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Abstract
We consider the dynamics of a virus spreading through a population that produces a
mutant strain with the ability to infect individuals that were infected with the estab-
lished strain. Temporary cross-immunity is included using a time delay, but is found
to be a harmless delay. We provide some sufficient conditions that guarantee local
and global asymptotic stability of the disease-free equilibrium and the two boundary
equilibria when the two strains outcompete one another. It is shown that, due to the
immune evasion of the emerging strain, the reproduction number of the emerging strain
must be significantly lower than that of the established strain for the local stability of
the established-strain-only boundary equilibrium. To analyze the unique coexistence
equilibrium we apply a quasi steady-state argument to reduce the full model to a two-
dimensional one that exhibits a global asymptotically stable established-strain-only
equilibrium or global asymptotically stable coexistence equilibrium. Our results indi-
cate that the basic reproduction numbers of both strains govern the overall dynamics,
but in nontrivial ways due to the inclusion of cross-immunity. The model is applied to
study the emergence of the SARS-CoV-2 Delta variant in the presence of the Alpha
variant using wastewater surveillance data from the Deer Island Treatment Plant in
Massachusetts, USA.
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1 Introduction

Viruses mutate rapidly, which may impact the clinical presentation of the disease, its
epidemiology, the efficacy of therapeutics and vaccinations, or the accuracy of diag-
nostic tools (World Health Organization 2022). These mutations, along with selection
pressures, may result in new variants (or strains) of a pathogen. After the emergence
of SARS-CoV-2 in late 2019 (World Health Organization 2020), for about 11 months,
SARS-CoV-2 genomes experienced a period of relative evolutionary stasis. From late
2020, however, multiple countries began reporting the detection of SARS-CoV-2 vari-
ants that seemed to be more efficient at spreading. One of the first variants, reported
on December 14, 2020 in the United Kingdom, was identified as the B.1.1.7 variant
(later renamed the “Alpha” variant). Others include the B.1.351 lineage first detected
in South Africa and P.1 from four Brazilian travelers at the Haneda (Tokyo) airport
(World Health Organization 2022; National Institute of Infectious Diseases, Japan
2021). Since then, the World Health Organization has defined five lineages as variants
of concern (Alpha, Beta, Gamma, Delta, and Omicron) (World Health Organization
2022). These SARS-CoV-2 variants possess sets of mutations that confer increased
transmissibility and/or altered antigenicity, which the latter likely evolved in response
to the immune profile of the human population having changed from naive to hav-
ing been immune-imprinted from prior infections. Multiple studies have reported the
rapid displacement of the Delta variant by Omicron in both clinically reported data
and wastewater surveillance data (Lee et al. 2022; Wu et al. 2020). The most recent
Omicron BA.4 and BA.5 lineages have also been demonstrated to resist neutraliza-
tion by full-dose vaccine serum and have reduced neutralization to BA.1 infections
(Tuekprakhon et al. 2022).

COVID-19 is now one of the most widely-monitored diseases in human history,
allowing for unprecedented insight into variant emergence and competition. While
disease surveillance often relies on clinical case data for monitoring (and genetic
sequencing to identify new variants), issues related to reporting delays or the under-
reporting of cases can lead to inaccurate real-time data. Wastewater surveillance was
previously used to detect poliovirus (Pöyry et al. 1988), enteroviruses (Gantzer et al.
1998), and illicit drug use (Daughton and Jones-Lepp 2001); however, it was recently
that it came to the forefront by helping fight against the COVID-19 pandemic. The
rationale for SARS-CoV-2 detection in wastewater relies on the viral shedding mostly
in feces and urine from infected individuals, which gives an alternative approach to rec-
ognizing viral presence and penetration in the community (Peccia et al. 2020;Medema
et al. 2020; Ahmed et al. 2020; Fall et al. 2022). Quantification of viral concentrations
in wastewater thus offers a complementary approach to understanding disease preva-
lence and predicting viral transmission by integrating with epidemiological modeling,
while avoiding the same pitfalls associated with only considering clinical data.
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Mathematical models have been used extensively in the study of disease dynam-
ics with applications to the COVID-19 pandemic. Wastewater-based surveillance
has increasingly been used in conjunction with mathematical and statistical mod-
els. McMahan et al. (2021) used an SEIR model to mechanistically relate COVID
cases and wastewater data. Phan et al. (2023) also used a standard SEIR framework,
with the addition of a viral compartment, to estimate the prevalence of COVID-19
using wastewater data; results indicated that true prevalence was approximately 8.6
times higher than reported cases, consistent with previous studies (see Phan et al. 2023
and the references therein). Naturally, the SEIR model may be extended to include
heterogeneity in the viral shedding other compartments (such as those hospitalized or
asymptomatic) as done by Nourbakhsh et al. (2022).

Other studies have focused on variant emergence and competition betweenmultiple
strains or diseases. A recent study byMiller et al. (2022) used a stochastic agent-based
model in an attempt to forecast the emergence of SARS-CoV-2 variants without having
to previously identify a variant. The authors found that mutations are proportional to
the number of transmission events and the the fitness gradient of a strain may provide
insight on its persistence (Miller et al. 2022). Fudolig and Howard (2020) presented a
modified SIR model with vaccination (in the form of a system of ordinary differential
equations) to investigate two-strain dynamics and its local stability properties. Here,
individuals infected with the established strain are immediately susceptible to infec-
tion by a new strain. The authors determined that the two strains can coexist if the
reproduction number of the emerging strain is lower than that of the established strain
(Fudolig and Howard 2020). A general multi-strain model by Arruda et al. (2021) uses
an SEIR-type model for each viral strain and uses an optimal control approach. The
authors account for mitigation strategies through the inclusion of a modification terms
that can reduce the contact rate of each strain, and individuals infected with a strain
will have waning immunity to that same strain. However, the model does not consider
cross-immunity between the strains (Arruda et al. 2021). Gonzalez-Parra et al. (2021)
developed a two-strain model of COVID-19 by extending the standard SEIR formula-
tion to include asymptomatic transmission and hospitalization. The study found that
the introduction of a slightly more transmissible strain can become dominant in the
population (Gonzalez-Parra et al. 2021). These models may also include a time delay
to account for various biological phenomena. For example, Rihan et al. (2020) devel-
oped a delayed stochastic SIR model with cross-immunity, where a time delay was
incorporated to adjust for the incubation period of a disease and stochasticity was used
to determine the effect of randomness on parameters.

In this paper, we present a four-dimensional modified SIR model to study disease
dynamicswhen two strains are circulating in a population. A time delay is incorporated
to account for temporary cross-immunity induced by infection with an established (or
dominant) strain. This paper is organized as follows: in Sect. 2, themodel is formulated
and the equilibria of the full system are analyzed. Interestingly, we find that the time
delay does not influence the stability of equilibria and is hence a harmless delay
(Gopalsamy 1983; Driver 1972). In Sect. 3, we introduce the transient model to study
global stability of the coexistence equilibrium, and bifurcation curves are shown.
Finally, the model is calibrated using wastewater data and the results are studied using
a sensitivity analysis in Sect. 4.

123



   63 Page 4 of 34 B. Pell et al.

2 The general model

In this section,we introduced ourmathematicalmodel that incorporates two competing
virus strains and conduct basic model analysis.

We consider a population-level virus competition model using a compartmental
framework. We let S(t), I1(t), I2(t) and Rl(t) be the individuals that are susceptible
to both virus strains, infectious with strain 1, infectious with strain 2 and recovered
from strain 1 but susceptible to strain 2 at time t , respectively. Let τ be the time it takes
for an individual infected with strain 1 to become susceptible to infection by strain
2. We introduce the following two-strain virus competition model with temporary
cross-immunity:

dS

dt
= a − dS − β1SI1 − β2SI2,

d I1
dt

= β1SI1 − γ1 I1 − d1 I1,

d I2
dt

= β2SI2 + β2Rl I2 − γ2 I2 − d2 I2,

dRl

dt
= γ1 I1(t − τ) − β2Rl I2 − dRl .

