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Abstract
Understanding the impact of collective social phenomena in epidemic dynamics is a
crucial task to effectively contain the disease spread. In this work, we build a math-
ematical description for assessing the interplay between opinion polarization and the
evolution of a disease. The proposed kinetic approach describes the evolution of aggre-
gate quantities characterizing the agents belonging to epidemiologically relevant states
and will show that the spread of the disease is closely related to consensus dynam-
ics distribution in which opinion polarization may emerge. In the present modelling
framework, microscopic consensus formation dynamics can be linked to macroscopic
epidemic trends to trigger the collective adherence to protective measures.We conduct
numerical investigations which confirm the ability of the model to describe different
phenomena related to the spread of an epidemic.
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1 Introduction

During the outbreak of SARS-CoV-2 pandemic, we observed how, as cases escalated,
collective compliance to the so-called non-pharmaceutical interventions (NPIs) was
crucial to ensure public health in the absence of effective treatments, see, e.g. Albi
et al. (2021), Bellomo and Chaplain (2022), Bertaglia et al. (2021), Gatto et al. (2020),
Viguerie et al. (2021) and Zanella et al. (2021). Nevertheless, the effectiveness of
lockdown measures heavily depended on the beliefs/opinions of individuals regarding
protective behaviour, which are thus linked to personal situational awareness (Durham
andCasman2012;Tchuenche et al. 2011).Recent experimental results have shown that
social norm changes are often triggered by opinion alignment phenomena (Tunçgenç
et al. 2021). In particular, the perceived adherence of individuals’ social network has
a strong impact on the effective support of the protective behaviour. The individual
responses to threat are a core question to set up effective measures prescribing norm
changes in daily social contacts (Dezecache et al. 2020), and cases escalation is a
factor that may be perceived in different ways. For these reasons, it appears natural to
couple classical epidemiological models with opinion dynamics in order to understand
the mutual influence of these phenomena.

In recent years, the study of emerging properties of large systems of agents has
obtained a growing interest in heterogeneous communities in social and life sciences,
see, e.g. Bolley et al. (2011), Barré et al. (2017), Carrillo et al. (2010a, b), Chalub
et al. (2004), Cordier et al. (2005), Ciallella et al. (2021), Degond and Motsch (2008),
Fornasier et al. (2011), Ha and Tadmor (2008) andMotsch and Tadmor (2014). In par-
ticular, thanks to their cooperative nature, the dynamics leading to opinion formation
phenomena have been often described through the methods of statistical mechanics
(Ben-Naim et al. 2003; Castellano et al. 2009; Hegselmann and Krause 2002; Sznajd-
Weron and Sznajd 2000; Weidlich 2000). Among other approaches, kinetic theory
provided a sound theoretical framework to investigate the emerging patterns of such
systems (Düring et al. 2009; Düring and Wolfram 2015; Toscani 2006). In this mod-
elling setting, themicroscopic, individual-based, opinion variations take place through
binary interaction schemes involving the presence of social forces, whose effects are
observable at themacroscopic scale (Pareschi et al. 2019). The equilibriumdistribution
describes the formation of a relative consensus about certain opinions (Pareschi and
Toscani 2013; Toscani 2006; Toscani et al. 2018). In this direction, it is of paramount
importance to obtain reduced complexity models whose equilibrium distribution is
explicitly available under minimal assumptions (Furioli et al. 2019; Toscani 2006).
The deviation from global consensus appears in the form of opinion polarization, i.e.
the divergence away from central positions towards extremes (Loy et al. 2022). This
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latter feature of the agents’ opinion distribution is frequently observed in problems of
choice formation (Aletti et al. 2007).

The derivation of classical compartmental epidemiological dynamics from particle
systems has been recently explored as a follow-up question on the effectiveness of
available modelling approaches. Indeed, epidemics, as well as many other collective
phenomena, can be easily thought as a result of repeated interactions between a large
number of individuals that eventually modify their epidemiological state. The tran-
sition rates between epidemiologically relevant states are furthermore influenced by
several phenomena linked to the disease itself and to the social behaviour of individ-
uals. Without attempting to revise the whole literature, we mention Albi et al. (2022),
Bertaglia et al. (2021), Della Marca et al. (2022a), Dimarco et al. (2020, 2021, 2022),
Loy and Tosin (2021) and the references therein for an introduction to the subject.
Among them, contact dynamics are particularly relevant for contact-based disease
transmissions.

In this work, we introduce a novel kinetic model that takes into account opinion
formation dynamics of the individuals’ protective behaviour coupled with epidemic
spreading. These dynamics will result structurally linked due to the mutual influence
of opinion formation processes and the transmission of the infection. The effects of
behavioural dynamics on epidemic models have been investigated at the population
level, see Poletti et al. (2009). In particular, the formation of opinion clustering is
connected to vaccination hesitancy, see, e.g. Buonomo et al. (2022) and the references
therein. In this direction, we mention the recent results in Della Marca et al. (2022b),
Giambiagi Ferrari et al. (2021), Kontorovsky et al. (2022) and Zhou et al. (2019)
where agent-based dynamics are upscaled at the level of observable epidemiological
quantities.

Kinetic equations are capable of providing efficient methods to bridge the micro-
scopic, often unobservable, scale of individual agents, where elementary fundamental
dynamics take place, and the macroscopic scale of observable manifestations. Indeed,
in classical kinetic theory, the possibility to derive hydrodynamic descriptions of par-
ticles’ systems is of paramount importance for providing real-time predictions. In
the context of multiagent systems, the problem of deriving macroscopic equations
is underexplored and has to face additional challenges in the definition of the social
forces involved in the interactions. In order to get analytical insights on the macro-
scopic behaviour of the system, the derivation of reduced complexity models is a key
point. Hence, thanks to the derived surrogate models we can derive equilibrium pro-
files that are coherent with the ones defined at the kinetic level. In this work, we exploit
the Fokker–Planck modelling approach that has been introduced in Toscani (2006) for
opinion formation processes. We remark that, at variance with Dimarco et al. (2021,
2022), the interactions between agents are structurally binary to mimic compromise
behaviour. The new derived macroscopic models encode all the information of the
opinion-based interactions and describe coherent transition rates penalizing agents
clustering on a weak protective behaviour. We will observe how opinion polarization
can trigger an increasing spread of infection in society.

In more details, the paper is organized as follows: in Sect. 2, we introduce a kinetic
epidemic model where agents are characterized by their epidemiological state and
their opinion. Hence, a reduced complexity operator is derived to compute the large
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time opinion distribution of the system of agents and we discuss minimal assump-
tions to observe opinion polarization. In Sect. 3, we derive a macroscopic system of
equations by considering an equilibrium closure method. The derived macroscopic
model expresses the evolution at the epidemic scale of the conserved quantities in
the operator for opinion exchanges. Finally, in Sect. 4 we present several numerical
tests showing the coherence of the presented closure strategy with the initial kinetic
model in suitable scales. Furthermore, in the latter section we explore the possibility
of considering more complex interaction functions in the opinion exchange process
together with the influence of opinion polarization on the spreading of the disease.

