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Abstract
Numerical analysts and scientists working in applications often observe that once
they improve their techniques to get a better accuracy, some instability of the evalua-
tion creeps in through the back door. This paper shows for a large class of numerical
methods that such a Trade-off Principle between error and evaluation stability is
unavoidable. It is an instance of a no free lunch theorem. Here, evaluation is the
mathematical map that takes input data to output data. This is independent from the
numerical routine that calculates the output. Therefore, evaluation stability is dif-
ferent from computational stability. The setting is confined to recovery of functions
from data, but it includes solving differential equations by writing such methods as a
recovery of functions under constraints imposed by differential operators and bound-
ary values. The trade-off principle bounds the product of two terms from below. The
first is related to errors, and the second turns out to be related to evaluation instabil-
ity. Under certain conditions satisfied for splines and kernel-based interpolation, both
can be minimized. Then the lower bound is attained, and the error term is the inverse
of the instability term. As a byproduct, it is shown that Kansa’s Unsymmetric Collo-
cation Method sacrifices accuracy for improved evaluation stability, when compared
to symmetric collocation.
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1 Introduction

After quite some efforts to find kernels that allow small recovery errors and well-
conditioned kernel matrices at the same time, the paper [1] proved that this does not
work. The result was called “Uncertainty Relation” or “Trade-off Principle” (see,
e.g. Holger Wendland’s book [2] of 2005) and received quite some attention in the
literature. It is a special case of the “No free lunch” principle. As correctly mentioned
by Greg Fasshauer and Michael McCourt in their 2015 book [3], it had quite some
negative influence on the development of the field, because it kept users from looking
at better bases than those spanned by kernel translates. However, it will turn out here
that changes of bases will be helpful in a different way, but not allow an escape from
the Trade-off Principle.

Sparked by a question of C.S. Chen of the University of Southern Mississippi
in an e-mail dated Dec. 28th, 2021, this paper extends the result of [1] to much
more general situations. To avoid the misconceptions implied by [1], the effect of
basis changes will be discussed at various places. But most of the results here are
independent of choices of bases.

Since the scope of the paper will be quite wide, a good deal of abstraction will be
necessary later, and therefore a classical case should be served as starters. Consider
interpolation of functions 1 1 1 on a set of points 1 0

1 1 by polynomials of degree at most . The well-known error
bound is

1

1
0

based on Newton’s formula. We can recast this as an error bound
1 (1)

in terms of a Power Function

sup
1 1

1

1
0

.

If we add a point to the set , the Lagrangian of degree 1, vanishing on
and being one on is

0

with seminorm
1 1

0

1

leading to

1 1 . (2)

In a somewhat sloppy formulation, this is a first Trade-off Principle:
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Small Power Functions lead to large norms of Lagrangians.

To avoid misunderstandings, it should be pointed out that (2) concerns two successive
interpolation steps and lets occur in two different meanings. In the first factor, the
error for an interpolation in 1 points is evaluated at using a specific norm, but
for the second factor the interpolation takes place on 2 points with added, and
then the corresponding norm of the Lagrangian at is taken. The error at the new step
is not estimated. At some new point , it would be bounded indirectly by

via (1) and connected to 2 by (2) in the next step.
Users will often see interpolation as a sequence of many steps, and if they try to

make the first factor go to zero for large , they will have to face that the second goes
to infinity. This goes away from the stepwise viewpoint.

By (2), the point as the new 1 for the next step should be placed at the
maximum of the Power Function. This greedy technique leads to Leja points and will
be treated in more detail in Section 12.

The value of the interpolant at some is given by

0

(3)

no matter how numerical calculations work. Absolute errors in the input data will
always be multiplied by the Lagrangians to get absolute errors in the values. For any
norm chosen,

0

lets absolute errors in the input data be multiplied by

0

to deviations in norms of values, in the worst case. This is why large norms of
Lagrangians lead to large evaluation instabilities measured in these norms. Therefore,
the Trade-off Principle may be reformulated as

Small errors are connected to evaluation instabilities taken in the same norm.

The paper gives a rigid underpinning of this Trade-off Principle. Of course, users
may prefer other formulas for computation of values, in particular barycentric ones
by J.P. Berrut and L.N. Trefethen [4]. This is mandatory for univariate polynomial
interpolation with large degrees. But no computation can escape from the validity of
(3) that shows how absolute input errors will enter into absolute output errors in the
worst case, even if a numerical algorithm avoids Lagrangians.

However, the numerical computation of the Lagrangians, if attempted, induces
additional instabilities that are ignored here. For polynomials, we already men-
tioned barycentric formulas [4]. For kernel-based recoveries, various methods were
invented to cope with instabilities, see the references given in Section 13.
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2 Overview

Section 3 sets the stage for general recovery methods including solving differential
equations. Recovery processes reconstruct functions from data given as prescribed
values of linear functionals, and the evaluation of the result will again be an appli-
cation of a functional. Data can include values of arbitrary linear operators acting on
functions, thus rewriting methods for PDE solving as function recoveries.

