as elegant as
(1.2) is impossible to find for almost all models, and the inference must be carried out
using some sort of approximation. Approximations can be carried out in a multitude of
ways. For example, one might opt for a likelihood-free approach such as Approximate
Bayesian Computation (Picchini 2014), or try to simplify the terms of the equation,
hopefully resulting in a tractable expression. An example of such a method is local
linearisation of the SDE (Shoji and Ozaki 1998).
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Fig. 1 Typical illustration of anomalous diffusion as compared to standard diffusion. In the standard case,
corresponding to Brownian motion, the MSD increases linearly with the diffusion coefficient D

1.1 Mean square displacement and induced sub-diffusivity

The estimation of diffusion rates in interacting particle systems have long been a
key component in mathematical biology (Swanson et al. 2000). Through the applica-
tion of Itd calculus, one can find a relationship between individual-based models and
partial differential equations (PDEs) describing the population on a macroscopic level
(Oelschldger 1989). The archetypical PDE is given as

ou(x,t) = DAu(x,t) + (N — Du(x, 1)V - (V xu(x, t)). (1.3)

Here u is the population density, N is the number of particles, D is the diffusion
coefficient and V is a function determined by the pairwise interactions (Bruna et al.
2017). The standard procedure of estimating the diffusion coefficient in this equation
is to evaluate the mean square displacement (MSD) of individuals in the population,
and drawing conclusions from there. For example, in Kwon et al. (2019) Kwon et al.
perform a comprehensive study of the diffusivity of migrating lung cancer cells using
MSD as the main tool for inference. Likewise, in Wu et al. (2014) Wu et al. reach the
conclusion that Gaussian random walks are insufficient to model 3D cell migration
in the presence of a complex extra-cellular matrix. One can also measure diffusivity
by tackling the PDE (1.3) directly; see for example (Swanson 2008) for an approach
applying equations similar to (1.3) directly to in vitro data.

High particle density and interaction forces on otherwise Brownian particles leads to a
deviation from their standard diffusive behavior, a phenomena known as induced sub-
diffusivity. This problem has been studied by physicists for the last few decades, see
for example (Spiechowicz and Luczka 2017) and (Ledesma-Duran et al. 2021). Thus,
just considering the MSD of our particle system will not suffice to draw conclusions
regarding the diffusion coefficient in the cases of dense, highly correlated particles. In
this paper we present a solution to the problem of estimating diffusivity if a mechanistic
model of cell-to-cell interaction is available in the form of an SDE system.
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1.2 Our contributions

In this paper, we will cover a Bayesian conjugacy for certain types of interacting
particle systems in two dimensions, useful in tracking problems using microscopy
(Dickinson and Tranquillo 1993) but with possible applications to for example satellite
data (Farine et al. 2015). The key limitation here is that we consider the case of isotropic
diffusion, i.e SDE:s where the diffusion matrix is given by o = \/EI, where D is the
diffusion coefficient. However, such a model is applicable in a diverse array of cases,
e.g tracking of animal migration or bacterial movement (Browning et al. 2020).

The work in this paper pertaining to analytical expressions of approximate transition
densities is in itself not new; there exists a wide literature on the subject that cover many
different levels of approximation. See for example (Gobet and Pagliarani 2018) for a
comprehensive treatise. What is lacking in the literature, however, is simple methods
for deriving and using such transitions when facing realistic scientific problems, and
thus our contribution is to provide a bridge between the field of stochastic calculus
and mathematical biology.

2 Setting and assumptions

In this section, we will specify what type of SDE models our method applies to. Con-
sider a system of N interacting particles in R?, with the system first being observed at
time #;. Individually, each particle x; (¢):s time evolution is modelled as an autonomous
SDE with isotropic diffusion; i.e

dx; (t) = a; (x())dr + Z;dW; (1), 2.1)
X; (tr) = Xik. (2.2)
where t > 1, x; (1) € R%, x(t) = [x] (1), x) (1), ..., x5, & = oilisa2 x 2

diffusion matrix, W;(¢) is a two-dimensional Wiener process and a; (x(1)) : RN
R? is a twice differentiable vector-valued function modelling the interaction of the
particles. We assume that all interactions featured in a; are pairwise and uniform
across all pairs of particles, i.e

a; (x(1) = Y _a(llx; (1) — x; (1)) (2.3)

