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Abstract. Cone-nets are conjugate nets on a surface such that along each
individual curve of one family of parameter curves there is a cone in
tangential contact with the surface. The corresponding conjugate curve
network is projectively invariant and is characterized by the existence of
particular transformations. We study properties of that transformation
theory and illustrate how several known surface classes appear within
our framework. We present cone-nets in the classical smooth setting of
differential geometry as well as in the context of a consistent discretization
with counterparts to all relevant statements and notions of the smooth
setting. We direct special emphasis towards smooth and discrete trac-
trix surfaces which are characterized as principal cone-nets with constant
geodesic curvature along one family of parameter curves.
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1. Introduction and Preliminaries

1.1. Introduction

Consider a surface and an arbitrary curve on that surface which is not an
asymptotic curve. The set of all tangent planes along that surface envelops a
generic developable surface. The focus of our paper lies in the investigation of
surface parametrizations such that the enveloping developables of one family
of parameter curves are not generic developable surfaces but merely cones.
Therefore we use the name cone-nets for our parametrizations. Note that our
cone-nets are not to be confused with the so called conical nets which are
discrete nets with planar faces such that at each vertex the adjacent faces
around that vertex are in tangential contact with a cone of revolution [1].
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The study of our cone-nets has been motivated by the fabrication idea
of cladding surfaces with developable strips. The aspects of cladding surfaces
with general developable surfaces—not necessarily just cones—have also been
investigated in the context of approximating surfaces, for example in [2,3] in
a non-parametrized way, or in the theory of curved crease paper folding (see,
e.g., [4]).

Moreover, strip-models of surfaces have been investigated in different con-
texts. For example strip-models have been used to develop a better understand-
ing of classical smooth differential geometry by replacing smooth surfaces with
discrete surfaces. R. Sauer has systematically started to study these discrete
counterparts to gain a better understanding of the classical smooth setting
[5–7]. By introducing this methodology he laid the ground for the now highly
active research field of discrete differential geometry (see, e.g., [8]) to which
the second part of the present paper can be counted. In particular R. Sauer’s
investigation of surfaces of revolution [5,6] which he approximated by a col-
lection of cones of revolution can be seen as a first example of a much bigger
class of surfaces which are now called semi-discrete surfaces. These surfaces
have a smooth and a discrete coordinate direction and are therefore partic-
ularly interesting in the context of cladding surfaces from developable strips
with the view towards applications [1] but have also led to a new concept in
differential geometry [9]. The results of the present paper could be transferred
to the semi-discrete setting, but we will refrain from that as our focus lies on
the smooth and the purely discrete setting.

Cone-nets form a particular subclass of surface parametrizations namely
so called conjugate nets. Conjugate nets have extensively been studied in the
nineteenth and twentieth century [10]. Within that class of nets the Kœnigs
nets (see, e.g., [8]) form a subclass which are characterized by the existence
of transformations. We develop a similar characterization of our cone-nets by
the existence of so called conical Combescure transformations.

Our cone-nets include and generalize some known surface parametriza-
tions. For example cladding surfaces with strips of just cylinders (instead of
cones in our case) has been studied in [11,12]. They are considering foliations
of surfaces with “planar geodesics” whereas our cone-nets parametrize “spher-
ical curves of constant geodesic curvature”. From the application point of view
the special case of cylinders plays an important role. For example, there are
industrial glass tempering and bending machines for manufacturing hot and
even cold bent glass in the shapes of cylinders. The even more special case of
approximating surfaces with just right circular cylinders has been mentioned
in [13]. Another example are the discrete canal surfaces in [14] which appear
as a special case of our definition of discrete canal surfaces. One further exam-
ple are the multi-Q-nets [15] which appear in our context as so called double
cone-nets. The projective dual of our cone-nets, i.e., networks on surfaces with
planar cuves have been studied with a view towards applications in [16]. More
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investigation in practical methods for the (computational) design of cone-nets
will be addressed in a forthcoming paper.

Our paper consists of two corresponding sections where we develop the
smooth theory in Sect. 2 which we then discretize in Sect. 3 by following dis-
cretization principles as understood in [8].

1.2. Preliminaries

An important role in our paper play developable surfaces. A surface is called
developable if it is (locally) isometric to the plane, or equivalently, if the Gauss
curvature vanishes identically (see e.g., [17]). Developable surfaces devide into
three categories: cylinders, cones, and tangent surface.

Developable surfaces are ruled surfaces and can therefore be parameter-
ized in the form

d(s, t) = c(t) + se(t),

where c : R ⊃ I → R
3 is called directrix and e : R ⊃ I → R

3 \ {0} is the ruling
direction.

The rulings of a tangent surface are the tangent lines of a space curve.
This curve is called the curve of regression and consists of the singular points
of the tangent surface.

The tangent planes along each ruling of a developable surface are iden-
tical. In other words, the direction of the normals of d do not depend on s.
Consequently, ds×dt = e×(ct+set) points in the same direction independently
of s if and only if

det(e, et, ct) = 0. (1)

We say that the developable surface is enveloped by its tangent planes. And
also vice versa any generic (and smooth enough) one-parameter family of
planes envelopes a developable surface [17].

The envelope of the tangent planes along a curve on a surface is the
developable surface which is enveloped by the tangent planes along that curve.
That envelope degenerates if the curve is an asymptotic curve on the surface.

The focus of our investigation lies primarily in local properties of suffi-
ciently smooth curves and surfaces. We can always assume our surfaces to be
parameterized by f : R2 ⊃ U → R

3.
We will be working a lot with so called conjugate nets which form a

particular class of nets in projective differential geometry but can easily be
described in terms of classical differential geometry.

Definition 1. A parameterization f : R2 ⊃ U → R
3 is called conjugate or a

conjugate net if in each point the mixed partial derivative is parallel to the
tangent plane (or vanishes), i.e., there exist a, b : U → R such that fuv =
afu + bfv.



  110 Page 4 of 40 M. Kilian et al. Results Math

Conjugate nets are also characterized by the following well known lemma
where we consider the envelope of the tangent planes along the u-parameter
curves (i.e., isolines with fixed parameter v) of a smooth net f(u, v).

Lemma 1. For any fixed v the ruled surface parameterized by (see Fig. 1 left)

(s, u) �→ T (s, u, v) := f(u, v) + sfv(u, v)

is developable if and only if f is a conjugate net.

Proof. Developability of T is equivalent to the vanishing determinant (cf.
Eq. (1))

det(fv, fuv, fu) = 0,

which is equivalent to f being conjugate. �

We will denote the one-parameter family of envelopes of tangent planes
by T (s, u, v).

2. Smooth Cone-Nets

In this section we will define cone-nets which constitute a class of nets, i.e.,
surface parameterizations, with a one-parameter family of cones in tangential
contact with the curves of one family of parameter curves. This class of nets
is very rich and exists on every surface at least locally. We will give examples,
develop a transformation theory for such nets and classify special cases.

2.1. Smooth Cone-Nets

We start with the definition of cone-nets and illustrate how they are charac-
terized among conjugate nets.

Definition 2. We call a net, i.e., a parameterization of a surface, cone-net if all
envelopes of tangent planes along all u-parameter curves (or all v-parameter
curves) are cones or cylinders. The net is called a proper cone-net if all en-
velopes of tangent planes along all u-parameter curves (or all v-parameter
curves) are cones with a proper cone tip.

If not stated otherwise, we will always assume that the tangential cones
are in contact with the surface along the u-parameter curves of cone-nets.

In projective geometry cones and cylinders are indistinguishable and since
projective transformations keep tangential contact between surfaces we obtain
that cone-nets are invariant under projective transformations.

Lemma 2. A conjugate net with fuv = afu + bfv is a cone-net, with tangential
cones along u-parameter curves, if and only if ab = au and a cone-net, with
tangential cylinders along u-parameter curves, if and only if a = 0.
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Proof. We start with the cylinders. A cylinder is tangent to a u-parameter
curve of a conjugate net if and only if the partial derivatives fv are parallel
along that curve. This is the case if and only if

0 = ∂u
fv

‖fv‖ =
‖fv‖fuv − fv∂u‖fv‖

‖fv‖2 ,

which is equivalent to fuv = bfv, i.e., if and only if a = 0.
Let us now assume that the envelope of tangent planes is not a cylinder,

i.e., a �= 0. The curve of regression r consists of the singular points of that
envelope T . It is characterized by those parameters s where Tu × Ts = 0.
Hence, from

0 = Tu × Ts = (fu + sfuv) × fv = fu × fv + safu × fv

we get s = − 1
a and consequently r(u, v) = T (− 1

a(u,v) , u, v) = f(u, v) −
1

a(u,v)fv(u, v) as curve of regression for each fixed v.
However, the envelope of the tangent planes for any fixed v is not just an

arbitrary tangent surface. It is a cone which means that the curve of regression
degenerates to a point—it does not depend on u. Therefore, it is a cone if
ru = 0, hence,

0 = ru =
(au

a2
− b

a

)
fv

and consequently ab = au. �

From this proof we conclude that the curve of tips of the enveloping cones
is parameterized by

r(v) := f − fv

a
. (2)

Any surface can be parameterized, at least locally, by a cone-net. A possi-
ble generation of such a net can be explained with a simple geometric construc-
tion which, for a special case, was already known to Böklen [18]. Consider a
point light in space (the point can also be a point at infinity) which sheds light
onto the surface (cf. Fig. 1 left). The light cone consisting of rays connecting
the point light with the silhouette is a tangential cone in our sense. Moving the
point light along a curve yields a one-parameter family of silhouettes which
form u-parameter curves of a cone-net. Böklen [18, 10. on p. 69] describes the
construction of that special case where the curve of point lights is a straight
line.