(1)

An ODE version of this model without demography, independently developed, was
used recently to describe the evolutionary dynamics of SARS-CoV-2 on the population
level (Boyle et al. 2022). As a practical convention, all parameters in our model are
positive. The birth rate of susceptible individuals is constant at rate a. Susceptible
individuals die naturally at rate d. Infected individuals with strain 1 or strain 2 die at
rate d1 or d2, respectively. To investigate how disease-induced death influences virus
strain competition, we make the distinction that d1 and d2 are disease-induced death
rates, while d is the natural death rate. In practice, d1 ≥ d and d2 ≥ d. In system (1),
susceptible individuals become infectious when they come into contact with infectious
individuals from either strain at rates β1 and β2, respectively. Individuals infected with
strain 1 recover at rate γ1 and enter the Rl compartment where they are immune to
strain 1, but become susceptible to strain 2 at rate β2 after τ days has passed. Infectious
individuals with strain 2, recover at rate γ2. We note that

Rl(t) =
∫ t−τ

0
γ1 I1(u)e− ∫ t

u+τ β2 I2(σ )+d dσ du (2)

and differentiating with respect to t we have

dRl

dt
= γ1 I1(t − τ) − β2Rl I2 − dRl .

We assume that the transition rates from S to I1, S to I2 and Rl to I2 follow
the classical mass action law and all other transition rates are proportional to the
compartment being left or entered. Figure1 shows a summarizing schematic of the
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Fig. 1 Schematic of the general model, system (1). Solid arrows correspond to disease-related transitions,
dashed lines correspond to demographic transitions (birth and natural death) and the squiggle arrow cor-
responds to the time delay for an individual that has recovered from strain 1 to be susceptible to strain 2

model transitions. We note that using standard incidence for the disease transmission
rates would make more biological sense, since it shouldn’t matter how many people
have the disease around you, only howmany you come into contact with. Lastly, initial
histories for system (1) are prescribed by:

(S(u), I1(u), I2(u), Rl(u)) = (φ1(u), φ2(u), φ3(u), φ4(u))

where φi (u), i = 1, 2, 3, 4 are bounded, continuous and nonnegative functions for
u ∈ [−τ, 0).

2.1 Non-negativity and boundedness

Wenotice that the vector-valued function (1) and its derivative exist and are continuous.
Therefore there exists a unique noncontinuable solution defined on some interval
[−τ, s)where s > 0 (Kuang 1993; Smith 2011). Our first step is to show that themodel
produces solutions that are biologically plausible. We prove this with the following
two propositions. We first show that if solutions start nonnegative, then they will stay
nonnegative on [0, s). After that, we show solutions remain bounded for all time,
which then implies s = +∞ by Theorem 3.2 and Remark 3.3 in Smith (2011).

Proposition 1 Solutions to system (1) that start nonnegative stay nonnegative.

Proof Observe that if I1(0) = 0, then I1(t) = 0 for t ∈ [0, s). Similarly, I2(t) = 0
for t ∈ [0, s) if I2(0) = 0. Thus we may assume that I1(0) > 0 and I2(0) > 0.
Let y(t) = d + β1 I1 + β2 I2 and observe that the first equation in system (1) can be
rewritten as
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S′(t) = a − y(t)S.

Applying the integrating factor method we obtain

S(t) =
(∫ t

0
ae

∫ ζ
0 y(ξ)dξdζ + S(0)

)
e− ∫ t

0 y(ξ)dξ > 0.

This implies that S(t) is positive for t ∈ [0, s). From the second equation of system
(1) for t ∈ [0, s) we have

I ′
1(t) ≥ − (γ1 + d1) I1.

This implies

I1(t) ≥ I1(0)e
−(γ1+d1)t > 0.

We see that

I ′
2(t) = p(t)I2,

where p(t) = β1S + β2Rl − γ2 − d2. This implies that

I2(t) = I2(0)e
∫ t
0 p(ξ)dξ > 0

for t ∈ [0, s). From equation (2) we have that

Rl(t) =
∫ t−τ

0
γ1 I1(u)e− ∫ t

u+τ β2 I2(σ )+d dσ du > 0

for t ∈ [0, s). Hence, solutions with nonnegative initial conditions will remain non-
negative. ��

Throughout the rest of this paper, we assume that S(0) > 0, I1(0) > 0, I2(0) ≥
0, Rl(0) ≥ 0. N = S+ I1+ I2+Rl , and N (0) = a/d = S(0)+ I1(0)+ I2(0)+Rl(0).

Proposition 2 Solutions to system (1) are bounded.

Proof Let N1 = S+ I1. Since components of solutions are nonnegative and I1(t) > 0
for t ∈ [−τ, s), we have

N ′
1(t) < a − dS − d1 I1

≤ a − α1N 1,

where α1 := min {d, d1}. Hence

S(t) + I1(t) < a/α1.
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In particular, we see that I 1(t)≤ max
{
I1(0), a

α1

}
:= B for t ∈ [0, s). Define

f (t) = N (t) + γ1

∫ t

t−τ

I1(s) ds.

Then

f ′(t) = a − dS − d1 I1 − (γ2 + d2)I2 − dRl

≤ a − αN = a + αγ1

∫ t

t−τ

I1(s) ds − α f ≤a + αγ1τ B − α f ,

where α := min {d, d1, γ2 + d2}. Let A = a + αγ1τ B. This yields f (t) ≤
A
α
+ (

N (0) − A
α

)
e−αt , hence f (t) ≤ max{N (0), A

α
}. Since N (t) ≤ f (t), this proves

boundedness of solutions. ��
The fact that solutions are bounded for all t ≥ 0 implies that s = +∞.

2.2 Analysis of equilibria

In order to gain a global understanding of the dynamics of system (1), we study the
existence, number and stability of its equilibria. For infectious disease models, the
dynamics can usually be characterized using the basic reproduction number (Dela-
mater et al. 2019). By the next generation matrix method in (Driessche andWatmough
2002) we find the basic reproduction numbers for strain 1 and strain 2 to be

Ri = aβi

d(di + γi )

for i = 1, 2. The full system exhibits four biologically relevant steady states: a disease-
free steady state (E0), two steady states where either strain 1 outcompetes strain 2 (E1)
or strain 2 outcompetes strain 1 (E2), and a coexistence steady state (Ec). They take
the following forms:

E0 =
(a
d

, 0, 0, 0
)

, (3)

E1 =
(

γ1 + d1
β1

,
d

β1
(R1 − 1) , 0,

γ1

β1
(R1 − 1)

)
, (4)

E2 =
(

γ2 + d2
β2

, 0,
d

β2
(R2 − 1) , 0

)
, (5)

Ec =
(

γ1 + d1
β1

, I ∗
1 , I ∗

2 ,
a

d

(
R1 − R2

R1R2

))
, (6)

where

I ∗
1 = d (R1 − R2)

d1
(
aβ1
dd1

− R2

)
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and

I ∗
2 =

d (γ1R1 + d1)

[
R2 − aβ1

d(γ1R1+d1)

]

d1β2

(
aβ1
d1d

− R2

)

We see that E0 always exists, E1 exists when R1 > 1, and E2 exists when R2 > 1.
From the form of Ec we see that it exists when

aβ1
d(γ1R1+d1)

< R2 < R1 and R2 <
aβ1
dd1

.

Notice that since R1 <
aβ1
dd1

is always true, we can equivalently say aβ1
d(γ1R1+d1)

< R2 <

R1 <
aβ1
dd1

. We summarize the above discussion in the following proposition.

Proposition 3 The following are true for system (1).