2 A Kinetic Model Approach for Consensus Formation and Epidemic
Dynamics

In this section, we introduce a kinetic compartmental model for the spreading of an
infectious disease that is coupled with the evolution of the opinions of individuals. We
consider a system of agents that can be subdivided in the following epidemiologically
relevant states: susceptible (S) agents are the ones that can contract the disease, infec-
tious agents (I) are responsible for the spread of the disease, exposed (E) agents have
been infected but are still not contagious and, finally, removed (R) agents cannot spread
the disease. Each agent is endowed of a continuous opinion variable w ∈ I which
varies continuously in I = [−1, 1], where −1 and 1 denote two opposite beliefs on
the protective behaviour. In particular,w = −1 means that the agents do not believe in
the necessity of protections (like wearing masks or reducing daily contacts), whereas
w = 1 is linked to maximal agreement on protective behaviour. We also assume
that agents characterized by high protective behaviour are less likely to contract the
infection.

With the aim to incorporate the impact of opinion evolution in the dynamics of
infection, we denote by f J (w, t) the distribution of opinions at time t ≥ 0 of agents
in the compartment J ∈ C = {S, E, I , R}. In particular, f J = f J (w, t) : [−1, 1] ×
R+ → R+ is such that f J (w, t)dw represents the fraction of agents with opinion in
[w,w + dw] at time t ≥ 0 in the J th compartment. Furthermore, we impose

∑

J∈C
f J (w, t) = f (w, t),

∫ 1

−1
f (w, t)dw = 1,

while the mass fractions of the population in each compartment and their moment of
order r > 0 are given by

ρJ (t) =
∫ 1

−1
f J (w, t)dw, ρJ (w, t)mr ,J =

∫ 1

−1
wr f J (w, t)dw. (1)

In the following, to simplify notations, we will indicate with mJ (t), J ∈ C, the mean
opinion in the compartment J corresponding to r = 1.

We assume that the introduced compartments of themodel can have different impact
in the opinion dynamics. The kinetic model for the coupled evolution of opinions and
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infection is given by the following system of kinetic equations

∂t fS(w, t) = −K ( fS, f I )(w, t) + 1

τ
QS( fS, fS)(w, t),

∂t fE (w, t) = K ( fS, f I )(w, t) − σE fE (w, t) + 1

τ
QE ( fE , fE )(w, t),

∂t f I (w, t) = σE fE (w, t) − γ f I (w, t) + 1

τ
QI ( f I , f I )(w, t),

∂t fR(w, t) = γ f I (w, t) + 1

τ
QR( fR, fR)(w, t),

(2)

where τ > 0 and QJ (·, ·) characterizes the evolution of opinions of agents that
belong to the compartment J ∈ C. In the next section, we will specify the form of
these operators describing binary opinion interactions among agents. The parameter
σE > 0 is such that 1/σE measures the mean latent period for the disease, whereas
γ > 0 is such that 1/γ > 0 is the mean infectious period (Diekmann and Heesterbeek
2000). In (2), the transmission of the infection is governed by the local incidence rate

K ( fS, f I )(w, t) = fS(w, t)
∫ 1

−1
κ(w,w∗) f I (w∗, t)dw∗, (3)

where κ(w,w∗) is a nonnegative decreasing function measuring the impact of the pro-
tective behaviour among different compartments. A leading example for the function
κ(w,w∗) can be obtained by assuming

κ(w,w∗) = β

4α
(1 − w)α(1 − w∗)α, (4)

where β > 0 is the baseline transmission rate characterizing the epidemics and α > 0
is a coefficient linked to the efficacy of the protective measures. In Fig. 1, we represent
the introduced function κ(·, ·) for several values of α > 0. We may observe how for
α ≡ 0 the influence of opinion dynamics on the epidemiological model disappears.
We highlight that in the simple case α = 1 we get

K ( fS, f I )(w, t) = β

4
(1 − w) fS(w, t)(1 − mI (t))I (t) ≥ 0, I (t) ≥ 0

with K ( fS, f I ) ≡ 0 in the case mI ≡ 1 or in the case where all susceptible agents are
concentrated in the maximal protective behaviour w = 1.

2.1 Kinetic Models for Opinion Formation

The dynamics of opinion formation have often been described by resorting to methods
of statistical physics, see, e.g. Castellano et al. (2009) and Galam (1997). In partic-
ular, kinetic theory provides a sound theoretical background to model fundamental
interactions among agents and to provide a convenient dynamical structure for related
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Fig. 1 (Color figure online) We sketch the function κ(w,w∗) in (4) for α = 1
2 (left) and α = 1 (right). In

both cases, we fixed the coefficient β = 1
2

follow-up questions on control problems and network formation (Albi et al. 2017;
Toscani 2006). In the aforementioned kinetic models, the opinion variation of large
systems of agents depends on binary interactions whose are driven by social forces
determining the formation of consensus about certain opinions. The emerging dis-
tribution of opinions can be evaluated at the macroscopic level (Motsch and Tadmor
2014; Pareschi and Toscani 2013). Recent advancements have been devoted to include
external influences in opinion formation models to capture realistic complex phenom-
ena. Without intending to review the very huge literature on the topic, we mention
Ben-Naim et al. (2003), Cristiani and Tosin (2018), Düring et al. (2009), Düring and
Wolfram (2015) and the references therein.

The elementary interactions between agents weight two opposite behaviours: the
first is the compromise propensity, i.e. the tendency to reduce the opinion distance after
interaction, and the second is the self-thinking, corresponding to unpredictable opinion
deviations. In details, an interaction between two individuals in the compartments
J ∈ C with opinion pair (w,w∗) leads to an opinion pair (w′, w′∗) defined by the
relations

w′ = w + λJ P(w,w∗)(w∗ − w) + D(w)ηJ

w′∗ = w∗ + λJ P(w∗, w)(w − w∗) + D(w∗)η̃J ,
(5)

where λJ ∈ (0, 1) and P(w,w∗) ∈ [0, 1] is an interaction function. In (5), we
further introduce the local diffusion function D(w), and ηJ , η̃J are independent and
identically distributed centred random variables with finite variance 〈ηJ 〉 = 〈ηJ 〉 =
σ 2
J , where we indicate with 〈·〉 the expected value with respect to the distribution of

the random variables.
As observed in Pareschi et al. (2019), we have that the mean opinion is conserved

for symmetric interaction functions, P(w,w∗) = P(w∗, w) for all w,w∗ ∈ [−1, 1].
Indeed, from (5) we get

〈
w′ + w′∗

〉 = w + w∗ + λJ (P(w,w∗) − P(w∗, w))(w∗ − w), (6)
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which reduces to
〈
w′ + w′∗

〉 = w + w∗ under the aforementioned assumptions. Fur-
thermore, if we consider the mean energy, we get