J#
Assume we observe the state of the particle system at equally spaced times #;, k =
0,1, ..., K and from this, we wish to conduct inference on o;. For the context of this

paper, we assume that a is a known function.
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3 Method
3.1 Brief overview of MSD

The typical way to compute the mean square displacement for a group of random
walkers x;(¢),i = 1, ..., N observed at the times 79 and T > t( is by computing

1 N
MSDy(T) =+ 3~ I(T) = xi(io)| 3.1

i=1

If x is the position of random walkers in d spatial dimensions, this quantity relates to
the diffusion coefficient D for x through

MSD(T) = 2dDT.

Framing this in the context of SDE:s, if the random walkers x; (¢) are independent and
follows a pure Wiener process; i.e (1.1) with u = 0 and o := /2D, we see that the
expression (3.1) is simply the sample variance of the transition densities (Klebaner
2012)

xi (T) ~ N (x;(to), T DLixa) (3.2)

when sampled once for each random walker. Now, from independence of incre-
ments in Brownian motion, we can expand this notion given a set of observations
[xi0, Xi1, - - -, Xjx ] With X;; := X; (#¢) and uniform observation frequency fxy| — ty :=
At is by computing

MSD: (T) = Z Z ”Xt(k-H) —sz|| . (3.3)
i=1 k=0

Here, 1o = 0 and rx = T. Crucially, one can note that the quantity MSD}(7T')/d is
in the fact the maximum likelihood estimator for D. This follows from the Gaussian
increments of Wiener processes;

Xi(k+1) ~ N (Xik, AtDIgyq). (3.4)

We conclude by noting that given (3.4), we can recover the distribution (3.2) by filtering
the sum of our observations with respect to only the first observation;

xi (T)|xi0 ~ N (Xi(k—1y, At DIy q)|Xio ~ N (xi(k —2),
2At DYy q)|Xio ~ - ~ N Xjo, T Dlgxa).

This comes from the martingale property of Wiener processes (Klebaner 2012). X |Y
should be read as "distribution of X given Y is known".
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3.2 Derivation of our method

The calculations carried out in this section are inspired by the framework given in
Chapter 5 and 10 in Kloeden and Platen (1992), where the interested reader can find
information on how to derive similar or higher order schemes for simulating SDE:s.
The book does not go into details with applications to interacting particle systems,
however, wherein our main contribution lies. For motivation, we will start by defining
the basic Euler-Maruyama approximation of x; (#) on a time interval [#x, tx41).

Definition 3.1 (Euler-Maruyama with remainder term). Let 0 < ft;, < ;41 be a time
interval and let x; (#) be a solution to the SDE (2.1). Let the particle state x; (#x) := Xk
be known for all particlesi = 1, ..., N and let a;;z = a; (x(#)). The Euler Maruyama
approximation X; (#) of x; (f) with remainder R on this interval is given by

t

%) = xig + At — 10) +0; / aw; (s), (3.5)

3

t s s
X(t)—f{(t)NRl:/ [/ Loai(x(z))dz—i-/ Lla,-(x(z))dWZ]ds, (3.6)
tx tx Tk

o2

Loa; (x(1)) = a; (x(1)) Vx;a; (x(1)) + %Vfiai (x(1)) (3.7
Lia;(x(1)) = 0; Vx;2; (X(1)). (3-8)

Gradients are to be interpreted as Jacobian matrices;

Ox;1Aik1(X(1)) Ox;p iK1 (X(2))
Ox;1 212 (X (1)) Ox;,aik2(X(2))

Vy;2;(x(1)) = |: :| = A;(1).

Note that (3.5) can be stated as
X (1) ~ N (Xik + air(t — 1), (t — 1) Tax2).

We use this as a stepping stone to the higher order approximation used in this paper,
that will be presented in the following theorem.