1. The disease-free equilibrium, E0, always exists.
2. The boundary equilibria, Ei , exist when Ri > 1 for i = 1, 2.
3. The coexistence equilibrium, Ec, exists exactly when

aβ1
d(γ1R1+d1)

< R2 < R1 and

R2 <
aβ1
dd1

.

Remark 1 If we let

f (R1) = aβ1

d (γ1R1 + d1)
, (7)

then we see that f (1) = aβ1
d(d1+γ1)

= R1. That is, if R1 = 1 then R2 = 1 on this curve.

We have the following result for E0.

Proposition 4 E0 is locally asymptotically stable whenmax{R1, R2} < 1. E0 is unsta-
ble when R1 > 1 or R2 > 1.

Proof The Jacobian matrix evaluated at E0 is

⎛
⎜⎜⎝

−d − aβ1
d − aβ2

d 0
0 (d1 + γ1) (R1 − 1) 0 0
0 0 (d2 + γ2) (R2 − 1) 0
0 γ1e−λτ 0 −d

⎞
⎟⎟⎠ .

The corresponding eigenvalues are

λ1,2 = −d,

λ3 = (d1 + γ1) (R1 − 1) ,

λ4 = (d2 + γ2) (R2 − 1) .

Therefore, E0 is locally asymptotically stable whenever max{R1, R2} < 1. It is unsta-
ble whenever either R1 > 1 or R2 > 1. ��

In addition to local stability, we have the following global stability result for E0.
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Theorem 5 If max{R1, R2} < 1, then the disease-free equilibrium E0 is globally
asymptotically stable.

Proof Observe that

dS

dt
= a − dS − β1SI1 − β2SI2

≤ a − dS,

which implies lim supt→∞ S(t)≤a/d. If S(0) < a/d, then S(t) ≤ a/d for all t > 0.

If S(0) > a/d, then dS
dt < 0. Hence, the region {S(t) : 0 ≤ S(t) ≤ a/d} is positively

invariant and attracting.
By assumption, R1 = aβ1

d(γ1+d1)
< 1, which implies that there exists ε1 > 0 such

that β1(a/d + ε1) < γ1 + d1. For this ε1, there exists t1 > 0 such that, for t > t1,
S(t) < a/d + ε1. Then, for t > t1,

d I1
dt

= β1SI1 − (γ1 + d1)I1

<
[
β1

(a
d

+ ε1

)
− (γ1 + d1)

]
I1.

Since β1(a/d+ε1) < γ1+d1, I1(t) is exponentially decreasing for t > t1. This result
implies that lim inf t→∞ I1(t) ≤ 0. Since I1(t) ≥ 0 for all t > 0, lim supt→∞ I1(t) ≥
0. Hence limt→∞ I1(t) = 0.

Since limt→∞ I1(t) = 0, we see that for any ε > 0, there is a t∗ = t∗(ε) such that
for t > t∗, we have

dRl

dt
= ε − β2 I2Rl − dRl < ε − dRl

and a similar argument can be used to show that Rl is eventually bounded by ε/d and
hence Rl → 0 as ε → 0 and t → ∞.

Finally, the assumption that R2 = aβ2
d(γ2+d2)

< 1 implies that there exists ε2 > 0

such that β2 (a/d + ε1 + ε2) < γ2 + d2. Since Rl → 0 as t → ∞, there exists t2 > 0
such that, for this ε2, Rl < ε2 for t > t2. Then, for t > t2,

d I2
dt

= β2SI2 + β2Rl I2 − (γ2 + d2)I2

< β2

(a
d

+ ε1

)
I2 + β2(ε2)I2 − (γ2 + d2)I2

=
[
β2

(a
d

+ ε1 + ε2

)
− (γ2 + d2)

]
I2

Thus I2(t) is exponentially decreasing. By a similar argument as above,
limt→∞ I2(t) = 0.
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We have shown that limt→∞ I1(t) = 0, limt→∞ I2(t) = 0, and limt→∞ Rl(t) = 0.
Thus we obtain the limiting equation

dS

dt
= a − dS

which implies that limt→∞ S(t) = a/d. This concludes the proof. ��

The conditions that govern the global stability of E0 make good biological sense.
We have the following result for E1.

Proposition 6 If R1 > 1, then E1 exists. Furthermore we have,

1. If R2 <
aβ1

d(γ1R1+d1)
, then E1 is asymptotically stable.

2. If R2 >
aβ1

d(γ1R1+d1)
, then E1 is unstable.

Proof The Jacobian matrix evaluated at E1 is

⎛
⎜⎜⎜⎝

−dR1 − (d1 + γ1) −β2(d1+γ1)
β1

0
d (R1 − 1) 0 0 0

0 0 β2d1
β1

− (d2 + γ2) + γ1R1β2
β1

0

0 γ1e−λτ −β2γ1
β1

(R1 − 1) −d

⎞
⎟⎟⎟⎠ .

The corresponding characteristic polynomial factors to

h(λ) = g(λ) (−d − λ)

(
(d2 + γ2) (d1d + γ1dR1)

aβ1

(
R2 − aβ1

d1d + γ1dR1

)
− λ

)
,

where

g(λ) = d (d1 + γ1) (R1 − 1) + dR1λ + λ2.

Therefore, the corresponding roots are

λ1 = − d,

λ2 = (d2 + γ2) (d1d + γ1dR1)

aβ1

(
R2 − aβ1

d1d + γ1dR1

)
,

and the roots to the quadratic equation g(λ) = d (d1 + γ1) (R1 − 1) + dR1λ + λ2.

Consequently, λ1 < 0 and λ2 < 0 by assumption (1). In addition, by the Routh-
Hurwitz stability criterion for quadratic equations (Brauer and Castillo-Chavez 2012),
g(λ) has roots with negative real parts since R1 > 1. Thus all eigenvalues have
negative real part. Lastly, we see that E1 is unstable if and only if λ2 > 0, that is,
R2 >

aβ1
d(d1+γ1R1)

. This concludes the proof. ��
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This previous proposition shows that due to the immune evasion of the emerging
strain, the reproduction number of the emerging strain must be significantly lower
than that of the established strain for it to competitively exclude the emerging strain.
In addition to local asymptotic stability,we have the following result for global stability
of E1.

Theorem 7 If R1 > 1, R2 < 1, R2 <
aβ1

d1d+γ1dR1
and β2

( a
d + D

)
< γ2 + d2 where

D = γ1C
d , C = β1B

γ1+d1
and B = ( a

2d

)2
, then E1 is globally asymptotically stable.

Proof Consider the sum S(t) + I1(t). Observe that

dS

dt
+ d I1

dt
= a − dS − β2SI2 − (γ1 + d1)I1 (∗)

≤ a − dS − (γ1 + d1)I1
≤ a − α(S + I1)

where α = min{d, γ1 + d1}. In practice, we assume that d1 ≥ d and so α = d. Recall
that S(0) + I1(0) ≤ a/d. We see that S(t) + I1(t) ≤ a/d; hence both S(t) and I1(t)
are bounded above. Furthermore, because the arithmetic mean is greater than or equal

to the geometric mean, SI1 ≤ ( 1
2
a
d

)2 = B. Hence we obtain,

d I1
dt

≤ β1B − (γ1 + d1) I1

and therefore, lim supt→∞ I1 ≤ β1B
γ1+d1

= C .

Since β2
( a
d + D

)
< γ2 + d2, we see that there is small constant ε0 > 0 such that

β2

(a
d

+ D + 3ε0
)

< γ2 + d2.

Let ε > 0 and ε0 = γ1
d ε. Thus there exists tε > 0 such that lim supt→∞ I1 <

β1B
γ1+d1

+ε.

for t > tε. Therefore, for t > tε we have

dRl

dt
< γ1

(
β1B

γ1 + d1
+ ε

)
− dRl

and we obtain

lim sup
t→∞

Rl ≤ γ1

d

(
β1B

γ1 + d1
+ ε

)
= D + γ1

d
ε.