〈
(w′)2 + (w′∗)2

〉
= w2 + w2∗ + λ2J

[
P2(w,w∗) + P2(w∗, w)

]
(w∗ − w)2

+ 2λJ [P(w,w∗)w − P(w∗, w)w∗](w∗ − w)

+ σ 2
J (D

2(w) + D2(w∗)),

meaning that the energy is not conservedon average in a single binary interaction. In the
absence of the stochastic component, σ 2

J ≡ 0, we get that for symmetric interactions
the mean energy is dissipated

〈
(w′)2 + (w′∗)2

〉
= w2 + w2∗ − 2λJ P(w,w∗)(w∗ − w)2 + o(λJ ) ≤ w2 + w2∗ + o(λJ )

The physical admissibility of interaction rules (5) is provided if |w′|, |w′∗| ≤ 1 for
|w|, |w∗| ≤ 1. We observe that

|w′| ≤ |(1 − λJ P(w,w∗))w + λJ P(w,w∗)w∗ + D(w)ηJ |
≤ (1 − λJ P(w,w∗))|w| + λJ P(w,w∗) + D(w)|ηJ |,

since |w∗| ≤ 1, fromwhichwe get that the sufficient condition for |w′| ≤ 1 is provided
by

D(w)|ηJ | ≤ (1 − λJ P(w,w∗))(1 − |w|),

which is satisfied if a constant c > 0 exists and is such that

{
|ηJ | ≤ c(1 − λJ P(w,w∗))
c · D(w) ≤ 1 − |w|, (7)

for all w,w∗ ∈ [−1, 1]. Since 0 ≤ P(·, ·) ≤ 1 by assumption, the first condition in
(7) can be enforced by requiring that

|ηJ | ≤ c(1 − λJ ).

Therefore, it is sufficient to consider the support of the random variables determined
by |ηJ | ≤ c(1 − λJ ). The second condition in (7) forces D(±1) = 0. Other choices
for the local diffusion function have been investigated in Pareschi et al. (2019) and
Toscani (2006).

The collective trends of a system of agents undergoing binary interactions (5) are
determined by a Boltzmann-type model having the form

∂t f J (w, t) = 1

τ
QJ ( f J , f J ), (8)
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with τ > 0 and

QJ ( f J , f J )(w, t) =
〈∫ 1

−1

(
1

′J f J (
′w, t) f J (

′w∗, t) − f J (w, t) f J (w∗, t)
)
dw∗

〉
,

where (′w, ′w∗) are pre-interaction opinions generating the post-interaction opinions
(w,w∗) and ′J is the Jacobian of the transformation (′w, ′w∗) → (w,w∗).

2.2 Derivation of a Fokker–PlanckModel

The equilibrium distribution of the kinetic model (8) is very difficult to obtain analyt-
ically. For this reason, several reduced complexity models have been proposed. In this
direction, a deeper insight on the equilibrium distribution of the kinetic model can be
obtained by introducing a rescaling of both the interaction and diffusion parameters
having roots in the so-called grazing collision limit of the classical Boltzmann equation
(Cercignani 1988; Pareschi and Toscani 2013). The resulting model has the form of an
aggregation–diffusion Fokker–Planck-type equation, encapsulating the information
of microscopic dynamics. For the obtained surrogate model, the study of asymptotic
properties is typically easier than the original kinetic model.

We start by observing that we can conveniently express the operators QJ (·, ·) in
weak form. Let ϕ(w) denote a test function; thus, for J ∈ C we have

∫ 1

−1
ϕ(w)QJ ( f J , f J )(w, t)dw

=
〈∫ 1

−1
(ϕ(w′) − ϕ(w)) f J (w, t) f J (w, t)dw∗ dw

〉
,

where w′ is defined in (5). The prototype of a symmetric interaction function P is
given by the constant function P ≡ 1. In this case, we may obtain analytic insight on
the large time distribution of the system by resorting to a reduced complexity Fokker–
Planck-type model (Toscani 2006). We introduce the so-called quasi-invariant regime

λJ → ελJ , σ 2
J → εσ 2

J , (9)

where ε > 0 is a scaling coefficient. We have

ϕ(w′) − ϕ(w)

= ϕ′(w)
〈
w′ − w

〉 + 1

2
ϕ′′(w)

〈
(w′ − w)2

〉
+ 1

6
ϕ′′′(w̄)

〈
(w′ − w)3

〉
,
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where min{w,w′} < w̄ < max{w,w′}. Plugging the above expansions in the
Boltzmann-type model, we have

d

dt

∫ 1

−1
ϕ(w) f J (w, t)dw =

ελJρJ

∫ 1

−1

∫ 1

−1
ϕ′(w)(mJ − w) f J (w, t)dw

+ εσ 2

2

∫ 1

−1
ϕ′′(w)D2(w) f J (w, t)dw + R( f J , f J ),

(10)

where R( f J , f J ) is a reminder term

R( f J , f J )(w, t) = 1

2

∫ 1

−1
ϕ′′(x)ε2λ2J (w∗ − w)2 f J (w, t)dw

+ 1

6

〈∫ 1

−1

∫ 1

−1
ϕ′′′(w)(ελJ (w∗ − w) + D(w)ηJ )

3 f J (w, t) f J (w∗, t)dw dw∗
〉

Hence, in the time scale ξ = εt , introducing the distribution gJ (w, ξ) = f J (w, ξ/ε),
we have that ∂ξ gJ (w, ξ) = 1

ε
∂t f J and (10) becomes

d

dξ

∫ 1

−1
ϕ(w)gJ (w, ξ)dw = λJ

∫ 1

−1

∫ 1

−1
ϕ′(w)(mJ − w)gJ (w, ξ)dw

+ σ 2
J

2

∫ 1

−1
ϕ′′(w)D2(w)gJ (w, ξ)dw + 1

ε
R(gJ , gJ )(w, ξ),

where now 1
ε
R(gJ , gJ ) → 0 under the additional hypothesis

〈|ηJ |3
〉

< +∞, see
Cordier et al. (2005) and Toscani (2006). Consequently, for ε → 0+, from the above
equation we have

d

dξ

∫ 1

−1
ϕ(w)gJ (w, ξ)dw = λJ

∫ 1

−1

∫ 1

−1
ϕ′(w)(mJ − w)gJ (w, ξ)dw

+ σ 2
J

2

∫ 1

−1
ϕ′′D2(w)gJ (w, ξ)dw.

Now, with a slight abuse of notation, we restore t ≥ 0 as time variable and f J as
distribution. In view of the smoothness of ϕ, integrating back by parts the terms on
the right hand side, we finally get the Fokker–Planck-type model

∂t f J (w, t) = Q̄ J ( f J , f J )(w, t)

= ∂w

[
λJ (w − mJ ) f J (w, t) + σ 2

J

2
∂w(D2(w) f J (w, t))

]
(11)
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Fig. 2 We depict the equilibrium distribution (12) for several choices of the parameter νJ > 0 and for
mJ = 0 (left) or mJ = 0.2 (right). Opinion polarization is observed for νJ > 1, whereas consensus
formation corresponds to νJ � 1

complemented by the following no-flux boundary conditions

λJ (w − mJ ) f J (w, t) + σ 2
J

2
∂w(D2(w) f J (w, t))

∣∣∣
w=±1

= 0

D2(w) f J (w, t)
∣∣∣
w=±1

= 0.