Section 4 introduces the form of the recoveries considered. Nearest-neighbour
methods, optimal recoveries in Hilbert spaces, and regression in machine learning
are special cases described in Section 5.

The basic technique used for trade-off principles is outlined in Section 6, still in
rather abstract form. Then Section 7 contains the central results, namely trade-off
principles that bound the product of norms of errors and norms of certain “bump”
functions from below. The lower bounds turn into equalities in case of optimal recov-
eries later in Section 9. The central notion of evaluation instability is explained at
length in Section 8, defining it as the worst possible propagation factor of absolute
errors in the input data to absolute errors in the function values of the recovery. It is
shown that the norms of “bump” functions from Section 7 are closely connected to
evaluation instability.

Examples are given in Section 10, including splines and recoveries via expansions
like Fourier or Taylor series. The connection to the older trade-off principle from
[1] is provided in Section 10.8, followed by extensions to unsymmetric methods like
Kansa’s collocation technique. The trade-off principle holds for these as well, but
they sacrifice accuracy for evaluation stability. Finally, the implications for greedy
adaptive methods are sketched.

3 Data as functionals

A fairly general and useful viewpoint on Numerical Analysis or Computational
Mathematics when working on functions is to see data of a function as values of lin-
ear functionals. In particular, differential equations, ordinary or partial, just impose
infinitely many restrictions on a function from some function space by applying
linear functionals. This can be conveniently written as

(4)

for all functionals from a subset of the dual of , the space of continuous
linear functionals on . The problem is to recover from the given data . The
specifics of certain differential equation problems involving differential or boundary
evaluation operators disappear. And if users have only limited information in the
sense of just finitely many data for a finite subset 1 ,
one has to use computational techniques that get along with the available data. This
viewpoint is behind the scenes for this paper. Readers should always be aware that
differential operators may lurk behind the functionals appearing here.
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For illustration, consider a standard Poisson problem

in
in

(5)

on a bounded domain 2 for simplicity. The data functionals come in two
variations:

1
1

(6)

caring for the PDE in the domain and for the boundary values. They are finite
selections from the obvious infinite sets of functionals that define the true solution
analytically. If the analytic problem is well-posed and if the function recovery from
the above data is carried out with enough oversampling, this technique produces
accurate and convergent approximations to the true solution of the PDE problem [5].
This reference also fits algorithms that solve problems in weak form into this frame-
work, including the Meshless Local Petrov Galerkin approach by S.N. Atluri and
T.-L. Zhu [6, 7] and Generalized Finite Element Methods, see the survey by Babuška
et al. [8]. The general practical observation is that going for more accuracy causes
more instabilities, in a way that will be clarified here.

Also, evaluation of functions is the application of a functional to some
function . In particular, evaluation of a multivariate derivative at a point is
the application of the functional in case that is continuous
on . If point evaluation is not defined, as in 2 spaces, but if local integration is
feasible, one can evaluate local integral means, as substitutes for point evaluation.
This is the standard way to handle problems in weak form in the references cited
above.

Summarizing, everything boils down to a matter of functionals. What can we say
about if we know all for all ? In particular, what can we say about

when we know plenty of data ? Note that this problem is regression in
a probabilistic context, and it arises in Machine Learning on a large scale, with Big
Data given in high-dimensional spaces.

4 Recovery of functions

We now postulate that the recovery of functions from their data
1 is a linear map from into a space of functions.

No matter how it is actually implemented numerically, we assume that it can be
mathematically written as

for all (7)

via certain functions that we call quasi-Lagrangians because they produce
the recovery like Lagrangians, but possibly without exact reproduction of the data.
This is connected to the notion of quasi-interpolation.

To avoid certain complications, the map is assumed to be surjec-
tive, but we allow nonuniqueness of the . Note that the recovery map is an abstract
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notion that does not imply that the are actually calculated. They just describe
the way the given input data enter mathematically into the values of the recov-
ery, and they are assumed to exist independent of how the recovery is numerically
implemented.

We call the recovery process interpolatory if the recovery preserves the data, i.e.

for all

and then 1 holds, i.e. the have the Lagrange inter-
polation property. We shall use the notation for a Lagrangian that satisfies

0 1, and then holds in this notation.
Evaluation of the recovery via a functional now is

(8)

by defining a vector that is a bilinear form in and .
One may restrict these maps to sums over neighbours of , to get more locality,

and this is what generalized Moving Least Squares [9–12] or Finite Elements do.
But if theoretically done for all , this still fits into the above framework.
As a prominent example, Barycentric formulas by J.P. Berrut and L.N. Trefethen [4]
change the way the above formula is calculated, with a significant gain in numerical
stability, focusing on neighbours.