Therefore, for any ε0 there exists t0 > tε such that

lim sup
t→∞

Rl ≤ γ1

d

(
β1B

γ1 + d1
+ ε

)
= D + ε0.
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Hence there exists t2 > such that for t > t2, Rl < D+ 2ε0. In addition, since R2 < 1,
there exists ε1 > 0 such that β2(a/d + ε1) < γ2 + d2. Our previous result (∗) implies
that, for this ε1, there exists t1 > 0 such that S(t) < a/d + ε1 for t > t1. We are now
ready to control I2. We have the following,

d I2
dt

= β2SI2 + β2Rl I2 − (γ2 + d2) I2

< β2

(a
d

+ ε1

)
I2 + β2Rl I2 − (γ2 + d2) I2

<
[
β2

(a
d

+ ε1

)
+ β2 (D + 2ε0) − (γ2 + d2)

]
I2

=
[
β2

(a
d

+ ε1 + D + 2ε0
)

− (γ2 + d2)
]
I2

Letting ε1 = ε0 we obtain

d I2
dt

<
[
β2

(a
d

+ 3ε0 + D
)

− (γ2 + d2)
]
I2

Thus, for t > t1, I2(t) is exponentially decreasing, implying that lim inf t→∞ I2(t) ≤
0.However, since I2(t) is non-negative, lim supt→∞ I2(t) ≥ 0.Hence limt→∞ I2(t) =
0.

Observe that once I2 goes to zero, Rl does not impact the dynamics of the model,
allowing us to consider the behavior of the resulting two-dimensional system:

dS

dt
= a − dS − β1SI1,

d I1
dt

= β1SI1 − γ1 I1 − d1 I1.

It’s easy to see that this system has a positive equilibrium point, E∗ =
(

γ1+d1
β1

, d
β1

(R1 − 1)
)
which is globally asymptotically stable. Finally, considering the limiting

profile of Rl we obtain, limt→∞ Rl(t) = γ1
β1

(R1 − 1) . Therefore, all trajectories of
system (1) tend to E1. ��

We have the following result for E2.

Proposition 8 If R2 > 1, then E2 exists. Furthermore we have,

1. If R1
R2

< 1, then E2 is asymptotically stable.

2. If R1
R2

> 1, then E2 is unstable.

Proof The Jacobian matrix evaluated at E2 is

⎛
⎜⎜⎜⎝

−dR2 −β1
β2

(d2 + γ2) − (d2 + γ2) 0

0 (d1 + γ1)
(
R1
R2

− 1
)

0 0

d (R2 − 1) 0 0 d (R2 − 1)
0 γ1e−λτ 0 −dR2

⎞
⎟⎟⎟⎠ .
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The corresponding characteristic polynomial factors to

h(λ) =
(

(d1 + γ1)

(
R1

R2
− 1

)
− λ

)
(−dR2 − λ)

(
d (d2 + γ2) (R2 − 1) + dR2λ + λ2

)
.

Therefore, the corresponding roots are

λ1 = (d1 + γ1)

(
R1

R2
− 1

)
,

λ2 = − dR2,

and the roots to the quadratic equation g(λ) = d (d2 + γ2) (R2 − 1) + dR2λ + λ2.

Consequently, λ1 < 0 by assumption (1) and λ2 < 0. In addition, by the Routh-
Hurwitz stability criterion for quadratic equations (Brauer and Castillo-Chavez 2012),
g(λ) has rootswith negative real parts since R2 > 1. Thus all eigenvalues have negative
real part. Lastly, we see that E2 is unstable if and only if λ1 > 0, that is, R1

R2
< 1. This

concludes the proof. ��
Remark 2 From the above local stability results we see that for τ ≥ 0, the equilibria
E0, E1, and E2 do not undergo a delay-induced stability switch. For this reason, we
call the delay, τ , a harmless delay (Gopalsamy 1983; Driver 1972). We summarize
this formally in the next theorem.

Proposition 9 For τ ≥ 0, the equilibria E0, E1, and E2 do not undergo a delay-
induced stability switch.

Proof We see that by Propositions 4, 6, and 8, τ does not appear in any of the charac-
teristic polynomials and therefore does not influence stability. ��
Theorem 10 If R1 < 1 and R2 > 1, then E2 is globally asymptotically stable.

Proof Since R1 < 1, E1 and Ec do not exist. By assumption β1
a
d < γ1 + d1, thus

there exists ε > 0 such that β1
( a
d + ε

)
< γ1 + d1. Since S ≤ a

d + (
S(0) − a

d

)
e−dt

there exists tε > 0 such that for t > tε we have S < a
d + ε. Hence,

I ′
1(t) = β1SI1 − (γ1 + d1) I1

<
[
β1

(a
d

+ ε
)

− (γ1 + d1)
]
I1

(8)

and therefore I1(t) < I1(0)e(β1( a
d +ε)−(γ1+d1))t , and so I1(t) → 0 as t → ∞. Since

I1 → 0, for ε1 > 0 there exists t1 such that γ1 I1(t − τ) < ε1 for t > t1. Therefore,

R′
l(t) = γ1 I1(t − τ) − β1 I2Rl − dRl

< ε1 − dRl
(9)

which implies that lim supt→∞ Rl(t) ≤ ε1
d .Letting ε1 → 0weobtain lim supt→∞ Rl(t)

≤ 0. In addition, since Rl ≥ 0 we have lim inf t→∞ Rl ≥ 0. Therefore,
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limt→∞ Rl(t) = 0 and we obtain the 2 dimensional limiting system:

S′ = a − dS − β2SI2
I ′
2 = β2SI2 − (γ2 + d2) I2.

(10)

Let S∗ = γ2+d2
β2

and I ∗
2 = a

β2

(
r2 − d

a

)
and consider the following Lyapunov function

V (S, I2) = S − S∗ ln(S) + I2 − I ∗
2 ln(I2). (11)

Then the derivative with respect to time is given by

V̇ =
(
1 − S∗

S

)
(a − dS − β2SI2) +

(
1 − I ∗

2

I2

)
(β2S − (γ2 + d2)) I2

= − 1

S

(
S − S∗) (

d(S − S∗) + β2S(I2 − I ∗
2 ) + β2 I

∗
2 (S − S∗)

) + β2
(
I2 − I ∗

2

) (
S − S∗)

= −d

S

(
S − S∗)2 − β2 I ∗

2

S

(
S − S∗)2

≤ 0.

We have used the steady state relationships γ2+d2 = β2S∗ and a = dS∗+β2S∗ I ∗
2 .

Thus we have a Lyapunov function. We have that E = {(S, I2)|V̇ (S, I2) = 0} =
{(S∗, I2)|I2 > 0}. Let the largest invariant set of E be M . Since S(t) = S∗, we have
S′(t) = 0 = a−dS∗ −β2 I2S∗ which implies that I2 = I ∗

2 . Hence the largest invariant
set of E is

M = {(S∗, I ∗
2 )} =

{(
γ2 + d2

β2
,
d

β2
(R2 − 1)

)}
.

Thus all solutions of system (10) tend to
(

γ2+d2
β2

, d
β2

(R2 − 1)
)
, by the Lyapunov-

LaSalle Theorem. This shows that all solutions to system (1) tend to E2 if R1 < 1 and
R2 > 1. ��

Figure 3 shows the general stability and existence regions of the equilibrium points
of system (1) in the R1R2 plane. Bifurcations occur when crossing from one region
to another. To generate these diagrams we parameterize the curve (7) by either β1, d1
and γ1. We illustrate the bifurcation from E0 to E2 in Fig. 2a, the bifurcations from E1
to Ec to E2 in (panel (b) and (c)), and the bifurcations from E2 to Ec to E1 in (panel
(d)) (Figs. 3, 4).