We can observe that the steady state of the Fokker–Planck-type model (11) is
analytically computable under suitable hypotheses on the local diffusion function. If
D(w) = √

1 − w2, then the large time behaviour of the model is given by a beta
distribution having the form

f ∞
J (w) = (1 + w)

1+mJ
νJ

−1
(1 − w)

1−mJ
νJ

−1

2
2

νJ
−1

B
(
1+mJ

νJ
,
1−mJ

νJ

) , νJ = σ 2
J

λJ
, (12)

where B(·, ·) indicates the beta function. It is worth to highlight that the first two
moments of the obtained beta distribution are defined as follows:

∫ 1

−1
w f ∞

J (w)dw = mJ ;
∫ 1

−1
w2 f ∞

J (w)dw = νJ

2 + νJ
+ 2

2 + νJ
m2

J . (13)

We can observe that the obtained model is suitable to describe classical consensus-
type dynamics. This behaviour is observed if the compromise force is stronger than
the one characterizing self-thinking, i.e. σ 2

J < λJ . On the other hand, if self-thinking
is stronger than the compromise propensity, i.e. σ 2

J > λJ , we observe opinion polar-
ization of the society. In Fig. 2, we depict the equilibrium distribution (12) for several
choices of the parameter νJ > 0. In the right figure, we assume thatmJ = 0, whereas,
in the left figure, we consider the asymmetric case with mJ = 0.2. We may observe
that opinion polarization is obtained in the case νJ > 1 as discussed.
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Remark 1 In the more general case where interaction between agents is weighted by a
nonconstant function P(w,w∗) ∈ [0, 1], we may obtain the nonlocal Fokker–Planck-
type model

∂t f J (w, t) = ∂w

[
B[ f J ](w, t) f J (w, t) + σ 2

2
∂w f J (w, t)

]

where

B[ f J ](w, t) =
∫ 1

−1
P(w,w∗)(w − w∗) f J (w∗, t)dw∗.

In this case, it is difficult to get an analytical formulation of the steady state distribution.

3 Macroscopic Opinion-Based SEIR Dynamics

Once the equilibrium distribution of the operators Q̄ J ( f J , f J )(w, t) is characterized,
we can study the behaviour of the original system (2). In this section, we compute the
evolution of observable macroscopic equations of the introduced kinetic model for
epidemic dynamics with opinion-based incidence rate.

3.1 Derivation of Moment-Based Systems

Let us rewrite the original model (2) with the reduced complexity Fokker–Planck-type
operators defined in Sect. 2.2. We obtain the following model

∂t fS(w, t) = −K ( fS, f I ) + 1

τ
Q̄S( fS, fS)(w, t),

∂t fE (w, t) = K ( fS, f I ) − σE fE (w, t) + 1

τ
Q̄E ( fE , fE )(w, t),

∂t f I (w, t) = σE fE (w, t) − γ f I (w, t) + 1

τ
Q̄ I ( f I , f I )(w, t),

∂t fR(w, t) = γ f I (w, t) + 1

τ
Q̄R( fR, fR)(w, t)

(14)

where K (·, ·) is defined in (3) and the collision-like operators Q̄ J (·, ·), J ∈ C, are
derived in Sect. 2.2. The system of kinetic equations (14) is further complemented by
no-flux boundary conditions atw = ±1 and contains the information on the spreading
of the epidemic in terms of the distribution of opinions of a population of agents.

Integrating model (2) with respect to the w variable and recalling that if the inter-
action function is symmetric, the Fokker–Planck operators are mass and momentum
preserving in the presence of no-flux boundary conditions coherently with what we
observed for the microscopic binary scheme (6). Hence, we obtain the evolution of
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mass fractions ρJ , J ∈ C,

d

dt
ρS(t) = −β

4
(1 − mI − mS + mSmI ) ρSρI ,

d

dt
ρE (t) = β

4
(1 − mI − mS + mSmI ) ρSρI − σEρE ,

d

dt
ρI (t) = σEρE − γρI ,

d

dt
ρR(t) = γρI ,

(15)

where we observe that (1 − mI − mS + mSmI )ρSρI = (1 − mI )(1 − mS)ρSρI ≥ 0
since ρI m I , ρSmS ∈ [−1, 1]. Unlike the classical SEIR model, the system for the
evolution of mass fractions in (15) is not closed since the evolution of ρJ , ρJ ∈ C
depends on the evolution of the local mean opinionsmJ , J ∈ C. The closure of system
(15) may be formally obtained by resorting to a limit procedure. The main idea is to
observe that the typical time scale of the opinion dynamics is faster than the one of
the epidemic, and therefore τ � 1. Consequently, for small values of τ the opinion
distribution of the J th compartment reaches its local beta-type equilibrium with a
mass fraction ρJ and local mean opinion mJ as verified in Sect. 2.2. In particular, we
observe exponential convergence of the derived Fokker–Planck equation (11) towards
the local Maxwellian parameterized by the conserved quantities, i.e. ρJ and mJ , see
Furioli et al. (2019). We highlight that this assumption is coherent with what stated in
the work Poletti et al. (2009) since epidemic transmission is generally slower than the
propagation of information.

Hence, to get the evolution of mean values we can multiply by w and integrate (14)
to get system

d

dt
(ρS(t)mS(t)) = −β

4
ρI (1 − mI )

∫ 1

−1
w(1 − w) fS(w, t)dw,

d

dt
(ρE (t)mE (t)) = β

4
ρI (1 − mI )

∫ 1

−1
w(1 − w) fS(w, t)dw − σEmEρE ,

d

dt
(ρI (t)mI (t)) = σEmEρE − γmIρI ,

d

dt
(ρR(t)mR(t)) = γmIρI ,

which now depends on the second-order moment, making this system not closed. It
is now possible to close this expression by using the energy of the beta-type local
equilibrium distribution as in (13). We have

m2,J = ρJ
νJ + 2m2

J

2 + νJ
, (16)

where νS = σ 2/λS and mJ is the local mean opinion in the J th compartment (1)
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Hence, we have

d

dt
(ρS(t)mS(t)) = −β

4
(1 − mI )ρIρS

(
mS − νS + 2m2

S

2 + νS

)

which gives

ρS(t)
d

dt
mS(t) = −β

4
(1 − mI )ρIρS

(
mS − νS + 2m2

S

2 + νS

)
− mS

d

dt
ρS

where the time evolution of the fraction ρS has been derived in the first equation of
(15). The evolution of the local mean mS is therefore given by

d

dt
mS(t) = β

4
(1 − mI )ρI

[
νS + 2m2

S

2 + νS
− m2

S

]
.

