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Abstract
Let T ⊆ R be a time scale. The purpose of this paper is to present sufficient
conditions for the existence of multiple positive solutions of the following Lidstone
boundary value problem on time scales:

(–1)ny�
(2n)

(t) = f (t, y(t)), t ∈ [a,b]T,

y�
(2i)
(a) = y�

(2i)
(σ 2n–2i(b)) = 0, i = 0, 1, . . . ,n – 1.

Existence of multiple positive solutions is established using fixed point methods. At
the end some examples are also given to illustrate our results.
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1 Introduction
Let T be an arbitrary time scale (nonempty closed subset of R). As usual, σ : T → T is the
forward jump operator defined by

σ (t) = inf{s ∈ T : s > t}.

Also yσ (t) = y(σ (t)), and y�(t) denotes the time scale derivative of y. Higher order jump
and derivative are defined inductively by σ j(t) = σ (σ j–1(t)) and y�(j) (t) = (y�(j–1) (t))�, j ≥ 1.
It is assumed that the reader is familiar with the time scale calculus. Some preliminary
definitions and theorems on time scales can be found in [1–3].

Lidstone boundary value problems appear as a mathematical model of real world prob-
lems such as the study of bending of simply supported beams or suspended bridges [4–6].
The existence of positive solutions of the boundary value problems (BVPs) has created a
great deal of interest due to wide applicability in both theory and applications [7, 8]. Some
authors in the literature have obtained existence results about the solutions, positive so-
lutions, or symmetric positive solutions of Lidstone type BVPs associated with ordinary
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differential equations, differential equations, and dynamic equations on time scales by us-
ing various methods (see [7–24] and the references therein).

In 2021 Graef and Yang investigated the following complementary Lidstone boundary
value problem [25]:

(–1)ny(2n+1)(t) = g(t)f
(
y(t)

)
, t ∈ [0, 1]

y(0) = 0, y(2i–1)(0) = y(2i–1)(1) = 0, i = 1, . . . , n.

They obtained sufficient conditions for the existence and nonexistence of positive solu-
tions and some upper and lower bounds for positive solutions of the problem.

Cetin and Topal studied the following Lidstone boundary value problem on time scales
[26]:

(–1)ny�(2n)
(t) = f

(
t, yσ (t)

)
, t ∈ [0, 1],

y�(2i)
(0) = y�(2i)(

σ (1)
)

= 0, i = 1, . . . , n – 1,

where n ≥ 1 and f : [0,σ (1)]T × R → R is continuous and σ j(1) = σ (1) for j ≥ 1. They
obtained sufficient conditions for the existence of solution by using Schauder’s fixed point
theorem in a cone and Krasnosel’skii’s fixed point theorem. Also, the existence result for
the problem was given by the monotone method.

In [17], the authors investigated the following complementary Lidstone boundary value
problem on time scales [26]:

(–1)ny�(2n+1) (t) + q(t)f
(
t, yσ (t)

)
= 0, t ∈ [a, b]T,

y(a) = 0, y�(2i–1)
(a) = y�(2i–1)(

σ 2n–2i+2(b)
)

= 0, i = 1, . . . , n,

where n ≥ 1 and f : [a,σ (b)]T × R → R and q : [a,σ (b)]T → [0,∞) are continuous. They
gave the existence of one and two solutions by using fixed points methods.

Inspired by the aforementioned papers, the purpose of this paper is to study the exis-
tence of positive solutions to the Lidstone boundary value problem (LBVP) on time scales

(–1)ny�(2n)
(t) = f

(
t, y(t)

)
, t ∈ [a, b]T,

y�(2i)
(a) = y�(2i)(

σ 2n–2i(b)
)

= 0, i = 0, 1, . . . , n – 1,
(1.1)

where n ≥ 1, a, b ∈ T, and f : [a,σ (b)]T ×R →R is continuous.
In [17], while the authors studied complementary Lidstone boundary value problem,

they reduced this problem to the Lidstone boundary value problem (1.1) and had the
Green function of (1.1). For this reason we will use this Green function of LBVP obtained
in [17] and its properties. Then we will give new results for LBVP (1.1). Also, although the
authors considered the 2n-order LBVP on time scales in [2, 27, 28], the boundary condi-
tions in (1.1) are more general than the boundary conditions of the problem in [2, 27, 28].
In this paper, unlike [29], new sufficient conditions are obtained for the existence of so-
lutions of LBVP (1.1) by using Schauder’s fixed point theorem, Krasnosel’skii’s fixed point
theorem, the Leggett–Williams fixed point theorem, and the upper and lower solutions
method.



Çetin et al. Boundary Value Problems         (2023) 2023:31 Page 3 of 20

Hereafter, we use the notation [a, b]T to indicate the time scale interval [a, b] ∩ T. The
intervals [a, b)T, (a, b]T, and (a, b)T are similarly defined.

In Sect. 2, we develop some inequalities for certain Green’s functions. In Sect. 3, using
a variety of fixed point theorems, we establish the existence of a solution (not necessary
positive), and we also discuss the existence of a nontrivial positive solution. Also, we give
the existence results for two and three nontrivial positive solutions.

2 Preliminaries
To obtain a solution for LBVP (1.1), we require a mapping whose kernel G1

n(t, s) is the
Green function of the homogeneous Lidstone boundary value problem

(–1)ny�(2n)
(t) = 0, t ∈ [a, b]T,

y�(2i)
(a) = y�(2i)(

σ 2n–2i(b)
)

= 0, i = 0, 1, . . . , n – 1.
(2.1)

The Green function for problem (2.1) is

G1
n(t, s) =

∫ σ 2n–1(b)

a
Gn(t, r)G1

n–1(r, s)�r, (2.2)

where

Gn(t, s) =
–1

σ 2n(b) – a

⎧
⎨

⎩
(t – a)(σ 2n(b) – σ (s)), t ≤ s,

(σ (s) – a)(σ 2n(b) – t), σ (s) < t,
(2.3)

and

G1
1(t, s) = G1(t, s). (2.4)

Gn is the Green function of the problem

y��(t) = 0, y(a) = y
(
σ 2n(b)

)
= 0.