2.2. Examples of Cone-Nets

There are some well known and commonly used surface parameterizations
which are also cone-nets.

Example 1. The typical parameterizations of surfaces of revolution with merid-
ian curves and parallel circles are cone-nets in both directions. The tangential
cones along the parallel circles are rotationally symmetric and have their cone
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Figure 1. Left: A surface f and a tangential cone T with
cone tip r. We can interpret the point r as a point light and T
as the light cone consisting of rays connecting the point light
with the silhouette. In each point of the silhouette its tangent
line and the corresponding ruling of T are conjugate tangents.
Center: A parabola r is the base curve of a general tractrix
with initial point γ(u0). If γ describes a curve, we obtain a
generalized tractrix surface, see Example 5 and Sect. 2.5.1.
Right: A tractrix surface generated by dragging a spherical
curve γ along a space curve

tips on the axis of revolution. The tangential cones along all meridian curves
are cylinders.

Example 2. Canal surfaces are surfaces enveloped by a one-parameter family
of spheres. These spheres are in tangential contact with the canal surface along
a circle which constitute one family of curvature lines. Along these circles we
have cones of revolution in tangential contact with the canal surface along these
circles. Therefore, curvature line parameterizations (or principal nets) of canal
surfaces are cone-nets. Surfaces of revolution, Dupin cyclides, and tubular
surfaces (canal surface with constant radius spheres) are special canal surfaces.
We will revisit canal surfaces in the context of principal nets in Sect. 2.5.2.

Example 3. Translational surfaces f are generated as the sum of two curves g
and h:

f(u, v) := g(u) + h(v).

There are cylinders in tangential contact along both parameter curves. Trans-
lational surfaces are therefore cone-nets. Any projective transformation of a
translational surface generates a double cone-net (see also Sect. 2.4) whose
curves of cone tips lie in a plane which is the image of the plane at infinity.

Example 4. Any suitable smooth enough family of planes intersects a quadric
in a smooth family of conics. The envelope of tangent planes along such a
conic is a cone whose vertex is the projective pole of the plane with respect to
the quadric. These poles form the curve r of cone tips. The directions of the
rulings of the cones are conjugate to the tangents of the conics.
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Example 5. A tractrix curve is the locus of the endpoint of a stick dragging
behind while the other end moves along a straight line. A generalization of
that idea is moving one end along an arbitrary space curve r instead of a
straight line, see Fig. 1 (center). With this method we can obtain a - what
we call - generalized tractrix surface if we drag each point of a space curve γ
(Fig. 1 right) along another space curve r. In this way each parameter line is
a generalized tractrix curve. We will revisit (generalized) tractrix surfaces in
Sect. 2.5.1.

As a special case the curve γ can lie in its initial position on a sphere
with center on the base curve r. We refer to them as tractrix surfaces since
all “sticks” are of the same length. In that case the foliation of parameter
curves that is traced out by draging γ consists of curves with constant geo-
desic curvature. The net of parameter curves on a tractrix surface generated
this way generalizes the nets from [11,12]. They are considering foliations of
surfaces with planar geodesics. So the analogy is “planar geodesics” vs. “spher-
ical curves of constant geodesic curvature”.

Example 6. T-surfaces are conjugate nets with planar coordinate curves such
that the two families of planes that carry the curves intersect each other or-
thogonally (see, e.g., [7,19,20]). Up to a Euclidean motion every T-surface f
can be constructed by a one-parameter family of two-dimensional affine trans-
formations αv and a curve c(u) = (x(u), 0, z(u)) in the xz-plane such that

f(u, v) =
(

αv
(

x(u)
0

)
z(u)

)
,

i.e., every vertical profile curve of f is constructed from c by a non-uniform
scaling (just in x-direction) and a rotation around a z-parallel axis. See Fig. 2
(left) for a discrete T-surface.

Special sub-classes of T-surfaces are surfaces of revolution and transla-
tional surfaces. The tangent planes along a vertical profile curve of a T-surface
envelope a cylinder with horizontal rulings. Projective transformations of T-
surfaces are cone-nets with all cone tips on a straight line which is the image
of the line at infinity (see Fig. 2 right).

2.3. Transformation of Cone-Nets

A classical topic in differential geometry is the transformation of surfaces [8,
10]. A particular focus lies on the transformation of conjugate nets. In this
section we introduce a transformation for cone-nets. Thereby, a cone-net is
transformed to a parallel cone-net in the following sense.

Definition 3. Two nets f, f∗ : R2 ⊃ U → R
3 are said to be parallel or related by

a Combescure transformation, if at each point corresponding partial derivative
vectors are parallel, i.e., fu ‖ f∗

u and fv ‖ f∗
v . The net f∗ is called Combescure

transform of f and vice versa.
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Figure 2. Left: A discrete T-surface. All faces are trapezoids.
The horizontal edges of each vertical strip in the image are
parallel to each other and must therefore lie on a cylinder.
Right: A projective transformation of the T-surface on the left.
The tangential cylinders of the T-surface have been mapped
to tangential cones which have their cone tips on a straight
line

Theorem 3. Let f : U → R
3 be a conjugate net with fuv = afu + bfv, for some

a, b : U → R, where a �= 0. Furthermore, let λ : U → R be a function only
depending on v, i.e., λu = 0. Then for all such λ there exists a Combesure
transform f∗ with

f∗
u = λfu and f∗

v =
(
λ +

λv

a

)
fv

if and only if f is a proper cone-net. Furthermore, f∗ is a proper cone-net as
well and has the following form up to translation

f∗ = λf −
∫

λv

(
f − fv

a

)
dv = λf −

∫
λvr dv.

Proof. The net f∗ exists if and only if the integrability condition (f∗
u)v = (f∗

v )u

holds. We have

(f∗
u)v = (f∗

v )u

⇔ λvfu + λfuv =
(
λu +

λuva − λvau

a2

)
fv +

(
λ +

λv

a

)
fuv

⇔ λvfu + λ(afu + bfv) = −λvau

a2
fv +

(
λ +

λv

a

)
(afu + bfv)

⇔
(λvau

a2
− λvb

a

)
fv = 0,

because λu = λuv = 0. Since the last equation must hold for any λ, it is
equivalent to ab = au. Consequently, the existence of f∗ is equivalent to f
being a cone-net.
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After setting a∗ := λv+aλ
λ and b∗ := λau

λv+aλ we obtain f∗
uv = a∗f∗

u + b∗f∗
v .

To show that f∗ is also a cone-net we must verify that b∗ = a∗
u

a∗ . We have

a∗
u

a∗ =
[(λuv + auλ + aλu)λ − (λv + aλ)λu]λ

λ2(λv + aλ)
=

λau

λv + aλ
= b∗.

To obtain the expression for f∗ we have to integrate f∗
u = λfu and f∗

v =(
λ + λv

a

)
fv. Since λ does not depend on u, integration of f∗

u by u yields

f∗ = λf + c(v)

with some function c(v). Differentiating this equation by v yields

f∗
v = λvf + λfv + cv.

Comparing this with the definition of f∗
v implies

c(v) = −
∫

λv

(
f − fv

a

)
dv= −

∫
λvr dv,

which is indeed independent of u and yields the integral representation of
f∗. �

Definition 4. We call the Combescure transformations from Theorem 3 which
map cone-nets to cone-nets conical Combescure transformations or CCT for
short. For a given cone-net f and a non-zero function λ we denote the conical
Combescure transform by Cλ(f).

Lemma 4. The set of transformations {Cλ | λ non-zero function} is a commu-
tative group with respect to composition. The inverse of Cλ is given by C 1

λ
and

the neutral element is the identity map C1.

Proof. The group operation is the composition of maps, hence, we have to
show

Cμ(Cλ(f)) = Cλμ(f)

for all non-zero functions λ, μ. Since a Combescure transformation determines
the transformed surface only up to a translation, we consider the derivatives:

Cμ(Cλ(f))u = λμfu = Cλμ(f)u

Cμ(Cλ(f))v =
(
μ +

μv

a∗
)
f∗

v =
(
μ +

μv

λv+aλ
λ

)(
λ +

λv

a

)
fv

=
(
λμ +

(λμ)v

a

)
fv = Cλμ(f)v,

which is what we wanted to show. �

From Eq. (2) we know that the tips of the enveloping cones lie on the
curve r(v) = f − fv

a . The curve of the tips of a CCT of f can be computed
from r and λ.
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Lemma 5. After a CCT the curve of tips of the one-parameter family of en-
veloping cones becomes up to translation

r∗(v) :=
∫

λrv dv. (3)

The line segments, connecting the enveloped surface f with the curve r are
scaled by λ, i.e.,

r∗(v) − f∗(u, v) = λ(v) · (r(v) − f(u, v)).

Proof. By the same argument as in the proof of Lemma 2 the curve of the
cone tips corresponding to f∗ is given by

r∗(v) = f∗ − f∗
v

a∗ = λf −
∫

λv

(
f − fv

a

)
dv − λ

λv + aλ

(
λ +

λv

a

)
fv

= λ
(
f − fv

a

)
−

∫
λv

(
f − fv

a

)
dv = λr −

∫
λvr dv =

∫
λrv dv.