We may apply an analogous procedure for the remaining local mean values in the
compartments of exposed, infected and recovered to obtain

d

dt
mS(t) = β

4

νS

2 + νS
(1 − mI )ρI

[
1 − m2

S

]
.

d

dt
mE (t) = β

4

ρSρI

ρE
(1 − mI )

[
mS −

(
νS + 2m2

S

2 + νS

)
− mE (1 − mS)

]

d

dt
m I (t) = σE

ρE

ρI
(mE − mI )

d

dt
mR(t) = γ

ρI

ρR
(mI − mR) .

(17)

Remark 2 In the case of consensus of the susceptible agents, i.e. for νS → 0+, we can
observe that d

dt mS(t) = 0 which leads to mS(t) = mS(0) for all t ≥ 0. The spread of
the infection therefore depends only on the protective behaviour of the agents on the
compartment I ∈ C. Furthermore, the trajectory of the second equation is decreasing
in time since

d

dt
mE (t) = −β

4
(1 − mI )ρI (1 − mS)ρS

mE

ρE
,

and
β

4
(1 − mI )ρI (1 − mS)ρS/ρE ≥ 0.

Remark 3 If the local incidence rate K ( fS, f I ) in (3) is such that κ(w,w∗) ≡ β > 0
than we easily observe that the evolution of mass fractions are decoupled with the
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local mean opinions since in this case integrating (2) we get

d

dt

∫ 1

−1
fS(w, t)dw = −β

∫ 1

−1
fS(w, t)dw

∫ 1

−1
f I (w, t)dw,

d

dt

∫ 1

−1
fE (w, t)dw = β

∫ 1

−1
fS(w, t)dw

∫ 1

−1
f I (w, t)dw − σE

∫ 1

−1
fE (w, t)dw,

d

dt

∫ 1

−1
f I (w, t)dw = σE

∫ 1

−1
fE (w, t)dw − γ

∫ 1

−1
f I (w, t)dw,

d

dt

∫ 1

−1
fR(w, t)dw = γ

∫ 1

−1
f I (w, t)dw.

Therefore, model (2) for constant κ(w,w∗) ≡ β reduces to the classical SEIR com-
partmental model.

Remark 4 In the case of non-symmetric interaction function P(w,w∗), the system
of macroscopic equations loses the information on the evolution of the mean values.
A possible prototype of non-symmetric P proposed in Pareschi et al. (2019) is the
linear perturbation of a constant, i.e. P(w,w∗) = P(w∗) = pw∗ + q, q ∈ [0, 1] and
|p| ≤ min{q, 1 − q}. In this case, in Pareschi et al. (2019) it is shown that the mean
opinion is not conserved and that the asymptotic distribution functions are given by a
Dirac delta distribution δ(w − 1) if p > 0 or by a Dirac delta δ(w + 1) if p < 0.

3.2 TheMacroscopic Model with Saturated Incidence Rate

It is not restrictive to suppose that infected agents possess enforced situational aware-
ness. For this reasons, we may consider the case in which mI (t) = m̄ I ∈ (0, 1). From
the first equation of (17), we get

d

dt
mS(t) = β

4
ρI (t)(1 − m̄ I )

νS

2 + νS

[
1 − m2

S(t)
]

with initial conditionmS(0) = m0
S ∈ [−1, 1]. In particular, ifm0

S = ±1, thenmS(t) =
m0

S for all t ≥ 0; otherwise, if −1 < m0
S < 1, we get

mS(t) = exp{2 ∫ t
0 J (ρI (s))ds} − exp{C0}

exp{C0} + exp{2 ∫ t
0 J (ρI (s))ds}

, (18)

with C0 = log
1−m0

S
1+m0

S
and J (ρI (s)) = β

4
νS

2+νS
(1 − m̄ I )ρI (s) ≥ 0. We may easily

observe that from (18) we have mS(t) ∈ (−1, 1) for all t ≥ 0.
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Hence, plugging (18) into the system for the mass fractions (15) we get

d

dt
ρS(t) = −β̄H(t, ρI )ρS(t)ρI (t),

d

dt
ρE (t) = β̄H(t, ρI )ρS(t)ρI (t) − σEρE ,

d

dt
ρI (t) = σEρE − γρI ,

d

dt
ρR(t) = γρI

(19)

where

β̄H(t, ρI ) = β̄

(
1 − e2

∫ t
0 J (ρI (s))ds − eC0

e2
∫ t
0 J (ρI (s))ds + eC0

)
∈ (0, 1),

and β̄ = β
4 (1 − m̄ I ). In this case, model (19) is a generalization of classical models

with saturated incidence rate, see Capasso and Serio (1978) and Korobeinikov and
Maini (2005). In this setting, we derive the basic reproduction number by defining

D(ρS, ρI ) = β̄H(t, ρI )ρSρI ,

and the function D(ρS, ρI ) is such that

∂D(ρS, ρI )

∂ρS
> 0,

∂D(ρS, ρI )

∂ρI
> 0

and D(ρS, ρI ) is concave since ∂2

∂ρ2
I
D(ρS, ρI ) ≤ 0 for all ρS, ρI > 0. Hence, the basic

reproduction number R0 of the model is given by

R0 = 1

γ
lim

ρI→0,ρS→1

∂D(ρS, ρI )

∂ρI
= β(1 − m̄ I )

4γ
.

For the computation of the basic reproduction number R0 using the method of next-
generation matrix, we refer to Bellomo and Chaplain (2022). The method goes back to
Diekmann et al. (1990), and we also refer to Diekmann et al. (2009) for an application
to the SEIR model.

4 Numerical Examples

In this section, we present several numerical examples to show the consistency of
the proposed approach. Furthermore, we will show the impact of opinion consensus
dynamics on observable epidemic quantities based on beta-type equilibrium and on
the macroscopic models generated by bounded-confidence-type opinion distributions.
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The consensus of the population on the adoption of protective measures is capable of
reducing the epidemic peak together with the total number of infected agents. Finally,
we will investigate numerically the impact of opinion polarization on the defined
dynamics.

From the methodological point of view, we will consider classical direct simulation
Monte Carlo (DSMC)methods to show how, in the quasi-invariant limit defined in (9),
the large time distribution of the Boltzmann-type model (8) is consistent with the one
obtained from the reduced complexity Fokker–Planck model (11). In the following,
we will first concentrate on the case of interactions leading to a beta distribution of the
form (12). As a follow-up question, we will explore the observable effects of nonlinear
interaction functions.