We see that the competitive exclusion principle holds for either strain as long as the
conditions of either Proposition 6 or Proposition 8 hold (Gause 1934; Bremermann
and Thieme 1989). However, conditions for one strain to competitively exclude the
other are different between the two strains because of temporary cross-immunity. This
also suggests that temporary cross-immunity is a mechanism for coexistence of two
competing virus strains.
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Fig. 2 a: Bifurcation from disease free equilibrium (E0) to dominance by strain 2 (E2) using β2 as a
bifurcation parameter and where β1 = 0.0003. b: Bifurcation from strain 1 dominance (E1) to coexistence
(Ec) and finally dominance by strain 2 (E2) using β2 as a bifurcation parameter and where β1 = 0.003.
c Bifurcation from strain 1 dominance (E1) to coexistence (Ec) and finally dominance by strain 2 (E2)
using γ1 as a bifurcation parameter and where β1 = β2 = 0.003. d Bifurcation from strain 2 dominance
(E2) to coexistence (Ec) and then to dominance by strain 1 (E1) using β1 as a bifurcation parameter where
β2 = .002. All other parameter values are γ1 = 0.25, γ2 = 0.2, d = .045, d1 = d2 = 0.15, a = 10 and
τ = 0

3 The transient model

To study the stability of the coexistence steady state we make the assumption that
the susceptible population is at equilibrium, S(t) = SM and remove the differential
equation for S. Furthermore, if I1 �= 0, then SM = γ1+d1

β1
. Therefore, d I1

dt = 0 and

we may remove the equation for d I1
dt , but assume I1(0) > 0. We have the following 2

dimensional system of differential equations:
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Fig. 3 System (1) stability and existence regions of equilibria in the R1R2 plane. a Parameterized by β1. b
Parameterized by d1. c Parameterized by γ1. For example, starting in the E0 stability region and increasing
β2 ultimately produces a bifurcation as E0 loses stability and E2 gains stability. This is also illustrated with
panel a of Fig. 2. Starting in the E1 stability region and increasing β2 produces a bifurcation as E1 loses
stability, Ec appears and ultimately for higher β2 values E2 becomes stable. See panel b of Fig. 2 for the
bifurcation diagram. We note that the curve given by (7) can only be plotted as a function of β1, d1, γ1, a
and d. We only show plots for the first three since the latter two have similar geometries
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Fig. 4 Model solutions illustrating the 4 equilibrium points of system (1). a Disease free (E0 stability
region). Parameter values: β1 = β2 = 0.0003. b Strain 1 outcompetes strain 2 (E1 stability region).
β1 = 0.0025 and β2 = 0.0003. c Strain 2 outcompetes strain 1 (E2 stability region). β1 = β2 = 0.003.
d Coexistence (Ec existence region). β1 = .009 and β2 = 0.003. Dashed lines represent equilibrium
solutions (see Eqs. (3), (4), (5) and (6)). The rest of the parameter values were fixed at γ1 = 0.25, γ2 = 0.2,
d = .05, d1 = 0.15, d2 = 0.15, a=10 and τ = 0

d I2
dt

= β2SM I2 + β2Rl I2 − γ2 I2 − d2 I2

dRl

dt
= γ1 I1(0) − β2Rl I2 − dRl .

(12)
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The reproduction numbers for the transient model are:

R̃1 = β1

d1 + γ1
and R̃2 = β2

d2 + γ2
, respectively. (13)

3.1 Boundedness and positivity

We prove basic positivity and boundedness of solutions for (12). However, we note

that if R̃1

R̃2
< 1, I2(t) becomes unbounded.

Proposition 11 Solutions to system (12) that start positive, remain positive for all time.

Proof Let I2(0) > 0 and Rl(0) > 0. We proceed by way of contradiction. That is,
supposed there exists t1 > 0 where either I2(t1) = 0 or Rl(t1) = 0 for the first time.
Then for t ∈ [0, t1], we have that I2(t) > 0 and Rl(t) > 0. We proceed by cases:

Case 1: I2(t1) = 0
For t ∈ [0, t1], we have

I ′
2(t) ≥ −γ2 I2 − d2 I2

= − (γ2 + d2) I2.
(14)

This implies that

I2(t) ≥ I2(0)e
−(γ2+d2)t > 0

Therefore, I2(t1) > 0, a contradiction.
Case 2: Rl(t1) = 0
For t ∈ [0, t1], we have

R′
l(t) ≥ −β2Rl I2 − dRl

≥ −β2Rlα − dRl .
(15)

where

α := max
t∈[0,t1]

{I2(t)}.

Then

R′
l(t) ≥ − β2Rl I2 − dRl

≥ − (β2α + d) Rl .
(16)

This implies that

Rl(t) ≥ Rl(0)e
−(β2α+d)t > 0

Therefore, Rl(t1) > 0, a contradiction. ��
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Proposition 12 If R̃1

R̃2
> 1, then solutions of system (12) are bounded from above.

Proof Assume that R̃1

R̃2
> 1, then γ2 + d2 − β2SM > 0. Let z = I2 + Rl , z0 =

I2(0) + Rl(0) and α = min{γ2 + d2 − β2SM , d}. Then

z′(t) = γ1 I1(0) − (γ2 + d2 − β2SM ) I2 − dRl

≤ γ1 I1(0) − αz.

This implies

z(t) ≤ γ1 I1(0)

α
+

(
z0 − γ1 I1(0)

α

)
e−αt

and

lim sup
t→∞

z(t) ≤ γ1 I1(0)

α
.

Therefore,

z(t) ≤ max

{
z0,

γ1 I1(0)

α

}
=: B.

Thus we have I2 + Rl ≤ B. Since I2 > 0 and Rl > 0, we have that both I1 and Rl

are bounded above. ��

Lastly, we see that when R̃1

R̃2
< 1, then solutions for I2 are unbounded.

Proposition 13 If R̃1

R̃2
< 1 then I2 from system (12) is unbounded.

Proof We have R̃1

R̃2
< 1, then

I ′
2(t) = (β2SM − γ2 − d2) I2 + β2Rl I2

≥ (β2SM − γ2 − d2) I2

= β2

R̃1

(
1 − R̃1

R̃2

)
I2 > 0.

This implies that I2(t) is unbounded for all t > 0. ��

An interesting implication of Proposition 13 is that if I1 is not as infectious relative
to strain 2, then it cannot control the spread of strain 2 and ultimately strain 2 becomes
unbounded in the transient model.
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3.2 Equilibria of the transient system

For our analysis we would like to have bounded solutions. For this to hold, by Propo-

sition 12 we must have that R̃1

R̃2
> 1. Therefore, for the remainder of this section we

assume that R̃1

R̃2
> 1.

Assuming that I1(0) > 0, we find two equilibria: the coexistence equilibria,Uc, and
another equilibrium where the first strain exists, U1. They take the following form:

Uc =
⎛
⎝β1γ1 I1(0) − d (d1 + γ1)

(
R̃1

R̃2
− 1

)

β2 (d1 + γ1)
(
R̃1

R̃2
− 1

) ,
d1 + γ1

β1

(
R̃1

R̃2
− 1

)⎞
⎠ (17)

U1 =
(
0,

γ1 I1(0)

d

)
. (18)

We note that Uc is dependent on I1(0) and is biologically relevant exactly when

β1γ1 I1(0) − d (d1 + γ1)

(
R̃1

R̃2
− 1

)
> 0. (19)

We note that Uc can exist even when both reproduction numbers are less than 1. We
have the following theorem on the stability of Uc.

Proposition 14 If Uc exists, then it is asymptotically stable.