Theorem 3.1 (Higher-order approximation for isotropic diffusion). Consider the sys-
tem described by equation (2.1). Let the particle state X; (tx) := X;x be known for all
particlesi = 1,..., N, and let Ajr = A;(tx). On the interval [ty, ty+1), we have a
strong (pathwise) approximation X; (t) of x; (t) given by

% (1) ~ N (my (1), Six (1)),
m; (1) = X + aj(t — te),
Sik(t) = ST, ()S1ik (1) + S5, (1)S2ik (1),

3
t—1 (t—1)2
S1ik(t) = oi/t — (I + 3 Air),  Souk(t) = Uiﬁ

Air. (3.9)
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Proof The trick is to use Itd’s lemma on A; () = Vya;(x(¢)), and apply this to its
occurrence in the L featured in (3.6);

t t

LoA,; (s)ds + / LA, (s)dW; (s) (3.10)

73

Ai (1) = A () +/
——

Ik
Aik

We then plug (3.10) into the R in (3.6) and get that

t
x; (1) — X(1) ~ UiAik/ Wi(s)ds
173

t s S V4
+/ [/ Loai(x(z))dz+/ [/ LiLoa;(xw)du  (3.11)
tx tx Tk 73

~|—/ZL1L1a,-(x(u))qu]dWZ]ds.
I

—
t
X; (1) = Xjk +a;(t — tx) + 0y /

173

t
dW;(s) +U,‘Aik/ W;(s)ds + R
173
(3.12)

where R, is a remainder term consisting of (3.11)—(3.12). This gives rise to the the
higher order scheme

t t

% () = xit + At — 1) +0; / AW, (5) +oi A / Wis)ds  (3.13)
Ik Ik

=Z1(t) =Z(t)

We now see that there are two sources of randomness when propagating from the
state X;x to X; (¢) using the approximation (3.13), Z; () and its integral process Z;(¢).
We use the fact that Z;(¢) has the known distribution Z;(t) ~ N(0, (t — #)I) to
deduce the distribution of Z»(¢) and its relationship to Z;(¢). Note first in Z;(¢) that
it has no correlation structure in its two spatial dimensions, and thus we can carry out
the upcoming calculations in parallel for the marginal distributions. We will use the
well-established trick to apply It6’s lemma in one dimension on the function t W (¢);

d@eW() = W)dt +tdW () =

t ¢ t
tf dW (s) =/ W (s)ds +[ sdW(s) =
1y 174 174

t t
/ (t —s)dW(s) = / W(s)ds;
175 I

to arrive at the conclusion that Z>(z) ~ A0, %(t — 1)) by using Itd isometry to
find the variance of the process ft; (t —s)dW (s). Next, we find the covariance of Z(t)
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and Z;(t), once again by It6 isometry;
13 t
EIZ1(0Z2()] = B / AW (s) / W(s)ds |
174 179

t t t 1
=E[/ dW(s)/ (t—s)dW(s)] =/ (t —s)ds = ~(t — )2
I Ik 1y 2

Thus, we arrive at the conclusion that Z(¢) and Z(¢) can be expressed as a linear
combination of two independent standard normal random variables Uy and U, given
atimet € [t, tr41);

Z1(t) =t — U (3.14)
3
— )2 1
Zy(1) = %(Ul - ﬁUz). (3.15)

By substituting Z; and Z; in (3.13) with (3.14)—(3.15), we find that x; () follows a
Gaussian distribution A (m; (1), S;x(2)), with

m; (1) = Xjx + a;(t — 1),
Sik(1) = ST ()S1ix (1) + 8L (S0 (1),

3
t—t (t —t)2
Siix(t) = oi/t — (I + 5 YA, Suk() = UiT;Aik-

O

Lemma 3.2 (Non-degeneracy of the estimate). For symmetric matrices A;i, (3.9) con-
stitutes a proper probability distribution.

Proof We will prove this by showing that symmetric matrices A indicate a symmetric
and positively definite matrix S; (¢), thus satisfying the requirement for S;;(;) to be a
covariance matrix. We do this by showing that the smallest eigenvalue A, of S;i(y) is
positive. Set At =t — f, a;; as the (i, j):th element of A;x and shorthand S;; () :=
Six. From a lengthy but conceptually simple calculation, we arrive at the following
statements;

_ TrSik) = VTr(Si)* — 41Six]

5 )

m

o2AtT3 3 2 3 2
Tr(Six) = 13 [5 + (E + Atayr)” + (E + Atan)” + Z(Amlz)z],
oM (AN /3 3 2 3 3 2