For the line segments generating the cones we obtain

f∗ − r∗ =
f∗

v

a∗ =
λ

λv + aλ

(
λ +

λv

a

)
fv = λ

fv

a
= λ(f − r),

which concludes the proof. �

Corollary 6. Conical Combescure transformations have the following proper-
ties:

(i) Corresponding u-parameter curves of a cone-net f and its CCT f∗ are
related by a homothety.

(ii) For constant λ ∈ R \ {0} the corresponding CCT acts on the net as
similarity with scaling factor λ, i.e., Cλ(f) = λf up to translation.

(iii) CCTs are preserving angles between parameter curves at corresponding
points (since all Combescure tranformations preserve parallelity between
tangents in corresponding points).

(iv) If f is a principal net (i.e., conjugate and orthogonal), than for any λ
the corresponding CCT f∗ is also a principal net.

Even though cone-nets are projectively invariant, CCTs do not commute
with projective transformations. However, affine transformations α do com-
mute with CCTs:

f
Cλ−−−−−−−−→ f∗

α
⏐⏐


⏐⏐
α

α(f)
Cλ−−−−−−−−→ α(f∗)

The reason why projective transformations do not commute with CCTs
is that in contrast to affine transformations the change of direction of straight
lines depends on its location in space. Consider, for example, a projective
transformation κ that maps a plane ε to infinity. We can choose f with a
curve of proper cone tips r in R

3 which does not intersect ε, but such that the
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curve of cone tips r∗ of Cλ(f) does intersect ε. Then κ◦f only contains proper
cones whereas κ ◦Cλ(f) contains tangential cylinders which we can not get rid
of by any CCT.

2.4. Double Cone-Nets

Cone-nets are not symmetric in its definition. The two parameter curves are
treated differently. The existence of a tangential cone is assumed only for one
family (usually along u-parameter curves). However, it poses an interesting
question which nets are cone-nets in both directions.

Definition 5. We call a net a double cone-net, if all envelopes of tangent planes
along both families of parameter curves are cones or cylinders.

With Lemma 2, a conjugate net f : U → R
3 is a double cone-net if and

only if the functions a, b defined by

fuv = afu + bfv

satisfy

bv = au = ab. (4)

In the following theorem we will show that double cone-nets are so called
Kœnigs nets which constitute themselves a special subclass of conjugate nets.

Definition 6. A net f : U → R
3 is called a Kœnigs net if there exists z : U →

R
+ such that (see, e.g., [8]):

fuv = (log z)vfu + (log z)ufv.

It is immediately clear from this definition that Kœnigs nets are conjugate
nets.

Theorem 7. Let U ⊂ R
2 be a simply connected domain and let f : U → R

3 be
a conjugate net which is a cone-net w.r.t. the u-parameter curves. Then the
net f is a double cone-net if and only if f is a Kœnigs net.

Proof. Let us assume f is a Kœnigs net and a cone-net w.r.t. the u-parameter
curves. From the Kœnigs net property we get

fuv = (log z)vfu + (log z)ufv,

for some z : U → R
+. By setting a := (log z)v and b := (log z)u the theorem of

Schwarz implies au = bv. Since f is a cone-net w.r.t. the u-parameter curves
and by Lemma 2, we further have

ab = au = bv

which implies that f is a double cone-net (cf. Eq. (4)).
Now, let us assume that f is a double cone-net. Therefore, a, b satisfy

ab = au = bv.
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Let us define a vector field c : U → R
2 by setting c := (b, a). On the simply

connected domain U , the vector field c has a potential p : U → R with grad p =
(pu, pv) = c if and only if the rotation of c is zero. This is the case for double
cone-nets since

rot(c) =
∂c2
∂u

− ∂c1
∂v

= au − bv = ab − ab = 0.

By setting z := exp(p) we obtain

(log z)v = pv = a

(log z)u = pu = b

which implies that f is a Kœnigs net. �

2.5. Principal Cone-Nets

In this section we will characterize which principal nets are cone-nets and how
they can be constructed and what their CCTs are. Furthermore, we will show
that the property of a net being a principle cone-net is Möbius invariant.

To this end, let f : U → R
3 be a principal net and let X := fu

‖fu‖ , Y :=
fv

‖fv‖ , N := X × Y be a moving frame adapted to f . The derivatives of the
surface and its frame are given by:

fu = αX fv = βY

Xu = κY + cN Xv = ηY

Yu = −κX Yv = −ηX + dN

Nu = −cX Nv = −dY

(5)

for some smooth functions α, β, c, d, κ, η. The structure equations of the framed
surface read:

αv = −βκ structure equation 1 (6)

βu = αη structure equation 2 (7)

κv − ηu = cd Gauss equation (8)

κd = cv Gauss–Codazzi equation 1 (9)

ηc = du Gauss–Codazzi equation 2 (10)

The symmetry equation is always satisfied for conjugate nets. By the fun-
damental theorem of parameterized surfaces, any set of functions α, β, κ, η, c, d,
that satisfies the structure equations (6)–(10), determines a principal net and
the surface is unique up to rigid motions.

The geodesic curvature of a curve on a surface measures the curvature of
the curve projected into the tangent plane. We obtain the geodesic curvature
for the u-parameter curves by

ku
g =

〈fu × fuu, N〉
‖fu‖3

(5)
=

κ

α
and analogously kv

g =
η

β
,
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for the v-parameter curves. The principal curvatures are given by κ1 := − c
α

and κ2 := − d
β .

With respect to the frame, the mixed derivative of the surface f is given
by

fuv = αvX + αηY = −βκX + βuY.

Hence, the functions a and b, defined by fuv = afu + bfv, can be expressed as

a =
αv

α
=

−βκ

α
, b =

αη

β
=

βu

β
. (11)

Lemma 8. Let f be a principal net. Then the following conditions are equiva-
lent:

(i) The net f is a cone-net.
(ii) The geodesic curvature of the u-parameter curves (or v-parameter curves)

is constant for each curve.
(iii) The u-parameter curves (or v-parameter curves) are spherical or planar

and these spheres or planes intersect the surface orthogonally.

Proof. (i) ⇒ (ii): If the net is a cone-net along the u-parameter curves, then
Lemma 2 implies au = ab. Differentiating Eq. (11) yields

au =
(−βκ

α

)
u

= −βu
κ

α
− β

(κ

α

)
u

= ab − β(ku
g )u,

which implies that the geodesic curvature is constant.
(ii) ⇒ (iii): If the constant geodesic curvature of a u-parameter curve of

a principle cone-net is non-zero, then the function

r(v) := f − fv

a
= f +

α

κ
Y = f +

1
ku

g

Y, (12)

is independent of u, i.e.

ru = fu +
α

κ
Yu

(5)
= αX − α

κ
κX = 0.

Hence the u-curve is contained in a sphere S(v) (see below). If the geodesic
curvature vanishes, i.e., ku

g = 0, then κ = 0 and Eq. (5) implies Yu = 0.
Therefore, the v-derivative vectors along any such u-parameter curve have the
same direction fv(u, v) = β(u, v)Y (v), and define a cylinder. In this case, the
u-curve is contained in a plane S(v). Consequently, we set

S(v) :=

{
{x ∈ R

3 | ‖x − r(v)‖2 = (ku
g )−2} if ku

g �= 0,

{x ∈ R
3 | 〈x − f(u0, v), Y (v)〉 = 0} for some u0 if ku

g = 0.

(iii) ⇒ (i): If a u-parameter curve lies on a sphere which intersects f orthogo-
nally, then the tangents of the v-parameter curves along this u-parameter curve
must pass through the center of the sphere (since fu ⊥ fv for principal nets).
The argument for u-parameter curves being planar works analogously. �



  110 Page 14 of 40 M. Kilian et al. Results Math

Definition 7. We call the spheres or planes S(v) geodesic curvature spheres.

Remark 1. (Cauchy data for principle cone-nets) The v-parameter curves of
a principle cone-net f are orthogonal trajectories of the geodesic curvature
spheres S(v). In particular, any principle cone-net is uniquely determined by
its geodesic curvature spheres S(v) and a spherical curve γ(u) ∈ S(v0).

Lemma 9. The property of a net being a principle cone-net is invariant under
Möbius transformations.

Proof. Möbius transformations map principle nets to principle nets (see, e.g.,
[8]). Further, Möbius transformations map spheres and planes to spheres or
planes. Lemma 8 implies that principle nets are cone-nets if and only if they
have one family of spherical parameter curves whose spheres intersect the sur-
face orthogonally. Consequently, Möbius transformations map principle cone-
nets to principle cone-nets. �

2.5.1. Tractrix Surfaces. Given a curve γ : R ⊃ I → R
3 and a space curve

r : R ⊃ J → R
3, we can define a surface f : U → R

3 with U = I ×J by solving
an initial value problem for every fixed u:

f(u, v0) = γ(u) v0 ∈ J,

fv(u, v)
‖fv(u, v)‖ =

f(u, v) − r(v)
‖f(u, v) − r(v)‖ .