Furthermore, it is easily seen that from (2.3) we have

Gn(t, s) ≤ 0, (t, s) ∈ [
a,σ 2n(b)

]
T

× [
a,σ 2n–2(b)

]
T

, (2.5)

and from (2.5) and (2.2) we have

(–1)nG1
n(t, s) ≥ 0, (t, s) ∈ [

a,σ 2n(b)
]
T

× [a, b]T. (2.6)

Now let give some properties about the Green function G1
n(t, s), which can be found in

reference [17].

Lemma 2.1 ([17]) For (t, s) ∈ [a,σ 2n(b)]T × [a, b]T, we have

(–1)nG1
n(t, s) =

∣
∣G1

n(t, s)
∣
∣ ≤ θn

(
σ (s) – a

)(
σ 2(b) – σ (s)

)
, (2.7)
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where

θn =

[ n∏

i=1

(
σ 2i(b) – a

)
]–1 n–1∏

i=1

s2i,

sj =
1
6

{(
σ j+2(b) – a

)3 +
∑

t∈Aj

μ(t)2[3
(
σ j+2(b) + a

)
– 2

(
t + 2σ (t)

)]

–
∑

t∈Bj

μ(t)2[2
(
t + 2σ (t)

)
– 3

(
σ j+2(b) + a

)]}
, j ≥ 2,

(2.8)

and

Aj =
[

a,
σ j+1(b) + a

2

]

T

–
{

max

{
t : t ∈

[
a,

σ j+1(b) + a
2

]

T

}}
,

Bj =
(

σ j+1(b) + a
2

,σ j+1(b)
]

T

∪
{

max

{
t : t ∈

[
a,

σ j+1(b) + a
2

]

T

}}
.

(2.9)

Remark 2.2 ([17]) If T = R, then from Lemma 2.1 we obtain for (t, s) ∈ [a, b] × [a, b]

(–1)nG1
n(t, s) =

∣∣G1
n(t, s)

∣∣ ≤
(

(b – a)2

6

)n–1 (s – a)(b – s)
b – a

. (2.10)

Lemma 2.3 ([17]) Let δ ∈ (0, 1
2 ) be a given constant. For (t, s) ∈ [α,βn]T × [a, b]T, we have

(–1)nGn(t, s) =
∣∣Gn(t, s)

∣∣ ≥ ψn(δ)
(
σ (s) – a

)(
σ 2(b) – σ (s)

)
, (2.11)

where α = min{t ∈ [a,σ 2n(b)]T : a + δ ≤ t}, βj = max{t ∈ [a,σ 2j(b)]T : t ≤ σ 2j(b) – δ},

ψn(δ) = δn

[ n∏

i=1

(
σ 2i(b) – a

)
]–1 n–1∏

i=1

Si+1,

and

Sj =
1
6

{
(βj – α)(3σ 2j(b)(βj + α) + 3a

(
βj + α – 2σ 2j(b)

)
– 2

(
β2

j + βjα + α2)

+
∑

t∈Aj–[a,α)T

μ(t)2[3
(
σ 2j(b) + a

)
– 2

(
t + 2σ (t)

)]

–
∑

t∈Bj–(βj ,σ 2j(b)]T

μ(t)2[2
(
t + 2σ (t)

)
– 3

(
σ 2j(b) + a

)]
}

, j ≥ 2.

Here, the sets Aj and Bj are defined as in (2.9).

Remark 2.4 ([17]) If T = R, then from Lemma 2.3 we obtain for (t, s) ∈ [a + δ, b – δ] × [a, b]

(–1)nG1
n(t, s) =

∣
∣G1

n(t, s)
∣
∣ ≥ ψn(δ)

(s – a)(b – s)
b – a

, (2.12)

where ψn(δ) = 1
6n–1 ( δ

b–a )n((b – a)2 – 6δ2 + 4δ3

b–a )n–1.
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Remark 2.5 ([17]) From Lemmas 2.1 and 2.3, for δ = 1
4 ∈ (0, 1

2 ), we have

min
t∈[α,βn]T

∣∣G1
n(t, s)

∣∣ ≥ ψn(1/4)G1
(
σ (s), s

) ≥ ψn( 1
4 )

θn
max

t∈[a,σ 2n(b)]T

∣∣G1
n(t, s)

∣∣

≥ γn max
t∈[a,σ 2n(b)]T

∣
∣G1

n(t, s)
∣
∣,

where

γn =
∏n–1

i=1 Si+1

4n ∏n–1
i=1 s2i

.

It is clear that s2i > Si+1, 1 ≤ i ≤ n – 1. Thus, we have 0 < γn < 1.

In this section, we also state Schauder’s and Krasnosel’skii’s fixed point theorems in a
cone [30, 31] to prove the existence of at least one and two positive solutions of the prob-
lem.

Theorem 2.6 Let A be a closed convex subset of a Banach space B = (B,‖ · ‖), and assume
there exists a continuous map T sending A to a countably compact subset T(A) of A. Then
T has a fixed point.

Theorem 2.7 Let B = (B,‖ · ‖) be a Banach space, P ⊂ B be a cone in B. Suppose that 
1

and 
2 are open and bounded subsets of B with 0 ∈ 
1 and 
1 ⊂ 
2. Suppose further that
T : P ∩ (
2 \ 
1) → P is a continuous and compact operator such that either

(i) ‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂
1,‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂
2, or
(ii) ‖Tu‖ ≥ ‖u‖ for u ∈ P ∩ ∂
1,‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂
2

holds. Then T has a fixed point in P ∩ (
2 \ 
1).

Finally, to prove the existence of at least three positive solutions of the problem, we now
introduce the following fixed point theorem due to Leggett–Williams.

Theorem 2.8 Let P be a cone in a real Banach space E. Set

Pr :=
{

x ∈P : ‖x‖ < r
}

,

P(ψ , a, b) :=
{

x ∈P : a ≤ ψ(x),‖x‖ ≤ b
}

.