For recovery of a single value from single values , one can construct
a vector of single values such that

(9)

without necessarily calculating the as functions and taking values
afterwards. In meshless methods (see the early survey by T. Belytschko et al.

[13]), the functions are called shape functions. In the standard approach, they are
calculated in many points, and if derivatives are needed for dealing with PDEs, these
are taken afterwards or obtained by taking derivatives of the local construction pro-
cess. In contrast to this, Direct Moving Least Squares by D. Mirzaei et al. [14, 15]
use an error minimization of (9) for derivative functionals without the detour via
shape functions.

This presentation looks unduly abstract, but it is not. It considers recovery with-
out any fixed assumptions about how functions are represented, how norms of errors
and functions are defined, and how bases are chosen. Therefore, it allows to compare
actual numerical strategies on a higher level. It goes back to the input data and con-
siders the output data, as functionals, the actual determination of the recovery map
being in a black box. The final goal in this paper is to see whether going for a small
error implies some sort of instability whatsoever, and this may be independent of
what happens in the black box.
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5 Special recovery strategies

When avoiding full functions, the recovery of a single value from given values
is trivial if for some . In more generality, one would pick the

functional that is “closest” to , and then take as an approximation of
. This is the nearest neighbour strategy, but it needs distances between function-

als, and requires to find the closest neighbour. Cases involving point geometry like
nearest neighbours or triangulations will be covered by the theory developed here,
but we do not include examples.

If a norm on is available, one can consider the approximation problem to
minimize

over all coefficients , denote a solution by and to approximate by

.

This avoids functions as well, but it requires norms in the dual space that users can
work with.

Special cases are Reproducing Kernel Hilbert spaces. They have a kernel
on an abstract set and define an inner product

where the application on arises as a superscript. Furthermore, each functional
defines a function

for all

and these functions have the inner product

making a Riesz representer of . It is then easy to prove that an optimal recovery
consists of the vector that solves the system

1 1 1 2 1

2 1 2 2 2
...

...
. . .

...
1 2

1

2
...

1

2
...

with a kernel matrix that usually is positive definite.
This looks theoretical again, but it applies to Sobolev spaces, having Whittle-

Matérn kernels, and therefore it is useful for solving PDE problems by recovery of
functions from PDE data. This recovery strategy has various optimality properties
[16] that we skip over here. See details on kernel-based methods in books by M.D.
Buhmann [17], H. Wendland [2], and G. Fasshauer/M. McCourt [3].

It also applies to Machine Learning [18]. On a general set , one has feature maps
that map the abstract objects to a real value like cost or weight or area. The
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kernel then is

with positive weights and the inner product

lets the above machinery work for regression, but details are omitted. Combining
the cases above, Machine Learning can “learn” the solution of a PDE using this
framework.

6 Dual trade-off principles

Throughout we shall assume that norms in and are defined and connected via
the suprema

sup
0

sup
0

. (10)

Take a functional and imagine that it is evaluating an error of a recovery
process. Then

1

holds for all functions with 1. If the error of the recovery
process is small, the norms of the functions must be large. In Section 8, we shall
connect these norms to the instability of the evaluation of function values of the
recovery.

Of course, there also is a dual version

1

for all functions and all functionals with 1. In Hilbert
spaces, one can minimize the second factors under the given constraint, and the
minimum is realized by Riesz representers.

Note that the above inequalities turn into equalities if the suprema in (10) are
attained for the functions or functionals in the second factors. Details and applications
will follow below.

It is essential that the two norms in the above inequalities are dual to each other.
If . allows and penalizes high derivatives, the functionals in will allow high
derivatives as well. Users might want the functional factor and the function factor to
use non-dual norms, but this is a quite different story.

These trade-off principles differ from certain standard algebraic ones involving
inversions like 1 1 for square nonsingular matrices . But

2 2 2 (11)

for vectors is a special case, because one of the vectors can be seen as a functional
acting on the other. If generalized to variances and a covariance or commutator,
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the latter case is behind the Heisenberg Uncertainty Principle after a few steps of
generalization.

7 Power functions and bump functions

We assume to have a finite set of functionals to recover functions
from their data via a recovery (7), and we evaluate the result by applying a
functional to .

Definition 1 The norm

(12)

is called the Generalized Power Function.

It leads to an error bound

for all (13)

and this is why we use it to deal with the recovery error.

Definition 2 A bump function satisfies 1 and 0.

Theorem 1 For any any functional that has a bump function , the
trade-off principle

1 (14)

holds, and
1

inf
inf
1 0

(15)

relates the minimal possible recovery error to the minimal possible norm of a bump
function.

Proof Just insert a bump function into (13).

Remark Power Functions, bump functions, and Lagrangians are independent of
bases. There is no escape from the Trade-off Principle by any change of basis, as
long as the recovery map or the space are kept fixed.