If the curve r(v) is a straight line, then the solution for any u of the above
differential equation is the well known tractrix. If furthermore, the initial curve
is a circle in a plane orthogonal to that straight line, then the surface is the
pseudosphere. For arbitrary curves γ and r we call the resulting surface a
generalized tractrix surface. If γ is a curve on a sphere with its center on the
base curve r, we call it simply tractrix surface since all v-parameter lines are
tractrices with the same “stick” length. The following lemma is an immediate
consequence of the definition.

Lemma 10. Every tractrix surface consists of orthogonal trajectories of a one-
parameter family of spheres with constant radii.

Lemma 11. Let f : U → R
3 be a principal cone-net. Then a CCT with pa-

rameter λ maps f to a principal cone-net f∗. The geodesic curvatures of the
u-parameter curves of the related surfaces f and f∗ satisfy

|ku ∗
g | =

|ku
g |

|λ| .

Proof. Let f : U → R
3 be a principal cone-net and f∗ its conical Combescure

transform, i.e.,

f∗
u = λfu = λαX = α∗X∗ and f∗

v =
(
λ +

λv

a

)
fv =

(
λ +

λv

a

)
βY = β∗Y ∗.
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Since the tangents of the two nets are parallel at corresponding points, the
frame X∗, Y ∗, N∗ of f∗ is parallel to the frame of f . Since the functions η, κ, c
and d only depend on the frame, they do not change under the CCT up to
a possible sign change. Therefore, f∗ is a principle net if and only if f is a
principal net (which we already saw in Corollary 6(iv)) and the absolute value
of the geodesic curvature of the u-parameter curves is given by

|ku ∗
g | =

∣∣∣κ
∗

α∗

∣∣∣ =
∣∣∣ κ

λα

∣∣∣ =
∣∣∣k

u
g

λ

∣∣∣.
which is what we wanted to show. �

Corollary 12. A net is a principal cone-net with non-vanishing geodesic cur-
vature if and only if it is a CCT of a tractrix surface.

2.5.2. Canal Surfaces. Canal surfaces are surfaces enveloped by a one-parameter
family of spheres

{x ∈ R
3 | ‖x − m(v)‖2 = R2(v)}.

These spheres are in tangential contact with the canal surface along circles
which constitute one family of curvature lines. These so called generating cir-
cles are given by the intersection of the above spheres with the planes

{x ∈ R
3 | 〈x − m(v),−mv(v)〉 = Rv(v)R(v)}.

Hence the centers of the circles and their radii are given by

c(v) := m(v) − Rv(v)R(v)
‖mv(v)‖2 mv(v), ρ(v) :=

R(v)
‖mv(v)‖

√
‖mv(v)‖2 − Rv(v)2.

Along these circles there are cones of revolution in tangential contact with the
surface. The curve of cone tips can be computed by using simple trigonometry
(see Fig. 3)

r(v) = m(v) − R(v)
Rv(v)

mv(v).

The principle curvature of the circular curvature lines is given by κ1 = − c
α =

R(v)−1. It is well known that a surface is a canal surface if and only if one
of the principle curvatures is constant along its curvature line. Surfaces of
revolution, Dupin cyclides, and tubular surfaces (canal surface with constant
radius spheres) are special canal surfaces.

Theorem 13. A principal cone-net f : U → R
3 is a canal surface if and only

if its Gauss map N : U → S
2 is a cone-net.

Proof. We compute the mixed derivative of the Gauss map, using the frame
equations (5)–(10):

Nuv = −cvX − cηY =
cv

c
Nu +

cη

d
Nv =

κd

c
Nu +

du

d
Nv,
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rrd c cd

f

fd
N=Nd

m

Figure 3. A sphere and its tangential cone of a canal surface
f and its offset surface fd = f + d · N

therefore,

Nuv = ãNu + b̃Nv, where ã :=
κd

c
=

cv

c
and b̃ :=

cη

d
=

du

d
.

The Gauss map is a cone-net if and only if ãu = ãb̃. We have

ãu =
κud + κdu

c
− κdcu

c2
= ã

(κu

κ
− cu

c

)
+ ãb̃.

Therefore, the Gauss map is a cone-net if and only if κu

κ = cu

c . Since we as-
sumed that f is a principle cone-net, the geodesic curvature of the u-parameter
curves is constant: (κ

α

)
u

= 0 ⇐⇒
(κu

κ
=

αu

α
or κ = 0

)
.

Hence the principle curvature κ1 = c
α is constant along the u-parameter curves

and f is a canal surface if and only if N is a cone-net. �
Lemma 14. The Gaussian image of any principal net of a canal surface is its
CCT for λ = κ1 = − c

α , which is the principle curvature of the generating
circles. Further, any CCT of a canal surface is again a canal surface.

Proof. For any principle net the formula of Rodrigues (see, e.g., [17]) implies
that the partial derivatives of the Gauss map and the surface are parallel, i.e.,

Nu = κ1fu = − c

α
fu, Nv = κ2fv = − d

β
fv.

If f is a canal surface, one of the principle curvatures is constant along its
curvature line. We assume 0 = (κ1)u = −( c

α )u. Under the CCT with function
κ1 the u-derivative changes according to

Cκ1(f)u = − c

α
fu = κ1fu = Nu.

For a principle cone-net we further have a = αv

α (see Eq. (11)). For the v-
derivative we obtain

Cκ1(f)v =
(
κ1 +

(κ1)v

a

)
fv =

(
− c

α
+

(
− cv

α
+

αvc

α2

) α

αv

)
fv
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= − cv

αv
fv

(6)(9)
= − d

β
fv = Nv,

and therefore Cκ1(f) = N .
For the second part of the proof note that parallel related surfaces have

the same Gauss map. Therefore, the Gauss map of every CCT of a canal
surface is a cone-net and the transformed surface is a canal surface. �

The offset surface fd := f + d N , for d ∈ R of a canal surface is a canal
surface itself where the corresponding spheres have the same centers as for f
but radii R(v) + d (see Fig. 3). Since any surface and its offset surfaces have
the same normals, we can use Lemma 14 to obtain the following corollary.

Corollary 15. Let f be a canal surface and κ1(v) the principle curvature of the
generating circles. The offset fd is up to translation a CCT of f for λ = 1+d κ1

Darboux proved in [21] that a principle net, whose coordinate curves have
constant geodesic curvature, is Möbius equivalent to a surface of revolution,
cone or cylinder. With Lemma 8 this implies the following theorem of which
an independent proof in our framework can be found in the appendix.

Theorem 16. (Darboux [21]) Every double principal cone-net is Möbius equiv-
alent to a surface of revolution, cone or cylinder.

An immediate consequence of Theorem 16 is Vessiot’s Theorem.

Theorem 17. (Vessiot [22]) Away from umbilical points every isothermic canal
surface is locally Möbius equivalent to a surface of revolution, cone or cylinder.

Proof. Away from umbilical points canal surfaces admit a cone-net parame-
terization. If this net is isothermic, i.e., a principle Kœnigs net, it is a double
cone-net and we can apply Theorem 16 which concludes the proof. �

3. Discrete Cone-Nets

In this section we discretize our smooth theory of cone-nets. We follow dis-
cretization principles as understood in [8]. It turns out that all relevant theo-
rems from Sect. 2 can be discretized.

It is important to point out a possible confusion between notions. So
called (discrete) conical nets have been introduced and investigated in [1,8].
However, they refer to a discretization of curvature line parameterizations
(which belongs to Laguerre geometry). There, all faces around a vertex are in
tangential contact with a cone of revolution. In contrast to that in our case the
cones are in tangential contact with the surface along entire parameter curves.
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3.1. Discrete Cone-Nets

In this section, we discretize the smooth theory of Sect. 2. The discrete analogue
of a parameterized surface is a quadrilateral net

f : U ⊂ Z
2 −→ R

3

(i, j) �−→ fij .

Its discrete derivatives will be described by its edge vectors with difference
operators

δifij = fi+1,j − fij and δjfij = fi,j+1 − fij , for all (i, j) ∈ U.

Definition 8. A quadrilateral net is called conjugate if all quadrilaterals qij are
planar (see, e.g., [8]).

In complete analogy to the smooth case, conjugate nets are character-
ized by the property that the mixed derivative lies in the span of the partial
derivatives (cf. [8]):

Lemma 18. A quadrilateral net is conjugate if and only if there exist functions
a, b : U → R such that

δiδjfij = aijδifij + bijδjfij .

Since δiδjfij = δifi,j+1 − δifij = δjfi+1,j − δjfij , we immediately obtain

δjfi+1,j = aijδifij + (bij + 1)δjfij (13)

δifi,j+1 = (aij + 1)δifij + bijδjfij (14)

which we will use later. We will denote the quadrilaterals by

qij := (fij , fi+1,j , fi+1,j+1, fi,j+1), (15)

and for every j we define the horizontal strip Bj := {qij | (i, j) ∈ U} and
for every i the vertical strip Bi := {qij | (i, j) ∈ U}, see Fig. 4 (left). Let Lij

denote the straight line that contains the edge fijfi,j+1, i.e.,

Lij = fij + Rδjfij .

If all lines Lij are concurrent for all i and a fixed j, they generate a (discrete)
cone (i.e., a pyramid) Tj . The parameter curves i �→ fij =: γj(i) lie on the
cones Tj and Tj−1. The cone tip of the cone Tj is denoted by rj .