: 5 [<Z + (5 + Atan)” + (Amlz)z)(z + (5 + Atan)” + (At012)2>

2
— ((3 + Atay + Atazz)Al‘a]z) ] —

[Sik] =

Tr(Sin)* — 41Sikl = ((Atar)? — (Ataxn)* +3(ay — 6122))2
+ 4(Ala12)2(3 + Atay + Ata22)2 > 0. (3.16)
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Since Tr(S,-k)2 — 4|Six| = 0, we will have positive A, if and only if |S;x| > 0, i.e if
3 3 2 2\ /3 3 2 2
(3 G tont s ) (4 G+ v o) -
2
((3 + Atap + Atazz)Atalz)

Set u = % + Atay, v = % + Atajy and w = Atajp as a shorthand notation. The
condition |S;x| > 0 can then be written as

(z +u? +w)(f—1 +2 4 w) > ((u+v)w)’

—

3
12(/L2 + v2) + 16(a)2 + i ,uv)2 +9>0

which is trivially true, as only squares appear on the left hand side. O

Now let us define S;; = oi_ZS,-k (tx+1)- We will use this to construct a likelihood
function for the k£ 4 1:th observation of particle i using the k:th observation of all
particles.

Corollary 3.2.1 (A conjugacy for isotropic diffusion). Assume we have K observations
of N particles. Denote by t; := al._z the precision coefficient of the i:th particle. By
imposing a prior distribution t; ~ Gamma(wo, Bo), we find the conjugate relationship

ag =ap + K,
K—1

Pk =Fo+ 3 Z (Xik+1) — mik)TSikl (Xi (k1) — M)
k=0

for the posterior distribution p(t;|X(1.x), 0).

Proof The proof of this corollary is a straight-forward computation using the result of
Theorem 3.1. From one observation & to the next, we have the following likelihood
function;

P X1y 1Xk) = 2o/ 1Sk exp (—

5.3 (e = mi) S (X sy — mig)).
l

(3.17)

Taking the logarithm of (3.17) and summing over all K observations gives us the
log-likelihood for the entire sequence of observations;

K _ - —1
L(Xi(1:K)) EIOg (CAR Z Xi (k1) — Mik) "Six (Xig+n —mig).  (3.18)
k=0

@ Springer



64 Page 100f 19 G. Lindwall, P. Gerlee

We now see that with al._z := 15, this is the log likelihood for

K-1

1 _
7, ~ Gamma(l + K, 3 Z (Xik+1) — m,-k)TSik 1(x,~(k+1) —my))
k=0

giving us the result stated in the corollary. O

For frequentist statistics, we can instead use the maximum likelihood estimate for o;,

_ To—1

A2 Yy (Xig+1) —mix) Six (Xir1) — Mik)

67 = . (3.19)
2K

Note now that in the case of a = 0, (3.19) reduces to the MSD maximum likelihood as

stated in (3.3). Another question worth discussing is whether or not further improve-

ments can be made and still keep the conjugacy properties that the introduced method

enjoys. For this, we need to take a closer look at the remainder term R, introduced in

(3.11)—(3.12). Explicitly written, we have that

t S s V4 z
Rg(l):[ [/ Loa,-(x(z))dz+[ [f LlLoa,-(x(u))du/ L1L1ai(x(u))dWL,]dWZ]ds.

179 179 I 179 174

From (3.7)—(3.8), we have that o; appears in powers of at least two in R, and for the
triple integral fti f;{ fti L1 Loa; (x(u))dudW,ds, o; appears in a power of three. Since
the conjugacy is founded on linear appearances of o;, we have that the conjugacy
covered in this paper is the most exact conjugate relationship available for isotropic
diffusion coefficients in interacting systems of stochastic differential equations. Con-
ditions on when the higher order scheme improves upon the Euler-Maruyama scheme
can be found in the supplementary material.