Suppose that A : Pr →Pr is a completely continuous operator and ψ is a nonnegative, con-
tinuous, concave functional on P with ψ(u) ≤ ‖u‖ for all u ∈ Pr . If there exist 0 < p < q <
l ≤ r such that the following conditions hold:

(i) {u ∈P(ψ , q, l) : ψ(u) > q} �= ∅ and ψ(Au) > q for all u ∈P(ψ , q, l),
(ii) ‖Au‖ < p for all ‖u‖ ≤ p,
(iii) ψ(Au) > q for u ∈P(ψ , q, r) with ‖Au‖ > l.
Then A has at least three positive solutions u1, u2, and u3 in Pr satisfying

‖u1‖ < p, ψ(u2) > q, p < ‖u3‖ with ψ(u3) < q.
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3 Existence of positive solutions
Let the Banach space B = C[a,σ 2n(b)]T be equipped with the norm ‖y‖ =
maxt∈[a,σ 2n(b)]T |y(t)| for y ∈ B. We now define a mapping T : C[a,σ 2n(b)]T → C[a,σ 2n(b)]T
by

Ty(t) =
∫ σ (b)

a
(–1)nG1

n(t, s)f
(
s, y(s)

)
�s, (3.1)

where G1
n(t, s) is the Green function given in (2.2).

Let

K =
{

y ∈ B : y(t) ≥ 0, t ∈ [
a,σ 2n(b)

]
T

}
.

We now give a condition, which will be used in some results in this paper:
(C1) f is continuous on [a,σ (b)]T ×R with f (t, y) ≥ 0 for (t, y) ∈ [a,σ (b)]T × K .
Our first result is an existence criterion for a solution (it need not be positive).

Theorem 3.1 Let (C1) hold and let f be continuous. If M > 0 satisfies θnQs0 ≤ M, where
Q > 0 satisfies

Q ≥ max
‖y‖≤M

∣
∣f (t, y(t)

∣
∣ for t ∈ [

a,σ (b)
]
T

and the numbers θn and s0 are defined in Lemma 2.1 and (2.8)|j=0 respectively, then LBVP
(1.1) has a solution y(t).

Proof Let K1 = {y ∈ B : ‖y‖ ≤ M}. We will apply Schauder’s fixed point theorem. The solu-
tions of LBVP (1.1) are the fixed points of the operator T . A standard argument guarantees
that T : K1 → B is continuous. Next we show T(K1) ⊂ K1. For y ∈ K1, we obtain

∣
∣Ty(t)

∣
∣ =

∣∣
∣∣

∫ σ (b)

a
(–1)nG1

n(t, s)f (s, y(s)�s
∣∣
∣∣

≤
∫ σ (b)

a

∣∣G1
n(t, s)

∣∣∣∣f
(
s, y(s)

)∣∣�s

≤ θnQ
∫ σ (b)

a

(
σ (s) – a

)(
σ 2(b) – σ (s)

)
�s

≤ θnQs0

≤ M

for all t ∈ [a,σ 2n(b)]T. This implies that ‖Ty‖ ≤ M. A standard argument, via the Arzela–
Ascoli theorem, guarantees that T : K1 → K1 is a compact operator. Hence T has a fixed
point y ∈ K1 by Schauder’s fixed point theorem. �

Corollary 3.2 If f is continuous and bounded on [a,σ (b)]T × R, then LBVP (1.1) has a
solution.
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Now, we will give the existence of positive solutions by the monotone method, and we
define the set

D :=
{

y : y�(2n) is continuous on [a, b]T
}

.

For any u, v ∈ D, we define the sector [u, v] by

[u, v] := {w ∈ D : u ≤ v ≤ w}.

Definition 3.3 A real-valued function u(t) ∈ D on [a, b]T is a lower solution for LBVP
(1.1) if

(–1)nu�(2n)
(t) ≤ f

(
t, u(t)

)
, t ∈ [a, b]T,

(–1)iu�(2i)
(a) ≤ 0, (–1)iu�2i(

σ 2n–2i(b)
) ≤ 0, 0 ≤ i ≤ n – 1.

Similarly, a real-valued function v(t) ∈ D on [a, b]T is an upper solution for LBVP (1.1) if

(–1)nv�(2n)
(t) ≥ f

(
t, v(t)

)
, t ∈ [a, b]T,

(–1)iv�(2i) (a) ≥ 0, (–1)iv�(2i)(
σ 2n–2i(b)

) ≥ 0, 0 ≤ i ≤ n – 1.

Lemma 3.4 Assume that w(t) ∈ C2[a, b] and w(t) satisfies –w��(t) ≤ 0 on [a, b]T, w(a) ≤
0, w(σ 2(b)) ≤ 0. Then w(t) ≤ 0 on [a,σ 2(b)]T.

Proof Since –w��(t) ≤ 0, then w��(t) ≥ 0 on [a, b]T. By the mean value theorem on time
scales, there exists τ1 ∈ [a, t)T such that

w(t) – w(a) ≤ w�(τ1)(t – a).

For all t ∈ [a,σ 2(b)]T, we take t = λ1a + λ2σ
2(b) with λ1 + λ2 = 1 and λ1,λ2 ≥ 0.

So we have

w(t) – w(a) ≤ w�(τ1)
(
λ1a + λ2σ

2(b) – a
)

= w�(τ1)
(
a(λ1 – 1) + λ2σ

2(b)
)

= w�(τ1)
(
–λ2a + λ2σ

2(b)
)

= w�(τ1)λ2
(
σ 2(b) – a

)
.

Similarly, there exists τ2 ∈ [t,σ 2(b))T such that

w
(
σ 2(b)

)
– w(t) ≥ w�(τ2)

(
σ 2(b) – t

)

= w�(τ2)
(
σ 2(b) – λ1a – λ2σ

2(b)
)

= w�(τ2)
(
(1 – λ2)σ 2(b) – λ1a

)

= w�(τ2)λ1
(
σ 2(b) – a

)
.
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Combining these inequalities, we get

λ2w
(
σ 2(b)

)
+ λ1w(a) – (λ1 + λ2)w(t) ≥ [

w�(τ2) – w�(τ1)
]
λ1λ2

(
σ 2(b) – a

)
.