Definition 9. A discrete conjugate net f : U ⊂ Z
2 → R

3 is called a cone-net if
all horizontal or all vertical strips are contained in a discrete cone or cylinder.
The net is called a proper cone-net if each horizontal or each vertical strip
is contained in a proper cone with a proper cone tip. See Fig. 4 (left) for an
illustration.

If not stated otherwise, we will always assume, that the horizontal strips
Bj of a discrete cone-net are contained in a cone. The following lemma is a
discrete analogue of Lemma 2.
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rj

rj+1
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Bi
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L2
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L2
i−1,j

L2
ij

Figure 4. Left: A discrete cone-net. Right: Laplace points of
a conjugate net

Lemma 19. A conjugate net f : U ⊂ Z
2 → R

3 is a cone-net with discrete
cones along horizontal strips if and only if the functions a, b : U → R defined
in Lemma 18 satisfy

bij =
aij − ai−1,j

ai−1,j
=

aij

ai−1,j
− 1,

and a cone-net with discrete cylinders along horizontal strips if and only if
aij = 0. If the surface is a cone-net, then the tips of the cones are given by

rj = fij − 1
ai−1,j

δjfij = fij − bij + 1
aij

δjfij . (16)

Proof. Note that the horizontal strip Bj lies on a cylinder if and only if the
edge vectors δjfij are parallel for all i. Equation (13) implies that this is the
case if and only if aij = 0 for all i.

Suppose now the horizontal strips lie on proper cones. Consider the lines
Lij . The surface is conjugate if and only if Lij and Li+1,j intersect each other
in a point rij for all (i, j) ∈ U . We compute this intersection point rij using
Eq. (13)

fij + tδjfij = fi+1,j + sδjfi+1,j

⇔ −δifij + tδjfij = s(aijδifij + (bij + 1)δjfij)

⇔ 0 = (1 + saij)δifij + (s(bij + 1) − t)δjfij

⇔ s = − 1
aij

and t = −bij + 1
aij

.
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The intersection point rij is therefore given by:

rij = fij − bij + 1
aij

δjfij = fi+1,j − 1
aij

δjfi+1,j .

The surface is a cone-net if rij is independent of i, i.e., rij = ri+1,j for
all i. Consequently, in that case we have

fi+1,j − 1
aij

δjfi+1,j = rij = ri+1,j = fi+1,j − bi+1,j + 1
ai+1,j

δjfi+1,j ,

and therefore

bi+1,j =
ai+1,j

aij
− 1 for all i,

which concludes the proof. �

Remark 2. For a quadrilateral qij = (fij , fi+1,j , fi+1,j+1, fi,j+1) of a conjugate
net f , the Laplace points are defined as the intersection points of opposite edges
(see Fig. 4 right), i.e.,

L1
ij := (fij ∨ fi+1,j) ∩ (fi,j+1 ∨ fi+1,j+1),

L2
ij := (fij ∨ fi,j+1) ∩ (fi+1,j ∨ fi+1,j+1).

The Laplace points define (possibly degenerate) conjugate nets themselves
which are called the Laplace transforms of f (see, e.g., [8]). Since opposite
edges might be parallel, these nets are not necessarily contained in R

3 but in
the projective space P(R3), i.e., Lk : Z2 → P(R3). Note that the net f is a
cone-net if and only if one Laplace transform degenerates to a polygon.

3.2. Transformation of Discrete Cone-nets

Several aspects of the classical theory on transformations of surfaces have been
discretized (see e.g., [23]). Hereby, the transformation of discrete conjugate nets
plays a prominent role. We add to that theory the characterization of discrete
cone-nets via a discrete transformation theory. Our transformations of discrete
nets behave analogously to their smooth counterparts.

Definition 10. Two discrete conjugate nets f, f∗ : Z2 ⊃ U → R
3 are said to

be parallel or related by a Combescure transformation, if for all (i, j) ∈ U
corresponding edge vectors are parallel, i.e., δifij ‖ δif

∗
ij and δjfij ‖ δjf

∗
ij .

Each of them is called Combescure transform of the other. A Combescure
transformation is called a cone-net, if the transformation of a discrete cone-
net is a cone-net.

The following theorem about discrete cone-nets preserving Combescure
transformations is a discrete analogue of Theorem 3 (see also Fig. 5 left and
center).
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Figure 5. Left and center: A pair of discrete conical Combes-
cure transforms. A discrete tractrix surface (left) has been
transformed with a negative valued function λ to a cone-net
(center) which is not a tractrix surface anymore. Both nets
are principal nets. Right: A Kœnigs nets with one family of
strips being cylinders but which are not double cone-nets

Theorem 20. Let U = {0, . . . , m} × {0, . . . , n} ⊂ Z
2 and let f : U → R

3

be a discrete conjugate net with δiδjfij = aijδifij + bijδjfij where aij �= 0.
Furthermore, let λ : U → R be a function only depending on j, i.e., δiλij = 0.
We will write λj instead of λij.

Then f is a cone-net if and only if for every such function λ there exists
a Combescure transform f∗ : U → R

3 of f with:

δif
∗
ij = λjδifij , δjf

∗
ij =

(
λj+1 +

λj+1 − λj

ai−1,j

)
δjfij . (17)

If the net f is a cone-net, the Combescure transform f∗ is a cone-net as well
and its vertices are parameterized by

f∗
ij = λjfij −

j−1∑
k=0

(λk+1 − λk)rk, (18)

where rj are the tips of the cones of the original cone-net f .

Proof. By Lemma 19 the net f is a cone-net if and only if bij = aij

ai−1,j
− 1 for

all (i, j) ∈ U . The set of edge vectors δif
∗
ij , δjf

∗
ij can be integrated to a net

f∗ : U → R
3 if and only if the boundary edges of every quadrilateral sum up

to zero. Using Eqs. (13) and (14) we compute the sum of the boundary edges
of the quadrilateral q∗

ij :

δif
∗
ij + δjf

∗
i+1,j − δif

∗
i,j+1 − δjf

∗
ij

= λjδifij +
(
λj+1 +

λj+1 − λj

aij

)
δjfi+1,j

− λj+1δifi,j+1 −
(
λj+1 +

λj+1 − λj

ai−1,j

)
δjfij
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=
(
λj +

(
λj+1 +

λj+1 − λj

aij

)
aij − λj+1(aij + 1)

)
δifij

+
((

λj+1 +
λj+1 − λj

aij

)
(bij + 1) − λj+1bij −

(
λj+1 +

λj+1 − λj

ai−1,j

))
δjfij

= (λj+1 − λj)
(bij + 1

aij
− 1

ai−1,j

)
δjfij .

The edge cycle is closed and f∗ well defined for every choice of λ if and only if
bij = aij

ai−1,j
− 1. To prove that f∗ is a cone-net as well consider the functions

a∗
ij =

λj+1(aij + 1) − λj

λj
, b∗

ij =
λj+1(aij + 1) − λj

λj+1(ai−1,j + 1) − λj
− 1.

They satisfy δiδjf
∗
ij = a∗

ijδif
∗
ij + b∗

ijδjf
∗
ij and b∗

ij = a∗
ij

a∗
i−1,j

−1 which implies (by
Lemma 19) that f∗ is a cone-net.

To prove that the transformed net is parameterized by Eq. (18) we show
that the edges of the parameterization are given by Eq. (17). We get:

δif
∗
ij = f∗

i+1,j − f∗
ij

= λjfi+1,j −
j−1∑
k=0

(λk+1 − λk)rk − λjfij +
j−1∑
k=0

(λk+1 − λk)rk = λjδifij

δjf
∗
ij = λj+1fi,j+1 −

j∑
k=0

(λk+1 − λk)rk − λjfij +
j−1∑
k=0

(λk+1 − λk)rk

= (λj+1 − λj)fi,j+1 + λjδjfij − (λj+1 − λj)rj

(16)
= (λj+1 − λj)fi,j+1 + λjδjfij − (λj+1 − λj)

(
fij − bij + 1

aij
δjfij

)

=
(
(λj+1 − λj)

(
1 +

bij + 1
aij

)
+ λj

)
δjfij =

(
λj+1 +

λj+1 − λj

ai−1,j

)
δjfij ,

which concludes the proof. �

Corollary 21. A CCT with discrete function λ scales the polygons (fij)i by the
factor λj.

3.3. Discrete Double Cone-Nets

In analogy to Sect. 2.4 we will investigate discrete nets which are cone-nets in
both parameter directions.

Definition 11. A discrete conjugate net f : U ⊂ Z
2 → R

3 is called a double
cone-net if all horizontal and all vertical strips are contained in discrete cones
or cylinders.

Double cone-nets are related to so called Kœnigs nets. The following char-
acterization of a discrete Kœnigs net can be found in [23]. Since all faces of a
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fijfijfijfijfijfijfijfijfijfijfijfijfijfijfijfijfij
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Figure 6. Left: Illustration for the proof of Theorem 22: we
apply Desargues’ theorem four times. Top-Right: Desargue’s
theorem

discrete conjugate net are planar quadrilaterals, the diagonals of a quadrilat-
eral qij intersect in a point mij (see Fig. 6 left).

Definition 12. A conjugate net f : U → R
3 is called a (discrete) Kœnigs net if

the three lines

mijmi−1,j mi+1,j−1mi−1,j−1 fi+1,jfi−1,j (19)

are concurrent.