Hence, in order to approximate the dynamics of the kinetic SEIR model (2) for
small values of τ > 0, we resort to classical strong stability preserving schemes
combined to recently developed semi-implicit structure-preserving schemes for non-
linear Fokker–Planck equations (Pareschi and Zanella 2018), see also Loy and Zanella
(2021) for further applications. These methods are capable of reproducing large time
statistical properties of the exact steady state with arbitrary accuracy together with
the preservation of the main physical properties of the solution, like positivity and
entropy dissipation. Indeed, we highlight how in the present setting the development
of DSMC methods would encounter severe time step restrictions depending on the
values of τ > 0. We point the interested reader to Pareschi and Russo (2001) for a
more detailed discussion on the topic.

4.1 Test 1: Large Time Behaviour of Kinetic Opinion FormationModels

In this section, we test the consistency of the quasi-invariant limit to obtain a reduced
complexity Fokker–Planck model. In particular, we concentrate on a kinetic model for
opinion formationwhere the binary scheme is given by (5) in the simplified case P ≡ 1
and for D(w) = √

1 − w2. As discussed in Sect. 2.2, for quasi-invariant interactions
as in (9) and in the limit ε → 0+, the emerging distribution can be computed through
the Fokker–Planck model (11) and is given by the beta distribution (12).

We rewrite the Boltzmann-type model (8) as follows:

∂t f J (w, t) = 1

τ

(
Q+( f J , f J )(w, t) − f J (w, t)

)
,

where τ > 0 is a positive constant and

Q+( f J , f J )(w, t) =
〈∫ 1

−1

1
′J f J (

′w, t) f J (
′w∗, t)dw∗

〉
,

where (′w, ′w∗) are the pre-interaction opinions generating the post-interaction opin-
ions (w,w∗) according to the binary interaction rule (5) and ′J is the Jacobian of the
transformation (′w, ′w∗) → (w,w∗). To compute the large time numerical solution
of the introduced Boltzmann-type model, we consider N = 106 particles and we
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Fig. 3 Test 1. Comparison between DSMC solution of the Boltzmann-type problem (8) and the beta equi-
librium solution of the Fokker–Planck model (11) for several values of νJ = 0.25 (left column) νJ = 2
(right column) and choices of the initial distribution. In particular, we considered the choices in (20) (top
row) and (21) (bottom row). The DSMC scheme has been implemented with N = 106 particles over the
time frame [0, 5] with �t = ε = 10−1, 10−3

assume that τ = 1. The quasi-invariant regime of parameters in (9) is considered for
ε = 10−1, 10−3.

In Fig. 3, we depict the densities reconstructed from the DSMC approach with
N = 106 particles at time T = 5 and assuming �t = ε = 10−3, 10−1. In the top row,
we considered the initial distribution

f J (w, 0) =
{

1
2 w ∈ [−1, 1]
0 w /∈ [−1, 1] (20)

such that mJ (0) = ∫ 1
−1 f (w, 0)dw = 0 which is conserved in time. In the bottom

row, we consider the initial distribution

f J (w, 0) =
{

5
8 w ∈ [−0.6, 1]
0 w /∈ [−0.6, 1] (21)

123



   36 Page 18 of 29 M. Zanella

such that mJ = 0.2. We further assume that λJ = 1 and σ 2
J = 0.25 in the left

column, whereas σ 2
J = 2 in the right column. Hence, under the introduced choice of

parameters we have considered νJ = 0.25 (left column) and νJ = 2 (right column).
The emerging distribution is compared with the beta distribution defined in (12). We
may observe how, for decreasing values of ε → 0+, we correctly approximate the
large time solution of the surrogate Fokker–Planck-type problem.

4.2 Test 2: Consistency of theMacroscopic Limit

In this test, we compare the evolution of mass and local mean of the distributions
f J , J ∈ C, solution to (2), with the evolution of the obtained macroscopic system
(15)–(17).

We are interested in the evolution f J (w, t), J ∈ C, w ∈ [−1, 1], t ≥ 0 solution
to (2) and complemented by the initial condition f J (w, 0) = f 0J . We consider a
time discretization of the interval [0, tmax] of size �t > 0. We denote by f nJ (w)

the approximation of f J (w, tn). Hence, we introduce a splitting strategy between the
opinion consensus step f ∗

J = O�t ( f nJ )

⎧
⎨

⎩
∂t f ∗

J = 1

τ
Q̄ J ( f ∗

J , f ∗
J ),

f ∗
J (w, 0) = f nJ (w), J ∈ C

(22)

and the epidemiological step f ∗∗
J = E�t ( f ∗∗

J )

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t f ∗∗
S = − f ∗∗

S (1 − w)ρ∗∗
I (1 − m∗∗

I )

∂t f ∗∗
E = f ∗∗

S (1 − w)ρ∗∗
I (1 − m∗∗

I ) − σE f ∗∗
E

∂t f ∗∗
I = σE f ∗∗

E − γ f ∗∗
I

∂t f ∗∗
R = γ f ∗∗

I ,

f ∗∗
J (w, 0) = f ∗

J (w,�t).

(23)

The operator Q̄ J (·, ·) in (22) has been defined in (11) together with no-flux boundary
conditions. Hence, the solution at time tn+1 is given by the combination of the two
described steps. In particular, a first-order splitting strategy corresponds to

f n+1
J (w) = E�t (O�t ( f

n
J (w))),

whereas the second-order Strang splitting method is obtained as

f n+1
J (w) = E�t/2(O�t (E�t/2( f

n
J (w)))),

for all J ∈ C. The opinion consensus step (22) is solved by means of a second-
order semi-implicit structure-preserving (SP) method for Fokker–Planck equations,
see Pareschi and Zanella (2018). The integration of the epidemiological step (23) is
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performed with an RK4 method. In the following, we will adopt a Strang splitting
approach.

We consider the following artificial parameters characterizing the epidemiological
dynamics β = 0.4, σE = 1/2, γ = 1/12. These values are strongly dependent on the
infectious disease under investigation. We highlight that, without having the intention
to use real data for the calibration of the presented model, these values are coherent
with several recent works for the COVID-19 pandemic (Albi et al. 2022; Buonomo
and Della Marca 2020; Dimarco et al. 2022).

4.3 Test 2a: Equilibrium Closure

In this test, we assume a constant interaction function P(·, ·) ≡ 1 such that the Fokker–
Planck model is characterized by a beta equilibrium distribution (12) as shown in
Sect. 2.2. To define the initial condition, we introduce the distributions

g(w) =
{
1 w ∈ [−1, 0]
0 elsewhere,

h(w) =
{
1 w ∈ [0, 1]
0 elsewhere,

and we consider

fS(w, 0) = ρS(0)g(w), fE (w, 0) = ρE (0)g(w),

f I (w, 0) = ρI (0)h(w), fR(w, 0) = ρR(0)h(w),
(24)

with ρE (0) = ρI (0) = ρR(0) = 10−2 and ρS = 1 − ρE (0) − ρI (0) − ρR(0).
We solve numerically (22)–(23) over the time frame [0, tmax], and we introduce the

grid wi ∈ [−1, 1] with wi+1 −wi , where �w > 0, i = 1, . . . , Nw. We introduce also
a time discretization such that tn = n�t ,�t > 0, and n = 0, . . . , T with T�t = tmax.
For all the details on the considered numerical scheme, we point the interested reader
to Pareschi and Zanella (2018). Hence, for several values of τ > 0, we compare the
evolution of the computed observable quantities defined as

ρτ
J (t) =

∫ 1

−1
f J (w, t)dw, mτ

J (t) = 1

ρτ
J (t)

∫ 1

−1
w f J (w, t)dw (25)

with the ones in (15)–(17) whose dynamics have been determined through a suitable
kinetic closure in the limit τ → 0+. In (25), we highlight the dependence on the scale
parameter τ > 0 through a superscript. It is important to remark that the introduced
closure strategy is essentially based on the assumption that opinion dynamics are faster
than the ones characterizing the epidemic. Furthermore, we fix as initial values of the
coupled system (15)–(17) the values ρJ (0) and mJ (0), for all J ∈ C.