Remark Furthermore, recoveries, bump functions, and Lagrangians can be defined
without using norms or spaces. These come up when going over to a Power Function
and a norm of a bump function. Therefore, Theorem 1 does not only cover all possible
recoveries, but also all ways to handle errors and evaluation instability for these by
defining norms afterwards. Furthermore, (14) is local in the sense that it holds for
each specific . The right-hand side will vary considerably with , up to the limit
1 0 in the excluded case .
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While (14) is an add-one-in version, a special leave-one-out version is

1 (16)

if a bump function is available. And if the recovery is interpolatory, using a
Lagrangian , we get

1 . (17)

When using the leave-one-out version, it is a pitfall to assume that the recovery
arises from deleting the component from . The other components will still
depend on all functionals in .

8 Evaluation instability

Consider the evaluation of a linear formula like (8) when users have to take the data
as they are. Even if the numerical calculations are performed differently and

without roundoff, any absolute error in the input data will be multiplied by

(18)

in the worst case. If the result is as large as the recovery error, the recovery may be
too polluted to be useful.

Definition 3 Evaluation stability is the worst-case propagation factor for absolute
errors in the input data to absolute errors in the output values of the recovery.

To avoid misunderstandings, it should be pointed out again that evaluation stabil-
ity is independent of the recovery error. And it is independent of how the recovery
is numerically implemented. Evaluation instability may cause absolute worst-case
errors in recovery values that are much larger than machine precision, even in the
order of the attainable recovery error. Then this looks like preventing further con-
vergence. This effect is well-known from Runge phenomenon examples that may be
exponentially convergent in theory, but useless numerically.

If the above functional is a point evaluation , one can call (18) a
pointwise evaluation instability factor. If the functional varies in the dual of a
function space , the left-hand side of

sup
1

(19)

is the evaluation norm instability for the recovery measured in . If contains
functions with high derivatives, this also accounts for the instability of derivatives.
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Assume that the numerical recovery is not using the formula (8) that is directly
based on the data. If some basis 1 is chosen for data 1
and the linear system

1

1 (20)

is solved for coefficients 1 , the evaluation formula now is

1

. (21)

The worst-case amplification factor for absolute errors in this evaluation formula will
be

1

in the norm chosen on . This does not account for the possible stability problems
when solving the system (20) for the coefficients 1 .

No matter how exact the are, the above sum will be intolerably large if the
are intolerably large. This frequently happens for badly chosen bases, e.g. for

monomials and translates of kernels. But the evaluation stability of (8) often comes
out much smaller, e.g. in for Chebyshev polynomials on Chebyshev points, or
for kernel-based interpolation [19]. At this point, the chosen norm comes into play. If
(19) is evaluated for kernel-based interpolation using the native space , the results
of [1] and Section 10.8 usually give very large results, while [19] deals with the

norm and proves a good evaluation stability via boundedness of Lagrangians on
asymptotically uniformly placed data locations.

We add two other ways to see how norms of Lagrangians enter into the evaluation
stability. The norm of the interpolation as a map from data to functions in is blown
up for large -norms of Lagrangians due to

max sup
0

sup
0

max .

Summing up (17) in the interpolatory case, we get a trade-off principle

that lets the final factor grow when the error is small. Here, the norms in are
running over the , and we allow 1 1 1.

If we repeat the above argument in more generality using bump functions,
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shows that control over norms of bump functions implies control over the ,
and we saw above that these blow up absolute errors in the input data. Going on like
above, the evaluation is bounded above by

(22)

with 1 1 1 and where the norms on run over the values. The bound
factors into the linear influence of and and keeps the final factor as something
like a Lebesgue constant.

In a somewhat sloppy formulation, we summarize the above arguments as a trade-
off principle

Small errors imply large evaluation instabilities

that tacitly assumes that errors are measured via norms in while evaluation
instabilities are measured via norms in , the two being dual in the sense of Section 6.

Dealing with a non-dual situation, in particular with a weaker notion of evaluation
instability, requires much more machinery. A typical case is evaluation stability
governed by norms of Lagrangians for point evaluation data .
This is the standard path along Lebesgue functions and Lebesgue constants. For uni-
variate polynomial interpolation, this approach reveals that equidistant points have
an exponential instability, while Chebyshev-distributed points only have a loga-
rithmic instability. For kernel-based interpolation of function values, [19] proved
uniform boundedness of Lagrangians if point sets are asymptotically uniformly
distributed and if kernels have finite smoothness.

Here is a caveat. As long as there is no reasonable error bound yielding a
Power Function, Theorem 1 will be useless. There is no strict Trade-off Principle
under these circumstances. However, looking at evaluation stability without a bound
on the error still gives very useful information.

Remark Certain numerical techniques factorize the map from (7) like
. This occurs for changes of bases, e.g. the transition to Newton bases

for polynomials or kernel-based recovery [30]. The norm-based evaluation instability
will only change by

and not produce any improvement. The advantages lie in different numerical
algorithms that may have a better numerical stability.