By swapping i and j we obtain a condition which is equivalent to the
above Kœnigs condition, namely the three straight lines mijmi+1,j−1, mi−1,j

mi−1,j−1, fi,j+1fi,j−1 meeting in a point. This equivalence is a simple conse-
quence of Desargue’s theorem. Desargues’ theorem (see Fig. 6 right) says that
two triangles Δ(a | b | c),Δ(a′ | b′ | c′) are centrally perspective (i.e., the three
lines aa′, bb′, cc′ are concurrent) if and only if they are axially perspective (i.e.,
the three points (ab ∩ a′b′), (bc ∩ b′c′), (ca ∩ c′a′) are collinear).

We will apply Desargues’ theorem a couple of times to show the following
two theorems which discretize Theorem 7.

Theorem 22. Every double cone-net is a Kœnigs net.

Proof. It is sufficient to consider a 2 × 2-subpatch of the net (see Fig. 6 left).
We have to show that the three lines from Eq. (19) are concurrent. To do so
we will apply Desargues’ theorem four times:
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[
Δ(fi+1,j | fi,j−1 | fi−1,j)
Δ(fi+1,j−1 | fij | fi−1,j−1)

]
centrally
perspective

=⇒ the two lines fi+1,jfi−1,j , fi+1,j−1fi−1,j−1

meet the line mi+1,j−1mi−1,j−1 in a point zi[
Δ(fi+1,j | fij | fi−1,j)
Δ(fi+1,j−1 | fi,j−1 | fi−1,j−1)

]
centrally
perspective =⇒ the line ri−1ri also passes

through zi[
Δ(fi+1,j | fij | fi−1,j)
Δ(fi+1,j+1 | fi,j+1 | fi−1,j+1)

]
centrally
perspective =⇒ the line fi+1,j+1fi−1,j+1

also passes through zi[
Δ(fi+1,j | fi,j+1 | fi−1,j)
Δ(fi+1,j+1 | fij | fi−1,j+1)

]
centrally
perspective =⇒ the line mijmi−1,j , also passes

through zi

Consequently, the three lines from Eq. (19) are concurrent. �

The converse result holds only in a slightly modified version as we must
assume at least one vertical strip to be contained in a cone. There exist Kœnigs
nets with horizontal strips being cones but which are not double cone-nets. For
such an example see Fig. 5 (right).

Theorem 23. A Kœnigs cone-net with horizontal strips being cones is a double
cone-net if and only if at least one vertical strip is contained in a cone.

Proof. It is sufficient to consider a 2 × 2-subpatch of the net (see Fig. 7). We
assume the two horizontal strips Bj and Bj−1 to be cones with centers rj

and rj−1 and the “left” vertical strip Bi−1 to be a cone with center ri−1.
Furthermore, we assume the net to be a Kœnigs net.

It is our goal to prove the cone-net-property of the “right” vertical strip
Bi. For that we apply Desargues’ theorem six times (see Fig. 7 for a reference
of notation):[
Δ(mij | fi+1,j | fi+1,j+1)
Δ(mi−1,j | fi−1,j | fi−1,j+1)

]
axially
perspective =⇒ zi, fi+1,j+1, fi−1,j+1 collinear

[
Δ(mi,j−1 | fi+1,j−1 | fi+1,j)
Δ(mi−1,j−1 | fi−1,j−1 | fi−1,j)

]
axially
perspective =⇒ zi, fi+1,j−1, fi−1,j−1

collinear[
Δ(mi−1,j | fi−1,j+1 | fi,j+1)
Δ(mi−1,j−1 | fi−1,j−1 | fi,j−1)

]
axially
perspective =⇒ yj , fi−1,j+1, fi−1,j−1

collinear[
Δ(rj | fi,j+1 | fi−1,j+1)
Δ(rj−1 | fi,j−1 | fi−1,j−1)

]
axially
perspective =⇒ yj , rj , rj−1 collinear

[
Δ(rj | fi+1,j+1 | fi−1,j+1)
Δ(rj−1 | fi+1,j−1 | fi−1,j−1)

]
axially
perspective =⇒ yj , fi+1,j+1, fi+1,j−1 collinear

[
Δ(fij | fi+1,j+1 | fi+1,j−1)
Δ(fi+1,j | fi,j+1 | fi,j−1)

]
axially
perspective =⇒centr. perspective with center ri

Therefore, the “right” vertical strip Bi is a cone. �

Remark 3. An alternative proof of the last theorem in a projective setup using
Laplace invariants follows ideas presented in [8]. The Laplace invariants are
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Figure 7. Left: Illustration for the proof of Theorem 23: we
apply Desargues’ theorem six times

given as cross-ratios of four collinear points (for the definition of the Laplace
points Lk see Remark 2):

hij := cr(fij ,L1
ij ,L1

i,j−1, fi+1,j), kij := cr(fij ,L2
ij ,L2

i−1,j , fi,j+1).

The net is a cone-net if one of the families of Laplace points degenerates to
a polygon, i.e., L1

ij = L1
i,j−1 for all j, or equivalently, if one of the Laplace

invariants has constant value 1, i.e., hij = 1. The cross-ratio is well defined for
projective lines and invariant under projective transformations. Therefore, this
definition for cone-nets works as well for nets in P(R3). For more information
on projective differential geometry and Laplace invariants see [24].

Also Kœnigs nets can be characterized in terms of Laplace invariants.
For a discrete Kœnigs net the Laplace invariants satisfy

hijhi−1,j = kijki,j−1, (20)

for all i, j which can be found for instance in [8]. If a Kœnigs net is a cone-net
in the horizontal direction, i.e., hij = 1 and has also one vertical cone-strip
(e.g., k0,j = 1), then Eq. (20) implies that the net is a double cone-net.

Remark 4. (Cauchy data for double cone-nets) Any double cone-net over a
rectangular domain is uniquely determined by any two cone-strips Bi0 and
Bj0 .
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Double cone-nets have also been investigated in the framework of so called
multi-nets [15].

Definition 13. A discrete conjugate net f : Z2 ⊃ U → R
3, is called a multi Q-

net, if for every i0 �= i1 and j0 �= j1 the quadrilateral (fi0,j0 , fi1,j0 , fi1,j1 , fi0,j1)
is planar. The net f is called multi-circular if the quadrilaterals (fi0,j0 , fi1,j0 ,
fi1,j1 , fi0,j1) have circumcircles (see also Lemma 37).

Bobenko et al. [15, Th. 2.4] show that a net is a double cone-net if and
only if it is a multi Q-net.

3.4. Discrete Principal Cone-Nets

A common discretization of principal nets are nets with Z
2 combinatorics

such that every face has a circumcircle [8]. The following definition is not to
be confused with so called conical nets in [1,8] which also discretize principal
nets.

Definition 14. A discrete principal cone-net is a discrete cone-net with con-
cyclic faces, i.e., fij , fi+1,j , fi+1,j+1, fi,j+1 is a concyclic quadrilateral for all
i, j with circumcirle Cij , and the edges fij ∨ fi,j+1 pass through a common
point rj , for all i. If no point rj is a point at infinity, we call the principle
cone-net proper.

Corollary 24. Discrete conical Combescure transformations map principal cone-
nets to principal cone-nets.

Proof. Let f be a discrete cone-net and f∗ a CCT of f . Since corresponding
edge vectors of f and f∗ are parallel, the quadrilaterals qij of f have circum-
cirlces if and only if the quadrilaterals q∗

ij of f∗ have circumcirlces. �

In our investigation we will take advantage of the concept of the power of
a point with respect to a circle (Fig. 8 left). Let C be a circle with center c and
radius ρ, and let x be a point in the plane carrying that circle. Further, let l be
a line through x intersecting the circle C in two points q1, q2. The (oriented)
power of the point x with respect to the circle C is given by (see., e.g., [25])

p := 〈x − q1, x − q2〉.
The power is independent of the choice of the line l which implies

p = (‖c − x‖ + ρ)(‖c − x‖ − ρ).

Note that the power is positive if x lies outside C and negative if x lies inside.
The radical axis of two circles in a plane is the straight line of points with
equal power to both circles. If two circles are intersecting, then the radical
axis is given by the line through the intersection points. The three radical
lines of three circles are either parallel if the three corresponding centers lie on
a straight line or otherwise they meet in a point, the so called radical center
(see, e.g., [25] and Fig. 8 center).
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Figure 8. Left: Power of a point x with respect to a circle C
with center c and radius ρ. Center: The three radical axes of
any pair of three circles (C and circumcircles of qij and qi+1,j)
meet in a point. Right: An embedded concyclic quadrilateral
and a non-embedded concyclic quadrilateral

Definition 15. For a discrete principle net, we define the geodesic curvature κg
ij

of a quadrilateral qij in a strip Bj via the power of the Laplace point L2
ij with

respect to the circumcircle Cij :

|κg
ij | := |pij |− 1

2 := |〈L2
ij − fij ,L2

ij − fi,j+1〉|− 1
2

= |〈L2
ij − fi+1,j ,L2

ij − fi+1,j+1〉|− 1
2 .

The sign of the geodesic curvature is defined by considering the order of the
points. The curvature is positive if fi,j+1 is between fij and L2

ij and negative
if fij is between fi,j+1 and L2

ij .

Remark 5. Note, that the powers of both Laplace points L1
ij ,L2

ij with respect
to the circumcircle of the corresponding quadrilateral is positive if and only if
the quadrilateral is embedded, cf. Fig. 8 right (i.e., fij , fi,j+1, fi+1,j+1, fi,j+1

lie on the convex hull of the quadrilateral in cyclic order).