4 Application to in vitro cancer cell migration

We now return to our main interest, which is applying this method to models for in vitro
cell migration. We chose to model our cell population using a system of interacting
stochastic differential equations with isotropic diffusion, where the interactions are
attractive-repulsive. It has however been observed that some cells are more motile
than others (Kwon et al. 2019), and as such we choose to give every cell indexed by i
its own diffusion coefficient o;. At a particular moment in time #, the system evolves
according to the following set of equations

dx; = —VV(x;, H)dr + Z;dW; (1), “.1)
Ny
Vi, 0) =Y Ulx—x;l), (4.2)
j=1
3 o(r) \a72
UGr) = De[l - ((p(m)) ] - D,. 4.3)
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%104
10F 3

8| 4

6F i

u(r)

Fig. 2 Typical profile of our adhesion-repulsion potential (4.3), here with parameters D, = 0.00021,
a=35andp(r) ="

where ¢(r) : RT — R™ is a positive, monotonically decreasing function so that
lim, o @(r) = 0. We chose ¢(r) = e~" - this choice of ¢ gives us the Morse
potential as our model of interactions; an example of of this potential is visualized
in Fig.2. Other choices such as ¢(r) = 1/r are viable as well, and that particular ¢
gives us the Lennard—Jones potential. 7 is the equilibrium distance between two cells.
Since the setting of this study is on a microscopic length scale, we fix ro = 1. That
makes it so that the entire interaction potential is governed by just D, (well depth) and
a (well steepness). In the language of the general case covered in Sect. 3, we have the
following vectors and matrices;

. =—-VV(X,1), ¥ =0l

Ajp = — ZHessian(U(xik —Xjk)).
J#

4.1 Numerical experiment

To display the improvements in inference on the diffusion coefficient a number of in
silico experiments were performed. The experiments are designed to mimic the behav-
ior of glioblastoma multiforme cancer cells migrating in vitro. Particle systems were
generated from the model (4.1). We use a simulation time step 2 = 1 corresponding
to one second. Cell migration is a slow process, and a typical diffusion coefficient
in the setting we are simulating is 0.0013-0.0065 [cm?/day] (Swanson et al. 2000).
Thus, & = 1 second is “close to continuous” given the scale of the problem. For
the sake of simplicity, we express the diffusion coefficient in the unit [average cell
diameter®/second], since the length scale of the simulation is set so that [average cell
diameter] = 1. In Fig. 3, we see a snapshot from a data set generated using the model
on the right. On the left, we see the evolution of the MSD over the entire time span for
five tagged cells. All of these cells were seeded with the same diffusion coefficient,
but they display widely varying MSD outcomes, stemming from interactions with
neighbouring cells.
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Fig.3 An example of how repulsive-attractive particle systems induce sub-diffusive behaviour on particles
with more neighbours. Here, every single particle of the 100 generated have the same inate diffusion
coefficient, and the MSD of the two particles free from neighbours reflect the “true” diffusivity. The
parameters used to generate this dataset is given as Experiment O in Table 1

Four distinct experiments were performed to illustrate how our method improves
on using MSD to estimate diffusivity in interacting particle systems. The experiments
were designed to capture two dimensions of interest, namely the effects of tempo-
ral resolution and the effects of cell density on the accuracy of diffusion estimation
accuracy. Experiment n, forn = 1, .. .4, examines a particle system of an increasing
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Table 1 Parameters used for

. . D, a o N
simulation
Experiment 0 0.0004 4 1072 100
Experiment n 0.00021 3.5 e 92 25+n

H.O.M posteriors for four random cells in a population of 256.

Posteriors for cell 8. Posteriors for cell 22.
I 5 minutes I 5 minutes
':<\ I 10 minutes E;.\ ﬁ l 10 minutes
— 20 minutes L 20 minutes
Nb l& 30 minutes Nb | I 30 minutes
=t l 45 minutes =] ' 45 minutes
= /{.’;\ 60 minutes = \ 60 minutes
1 2 3 4 1 2 3 4
2 2
o 10 4 %107
Posteriors for cell 68. Posteriors for cell 206.
s I 5 minutes e I 5 minutes
S | 10 minutes s 1 10 minutes
~ 20 minutes Ai 20 minutes
& | 30 minutes & | 30 minutes
< A I IT Y o
l‘} N\ ! I D2\ T
1 2 3 4 1 2 3 4
2 2
o %10 4 x104

Fig.4 Representative posterior distributions using the higher order method as given by Corollary 3.2.1 with
prior ag = B = 0. Ground truth in black

number of individuals seeded uniformly in a 40 x 40 square, and confined by hard
boundaries in a 50 x 50 square area. The interaction parameters and diffusion coef-
ficients are the same for all these experiments, see again Table 1. We then observe
this particle system every 5, 10, 15, 20, 30, 45 and 60 min over the course of two
days. Pseudo-code for implementation of the inference algorithm is available in the
supplementary material, as well as a GitHub repository containing all code needed to
reproduce the figures.