Proof Uc is a positive steady state if and only if

β1γ1 I1(0) − d (d1 + γ1)

(
R̃1

R̃2
− 1

)
> 0.

The Jacobian matrix at Uc is

⎛
⎜⎜⎜⎜⎜⎝

0
β1γ1 I1(0)−d(d1+γ1)

(
R̃1
R̃2

−1

)

(d1+γ1)

(
R̃1
R̃2

−1

)

−β2
β1

(d1 + γ1)
(
R̃1

R̃2
− 1

) −β1γ1 I1(0)

(d1+γ1)

(
R̃1
R̃2

−1

)

⎞
⎟⎟⎟⎟⎟⎠

.

We find that the trace is

−β1γ1 I1(0)

(d1 + γ1)
(
R̃1

R̃2
− 1

) < 0
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and determinant is

β2

β1

(
β1γ1 I1(0) − d (d1 + γ1)

(
R̃1

R̃2
− 1

))
> 0.

Therefore, both eigenvalues have negative real part and Uc is locally asymptotically
stable whenever it exists. ��

We have the following theorem on the stability of U1.

Proposition 15 U1 always exists. Furthermore,

1. U1 is locally asymptotically stable when β1γ1 I1(0) − d (d1 + γ1)
(
R̃1

R̃2
− 1

)
< 0.

In addition, Uc does not exist.

2. U1 is unstable when β1γ1 I1(0) − d (d1 + γ1)
(
R̃1

R̃2
− 1

)
> 0.

Proof The Jacobian matrix at U1 is

(
β2(d1+γ1)

β1
− (d2 + γ2) + β2γ1 I1(0)

d 0

−β2γ1 I1(0)
d −d

)
.

We find that the eigenvalues are

λ1 = β2

β1d

(
β1γ1 I1(0) − d (d1 + γ1)

(
R̃1

R̃2
− 1

))

λ2 = −d (20)

We see that λ2 < 0 exactly when β1γ1 I1(0)−d (d1 + γ1)
(
R̃1

R̃2
− 1

)
< 0 and unstable

when

β1γ1 I1(0) − d (d1 + γ1)

(
R̃1

R̃2
− 1

)
> 0.

��
Theorem 16 If β1γ1 I1(0) − d (d1 + γ1)

(
R̃1

R̃2
− 1

)
> 0, then all solutions tend to Uc.

Proof To simplify our calculation we let x = I2 and y = Rl . Furthermore, let a =
γ1 I1(0), b = γ2 + d2 − β2SM and β = β2. Then system 12 becomes

dx

dt
= βxy − bx

dy

dt
= a − βxy − dy.

(21)
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With equilibrium solution (x∗, y∗) = Uc. The system is the exact same as system (10)
and hence a Lyapunov function is

V (x, y) = x − x∗ ln(x) + y − y∗ ln(y).

��
A phase portrait of the solution trajectory to the coexistence steady state is shown

in Fig. 5. Furthermore, it can be shown thatU1 is globally asymptotically stable under
certain conditions.

Theorem 17 If β
( a
d

)
< b, then all solutions tend to U1.

Proof We prove this result by contradiction. Recall that if β
( a
d

)
< b, then the tran-

sient system (21) does not attain a positive steady state. Assume that β
( a
d

)
< b and

limt→∞(x, y) �= (0, a/d). Furthermore, observe that lim supt→∞ y(t) ≤ a/d. Thus
for ε > 0, there exists a t∗ > 0 such that y(t) < a/d + ε for t > t∗. With this claim,
we see that, for t > t∗,

dx

dt
= β yx − bx < β

(a
d

+ ε
)
x − bx < 0,

implying that limt→∞ x(t) = x∗ ≥ 0. If x∗ > 0, then an application of Barbalat’s
lemma (Barbalat 1959) yields

lim
t→∞

dx

dt
= 0 = βx∗

(
lim
t→∞ y(t)

)
− bx∗,

which shows that limt→∞ y(t) = b
β

> 0. Hence we obtain the positive steady state

E∗ = (x∗, b
β
), which contradicts the fact that the model (21) has no positive steady

state. In other words, the claim yields limt→∞ x(t) = 0.
Furthermore, since y is bounded, the above result implies that for any ε1 < a, there

exists a t1 > t∗ such that βxy < ε1 for t > t1. Therefore

dy

dt
≥ a − ε1 − dy

for t > t1, yielding

lim inf
t→∞ y(t) ≥ a − ε1

d
.

Letting ε1 → 0, we see that lim inf t→∞ y(t) ≥ a/d. As well, our claim indicates that
lim supt→∞ y(t) ≤ a/d. Hence limt→∞ y(t) = a/d.

In the following, we prove our claim. The proof is divided into three cases:

1. y(0) ≤ a/d;
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2. y(0) > a/d and there exists a t2 > 0 such that y(t) > a/d for t ∈ [0, t2) and
y(t1) = a/d;

3. y(t) > a/d for all t > 0.

We consider case 1. We have

dy

dt
< a − dy = d

(a
d

− y
)

�⇒ y(t) <
a

d
+

(
y(0) − a

d

)
e−dt .

Hence y(t) < a/d for t > 0, and our claim is true.
Consider the second case. From case 1, we see that y(t) < a/d for t > t1 and again

our claim is true.
Finally, consider case 3. Here, dy/dt < 0 and there is a yc ≥ a/d such that

lim
t→∞ y(t) = yc ≥ a

d
. (∗)

By Barbalat’s lemma (Barbalat 1959), we have

0 = lim
t→∞(a − βxy − dy) = a − β yc

(
lim
t→∞ x(t)

)
− dyc

which implies

yc = a

d + β limt→∞ x(t)
≤ a

d
.

This together with (∗) imply

lim
t→∞ y(t) = a

d
and lim

t→∞ x(t) = 0,

contradicting the assumption that limt→∞(x, y) �= (0, a/d). This concludes the proof.
��

From Propositions 14 and 16 we see that both virus strains can coexist as long as
the original strain has a higher reproduction number than strain 2 and

β1γ1 I1(0) − d (d1 + γ1)

(
R̃1

R̃2
− 1

)
> 0.

However, we may solve for R̃2 in terms of R̃1 to generate a bifurcation curve between
coexistence and competitive exclusion,

R̃2 = R̃1
γ1 I1(0)

d R̃1 + 1
. (22)

Figure6 shows the R̃2 R̃1−bifurcation plane where Eq. (22) is parameterized by β1
γ1 or d1. For the two strains to coexist together, strain 1 needs to have a higher basic
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Fig. 5 Phase plane with solution trajectory and coexistence steady state Uc of system (12). Parameter
values: β1 = 0.03, β2 = 0.01 γ1 = 0.1, γ2 = 0.28, d = d1 = d2 = 0.1 and a = 0.7. Here B is defined as
in Proposition 12

0
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Fig. 6 The R̃2 R̃1-plane for the transient model (system 12). The model exhibits 3 different dynamics: (1)
unbounded solutions, (2) coexistence of the two virus strains and (3) competitive exclusion of the 2nd strain.
a Stability plane parameterized byβ1; b Stability plane parameterized by d1; c Stability plane parameterized
by γ1; If starting in the competitive exclusive region where I1 is the long-term winner and then increasing

β2 (thus increasing R̃2) we see that a bifurcation occurs when R̃2 = R̃1
γ1 I1(0)

d R̃1+1
and the second strain

can coexist with the first strain. Increasing β2 even more will ultimately lead to another bifurcation where
I2 becomes unbounded (by Proposition 13)

reproduction number than strain 2. However, it can’t be too high relative to strain 2 or it
will force strain 2 to extinction. The unbounded region corresponds to Proposition 13.
In general, the model suggests that viruses which mutate into strains that are slightly
less infectious are more likely to coexist together. On the other hand, viruses that
mutate into strains that are sufficiently less infectious relative to the original strain,
will out-compete the mutated strain.
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Fig. 7 Long-termdynamics of system (12). a coexistence steady statewhere I1 and I2 coexist.b competitive
exclusion of I2 by I1. We do not plot S or I1 since they are held constant at SM and I1(0), respectively