Again, using the mean value theorem on [τ1, τ2]T, we have

λ2w
(
σ 2(b)

)
+ λ1w(a) – (λ1 + λ2)w(t) ≥ w��(τ )(τ2 – τ1)λ1λ2

(
σ 2(b) – a

)
,

where τ ∈ [τ1, τ2)T.
Since w��(t) ≥ 0 on [a, b]T, we get λ2w(σ 2(b)) + λ1w(a) – (λ1 + λ2)w(t) ≥ 0, so w(t) ≤ 0

on [a,σ 2(b)]. �

Lemma 3.5 Assume that w(t) ∈ C2n[a, b] and w(t) satisfies (–1)nw�(2n) (t) ≤ 0 on [a, b]T,
(–1)iw�(2i) (a) ≤ 0, (–1)iw�(2i) (σ 2n–2i(b)) ≤ 0, for 0 ≤ i ≤ n – 1. Then w(t) is nonpositive on
[a,σ 2n(b)]T.

Proof Let us define zn–1(t) := (–1)n–1w�2(n–1) (t). Then –z��
n–1(t) ≤ 0 on [a, b]T, and by the

boundary condition we get zn–1(a) ≤ 0, zn–1(σ 2(b)) ≤ 0. It follows from Lemma 3.4 that
zn–1(t) ≤ 0. Similarly, let us define zn–2(t) := (–1)n–2w�2(n–2) (t). Then –z��

n–2(t) ≤ 0 on [a, b]T,
and from the boundary condition we get zn–2(a) ≤ 0, zn–2(σ 4(b)) ≤ 0. Thus we have
zn–2(t) ≤ 0 on [a,σ 4(b)] by Lemma 3.4.

The conclusion of the lemma follows by an induction argument. �

In this part of the section, we will prove that when the lower and upper solutions are
given well order, i.e., u ≤ v, LBVP (1.1) admits a solution lying between the lower and
upper solutions.

Theorem 3.6 Let f be continuous on [a,σ (b)]T×R. Assume that there exist a lower solution
u and an upper solution v for LBVP (1.1) such that u ≤ v on [a,σ 2n(b)]T. Then LBVP (1.1)
has a solution y ∈ [u, v] on [a,σ 2n(b)]T.

Proof Consider the LBVP

(–1)ny�(2n)
(t) = F

(
t, y(t)

)
, t ∈ [a, b]T,

y�(2i)
(a) = y�(2i)(

σ 2n–2i(b)
)

= 0, i = 0, 1, . . . , n – 1,
(3.2)

where

F(t, ξ ) =

⎧
⎪⎪⎨

⎪⎪⎩

f (t, v(t)) – ξ–v(t)
1+|ξ | , ξ ≥ v(t),

f (t, ξ ), u(t) ≤ ξ ≤ v(t),

f (t, u(t)) + u(t)–ξ

1+|ξ | , ξ ≤ u,

for t ∈ [a,σ (b)]T.
Clearly, the function F is bounded for t ∈ [a,σ (b)]T and ξ ∈ R, and is continuous in ξ .

Thus, by Corollary 3.2, there exists a solution y(t) of LBVP (3.2).
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We claim y(t) ≤ v(t) for t ∈ [a,σ 2n(b)]T. If not, we know that y(t) – v(t) > 0 for t ∈
[a,σ 2n(b)]T and

(–1)ny�(2n)
(t) = F

(
t, y(t)

)

= f
(
t, v(t)

)
–

y – v(t)
1 + |y|

< f
(
t, v(t)

)

≤ (–1)nv�(2n)
(t).

Hence, we have

(–1)n(y – v)�
(2n)

(t) ≤ 0,

and from the boundary conditions we get

(–1)i(y – v)�
(2i)

(a) ≤ 0 and (–1)i(y – v)�
(2i)

(σ 2n–2i(b)) ≤ 0, 0 ≤ i ≤ n – 1.

Using Lemma 3.5, we have that

y – v ≤ 0 on [a,σ 2n(b)]T,

which is a contradiction. It follows that y(t) ≤ v(t) on [a,σ 2n(b)]T.
Similarly, we get easily u ≤ y on [a,σ 2n(b)]T.
Thus y(t) is a solution of LBVP (1.1) and lies between u and v. �

Next let

P =
{

y ∈ B : min
t∈[a,σ 2n(b)]T

y(t) ≥ 0 and min
t∈[α,βn]T

y(t) ≥ γn‖y‖
}

⊂ K . (3.3)

It is easy to check that P is a cone of nonnegative functions in C[a,σ 2n(b)]T. Now assume
(C1). Next we will apply Theorem 2.7. First we show T : P → P (see (3.1) for the definition
of T ). Now (C1) and y ∈ P implies that Ty(t) ≥ 0 on [a,σ 2n(b)]T and

min
t∈[α,βn]T

Ty(t) =
∫ σ (b)

a
min

t∈[α,βn]T
(–1)nG1

n(t, s)f
(
s, y(s)

)
�s

≥
∫ σ (b)

a
γn max

t∈[a,σ 2n(b)]T

∣
∣Gn(t, s)

∣
∣f

(
s, y(s)

)
�s.

It follows that

min
t∈[α,βn]T

Ty(t) ≥ γn‖Ty‖.

Thus Ty ∈ P so T(P) ⊂ P. A standard argument, via the Arzela–Ascoli theorem, guaran-
tees that T : P → P is continuous and completely continuous.
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Theorem 3.7 Let (C1) hold. Also assume
(C2) limy→0+

f (t,y)
y = 0, limy→+∞ f (t,y)

y = +∞ for t ∈ [a,σ (b)]T.
Then LBVP (1.1) has at least one positive solution.

Proof We will apply Theorem 2.7 with the cone P defined in (3.3). Since limy→0+
f (t,y)

y = 0,
there exists r1 > 0 such that

f (t, y) ≤ ηy, 0 ≤ y ≤ r1, a ≤ t ≤ σ (b), (3.4)

where η = 1
θns0

and the number s0 is defined in (2.8)|j=0. Let 
1 = {y ∈ B : ‖y‖ < r1}.
Using Lemma 2.1 and (3.4), we find for t ∈ [a,σ 2n(b)]T that

Ty(t) =
∫ σ (b)

a
(–1)nG1

n(t, s)f
(
s, y(s)

)
�s

≤ η

∫ σ (b)

a
θnG1

(
σ (s), s

)
y(s)�s

≤ η

∫ σ (b)

a
θnG1

(
σ (s), s

)
r1�s

≤ ηθnr1

∫ σ (b)

a

(
σ (s) – a

)(
σ 2(b) – σ (s)

)
�s

≤ θnηr1s0 = r1 = ‖y‖,

and so

‖Ty‖ ≤ ‖y‖ for all y ∈ P ∩ ∂
1.