9 Optimal recovery of functions

Like in the introductory example, there are interpolatory cases where the Lagrangian
satisfies (14) and (17) with equality. Then, by (15), the norms of the Lagrangians are
minimal under the norms of all bump functions, and the recovery process has minimal
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error. Though simple to prove, this seems to be a novel insight. Under certain con-
ditions satisfied for splines and kernel-based interpolation, this holds systematically
and in both directions:

Theorem 2 Assume that an interpolatory recovery process satisfies minimum-
norm and bounded-error properties, i.e.

inf and for all .

Then (14) and (15) hold with equality. The Lagrangian is the minimum-norm bump
function, and the recovery process has a minimal Power Function.

Proof We reformulate the Power Function via

sup
1

sup
1

where follows from replacing by , and follows from the minimum
error property, because the set of 1 contains the set of 1.
Then we go on by

sup
1 0

and note that van be written as for an arbitrary bump function . Now

sup
1

1

min
1

where the final line follows from the minimum norm property.

10 Examples of interpolatory recoveries

This section illustrates how the Trade-off Principle works under various circum-
stances. For the univariate cases in this section, we treat interpolation in 1 1 of
values of functions on points 0 and evaluation at some point . The
functionals are functionals, and everything can be expressed via the points. Other
cases stay with the original formulation via general functionals .

10.1 Connect-the-dots

The simplest univariate case is connect-the-dots piecewise linear interpolation, but it
has no choice of a space yet. The simplest is 1 1 under the sup norm,
the Lagrangians being hat functions, with constant extensions to the boundary, if
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boundary points are not given. Then there is no proper error bound, and (17) consists
of all ones.

If we keep the interpolation method as is, we can go over to zero boundary values
and 1

0 1 1 under the sup norm of the first derivative. An add-one-in
Lagrangian 1 based on three adjacent increasingly ordered points

1 will have the norm min 1
1. The add-one-in Power Function

on some 1 is

sup 1

sup 1
1

1 1 1

2 1

1

and for the Trade-off Principle we get

1 1
0 1 1

2 1

1 min 1
2 max 1

1

being between 1 and 2.
If takes the 2 norm of first derivatives, we are in a standard spline situation

[20] and Theorem 2 applies. This illustrates that the Trade-off Principle works locally
and for all possible norms when the recovery problem is fixed to be connect-the-dots.

10.2 Taylor data

Here is a rather academic but mathematically interesting case. Take a space of
univariate real-valued functions on 1 1 that have complex extensions being
analytic in the unit disc, and consider Taylor data functionals 0
for 0. Then write the functions by their Taylor series

0

and define a norm in by

2

0

2 2

where the positive weights satisfy the constraint

0
2

. (23)

This generates a Hilbert space of functions whose reproduction formula is the Taylor
series, see [21] for plenty of examples, including Hardy and Bergman spaces. The
interpolation here is just a partial sum of the Taylor series, while it works by kernel
translates in [21].

Now the monomials are the Lagrangians for the , with norms 2 2 .
And Theorem 2 holds because we just chop the Taylor series. Consequently,
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inequalities (14) and (17) are satisfied by equality, and we also know that the Power
Function in the leave-last-out form is

1 .

We treat the add-one-in case in the next section.
Note that all cases will behave like that if they take expansions into series of

Lagrangians as their underlying space , with weights for the expansion coefficients.

10.3 Orthogonal series

Now assume that a space carries an inner product and allows an orthonormal basis
0 1 , while the data functionals are . Again, the Lagrangians

are the expansion basis, and we have Fourier series as a prominent example. If only
such functionals are considered, this is a trivial case, because all Lagrangians and
Power Functions have norm one.

Now let be a different functional, and we construct the norm-minimal bump
function of the form

.

Under the constraint 1, we have to minimize

2 2

and by standard optimization arguments this results in

2
2 2

1

yielding the byproduct

2 2

because Theorem 2 holds.

10.4 Recovery in Hilbert spaces

Assume that a set of linearly independent data functionals 1 from the
dual of some Hilbert space is given. This approach contains generalized finite
elements using 1

0 and 2 for test functions
. Symmetric kernel-based collocation methods for solving PDEs are also covered

[16]. It satisfies Theorems 1 and 2 after minimization in (15). The optimal recovery
by optimizing the left-hand side of (15) necessarily uses the subspace spanned by the
Riesz representers of the . The optimized bump functions from the right-hand side
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are the Lagrangians in such spaces. These are classical optimality properties of the
Rayleigh-Ritz technique. Like in Section 10.3, the optimal situation has

2 2

1

2 2

if the are assumed to be orthonormalized. Details are left to the reader.