Table 1 Established results and open questions

Conditions Results or question

1. Ri > 1 Existence of strain-specific equilibrium Ei , i = 1, 2

2. aβ1
d(γ1R2+d1)

R2 < R1 <
aβ1
dd1

Existence of coexistence equilibrium

3. max {R1, R2} < 1 Disease free equilibrium, E0 is globally stable

4. See Theorem 7 E1 is globally stable

5. R1 < 1 and R2 > 1 E2 is globally stable

6. See Fudolig and Howard (2020) Local stability of Ec

7. Open Global stability of Ec

8. Open Global stability of E1 with R2 > 1

9. Open Global stability of E2 with R1 > 1

10. Open Influence of τ on the stability of Ec

1. γ1 I1(0)β2
d < γ2 + d2 − β2SM U1 is globally stable

2. Inequality (19) Uc is globally stable

4 Numerical results

4.1 Data fitting

The system (1) is validated by fitting to wastewater data from October 1, 2020 to May
13, 2021 obtained from the Deer Island Treatment Plant in Massachusetts (Xiao et al.
2022). This plant serves approximately 2.3 million people in the greater Boston area
(Xiao et al. 2022). More information on the collection and processing of wastewater
samples can be found in Xiao et al. (2022). Fitting to wastewater data, as opposed to
incidence or mortality data, allows us to avoid underreporting issues related to clinical
reporting (Table 1).
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Fig. 8 Line of best-fit (blue) compared to Massachusetts vaccination data. The per capita vaccination rate
v = 0.0038 is given by the slope of the best-fit line divided by the total state population of 7 million (color
figure online)

The B.1.1.7 (Alpha) variant was detected in Massachusetts in January 2021 (Mas-
sachusetts Department of Public Health 2021), while the B.1.617 (Delta) variant was
found in the state in April 2021 (Markos 2021). It should be noted that Massachusetts
(population size 7 million) began vaccinating healthcare workers on December 15,
2020 during Phase 1 of the state’s vaccination plan (Massachusetts Department of Pub-
lic Health 2022a). For simplification purposes, we assume that individuals in the
susceptible (S) and recovered (Rl ) compartments are vaccinated at a rate v and that
the vaccine offers immediate protection from both strains. Individuals who have
recovered from the emerging strain are not tracked or vaccinated for several reasons.
In the presented model, these individuals are removed from the population and thus
do not impact infection dynamics. It has been shown that two vaccine doses provided
significant protection against the Alpha and Delta variants with respect to infection
and hospitalization (Gram et al. 2022). Although protection against infection has been
found to wane over time, Gram et al. (2022) found that, after 120 days, vaccine effi-
cacy against Delta decreased from 92.2 to 64.8% in those aged 12–59 years. Vaccine
efficacy in individuals over 60 years of age saw decreases in efficacy from 90.7 to
73.2% and 82.3 to 50% for Alpha and Delta, respectively (Gram et al. 2022). Due
to the limited time-scale of vaccination in the model and the scope of this study, we
assume protection does not wane (Fig. 7).

Based on data on fully-vaccinated individuals (defined as those who received all
doses of the vaccine protocol) from the U.S. Centers for Disease Control and Pre-
vention (U.S. CDC), compiled by Our World in Data (Mathieu 2022; U.S. Centers
for Disease Control and Prevention 2022), we fix the per capita vaccination rate at
v = 0.0038 per day with vaccination beginning on January 5, 2021 due to the three
week time period between first and second doses (Massachusetts Department of Public
Health 2022a). The calculation of v is shown in Fig. 8.

In order to fit system (1) to the wastewater data, we add a compartment CV (t)
denoting the cumulative viralRNAcopies in thewastewater following the formulations
in Saththasivam et al. (2021). Hence, the dynamics of the cumulative virus released
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into the wastewater is governed by

dCV

dt
= αδ(1 − η) (I1 + I2) ,

where α denotes the fecal load per individual in grams per day, δ denotes the viral
shedding rate per gram of stool, and (1−η) denotes the proportion of RNA that arrives
to the wastewater treatment plant. Because the wastewater data is daily and CV (t) is
cumulative, the objective function be minimized is given by

SSE =
∑
tn

(
log10(C̃V (tn)) − log10 data(tn)

)2

where C̃V (tn) = CV (tn) − CV (tn−1) (i.e., new viral RNA entering the sewershed on
day tn). Parameter estimation is carried out using fmincon and 1000 MultiStart
runs in Matlab. For comparison purposes, both the ODE and DDE versions of the
model were fit to the data. Initial values for I1 and I2 are estimated by using the initial
viral RNA data and the estimated values of α, δ, and η; that is, the constraint

I1(0) + I2(0) = initial viral data

α × δ × (1 − η)
,

and assuming that I1(0) ≥ I2(0). For the model with time delay, the same constraints
are used for the initial histories. Values for estimated and fixed parameters are listed
in Table 2.

Figure 9 depicts model simulations without time delay using the best-fit parameters
when compared to daily wastewater data (Fig. 9a) and seven-day average case data
(Fig. 9b). The ODE version of the model predicts peak new infections on December
29, 2020, preceding the daily reported case data by 11 days. Due to the unreliability in
the case data, however, this 1.5 week difference may be reasonable. Furthermore, the
model projects approximately six times more new cases than the reported case data at
their respective peaks.

Best-fit simulations with time delay are shown in Fig. 10. Here, the model predicts
daily incidence peaking on January 4, 2021, approximately five times higher than the
reported cases on January 9, 2021, a difference of 5 days. Unlike the ODE version, the
inclusion of time delay allows the model to capture the decline of the Alpha wave, but
both the ODE and DDE versions of the model are unable to capture the Delta wave.

4.2 Sensitivity analysis

In this section, we carry out a local sensitivity analysis to explore which parameters
are the most important to model dynamics. We use a normalized sensitivity analysis
so that the sensitivity coefficients are not affected by parameter magnitude. Here, the
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Fig. 9 a Best-fit model without time delay compared to wastewater data (SSE = 8.6230). b Model output
of total daily new cases of I1 and I2 compared to seven-day average of new reported cases. Dotted lines
indicate date of maximum reported cases for the data (orange) and the model (blue). c Model output of
strain 1 (solid line) and strain 2 (dashed) line over time (color figure online)
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Fig. 10 a Best-fit model with estimated time delay compared to wastewater data (SSE = 11.0819). b Model
output of total daily new cases of I1 and I2 compared to seven-day average of new reported cases. Dotted
lines indicate date of maximum reported cases for the data (orange) and the model (blue). c Model output
of strain 1 (solid line) and strain 2 (dashed) line over time (color figure online)

normalized sensitivity coefficients are given by (Saltelli et al. 2000):

sp = ∂Y

∂ p
× p

Y
≈ [Y (p + �p) − Y (p)]/Y (p)

�p/p
,

where p and Y denote the parameter and response of interest, respectively, and �p
is the perturbation size. Each parameter is varied by 1% individually from the values
listed in Table 2 while all other parameters are fixed. Here, the response variable Y is
cumulative cases evaluated at steady state.We ignore the parameters related towastew-
ater (α, δ, and η) since they do not impact disease dynamics in the analysis. Results are
shown in Fig. 11. The height of the bars indicates how sensitive the response variable
is to the parameter; the direction of the bars (or sign of the sensitivity coefficient)
indicates the direction of correlation.