Since limy→+∞ f (t,y)
y = +∞, there exists R > 0 such that

f (t, y) ≥ μy, y ≥ R, a ≤ t ≤ σ (b), (3.5)

where μ = (γnψn(1/4)
∫ βn
α

G1(σ (s), s)�s)–1.
Let R1 = max{2r1, R

γn
} and 
2 = {y ∈ B : ‖y‖ < R1}. For y ∈ P ∩ ∂
2, we have

min
[α,βn]T

y(t) ≥ γn‖y‖ = γnR1 = R.

Using Lemma 2.3 and (3.5), we find for t0 ∈ [α,βn]T that

Ty(t0) =
∫ σ (b)

a
(–1)nG1

n(t0, s)f
(
s, y(s)

)
�s

≥
∫ βn

α

ψn(1/4)G1
(
σ (s), s

)
)f

(
s, y(s)

)
�s

≥ ψn(1/4)
∫ βn

α

G1
(
σ (s), s

)
μy(s)�s

≥ ψn(1/4)
∫ βn

α

G1
(
σ (s), s

)
μγnR1�s
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≥ ψn(1/4)μγnR1

∫ βn

α

G1
(
σ (s), s

)
�s

≥ R1 = ‖y‖,

and so

‖Ty‖ ≥ ‖y‖ for all y ∈ P ∩ ∂
2.

Consequently, Theorem 2.7 guarantees that T has a fixed point y ∈ P ∩ (
2 \ 
1). �

Theorem 3.8 Let (C1) hold. Also assume
(C3) limy→0+

f (t,y)
y = +∞, limy→+∞ f (t,y)

y = 0 for t ∈ [a,σ (b)]T.
Then LBVP (1.1) has at least one positive solution.

Proof Since limy→0+
f (t,y)

y = +∞, there exists r2 > 0 such that

f (t, y) ≥ μy, 0 < y ≤ r2, a ≤ t ≤ σ (b),

where μ ≥ μ; here μ is given in the proof of Theorem 3.7.
Let 
1 = {y ∈ B : ‖y‖ < r2}. For y ∈ P ∩ ∂
1, we have for t0 ∈ [α,βn]T that

Ty(t0) =
∫ σ (b)

a
(–1)nG1

n(t0, s)f
(
s, y(s)

)
�s

≥
∫ βn

α

ψn(1/4)G1
(
σ (s), s

)
)f

(
s, y(s)

)
�s

≥ ψn(1/4)
∫ βn

α

G1
(
σ (s), s

)
μy(s)�s

≥ ψn(1/4)
∫ βn

α

G1
(
σ (s), s

)
μγnR1�s

≥ ψn(1/4)μγnr2

∫ βn

α

G1
(
σ (s), s

)
�s

≥ r2 = ‖y‖,

and so ‖Ty‖ ≥ |y‖ for all y ∈ P ∩ ∂
1.
Since limy→∞ f (t,y)

y = 0, there exists r2 such that

f (t, y) ≤ ηy, y ≥ r2, a ≤ t ≤ σ (b), (3.6)

where η ≤ η.
We consider two cases.
Case 1. Suppose that f is bounded. Then there exists some N > 0 such that

f (t, y) ≤ N , t ∈ [
a,σ (b)

]
T

, y ∈ [0,∞). (3.7)
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Let r3 = max{r2 + 1, Nθns0} and 
2 = {y ∈ B : ‖y‖ < r3}. For y ∈ P ∩ ∂
2, using Lemma 2.1
and (3.7), we get

Ty(t) =
∫ σ (b)

a
(–1)nG1

n(t, s)f
(
s, y(s)

)
�s

≤ Nθn

∫ σ (b)

a
G1

(
σ (s), s

)
�s

≤ Nθns0 ≤ r3 = ‖y‖.

Hence, ‖Ty‖ ≤ ‖y‖ for all y ∈ P ∩ ∂
2.
Case 2. Suppose that f is unbounded. In this case let

g(r) := max
{

f (t, y) : t ∈ [
a,σ (b)

]
T

, 0 ≤ y ≤ r
}

such that limr→∞ g(r) = ∞. We choose r3 > max{2r2, r2
γn

} such that g(r3) ≥ g(r) and let 
2 =
{y ∈ B : ‖y‖ < r3}. For y ∈ P ∩ ∂
2, using Lemma 2.1 and (3.6), we have

Ty(t) =
∫ σ (b)

a
(–1)nG1

n(t, s)f
(
s, y[s

)
)�s

≤ ηθn

∫ σ (b)

a
G1

(
σ (s), s

)
f
(
s, y[s

)
)�s

≤ ηθn‖y‖
∫ σ (b)

a
G1

(
σ (s), s

)
�s

≤ ηθns0‖y‖ = ‖y‖,

and so ‖Ty‖ ≤ ‖y‖ for all y ∈ P ∩ ∂
2. It follows from Theorem 2.7 that T has a fixed point
y ∈ P ∩ (
2 \ 
1). �

Theorem 3.9 Let (C1) hold. Also assume
(C4) limy→0+

f (t,y)
y = +∞, limy→+∞ f (t,y)

y = +∞ for t ∈ [a,σ (b)]T,
(C5) There exists a constant ρ1 such that f (t, y) ≤ �ρ1 for y ∈ [0,ρ1]T,

where � ≤ η.
Then LBVP (1.1) has at least two positive solutions y1 and y2 such that

0 < ‖y1‖ ≤ ρ1 < ‖y2‖.