10.5 Splines

These are cases where Theorem 2 applies, if they are written in their Hilbert space
context. Power Functions can be calculated via reciprocals of norms of Lagrangians.
But the theory of this paper allows plenty of nonstandard approaches to splines as
well, using different norms.

10.6 Polynomial interpolation

Here, the choice of the space needs special treatment, but we keep the data
being values at points 0 forming a set to enable exact interpolation by
polynomials of degree or order 1.

The classical way to deal with this is to take 1 1 1 and to concen-
trate on the 1 -st derivative only, i.e. taking the seminorm 1 .
This brings us back to the introductory example in Section 1. See how (2) works
locally, up to the limit 1 0 in case . Choosing other norms will lead
to different results. When restricted to polynomials, the next section treats a special
case.

10.7 Norms via expansions

Our univariate model case here is dealing with functions in chebfun style (T.
Driscoll et al. [22]), where is a space of functions on 1 1 having expansions

0

into Chebyshev polynomials, and where the norm takes nonnegative weights of
the coefficients, e.g.

2

0

2 .

But it should be clear that one can use other expansions as well, including multivariate
cases.

This is a reproducing kernel Hilbert space setting in disguise by

0
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and

0

and the kernel is

0

.

This holds in general, but for the Chebyshev case this is a periodic setting in disguise,
because of

cos cos
0

cos cos
.

If we would treat this like in kernel-based spaces, interpolation would be done by
linear combinations of non-polynomial functions , and it would be norm-
minimal and error-minimal. Taking 0 for in the Chebyshev case, this
falls back to polynomial interpolation of degree using a basis of

0

0 .

The Lagrangians and the Power Functions are invariant to basis changes, and the
kernel-based viewpoint shows that Theorem 2 holds. This opens an easy access to
the Power Function via the reciprocal of the -norm of the Lagrangian.

In general, by solving

0

0

one gets the expansion coefficients of the Lagrangians , and then the reciprocal
of

2

0

2

gives the square of the leave-one-out Power Function on the left-out point . To get
a add-one-in Power function, start with 1 points and add another point .

In the Chebyshev situation handling only point evaluations, the Chebyshev-Van-
dermonde matrix is particularly well-behaving if the points are Chebyshev-
distributed, as extrema of or zeros of 1.

But note that the above approach applies to all expansion-based spaces where the
generating functions are not the Lagrangians of the data functionals . The cru-
cial matrix has entries and is a generalized Vandermonde matrix with possibly
awful behaviour.
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We want to check the add-one-in Power function

sup
1 0

sup
1 0 0

sup
1 0

with

0

0

being the error on . We see that 0 for and can proceed to optimize
under the constraint

2

0

2 1

to get

2

1

2
1

2

1
.

The add-one-in Lagrangian arises as

1 1

and if rewritten as

1 1

0 0

1

1

the norm is

1
2

1

0

2
1 1

such that
2 1

2

1
2

1

1
2

satisfies (14), but not necessarily with equality, except when only 1 is nonzero.
If one uses 11 interpolation points and an additional point at 0.9056, Fig. 1

shows norm-minimal bump functions and Lagrangians. The bump functions used
Chebyshev polynomials up to order 121 to get leeway for norm minimization, and
the weights on the were 1 2. The left plot is for Chebyshev points, the
right for equidistant points. The norms of Lagrangians versus bump functions were
4.43 versus 2.43 for equidistant points, and 19.47 versus 3.3 for Chebyshev points.
The product of the Power Function with the norm of the bump functions came out as
2.62 and 1.30 instead of one.
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Fig. 1 Bump functions and low-order Lagrangians for Chebyshev(left) and equidistant points

10.8 Kernel-based recovery problems

The goal of this section is to include the Trade-off Principle of [1] as a special case,
though it looks different, considering eigenvalues of kernel matrices there.

Assume a generalized interpolation using a set 1 of linearly
independent functionals and the trial space for a
positive definite kernel on a set . The kernel matrix has entries

1

in the inner product of the dual of the native space for and is positive def-
inite. By standard arguments from Optimal Recovery in Reproducing Kernel Hilbert
Spaces, Theorem 2 holds, and we have a Trade-off Principle in the form (17) for
Lagrangians with equality.

But the result of [1] looks different. To see the connection, recall that the squared
Power Function for the add-one-in situation is the quadratic form

1
1

...

1

1 1 1 1
...

...
. . .

...
1

1
1

...

where the are the Lagrangians. The proof of the trade-off principle in [1] proceeds
via the smallest eigenvalue of the matrix and ignores norms of Lagrangians. Further-
more, it is just an inequality in its original form, while Theorem 2 yields an equation
and is much more general.

To see how [1] could have proven equality in (17) more than 25 years earlier,
we look at the connection now. This requires to identify the quadratic form with the
reciprocal of 2 . Consider the function based on the extended set of func-
tionals and with coefficients 1 1 . Then the matrix-vector
product above gives the data, and the quadratic form above is the -norm squared.
The function is
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and it is the function where the alternative form

sup
1 0

of the Power function attains its supremum, up to a factor [23]. Thus, 0 and

.