4.2 Results

In this section, we present the results from the experiments detailed in Table 1.
Throughout all experiments, an improper prior of g = By = 0 is used. In Fig.4,
we see the posterior distributions for four randomly selected cells from the experi-
ment featuring 256 cells (experiment 3), along with a black dashed line marking the
ground truth. Here, we note some heteroscedacity in the estimates, both across the
population and how observation frequency plays in. In general, we see a pattern of
higher variability in accuracy (i.e mode deviation from the true value, marked with a
black dashed line) as the inter-observation time increases, with the expected increase
in posterior variance (due to fewer samples) also playing a role.
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MSD posteriors for four random cells in a population of 256.

Posteriors for cell 8. Posteriors for cell 22.
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Fig. 5 Representative posteriors corresponding to MSD, generated using the assumption (3.4) instead of
the higher order estimate given by Theorem 3.1. Prior parameters eg = By = 0. Ground truth in black

Figure 5 shows the ‘MSD posterior’ for all cells; i.e a Bayesian approach where assume
that the observation X; (1) given X;x follow the distribution (3.4), giving us a Gamma
posterior. Here, the variability in both posterior precision and posterior variance are
significantly lower. However, there is a systematic error in the posterior distributions,
in line with the observations made in Fig. 3. The diffusion coefficents are predictably
underestimated, unlike the case in Fig.4 where much higher posterior precision is
observed, at least for frequent observations.

To explore the performance of our method as compared to using MSD, we consider
the distribution of the modes of the posteriors, as shown in Fig. 6. In the first six panels,
we show kernel smoothed histograms of the log modes & of the posterior distributions
for every cell in experiment 3 for different time resolutions. We display the results
from estimating the diffusion coefficient using MSD in blue and with our method in
red. Here, the global trend hinted at through Figs.4 and 5 is in full display; we see a
systematic error in estimating o using MSD, with much better accuracy (although at
times more variance) using our method. In panel (G), we present our measurement of
model performance, the sum of mode deviations. Remembering that we have a ground

truth of o = =%/, we display the sums
N X T
Enmsp = (Z(U — 0iMsD) ) : (4.4)
i=1
N X N
Enom = (Z(O — GiHOM) ) 4.5

i=1

in blue and red respectively, where Eysp is the error for using MSD and Eyos
is the error for using the higher order scheme (our method). A consistently better
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Distribution of posteriors modes for a system of 256 cells.
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Fig.6 Detailed statistics for the results of experiment 3. Although the variance in mode accuracy compared
to the ground truth (black) increases for our method (shown in red) for infrequent observations, the sum
of mode deviations is consistently lower than for using MSD (displayed in blue). The kernels used for

smoothing are normal with standard deviation N
2017)

-5/8

, in accordance with optimal bandwidth theory (Chen
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5 min 10 min 20 min 30 min 45 min 60 min

Fig. 7 Summary comparison of our model to using MSD for experiment 1—4 at all observation frequen-
cies. More red shades correspond to better performance when using our method, more blue shades better
performance for MSD

A =-0.93134

64

N=

N=128

N=256

N=512

A =0.93134

performance for the higher order scheme can be seen across all temporal reoslutions
considered.

We finish the presentation of model performances compared to one another by con-
sidering the quantity

A = Evmsp — Exqom

for each of our experiments at all temporal resolutions, summarized in Fig.7. Here,
every square represents a cell density, given by the rows, and a temporal resolution,
given by the columns. The shade of the square corresponds to A. Large negative values
of A corresponds to an advantage of our method comapred to MSD. For the partic-
ular datasets used to generate these figures, the (in absolute terms) largest difference
was A = —0.93134, and thus the coloring use this difference as a benchmark. The
performance when using MSD was superior to our method for only two cases; the
cases of 64 cells observed for 45 and 60 min respectively. Accordingly, these squares
have the bluest shade of purple, and all other squares takes a shade of purple fea-
turing more red hues. The dataset, along with all code, is available at the GitHub
repositories https://github.com/GustavLW/Inference along with https://github.com/
GustavLW/Simulation.