Proof Since limy→0+
f (t,y)

y = +∞, there exists ρ∗ ∈ (0,ρ1) such that

f (t, y) ≥ μ1y for 0 ≤ y ≤ ρ∗, a ≤ t ≤ σ (b), (3.8)

where μ1 ≥ μ; here μ is given in the proof of Theorem 3.7. Set 
1 = {y ∈ B : ‖y‖ < ρ∗}. For
y ∈ P ∩ ∂
1, using Lemma 2.3 and (3.8), we find for t0 ∈ [α,βn]T that

Ty(t0) =
∫ σ (b)

a
(–1)nG1

n(t0, s)f
(
s, y(s)

)
�s
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≥
∫ βn

α

ψn(1/4)G1
(
σ (s), s

)
f
(
s, y(s)

)
�s

≥ ψn(1/4)
∫ βn

α

G1
(
σ (s), s

)
μ1y(s)�s

≥ ψn(1/4)γnρ∗μ1

∫ βn

α

G1
(
σ (s), s

)
�s

≥ ρ∗ = ‖y‖,

and so

‖Ty‖ ≥ ‖y‖ for all y ∈ P ∩ ∂
1. (3.9)

Since limy→+∞ f (t,y)
y = +∞, there exists ρ∗ > ρ1 such that

f (t, y) ≥ μ2y for y ≥ ρ∗, (3.10)

where μ2 ≥ μ; here μ is given in the proof of Theorem 3.7.
Choose ρ∗ > max{ ρ∗

γn
,ρ1} and set 
2 = {y ∈ B : ‖y‖ < ρ∗}. For any y ∈ P ∩ ∂
2, we get

y(t) ≥ min
t∈[α,βn]T

y(t) ≥ γn‖y‖ = (ν – α)γnρ∗ > ρ∗. (3.11)

Using Lemma 2.1, (3.10) and (3.11), for t0 ∈ [α,βn]T we have

Ty(t0) =
∫ σ (b)

a
(–1)nG1

n(t0, s)f
(
s, y(s)

)
�s

≥
∫ βn

α

ψn(1/4)G1
(
σ (s), s

)
f
(
s, y(s)

)
�s

≥ ψn(1/4)
∫ βn

α

G1
(
σ (s), s

)
)μ2y(s)�s

≥ ψn(1/4)γnρ∗μ2

∫ βn

α

G1
(
σ (s), s

)
�s

≥ ρ∗ = ‖y‖,

which yields

‖Ty‖ ≥ ‖y‖ for all y ∈ P ∩ ∂
2. (3.12)

Let 
3 = {y ∈ B : ‖y‖ < ρ1}. For y ∈ P ∩ ∂
3 from (C5) we obtain

Ty(t) =
∫ σ (b)

a
(–1)nG1

n(t, s)f
(
s, y(s)

)
�s

≤
∫ σ (b)

a
θnG1

(
σ (s), s

)
f
(
s, y(s)

)
�s

≤ θn

∫ σ (b)

a
G1

(
σ (s), s

)
�ρ1�s
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≤ θn�ρ1

∫ σ (b)

a
G1

(
σ (s), s

)
�s

≤ θns0�ρ1 = ρ1 = ‖y‖,

which yields

‖Ty‖ ≤ ‖y‖ for all y ∈ P ∩ ∂
3. (3.13)

Hence, since ρ∗ ≤ ρ1 < ρ∗ and from (3.9), (3.12), and (3.13) it follows from Theorem 2.7
that T has a fixed point y1 in P ∩ (
3\
1) and a fixed point y2 in P ∩ (
2\
3). Note that
both are positive solutions of LBVP (1.1) satisfying

0 < ‖y1‖ ≤ ρ1 < ‖y2‖. �

Theorem 3.10 Let (C1) hold. Also assume
(C6) limy→0+

f (t,y)
y = 0, limy→+∞ f (t,y)

y = 0 for t ∈ [a,σ (b)]T;
(C7) There exists a constant ρ2 such that f (t, y) ≥ �ρ2 for y ∈ [γnρ2,ρ2]T,

where � ≥ μγn.
Then LBVP (1.1) has at least two positive solutions y1 and y2 such that

0 < ‖y1‖ ≤ ρ2 < ‖y2‖.

Let us define the functional

ω(y) = min
t∈[α,βn]T

∣∣y(t)
∣∣

and the numbers N1 ≤ η = 1
θns0

, N2 = 1
γns0

.

Theorem 3.11 Let (C1) hold and there exist constants A, B, C, D with 0 < A < B < C = D
such that the following conditions hold:

(C8) f (t, y) ≤ N1A for all (t, y) ∈ [a,σ (b)] × [0, A],
(C9) f (t, y) ≥ N2B for all (t, y) ∈ [α,βn] × [B, C],

(C10) f (t, y) ≤ N1C for all (t, y) ∈ [a,σ (b)] × [0, C].
Then LBVP (1.1) has at least three positive solutions y1, y2, y3 such that

max
t∈[a,σ 2n(b)]

∣∣y1(t)
∣∣ < A, B < min

t∈[α,βn]

∣∣y2(t)
∣∣ < max

t∈[a,σ 2n(b)]

∣∣y2(t)
∣∣ ≤ C,

min
t∈[α,βn]

∣
∣y3(t)

∣
∣ < B, A < max

t∈[a,σ 2n(b)]

∣
∣y3(t)

∣
∣ ≤ C.

Proof Let PC , then ‖y‖ ≤ C. So we get

‖Ty‖ = max
t∈[a,σ 2n(b)]

∣∣Ty(t)
∣∣

= max
t∈[a,σ 2n(b)]

∣
∣∣
∣

∫ σ (b)

a
(–1)nG1

n(t, s)f
(
s, y(s)

)
�s

∣
∣∣
∣

≤
∫ σ (b)

a
θnG1

(
σ (s), s

)
f
(
s, y(s)

)
�s
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≤
∫ σ (b)

a
θnG1

(
σ (s), s

)
N1C�s

≤ θnN1C
∫ σ (b)

a

(
σ (s) – a

)(
σ 2(b) – σ (s)

)
�s

≤ θnN1Cs0 = C = ‖y‖.

In the same way, we can show that if (C8) holds, then TPA ⊂ PA. Hence condition (ii) of
Theorem 2.8 is satisfied.