Lemma 25. A discrete principle net is a cone-net, if and only if all horizontal
or vertical strips have constant geodesic curvature.

Proof. Assume the horizontal strips Bj have constant geodesic curvature and
consider two neighboring quadrilaterals qij , qi+1,j with circumcircles Cij , Ci+1,j .
Since the quadrilaterals have the same geodesic curvature, we have

〈L2
ij − fi+1,j ,L2

ij − fi+1,j+1〉− 1
2 = 〈L2

ij − fij ,L2
ij − fi,j+1〉− 1

2

= κg
ij = κg

i+1,j = 〈L2
i+1,j − fi+1,j ,L2

i+1,j − fi+1,j+1〉− 1
2 .

Therefore, the Laplace points agree, i.e., L2
ij = L2

i+1,j . Induction on i implies
that the strip Bj is a cone.
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Now, we assume that the strips Bj are cones. The cone tip rj = L2
ij has

the same power with respect to all circumcircles Cij of the strip Bj :

pj = 〈rj − fij , rj − fi,j+1〉 = 〈rj − fi+1,j , rj − fi+1,j+1〉.
Therefore, the geodesic curvature κg

ij = p
− 1

2
j is constant for all quadrilaterals

of the strip Bj . �

Note that for a principle cone-net, the cone tip rj is the radical center for
any three circumcircles of the strip Bj which leads to the following definition.

Definition 16. We call the sphere with center rj and radius 1/κg
ij geodesic

curvature sphere and denote it by Sg
j .

Lemma 26. Let f be a discrete principle cone-net and f∗ its CCT with respect
to λ, then the geodesic curvature of the cone-strips Bj change according to

|κg ∗
ij | =

|κg
ij |

|λjλj+1|1/2
.

Proof. The CCT scales the boundary polygons of the cone-strip Bj by λj

resp. λj+1, (see Corollary 21). Since corresponding edge vectors of f and f∗

are parallel, the distance between the polygons and the cone tip rj get scaled
by the same factor. Therefore

‖r∗
j − f∗

ij‖ = |λj | ‖rj − fij‖
⇒ |p∗

j | = ‖r∗
j − f∗

ij‖ ‖r∗
j − f∗

i,j+1‖ = |λjλj+1| ‖rj − fij‖ ‖rj − fi,j+1‖
⇒ |κg ∗

ij | =
1

|λjλj+1|1/2
|κg

ij |.

�

Lemma 27. Let f be a principle cone-net and let j be fixed. Then the inversion
at the geodesic curvature spheres Sg

j preserves the circumcircles {Cij}i and
maps the boundary polygons (fij)i and (fi,j+1)i of the strip Bj onto each other.
In particular, Sg

j intersects the circumcircles {Cij}i and the edges {fij∨fi,j+1}i

orthogonally.

Proof. Since all faces of the strip are concyclic, the oriented power of rj with
respect to the two corresponding vertices on these edges is constant

〈fij − rj , fi,j+1 − rj〉 = pj = const for all i,

and therefore

〈fij − rj , fi,j+1 − rj〉(fi,j+1 − rj) = pj(fi,j+1 − rj).

From the identity fi,j+1−rj

‖fi,j+1−rj‖ = fij−rj

‖fij−rj‖
〈fi,j+1−rj ,fij−rj〉

‖fi,j+1−rj‖‖fij−rj‖ we conclude

fi,j+1 = pj
fij − rj

‖fij − rj‖2 + rj . (21)
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This equation represents an inversion in the geodesic curvature spheres Sg
j

with center rj and radius √
pj .

Since the lines {Lij}i meet in the center of the sphere Sg
j , they intersect Sg

j

orthogonally and the lines are mapped to themselves under the inversion above.
Therefore, the quadrilaterals {qij}i and their circumcircles are preserved by
the inversion. This is the case if and only if the circumcircles {Cij}i intersect
the sphere Sg

j orthogonally. �

Since Möbius transformations map spheres to spheres and preserve an-
gles, we obtain the following corollary.

Corollary 28. A Möbius transformation applied to the vertices of a discrete
principal cone-net is a discrete principal cone-net.

Note that the new cone tips are in general not obtained by the Möbius
transformation applied to the old cone tips. They are the centers of the new
geodesic curvature spheres.

Remark 6. (Cauchy data for principle cone-nets) Suppose we are given a prin-
ciple cone-net with horizontal cone-strips Bj and constant geodesic curvature
spheres Sg

j . Then the coordinate polygons (fij)j are orthogonal trajectories
of the geodesic curvature spheres Sg

j . In particular, the surface f is uniquely
determined by an initial polygon (fi,0)i and the family of geodesic curvature
spheres Sg

j .

Lemma 29. Any four points fij , fi,j+1, fi+k,j , fi+k,j+1 of a cone-strip of a prin-
ciple cone-net are concyclic (see Fig. 8 center). Further, the cone tip rj has the
same power with respect to this circle as to any circumcircle of the strip.

Proof. Consider the circle C through the three points fij , fi,j+1, fi+k,j . The
power of the cone tip rj with respect to the circle C is the same with respect
to any circumcircle of the strip. Therefore, the line through rj and fi+k,j

intersects C in the point fi+k,j+1. �

3.4.1. Discrete Tractrix Surfaces I. There are several discretizations of a trac-
trix curve (see, e.g., [26] where discretizations of the hyperbolic cosine are
constructed from several discretizations of a tractrix). The following is based
on a Darboux transformation for discrete curves [27].

Definition 17. Let xj , dj ∈ R
3 be two polygons such that ‖δjxj‖ = ‖δjdj‖,

‖xj − dj‖ = const and the quadrilateral xj , xj+1, dj+1, dj lies in a plane but
does not form a parallelogram. Then the polygons xj and dj are Darboux
transforms of each other and tj := 1

2 (xj + dj) is called discrete tractrix with
base polygon xj or dj (see Fig. 9 left and center).

We will define discrete tractrix surfaces in close analogy to Sect. 2.5.1.
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Figure 9. Left: Discrete tractrix construction (cf. Defini-
tion 17) with base curve xj and tractrix tj . Center: The base
curve xi, its Darboux transform di, and the tractrix ti. Right:
Illustration for the proof of Lemma 30: If two points ki, ki+1

are at the same distance to xj , then the next vertices k̃i, k̃i+1

in the respective tractrices are concyclic with ki, ki+1

Definition 18. Let xj , ki ∈ R
3 be two polygons and let us consider through

each vertex of ki the discrete tractrix with base curve xj . Then the discrete
net formed by these tractrices is called a generalized discrete tractrix surface.
If the vertices of the initial polygon ki lie on a sphere around the first point of
the base curve, we call the net discrete tractrix surface (see Fig. 10).

Lemma 30. The generalized discrete tractrix surface is a discrete conjugate net
(i.e., a net with planar faces).

Proof. Since tj is the midpoint of xjdj and tj+1 is the midpoint of xj+1dj+1,
the connecting line tjtj+1 passes through rj which is the midpoint of xjxj+1

(Fig. 9 left). This property does not depend on the initial vertex position of tj .
Therefore, the quadrilateral generated by this tractrix construction through
ki and ki+1 generates a quadrilateral ki, ki+1, k̃i+1, k̃i with edges kik̃i and kik̃i

passing through a common point rj (see Fig. 9 right). This quadrilateral must
therefore be planar. Consequently, all quadrilaterals of the net are planar. �

All (generalized) tractrix surfaces are cone-nets with discrete cones along
horizontal strips and with cone tips rj .

Lemma 31. Any tractrix surface is a discrete principal net with concyclic faces,
i.e., if the initial polygon ki in the construction lies on a sphere with center xj

then the quadrilaterals of the net have circumcircles.

Proof. This follows from elementary geometric properties of the power of a
point with respect to a circle. We have (see Fig. 9 right)

〈rj − ki, rj − k̃i〉 = −〈rj − si, rj − k̃i〉 =: pj
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Figure 10. Three discretized tractrix surfaces. A (fully) dis-
crete tractrix surface with planar quadrilateral faces (left),
two semi-discrete tractrix surfaces of the types f : Z×R → R

3

and f : R × Z → R
3, i.e., smooth and discrete directions are

reversed (center and right)

and

〈rj − ki+1, rj − k̃i+1〉 = −〈rj − si+1, rj − k̃i+1〉 = pj ,

which both equal pj since the power pj of the point rj with respect to the
circumcircle of si, si+1, k̃i, k̃i+1 does not depend on the secant. Therefore, we
obtain

〈rj − ki, rj − k̃i〉 = 〈rj − ki+1, rj − k̃i+1〉,
which is only possible if the four points ki, ki+1, k̃i+1, k̃i lie on a circle. �

In analogy to Corollary 12 we can show the following two theorems.

Theorem 32. Any CCT of a discrete tractrix surface is a proper discrete prin-
cipal cone-net.

Proof. Let f be a discrete tractrix surface. Theorem 20 implies that any CCT
of a discrete tractrix surface is a discrete cone-net. The transformed net is
also a principal net since all edge-wise parallel quadrilaterals of a concyclic
quadrilateral are concyclic. �
Theorem 33. Any proper discrete principal cone-net with spherical parameter
polygons (fij)i is a CCT of a discrete tractrix surface.