5 Discussion

In this paper, we have proposed a solution to the problem of estimating diffusion
coefficients in systems with strong inter-particle interactions that relies on the existence
of a model of the inter-particle dynamics. We achieve this by expanding the standard
Euler-Maruyama scheme to account for these particle interactions.
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First we consider the computational complexity of the algorithm as seen in the
supplementary material. Both Euler-Maruyama and the higher order method has a
worst case complexity scaling of O(K N2). Upon closer inspection, however, we see
that there are about four times as many calculations going into the higher order method
(counting all that goes into line 11-13 in Algorithm 1). On the other hand, we have
observations of computational performance improvement that by far outweighs this
drawback, especially so for particle systems of higher density (see Fig.7). From the
example provided in Fig. 6, we see that the sum of mode deviations for 30 min time
resolution using our method is comparable to the 5 min intervals when using MSD.

The application of this process has great potential use in future studies of in vitro
cell cultures in particular. It has been noted that in order for a cell culture to remain
viable in a laboratory setting, a certain cell density need to be maintained (Gerlee
et al. 2022). If one now wishes to estimate the diffusivity of the cells under such
circumstances, our simulation study shows ample evidence that MSD is insufficient
due to crowding effects. As such, correcting the diffusion estimation at the modest cost
of using a model of the interaction is of great interest to mathematicians and biologists
alike.

An unavoidable drawback of our method is the requirement of well defined deriva-
tives of the interaction function a, meaning that we are still somewhat limited in what
methods we can apply this method to. For example, in purely hard-sphere interactions,
which is a popular model for ideal gases (Krapivsky et al. 2010), the first derivative
of the interaction term is not well defined along the surface of the sphere. One can
circumvent this by for example smoothing the interaction kernel, but the risk remains
of numerical issues. Alas, this method is best served by models with soft and smooth
interactions, as is common in biology and ecology (Lewis et al. 2013; Oelschliger
1989).

There is an intrinsic relationship between interacting diffusion and the phenomena
of sub- and superdiffusion, a phenomena observed both theoretically and experimen-
tally (Stauffer et al. 2007). Anomalous diffusion can emerge in a number of ways from
the stand-point of stochastic calculus. On one hand, it can be a deliberate design choice
of the model to choose a driving noise with covariance structure different from that of
the Wiener process (Benhamou 2007). It can also be emergent from the interaction,
e.g an emphasis on repulsive interactions will result in superdiffusive behaviour even
when the underlying noise is Brownian (Fedotov and Korabel 2017). In the latter case,
the 0.5-order approximation of Euler-Maruyama fails to take this phenomena into
account by its very construction. This could be one potential reason why superdiffu-
sion has been observed in crowded environment when naive MSD-methods have been
utilized (Smith et al. 2017). The higher order method, however, adjusts the diffusivity
by taking the Jacobian matrix of the interaction into account, making inference on
the underlying, normal diffusion possible even in the case of seemingly anomalous
diffusion.

The method presented in this paper can be combined with other inference strategies
to conduct inference on large SDE systems. If other conjugacies exists in the drift
term, one could for example construct a Gibbs sampler that alternates inference on the
drift parameters and the diffusion coefficients. For less tractable models, one could
still divide the inference into blocks, using conjugacies for the diffusion term and
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likelihood-free inference for other aspects of the model, such as the use of particle
filters (Schon and Lindsten 2015). Methods such as these are proven to converge, but
the mixing time of such Markov chain Monte Carlo (MCMC) methods are notoriously
difficult to study, and convergence can thus be slow beyond feasibility.

It should be noted that the method presented in this paper still relies on a linearisa-
tion of the drift term. For frequent observations this is an reasonable approximation,
but for infrequent observations this can lead to inaccuracies, as noted in Fig. 7 where
our method performed worse than standard MSD for infrequent observations of sparse
particle systems. A way to remedy this can be to, instead of assuming constant drift
terms between the observations, solving an ODE for the expected value and the vari-
ance of each particle location on the interval between observations. While this leads
to further computational complexity, it makes the method less sensitive to infrequent
observations and is an avenue of further research. Such methods are discussed in detail
in for example (Sarkkd 2013).

To summarise, we have shown that more exact conjugacies exists given systems
satisfying some fairly basic smoothness requirements. The application in mind when
this discovery was made was interacting particle systems, but applications can be
found in many other settings where accurate inference on a diffusion coefficient in a
complex system is of importance, such as finance.
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