To show condition (i) of Theorem 2.8, we choose y0(t) = B+C
2 for all t ∈ [a,σ 2n(b)]T. It is

easy to see that y0 ∈P and ‖y0‖ = B+C
2 > B. That is, y0 ∈ {y ∈P(ω, B, D) : ω(y) > B} �= ∅.

Moreover, if y ∈P(ω, B, D), we have B ≤ y(t) ≤ C for t ∈ [α,βn]T. By (C9) and Remark 2.5,
we have

ω(Ty) = min
t∈[α,βn]T

∣∣Ty(t)
∣∣

≥
∫ σ (b)

a
min

t∈[α,βn]T

∣∣(–1)nG1
n(t, s)f

(
s, y(s)

)∣∣�s

≥ γn

∫ βn

α

max
t∈[a,σ 2n(b)]T

∣∣G1
n(t, s)

∣∣∣∣f
(
s, y(s)

)∣∣�s

≥ γns0N2B = B.

Hence condition (i) of Theorem 2.8 is satisfied.
Since D = C, condition (i) implies condition (iii) of Theorem 2.8.
To sum up, all the hypotheses of Theorem 2.8 are satisfied. The proof is complete. �

Example 3.12 Let T = Z. We consider the following complementary Lidstone boundary
value problem on T:

–y�(6)
(t) = f

(
t, y(t)

)
, t ∈ [0, 5]T,

y(0) = y(11) = y�(2)
(0) = y�(2)

(9) = y�(4)
(0) = y�(4)

(7) = 0.
(3.14)

Note that (3.14) is a particular case of (1.1) with 2n = 6. Since T = Z, σ (t) = t + 1,
σ j(t) = t + j and x�(t) = �x(t), x�(j) (t) = �jx(t). We notice that our Lidstone boundary
value problem is the following difference Lidstone boundary value problem:

�6y(t) + f
(
t, y(t)

)
= 0, t = 0, 1, . . . , 5

y(0) = y(11) = �2y(0) = �2y(9) = �4y(0) = �4y(7) = 0.

The Green function G1
3(t, s) is

G1
3(t, s) =

∫ σ 5(5)

0
G3(t, r)G1

2(r, s)�r =
9∑

r=0

G3(t, r)G1
2(r, s),
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where

G3(t, s) =
–1

σ 6(5)

⎧
⎨

⎩
t(σ 6(5) – σ (s)), t ≤ s,

σ (s)(σ 6(5) – t), σ (s) ≤ t
=

–1
11

⎧
⎨

⎩
t(10 – s), t ≤ s,

(s + 1)(11 – t), s + 1 ≤ t,

G1
2(t, s) =

∫ σ 3(5)

0
G2(t, r)G1

1(r, s)�r =
7∑

r=0

G2(t, r)G1
1(r, s),

G2(t, s) =
–1

σ 4(5)

⎧
⎨

⎩
t(σ 4(5) – σ (s)), t ≤ s,

σ (s)(σ 4(5) – t), σ (s) ≤ t
=

–1
9

⎧
⎨

⎩
t(8 – s), t ≤ s,

(s + 1)(9 – t), s + 1 ≤ t,

and

G1
1(t, s) = G1(t, s) =

–1
σ 2(5)

⎧
⎨

⎩
t(σ 2(5) – σ (s)), t ≤ s,

σ (s)(σ 2(5) – t), σ (s) ≤ t
=

–1
7

⎧
⎨

⎩
t(6 – s), t ≤ s,

(s + 1)(7 – t), s + 1 ≤ t.

In Lemma 2.1, we find θ3 = s2s4
σ 2(5)σ 4(5)σ 6(5) = s2s4

7×9×11 , where

s2 =
1
6

{
(
σ 4(5)

)3 +
∑

t∈A2

μ(t)2[3
(
σ 4(5)

)
– 2

(
t + 2σ (t)

)]

–
∑

t∈B2

μ(t)2[2
(
t + 2σ (t)

)
– 3

(
σ 4(5)

)]}

=
1
6

{

93 +
3∑

t=0

23 – 6t –
8∑

t=4

6t – 23

}

= 120

and

s4 =
1
6

{
(
σ 6(5)

)3 +
∑

t∈A4

μ(t)2[3
(
σ 6(5)

)
– 2

(
t + 2σ (t)

)]

–
∑

t∈B4

μ(t)2[2
(
t + 2σ (t)

)
– 3

(
σ 6(5)

)]}

=
1
6

{

113 +
4∑

t=0

29 – 6t –
10∑

t=5

6t – 29

}

= 252

with A2 = {0, 1, 2, 3}, B2 = {4, 5, . . . , 8}, A4 = {0, 1, 2, 3, 4}, and B4 = {5, . . . , 9, 10}.
So θ3 = 120×252

7×9×11
∼= 43.63.

Also, choosing α = 1,β3 = 10,β2 = 8, ξ = 6,ν = 4, we find ψ3(δ) = δ3 S2S3
σ 2(5)σ 4(5)σ 6(5) =

S2S3
7×9×11 , where

S2 =
1
6

{
(β2 – α)3σ 4(5)(β2 + α) – 2

(
β2

2 + β2α + α2)

+
∑

t∈A2–[0,1)

μ(t)2[3
(
σ 4(5)

)
– 2

(
t + 2σ (t)

)]

–
∑

t∈B2–(β2,σ 4(5)]

μ(t)2[2
(
t + 2σ (t)

)
– 3

(
σ 4(5)

)]
}
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=
1
6

{

7 × 27 × 9 – 2(64 + 8 + 1) +
3∑

t=1

23 – 6t –
8∑

t=4

6t – 23

}
∼= 211.6

and

S3 =
1
6
{(β3 – α)3σ 6(5)(β3 + α) – 2

(
β2

3 + β3α + α2) +
∑

t∈A3–[0,1)

[
3σ 6(5) – 2

(
t + 2σ (t)

)]

–
∑

t∈B3–(β3,σ 6(5)]

[
2
(
t + 2σ (t)

)
– 3σ 6(5)

]

=
1
6

{

9.33.11 – 2(100 + 10 + 1) +
3∑

t=1

27 – 6t –
9∑

t=4

6t – 29

}

= 449

with A3 = {0, 1, 2, 3}, B3 = {4, 5, . . . , 8, 9}, A4 = {0, 1, 2, 3, 4}, and B4 = {5, . . . , 9, 10}.
So ψ3(δ) ∼= δ3137 and γ3 = S2S3

43s2s4
∼= 0.04.