In Fig. 4, we present the evolution of the macroscopic system (15)–(17) and of the
observable quantities (25) for several τ = 10−5, 1, 100. The consensus dynamics are
characterized by λJ = 1, σ 2

J = 10−3 for all J ∈ C, such that νS = 10−3.We can easily
observe how, for small values of τ � 1, the macroscopic model obtained through a
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Fig. 4 Test 2a. Evolution of the
macroscopic quantities defined
in (15)–(17) and the ones
extrapolated from the kinetic
model (2) for several values
τ = 10−5, 1, 102, see (25).
Discretization of the domain
[−1, 1] obtained with Nw = 201
gridpoints, discretization of the
time frame [0, 100] obtained
with �t = 10−1. The initial
distributions are defined in (24),
whereas we fixed λJ = 1 and
σ 2
J = 10−3 for all J ∈ C

beta-type equilibrium closure is coherent with the evolution of mass and mean of the
kinetic model (2).

In Fig. 5, we show the evolution of the kinetic distributions fS(w, t) and f I (w, t)
for t ∈ [0, 100]. The parameters characterizing the opinion and epidemic dynamics
are coherent with the ones chosen for Fig. 4. We may easily observe how for τ = 100
the distributions are far from the beta equilibrium (12), whereas for τ = 10−5 the
kinetic distributions f J are of beta type. Therefore, for small τ � 1, the opinion
exchanges are faster than the epidemic dynamics and we are allowed to assume a
beta-type closure as in (16).

4.4 Test2b: The Bounded Confidence Case

In this test, we consider an interaction function of the form

P(w,w∗) = χ(|w − w∗| ≤ �), w,w∗ ∈ [−1, 1], (26)

where χ(·) is the indicator function and� ∈ [0, 2] is a confidence threshold parameter
above which the agents’ with opinions w and w∗ do not interact. In the case, � = 0
only agents sharing the same opinion interact, whereas for � = 2 the interaction
function is such that P(·, ·) ≡ 1 since |w−w∗| ≤ 2 for allw,w∗ ∈ [−1, 1]. Bounded
confidence-type dynamics have been introduced in Hegselmann and Krause (2002)

123



Kinetic Models for Epidemic Dynamics in the Presence of… Page 21 of 29    36 

Fig. 5 (Color figure online) Test 2a. Evolution of the kinetic distributions fS and f I over the time interval
[0, 100] for τ = 100 (top row) and τ = 10−5 (bottom row). The epidemic dynamics have been characterized
by β = 0.4,σE = 1/2, γ = 1/12. The solution of the Fokker–Planck step (22) has been performed through
a semi-implicit SP scheme over the a grid of Nw = 201 nodes and �t = 10−1. Initial distributions defined
in (24)

and have been studied to observe the loss of global consensus. Indeed, for large times,
the agents’ opinion forms several clusters whose number and size depend on the
parameter� > 0 and the initial opinions. We highlight that since bounded confidence
interactions (26) are symmetric, the mean opinion is preserved in time (Pareschi et al.
2019).

Proceeding as in Sect. 2.2, the Fokker–Planck description of a system of agents in
the compartment J ∈ C characterized by bounded confidence interactions is given by
the following nonlocal operator

Q̄ J ( f J , f J )(w, t)

= ∂w

[
λJ

∫ 1

−1
χ(|w − w∗| ≤ �)(w − w∗) f J (w∗, t)dw∗ f J (w, t)

+σ 2
J

2
∂w(D2(w) f J (w, t))

] (27)

cf. Remark 1. The equilibrium distribution of the corresponding nonlocal model is
not explicitly computable, and the resulting macroscopic models for the evolution of
observable quantities may deviate from the ones defined in Sect. 3. Let us consider the
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Fig. 6 (Color figure online) Test 2b. We consider a the bounded confidence interaction function (26) with
� = 1

2 . Top row: evolution of mass fractions (left) and mean values (right) for the agents in compartments
C with τ = 1 and extrapolated from the kinetic model (2) with a Fokker–Planck operator Q̄(·, ·)(w, t)
of the form (27). Bottom row: evolution of the kinetic distributions for the compartments S, I ∈ C. The
solution of the Fokker–Planck step (22) has been performed through a semi-implicit SP scheme over the a
grid of Nw = 201 gridpoints and �t = 10−1. Initial distributions defined in (28)

densities

g(w) =
{

1
2 w ∈ [−1, 1]
0 elsewhere,

h(w) =
{
1 w ∈ [0, 1]
0 elsewhere

and we consider the initial distributions

fS(w, 0) = ρS(0)g(w), fE (w, 0) = ρE (0)g(w),

f I (w, 0) = ρI (0)h(w), fR(w, 0) = ρR(0)h(w)
(28)

with ρE (0) = 0.01, ρI (0) = 0.01, ρR(0) = 0.01 and ρS(0) = 1 − ρE (0) − ρI (0) −
ρS(0).

In Fig. 6, we show the evolution of the kinetic distributions fS(w, t) and f I (w, t),
t ∈ [0, 100] determined by bounded confidence interactions described by the nonlocal
Fokker–Planck-type operator (27), with� = 1

2 , λJ = 1, and σ 2
J = 10−3 for all J ∈ C.

We may observe how the opinion dynamics lead to two separate clusters centred in
−0.5 and in 0.5. Furthermore, coherently with the modelling assumptions characteriz-
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Fig. 7 (Color figure online) Test 2b. We consider a bounded confidence interaction function (26) with
� = 1

4 . Top row: evolution of mass fractions (left) and mean values (right) for the agents in compartments
C with τ = 1 and extrapolated from the kinetic model (2) with a Fokker–Planck operator Q̄(·, ·)(w, t)
of the form (27). Bottom row: evolution of the kinetic distributions for the compartments S, I ∈ C. The
solution of the Fokker–Planck step (22) has been performed through a semi-implicit SP scheme over the a
grid of Nw = 201 gridpoints and �t = 10−1. Initial distributions defined in (28)

ing the incidence rate K ( fS, f I )(w, t) in (3) and (4), the cluster with negative opinions
looses mass since it is linked to agents with weak protective behaviour. The infection
is therefore propagated to these agents and the kinetic distribution f I (w, 0) gains mass
for w < 0. We highlight how the approximated equilibrium density is not coherent
with a beta distribution. Therefore, the evolution of the macroscopic quantities cannot
be obtained through a classical closure method and we need to solve the full kinetic
model (Fig. 7).