The ODE and DDE versions of the model display significant sensitivity to the
strain-specific contact rates (β1, β2) and the strain-specific recovery rates (γ1, γ2); the
DDE version of the model has increased sensitivity to the initial number of those
infected with strain 1 compared to the model without time delay. Furthermore, model

123



The emergence of a virus variant: dynamics of a competition… Page 29 of 34    63 

N
or

m
al

iz
ed

 s
en

si
tiv

ity
(a)  = 0

(b)  > 0

Fig. 11 Local normalized sensitivity analysis with respect to cumulative steady state cases for the model
(1) a without time delay, and b with time delay. Parameters are varied by 1% one at a time. Baseline values
are listed in Table 2

dynamics, independent of time delay, are only slightly (if at all) impacted by changes
in the strain-specific mortality rates (d1, d2).

5 Discussion

In this paper, we have constructed a mathematical model describing two-strain virus
dynamics with temporary cross-immunity. Although this general framework is appli-
cable to many diseases, we put our model into the context of the COVID-19 pandemic
and connected infectious individuals with wastewater data. The model produces rich
long-term dynamics that include: (1) a state where the two strains are not infectious
enough and are cleared from the population, (2) two competitive exclusion states
where one of the strains is more infectious than the other and ultimately forces the
other to extinction, and (3) a coexistence state where the two strains coexist together.
By using a quasi-steady state argument for S we reduced the four dimensional system
(1) to a two dimensional system (12). This simpler system exhibited a competitive
exclusion equilibrium where the first strain forces the second strain to extinction and
a coexistence equilibrium. Results and open questions are summarized in Table 1.

The model presented in this study uses a time delay to account for cross-immunity
between two strains and is shown to be a harmless delay since it doesn’t influence the
stability of the boundary equilibrium points (Gopalsamy 1983, 1984; Driver 1972).
However, the time delay’s influence on the stability of the coexistence equilibrium is
an open question. This time delay acts as a definitive period for immunity as opposed to
a continuous or distributed waning of protection (Pell et al. 2022). For comparison, we
simulate the ODE version of the model (1) with the β2Rl I2 terms replaced by εβ2Rl I2
in order to study the effects of waning immunity, as shown in Fig. 12. As ε → 0 (i.e.
the waning period for cross-immunity increases) it is shown that the emergent strain
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Fig. 12 Simulations of the model (1) with τ = 0 where the β2Rl I2 term is replaced by εβ2Rl I2 for the
indicated values of ε. Parameter values: β1 = β2 = 0.03, γ1 = γ2 = 0.2, d1 = d2 = 0.15, a = 10, and
d = 0.045

requiresmore time to be established in the population if all parameters between the two
strains are equal. Additionally, we can interpret the term εβ2 I2Rl as the number of new
breakthrough infections that occur per time unit. As ε increases to 1, the more likely
breakthrough infections will occur. Using a similar model that does not account for
demography, Boyle et al., showed that the rapid turnover from one variant to another is
influenced by two components: the increase in transmissibility and the breakthrough
infections (Boyle et al. 2022). They deduce that emergent strains are the ones that
are best at evading immunity (Boyle et al. 2022). Our simulations in Fig. 12 further
support this.

Wefit themodel (1) towastewater data from the greater Boston area in order to show
that the model can capture two-strain dynamics in the real world. Using wastewater
data for fitting, as opposed to clinical data, allows us to avoid issues related to under-
reporting or reporting lags of case data. We fit the model with and without time
delay and found that incorporating time delay allowed the model to better follow
the trend of the data for the first wave. However, regardless of the inclusion of time
delay, the model did not qualitatively capture the second wave in the data (although
the model with time delay performed slightly better). This is due to the models not
accounting for the vaccination program that began around December. Although the
issue of parameter identifiability is present (and beyond the scope of this study), we
ultimately show that this four-dimensional model is able to capture complex two-
strain dynamics. A local sensitivity analysis was carried out on the values obtained via
curve-fitting and indicated that cumulative infections are sensitive to strain-specific
contact and recovery rates.

This paper may also be viewed as an extension of the work done by Fudolig and
Howard (2020). While Fudolig and Howard did consider cross-immunity because
they focused on SARS-CoV-2 and influenza strains co-circulating, we incorporated a
time delay to account for one SARS-CoV-2 strain providing temporary immunity to
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another. Although that study included a compartment for vaccinated individuals, more
direct comparisons may be made by setting the vaccination rate of their model (p) and
the time delay of the model presented here (τ ) to zero. The authors derived the same
local stability results for the disease-free and emergent strain (strain 2) equilibrium,
and also found that the reproduction number of the emergent strain (strain 2) must
be sufficiently small in order for the local stability of the established strain boundary
equilibrium (Fudolig and Howard 2020). Furthermore, we provide global stability
results for the boundary equilibria. Our bifurcation plane for the full model, shown
in Fig. 3, mirrors that of Fudolig and Howard (2020). In addition, we provide an
analogous bifurcation plane for the transient system (12) in Fig. 6.

SARS-CoV-2-infected individuals always go through a latent period,where they are
yet to be transmissible clinically. This duration is related to the number of infectious
viruses (or the within-host viral load) and should not be confused with the sub-clinical
symptomatic phase, which can follow the latent period (Ke et al. 2021; Heitzman-
Breen and Ciupe 2022). Existing models examining SARS-CoV-2 transmission often
consider latency, which better integrates epidemic data (Phan et al. 2023; Patterson
and Wang 2022; Eikenberry et al. 2020). However, for our analytical purposes, the
inclusion of latency can complicate the mathematical analysis but usually has a small
effect on the basic reproduction number and often does not affect global stability
(Patterson and Wang 2022; Van den Driessche 2017; Feng et al. 2001). A similar
simplification to facilitate model analysis was also done by Boyle et al. (2022). Thus,
we made the simplifying assumption to not include latency in our current model.

In general, immunity against one strain may not confer protection for a different
strain, if the two strains are sufficiently different from one another. However, while
the initial infection may be due to a single strain, mutations occur during the course of
infection and may allow for the development of antibodies to various mutations of the
initial strain, which may include the particular second strain. Yet more paradoxically,
antibodies obtained from one strain may enhance the infection of another, which is
known as the antibody-dependent enhancement of infection phenomenon (Junqueira
et al. 2022; Maemura et al. 2021; Wan et al. 2020; Nikin-Beers and Ciupe 2015).
The evolutionary dynamic of SARS-CoV-2 itself is interesting and quite complex
and should vary from individual to individual. Instead, the motivation for our model
comes from the scenario when a mutant strain begins to emerge while another strain is
dominant, as is the case of Alpha and Delta variants. In particular, taking into account
the timing (e.g., the beginning of Delta vs. the end of Alpha) and scale differences in
the number of infected individuals from each variant, we assume individuals recovered
from Alpha can lose immunity and get infected with Delta during this time period. On
the other hand, we assume individuals who recovered from Delta may not get infected
with Alpha. Due to this reason, we chose not to include vaccinations of individuals
recovered from strain 2. In particular, if an individual is recovered from the emerging
strain, regardless of the particular emerging variant, they may have some protection
from the dominant strain. By the time the protection of this individual wanes, there
should bemuch fewer individuals infected by the originally dominant strain to consider
reinfection as a viable path of infection. Throughout the course of the SARS-CoV-2
pandemic, we have never observed a strain become dominant for multiple periods.
Future work may consider extensions to these aspects of our model.
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Ultimately, the model developed here, although simple in appearance, exhibits rich
dynamics and, with the inclusion of wastewater-based epidemiology, is capable of
capturing interactions of two strains circulating in the community. Future extensions
of the model may include more than two strains and use standard incidence. For
example, a model with N strains may include N infectious compartments but N or
fewer recovered compartments, depending on how cross-immunity is modeled. It may
also be desirable to include a mutation factor to study the emergence mechanisms of
various strains. Another fruitful direction would be to more realistically model the
temporary cross-immunity period using a distributed delay framework.
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