Besides these, also find

s0 =
1
6

{

73 +
2∑

t=0

17 – 6t –
6∑

t=3

6t – 17

}
∼= 33.3.

We note that

0 <
∫ 6

4
G1

(
σ (s), s

)
�s =

∫ 6

4
(s + 1)(8 – s)�s =

6∑

s=4

(
–s2 + 6s + 7

)
= 34.

(i) Consider the Lidstone dynamic equation (3.14) with the function f (t, y) = y
105(1+y2) .

It is easy to see that f satisfies condition (C1). If we choose M = 106, we can easily see
that the condition θ3Qs0 ≤ M is satisfied for Q = 11. Therefore, according to Theorem 3.1,
Lidstone BVP (3.14) has a solution y(t).

(ii) Consider the Lidstone dynamic equation (3.14) with the function f (t, y) = 1– sin2 y. It
is easy to see that f satisfies condition (C1). Also the continuous function f is bounded on
[0, 6] ×R. Therefore, according to Corollary 3.2, Lidstone BVP (3.14) has a solution y(t).
Also, u(t) = 0 is a lower solution and v(t) = π

2 is an upper solution for LBVP (3.14). Thus,
according to Theorem 3.6, Lidstone BVP (3.14) has a solution y ∈ [0, π

2 ] on t ∈ [1, 11].
(iii) Consider the Lidstone dynamic equation (3.14) with the function f (t, y) = y2(t + y).

It is easy to see that f satisfies condition (C1). Since

lim
y→0+

f (t, y)
y

= lim
y→0+

y2(t + y)
y

= 0,

lim
y→+∞

f (t, y)
y

= lim
y→+∞

y2(t + y)
y

= +∞ for t ∈ [0, 8]T,

condition (C2) is fulfilled. Therefore, according to Theorem 3.7, Lidstone BVP (3.14) has
at least one positive solution.

(iv) Consider the Lidstone dynamic equation (3.14) with the function f (t, y) =
√

y(t) + t2.
It is easy to see that f satisfies condition (C1). Also we obtain

lim
y→0+

f (t, y)
y

= lim
y→0+

√y + t2

y
= +∞,



Çetin et al. Boundary Value Problems         (2023) 2023:31 Page 18 of 20

lim
y→+∞

f (t, y)
y

= lim
y→+∞

√y + t2

y
= 0 for t ∈ [0, 8]T,

so condition (C3) is fulfilled. From Theorem 3.8, Lidstone BVP (3.14) has at least one pos-
itive solution.

(v) Consider the Lidstone dynamic equation (3.14) with the function

f (t, y) =

⎧
⎨

⎩

y3

43105(1+y) , y ≥ 4;
√y
106 , 0 ≤ y < 4.

The function f is continuous on [0, 5]T × R and nondecreasing in the second argument
with f (t, y) ≥ 0 for (t, x) ∈ [0, 5]T ×K . We can easily see that condition (C1) is fulfilled. Also
we have

lim
y→0+

f (t, y)
y

= lim
y→0+

√y
106y

= +∞,

lim
y→+∞

f (t, y)
y

= lim
y→+∞

y2

43105(1 + y)
= +∞ for t ∈ [0, 8]T.

Thus (C4) is satisfied. Furthermore, we find � ≤ 1
θ3s0

= 99
210×120 . If we choose ρ1 = 1

104 and
� = 390

34×120×252 , we have

f (t, y) =
√y
106 ≤ �ρ1, for 0 ≤ y ≤ 10–4, t ∈ [0, 5]T,

so condition (C5) is satisfied. Thus all the conditions of Theorem 3.9 are satisfied, so the
LBVP has at least two positive solutions.

(vi) Consider the Lidstone dynamic equation (3.14) with the function

f (t, y) =

⎧
⎨

⎩

√
y – 1 + 101

2 , y ≥ 1;
101y2

1+y , 0 ≤ y < 1.

The function f is continuous on [0, 5]T × R and nondecreasing in the second argument
with f (t, x) ≥ 0 for (t, x) ∈ [0, 5]T ×K . We can easily see that condition (C1) is fulfilled. Also
we have

lim
y→0+

f (t, y)
y

= lim
y→0+

101y
1 + y

= 0,

lim
y→+∞

f (t, y)
y

= lim
y→+∞

√
y – 1 + 101

2
y

= 0 for t ∈ [0, 8]T.

Thus (C6) is satisfied. Now, if we calculate the number � in Theorem 3.10, we obtain
� ∼= 0.04. If we choose ρ2 = 1

3 , and noting γ3 ∼= 0.04, we have

f (t, y) =
101y2

1 + y
≥ 4

100
× 1

3
, for γ3ρ2 ≤ y ≤ ρ2, t ∈ [0, 5]T,

so condition (C7) is satisfied. Thus all the conditions of Theorem 3.10 are satisfied, so the
LBVP has at least two positive solutions.
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4 Conclusion
In this paper, we obtain sufficient conditions that guarantee the existence of solutions for
LBVP (1.1) on time scales. Firstly, by using Schauder’s fixed point theorem, the existence
of a solution is proved, and by using this theorem and lower and upper solutions method,
the other existence result is also given. Later, by using Krasnosel’skii’s fixed point theorem
the existence of one and two positive solutions is proved. Finally, by using the Leggett–
Williams fixed point theorem, the existence of three positive solutions is proved. Although
the studies [2, 15, 27, 28] worked on limited time scales, which satisfies that [0, 1]T and σ (1)
is right dense, σ j(1) = σ (1) for j ≥ 1, this study works on [a,σ 2n(b)]T where T is any time
scale. Therefore this work generalizes papers about the existence of solutions for LBVP.
This study demonstrates the combining and generalizing properties of time scale theory.
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