4.5 Test 2c: Infection-Driven Bounded ConfidenceModel

We consider in the nonlocal operator (27) the case in which the interaction function
depends on the fraction of infected cases ρI (t). To this end, we consider the bounded
confidence function

P(w,w∗) = λJχ(|w − w∗| ≤ �(ρI )), (29)
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where �(ρI ) is a dynamical confidence threshold depending on the epidemic. We
further assume that consensus emerges for sufficiently high values of ρI , mimicking
the fact the adoption of a protective behaviour is triggered by the evolution of the
epidemic. In particular, we consider

�(ρI ) =
{

�1 ρI ≤ CI

�2 ρI > CI ,
(30)

with �1 < �2 ∈ [0, 2]. Therefore, opinion clustering is expected if ρI ≤ CI and
consensus if ρI > CI . In Fig. 8, we show the evolution of ρI (t) and ρR(t) in the
case of bounded confidence interactions with infection-driven threshold. The initial
conditions are defined in (26). In particular, we consider λJ = 1, σ 2

J = 10−3 and
�1 = 1

10 and�2 = 1
2 , so that that the compromise propensity is higher once the cases

escalate. To understand the impact of the parameter CI , we consider CI = K × 10−2

with K = 1, 5
2 , 5. We may observe how the epidemic peak is reduced for small values

of CI > 0. At the same time, the number of recovered agents is reduced for small
CI > 0. We report also the evolution of the kinetic density fS(w, t), t ∈ [0, 200]
determined by model (14) with Q̄ J (·, ·) defined in (27) and infection-driven bounded
confidence interaction function (29). We can observe that the introduced dynamics
imply a sharp switch in the compromise process whose effects are also observable the
population level.

4.6 Test 3: The Impact of Opinion Polarization on the Infection Dynamics

In this test, we exploit the derived macroscopic system of mass fractions and mean
opinions (15)–(17) to investigate the relation between opinion polarization and large
number of recovered individuals.We recall that, assuming P ≡ 1, opinion polarization
is observed if νS > 1, see Sect. 2.2. Hence, we consider two main cases, supposing
that the mean agents’ opinions in all the compartments are exactly alike: the case
mJ (0) = −0.5, meaning that the agents in each compartment have a bias towards
weak protective behaviour, and the case mJ (0) = 0.5, meaning that all the agents are
biased towards protective behaviour.

In Fig. 9, we present the large time mass fractions of recovered individuals ρR(T )

obtained as solution to (15)–(17) over the time interval [0, T ], T = 300, �t = 10−2,
where we fixed the value νS ∈ [0, 10]. In the left figure we consider the casemJ (0) =
−0.5, whereas in the right figure we consider the case mJ (0) = 0.5. We can observe
how the effect of opinion polarization strongly depends on the macroscopic initial
opinion of the population on protective behaviour. In details, if the mean opinion is
biased towards the adoption of protective behaviour, i.e. mJ (0) = 0.5, large values of
νS trigger an increasing number of recovered individuals, meaning that the infection
has a stronger effect on the society in the presence of polarized opinions.

On the other hand, if the initial opinion of the population is biased towards the
rejection of protective behaviour, i.e. mJ (0) = −0.5, opinion polarization is a factor
that can dampen the asymptotic number of recovered individuals. Indeed, opinion
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Fig. 8 (Color figure online) Test 2c. We consider the bounded confidence interaction function (29)
with infection-dependent confidence threshold �(ρI ) defined in (30). Top row: evolution of ρI (t) =∫ 1
−1 f I (w, t)dw (left) and ρR(t) = ∫ 1

−1 fR(w, t)dw (right) for several values of CI = K × 10−2 and

K = 1, 5
2 , 5. Bottom row: evolution of the kinetic distributions for the susceptible compartment in the case

CI = 10−2 (left) and CI = 5 × 10−2 (right). The evolution of the kinetic densities has been determined
through the semi-implicit SP scheme with Nw = 201 gridpoints and �t = 10−1. Initial distributions
defined in (28) with ρI (0) = ρE (0) = ρR(0) = 10−3

polarization in this case pushes a fraction of the population towards the two extreme
positions and a fraction of agents will stick towards a maximal protective behaviour.

5 Conclusion

In this work, we considered the effects of opinion polarization on epidemic dynamics.
We exploit the formalism of kinetic theory for multiagent system where a compart-
mentalization of the total number of agents is coupled with their opinion evolution.
Kinetic models for opinion formation have been developed in detail and are capable
of determining minimal conditions for which we can observe polarization of opin-
ions, i.e. the divergence of opinions with respect to a neutral centre. Agents’ opinions
on the adoption of protective behaviour during epidemics are a central aspects for
the collective compliance with non-pharmaceutical interventions. Thanks to classi-
cal methods of kinetic theory, we derived a system of equations that describe the
evolution in time of observable quantities that are conserved during the opinion for-
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Fig. 9 Test 3. Impact of the coefficient νS in the large time behaviour of the system (15)–(17) assuming
different initial conditions on the mean opinions of the compartments, mJ (0) = − 0.5 (left) and mJ (0) =
0.5 (right) for all J ∈ C. The epidemiological parameters are the same of the previous tests and fixed as
follows β = 0.4, σE = 1/2, γ = 1/12. Furthermore, we fixed ρE (0) = ρI (0) = ρR(0) = 0.01 and
ρS(0) = 1 − ρE (0) − ρI (0) − ρR(0). The system of ODEs is solved through RK4 over a time interval
[0, 300] with �t = 10−2

mation process. In particular, considering sufficiently simple interaction functions and
local diffusion functions, we get a second-order system of equations for the evolution
of mass fractions and mean opinions. This macroscopic system takes into account
the social heterogeneities of agents in terms of their opinions and is derived from
microscopic dynamics in a SEIR compartmentalization. Thanks to recently developed
structure-preserving numerical methods, we showed the consistency of the approach
by comparing the system of kinetic equations with the set of macroscopic equations.
Furthermore, we analysed more complex interaction functions based on confidence
thresholds. The effects of opinion polarization on the asymptotic number of recov-
ered are measured and strongly depend on the initial mean opinion of the population.
Indeed, if a positive bias towards protective behaviour is observed, opinion polarization
is capable of worsening the infection, whereas if the population tends to reject pro-
tective mechanisms, opinion polarization may dampen the total number of infectious
agents. Future works will regard more complex opinion formation processes based
on leader–follower dynamics and dynamics opinion networks. In future works, we
will tackle the calibration of the introduced modelling approach and possible opinion
control strategy to prevent the epidemic outbreak.
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