But the above discussion shows that 2 2 , proving 2 . This
implies 2 and

2 2 4 2

to arrive finally at the Trade-off Principle in the form

1 2 2 .

Remark As long as the recovery map , the evaluation functionals and the cho-
sen space are fixed, there is no escape from the Trade-off Principle in the above
form by changes of bases, because both ingredients are basis-independent. Of course,
basis changes help, but in a different way. For instance, choosing a special basis and
proceeding via (21) may give a much better evaluation stability than choosing
simpler bases. The Trade-off Principle for strong norms is unaffected. In general,
one can sacrifice small errors for better evaluation stability by changing the recovery
strategy or the chosen norms.

Remark Once the functionals are fixed, one can vary the kernel, with respect to
smoothness and scale. The Trade-off Principle will hold as an equality in all cases if
the norm is defined via the native space for the kernel and the scale.

11 Unsymmetric case

The previous two sections still used interpolation and Lagrangians. But there are
much more general cases, e.g. for PDE solving by unsymmetric meshless methods. In
the latter case, users have no freedom to choose the data functionals, because they are
prescribed by the PDE to be solved. The functionals will generate boundary values
or values of the differential operator in the interior. We further assume that the user
prefers a certain sort of trial functions that should finally approximate the true PDE
solution very well. In cases with well-posedness in the sense of Real Analysis, it
suffices to come up with such a solution even if there is no uniqueness of the recovery
procedure [5].

Before we look at the trial space, recall that optimal Power Functions are purely
dual objects,

min

not depending on trial spaces, and will always outperform other solutions, error-wise.
Norm-minimal bump functions will also not be dependent on trial spaces. and if
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restricted to some trial space, their norm will not be minimal. In view of a Trade-off
Principle, this means that non-optimal recovery methods will sacrifice smaller errors
for larger stability.

Anyway, we now consider a set of data functionals 1 and set of trial
functions 1 from some normed space of functions, spanning a subspace

. These two ingredients determine a generalized Vandermonde matrix of
size with entries that is in the theoretical background, though cer-
tain algorithms will never generate it as a whole. We also assume that there may
be an unknown numerical rank that limits the practical use of the matrix as is. This
occurs in plenty of kernel-based methods, and even in square cases there
may be a rank loss that occurs while the matrix condition in the sense of MATLAB’s
condest is still tolerable.

There are many ways to deal with this situation, and here we assume that the
practically applied technique uses an matrix that calculates coefficients for
the trial space basis for a given data vector . By an -vector of the basis
functions, the result is a function , and evaluation of a functional has the
error

1 1 1
(24)

for quasi-Lagrangians

1

1 (25)

leading to the Power Function being the dual norm

1 1

. (26)

Bump functions are not necessarily connected to the trial space chosen. If there exists
a bump function , the Trade-off Principle (14) applies for the above Power Func-
tion. The next section will treat a special case in more detail, because it has a huge
background literature in applications.

11.1 Unsymmetric collocation

An important example for solving PDEs via a recovery of functions is unsymmetric
collocation, named after Edward Kansa [24]. Here, we confine ourselves to a standard
Poisson problem (5) discretized as (6) for simplicity. One chooses a reproducing
kernel Hilbert space of functions on that matches the expectable smoothness of
the solution, and implements the PDE via test functionals, as sketched in Section 3.
The functionals in (6) may be renamed as 1 to match
the notations used above. But note that will usually exceed .

Symmetric collocation takes a space of trial functions where these test functionals
act on the kernel , and this is an optimal recovery strategy [16] in the space , with
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good convergence properties [25, 26]. The trade-off principle for this was treated in
Section 10.8.

The unsymmetric approach takes a set of trial functionals 1
to generate trial functions

1 .

The notation is now like in Sections 10.7 and 11, but we have not yet specified how
we choose the matrix of (24).

For calculation of the Power Function, we use (24), define the quasi-Lagrangians
from (25) and get

2

2

in self-evident kernel matrix notation and . The Power Function
for symmetric collocation replaces by the solution of the system
and therefore realizes the minimum of the quadratic form over all possible vectors .

Figure 2 shows squares of Power Functions for unsymmetric collocation of a
Poisson problem with Dirichlet data on the unit square. The setting has 121 regu-
lar interior points, 16 regular boundary points, 121 regular trial points and uses a
Matern-Sobolev kernel of order 5 at scale 1. The matrix was the pseudoinverse of
the generalized Vandermonde matrix .

The corresponding squares of optimal Power Functions from symmetric collo-
cation are in Fig. 3. They are not substantially smaller, just by a factor of about
1 2.

Norm-minimal bump functions exist and have norms that are related to the optimal
Power Function via Theorem 2 by equality in (16) and (17). They are Lagrangians
for the symmetric setting. Therefore, the right-hand sides of these inequalities get
larger when the Power Function is inserted. The reciprocals of squared norms
of the optimal bump functions are visualized in Fig. 3, because they coincide with
the square of the optimal Power Function. Special bump functions in the trial space
of the unsymmetric case will usually not exist if .

But it may be an advantage of the unsymmetric technique that its evaluation is
based on quasi-Lagrangians instead of Lagrangians.

Fig. 2 Squares of Power Functions in interior and on boundary, for unsymmetric collocation
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Fig. 3 Squares of optimal Power Functions in interior and on boundary, for symmetric collocation

The columns of have the coefficients of the quasi-Lagrangians in the trial
basis, and therefore their squared norms 2 are in the diagonal of the matrix

where is the standard kernel matrix for evaluations in trial points
[23]. Figure 4 shows the reciprocals of these, in order to compare with the squared
optimal Power Functions in Fig. 3. These results come out only on the data locations,
without any plotting refinement. The values are larger by about a factor of 18 than
those of the square of the optimal Power Function, indicating that the squared norms
of the quasi-Lagrangians are smaller than those of the Lagrangians for the symmetric
case by a factor of 1 18.

Summarizing, unsymmetric collocation works at a larger error level than symmet-
ric collocation, but gets better evaluation stability by using quasi-Lagrangians. The
norms are kept fixed.

11.2 Regularization of linear systems

Assume an overdetermined linear system with an matrix . The
spaces and then are . After a Singular Value Decomposition, the new

Fig. 4 Reciprocals of squares of norms of Quasi-Lagrangians in interior and on boundary
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system is where the diagonal of carries the nonnegative singular
values 1 . Formally, we set the to zero. Then

for 0 else 0

for 0 else 0

if there is no regularization for small . By some elementary Linear Algebra,

2

0

2.

All bump vectors satisfy 0 for 0 and

1
0

leading to the Trade-off Principle

1 2 2
2

that takes the classical form (11) here. If a Tikhonov-type regularization uses

for all

the bump functions stay the same, but the Power Function increases to

2 2
2

2
.

In the square nonsingular case, the Power Function is zero and there are no bump
functions, leading back to the excluded 1 0 situation.

12 Greedymethods

Assume the add-one-in situation, and consider an optimal to be added to for
an extended problem. In view of the Trade-off Principle, one should either take to
maximize or to minimize . In cases satisfying Theorem 2, these strate-
gies coincide. This aims at good stability and uses new functionals that cope with the
current maximal error to make it zero in the next step. During a greedy method like
this, the product in (14) stays above 1 and the first factor goes to zero, while the sec-
ond increases. Again, this shows that large evaluation instabilities do not contradict
convergence.

For interpolation of function values by polynomials, this leads to Leja points ([27],
see also the survey by St. De Marchi [28]), while for kernel-based interpolation this is
the -greedy method of [23]. Under certain additional assumptions, these strategies
are approximately optimal in the sense that they realize -widths (G. Santin and
B. Haasdonk [29]), i.e. they generate trial spaces that are asymptotically optimal
under all other trial spaces of the same dimension. They can be combined with the
construction of Newton bases on-the-fly [30], but we omit further details.
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13 Outlook and open problems

The technique used in this paper is very elementary, and it is possible that there are
earlier results on Trade-off Principles. On instance is [31] by Platte et al. proving that
exponential convergence of polynomial interpolants implies exponential instability
in case of equidistant points. Though the instability notion is different there, this can
be seen as a case where a convergence rate is connected to a comparable rate of
instability. This paper proves in general that all convergence rates have at least their
exact counterpart in rates of evaluation instability when using dual norms. Such rates
will change, e.g. when point locations are changed.

There are many more cases that fit into this paper, e.g. Finite Elements or
spaces of multivariate splines. If errors are decreased by extended smoothness proper-
ties, there always will be an increasing evaluation instability. The connection between
smoothness properties and convergence rates is a well-known Trade-off Principle
in Approximation Theory, holding for several important cases, but a general theory
seems to be lacking.

The same holds for a hypothetical Trade-off Principle suggesting that strongly
localized methods cannot have small errors and/or large smoothness.

Handling the non-dual case is an open problem as well, in particular for
evaluation stability.

If users have strong reasons to insist on very good accuracy and on evaluations of
high derivatives, they have to face serious evaluation instabilities. Then it is a chal-
lenge to cope with these, including regularizations and other changes to the recovery
map . The literature on kernel-based methods provides several of such techniques,
e.g. Contour-Padé [32], RBF-QR [33], and RBF-GA [34] by the group around Bengt
Fornberg, and Hilbert-Schmidt-SVD by Fasshauer/McCourt [3, Chapter 13]. Greedy
methods from Section 12 fight evaluation instability by choosing functionals or
evaluation points adaptively.
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