Proof. Let f be a discrete principal cone-net with spherical parameter polygons
(fij)i. Furthermore, let Sf

j be the sphere with radius Rj containing the polygon
(fij)i. The CCT with λj = 1

Rj
transforms f into a net h := C 1

Rj

(f) where

every polygon (hij)i is obtained by a scaling of (fij)i with factor 1
Rj

(up to
translation). The corresponding spheres Sh

j which contain (hij)i are obtained
from Sh

j by scaling with the same factor 1
Rj

and are therefore unit spheres.
Let rh

j denote the cone tips of h. The inversion in the geodesic curvature
sphere of h centered at cone tips rh

j maps Sh
j to Sh

j+1. Since the two spheres
are unit spheres, rh

j must be the midpoint of the two centers of the spheres.
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The construction from the spherical polygon (hij)i to the polygon (hi,j+1)
corresponds to the tractrix construction (see Fig. 9 right). Consequently, h is
a tractrix surface. And f = CRj

(h) which concludes the proof. �

3.4.2. Discrete Tractrix Surfaces II. We obtain another discretization of a
tractrix surface by discretizing the characterizing property of Lemma 10. A
tractrix surface is parametrized by a family of orthogonal trajectories of a one-
parameter family of spheres with constant radii. Lemma 27 readily provides
us with the discrete trajectory construction.

Definition 19. Let fi,0 be a polygon and Sg
j be a sequence of geodesic curvature

spheres of constant radii. Then the successive inversion of the initial polygon
in the geodesic curvature spheres generates a discrete tractrix-II surface.

Two endpoints fi,0, fi+1,0 of an edge together with their reflections fi,1,
fi+1,1 in the first geodesic curvature sphere generate a concyclic quadrilateral.
The straight lines fi,0 ∨ fi,1 and fi+1,0 ∨ fi+1,1 pass through the center of the
geodesic curvature sphere. Therefore, the tractrix-II surface f is a principal
cone-net.

Consequently, all results obtained so far for discrete principal cone-nets
hold for this type of tractrix-II surface. The main difference to the previous
definition of tractrix surfaces is that the discrete parameter curves (fij)i do
not necessarily lie on a sphere.

We therefore obtain a theorem in analogy to Theorem 33 but without
the requirement of spherical parameter polygons.

Theorem 34. Any proper discrete principal cone-net is a CCT of a discrete
tractrix-II surface.

Proof. The radius of the geodesic curvature sphere of a proper discrete princi-
pal cone-net is 1/|κg

ij |. Therefore, Lemma 26 yields the radii of the transformed
geodesic curvature spheres after a CCT with function λ.

Consequently, λ can be chosen in such a way that |κg ∗
ij | is constant for

all j which implies that f∗ is a tractrix-II surface. �

3.4.3. Discrete Canal Surfaces. Stripmodels from annulus-shaped strips of sur-
faces of revolution have been studied, e.g., in [5,6]. These are (semi-)
discretizations of a particular class of canal surfaces. Discrete canal surfaces
have recently been revisited in [14]. In the present subsection we will give a
novel and more flexible definition of canal surfaces that includes the discrete
canal surfaces from [14]. Our definition is based on the notion of a Möbius
invariant definition of a curvature circle for discrete curves [28].

The following notions are explained in more detail in [28]. Let us identify
R

3 with the imaginary part ImH of the quaternions H. Then four points
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Figure 11. Top-left: A discrete canal surfaces as in Defi-
nition 20. The “zig-zaggy” parameterlines are spherical and
have constant curvature circles (red). Bottom-left: The ver-
tices that define the curvature circles of the discrete canal
surface (top-left) constitute a discrete canal surface by them-
selves but with concyclic parameter polygons. Right: A dis-
crete canal surface with concyclic parameter polygons as in
[14]

a, b, c, d have the cross-ratio cr(a, b, c, d) := (a − b)(b − c)−1(c − d)(d − a)−1. A
new point is computed by

p(a, b, c, d)

:=
(
(b − a)(c − a)−1

√
cr(c, a, b, d) + 1

)−1(
(b − a)(c − a)−1

√
cr(c, a, b, d)c + b

)
.

It turns out [28, Cor. 4] that p(a, b, c, d) always lies on the circumsphere of
a, b, c, d and that the four points p(a, b, c, d), p(b, c, d, a), p(c, d, a, b), p(d, a, b, c)
always lie on a circle [28, Th. 1]. If a, b, c, d are four successive points of a
discrete curve then this circle can be interpreted as a curvature circle for the
discrete curve at edge bc [28, Th. 4]. If a, b, c, d lie on a circle then this circle
is identical to the curvature circle [28, Cor. 1].

Since the curvature lines of a smooth canal surface are circles and since
a curve with a constant curvature circle must be a circle, we impose in the
following definition on our discrete parameter curves in circular direction to
have a constant curvature circle.

Definition 20. A discrete canal surface is a principal cone-net f with spherical
parameter curves (fij)i with constant curvature circles. We call the reciprocals
of the radii of the spheres discrete principal curvatures (in circle direction)
κ1(j).

Note that discrete parameter curves in circular directions of canal sur-
faces in our definition are not necessarily concyclic even though the curvature
circle is constant along the curve. However, since the curvature circle of a con-
cyclic polygon equals the circumcircle, the canal surfaces from [14] constitute a
subclass of ours as there concyclic parameter curves are required (see Fig. 11
for illustrations of discrete canal surfaces).
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In analogy to Theorem 13 discrete canal surfaces are characterized by
their Gauss image. The discrete Gauss image of a net f is (in our setting) a
net which is edge-wise parallel to f with vertices on a sphere (cf. [8]).

Theorem 35. A discrete principal cone-net is a canal surface if and only if its
Gauss image is a canal surface.

Proof. Lemma 27 implies that the polygons (fij)i and (fi,j+1)i are mapped
onto each other by inversion in the geodesic curvature sphere Sg

j with center
rj . Therefore, the sphere containing (fi,j+1)i can be mapped to the sphere S
containing (fij)i by a homothety. Applying this homothety to the entire net
yields a net with two co-spherical parameter polygons on S. In this way we
generated the Gauss image of the first strip Bj since all edges are parallel to
the corresponding edges of the original net.

We can continue by mapping the next parameter curve (fi,j+2)i to S with
another homothety. In this way by continuing we obtain the Gauss image.

Since corresponding parameter curves of f and its Gauss image only
differ by a homothety (which is a Möbius transformation) either both have a
constant curvature circle or none. �

Definition 21. A (vertex) offset fd of a discrete principal net f has the same
combinatorics as f such that corresponding edges are parallel and the distance
between corresponding vertices is constant.

For nets over a simply connected domain the existence of a vertex offset
net is equivalent to the existence of an edgewise parallel net (fd−f)/d inscribed
into the unit sphere [29] which is the discrete Gauss image. Note that the set
of edgewise parallel nets is a vector space with vertex-wise addition and scalar
multiplication.

Theorem 36. Let f be a discrete canal surface and κ1(j) the discrete principle
curvature of the discrete circular parameter curves. The offset fd is up to
translation a CCT of f for λj = 1 + d κ1(j).

Proof. By the proof of Theorem 35 the Gauss image n exists and corresponding
i-parameter curves are related by a homothety. The scaling factor from (fij)i

to its Gauss image (nij)i is κ1(j). Consequently,

fd = f + d n

implies

(fij)d
i = (fij)i + d (nij)i = (fij)i + d κ1(j)(fij)i = (1 + d κ1(j))(fij)i,

which concludes the proof. �

Lemma 37. Any double principle cone-net f : Z2 → R
3 is a multi-circular net

(cf. Definition 13).
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Proof. Bobenko et al. [15, Th. 2.4] show that any double cone-net is a multi-
cone-net.

Moreover, Lemma 29 implies that any strip Bj is a multi-circular strip
in itself.

Consequently, the strip (fi0,j , fi1,j , fi1,j+1, fi0,j+1)j is a circular cone-
strip and by Lemma 29 a multi-circular strip. Hence, the quadrilateral (fi0,j0 ,
fi1,j0 , fi1,j1 , fi0,j1) is concyclic and therefore the net is multi-circular. �

In analogy to Theorem 16 we obtain:

Theorem 38. Every discrete double principal cone-net is Möbius equivalent to
a surface of revolution, cone or cylinder.

Proof. Lemma 37 implies that the net is multi-circular. Bobenko et al. [15,
Th. 7.7] show that multi-circular nets are Möbius equivalent to surfaces of
revolution, cones or cylinders. �
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Appendix A Proof of Theorem 16

Proof of Theorem 16. We prove the statement by analyzing three cases. Before
we start with that we compute the derivatives of the curves traced out by the
cone tips.

Let f : U → R
3 be a double principal cone-net. Theorem 7 implies

that f is a Kœnigs net and orthogonal Kœnigs nets are isothermic. After a
possible reparameterization (u �→ ũ(u), v �→ ṽ(v)), we can assume that the
parameterization is conformal, i.e., α = ‖fu‖ = ‖fv‖ = β. Then we have

βv

β
=

αv

α

(6)
=

−βκ

α
= −κ,

αu

α
=

βu

β

(7)
=

αη

β
= η. (A1)

For coordinate curves with non-vanishing geodesic curvature we denote
the tips of the cones along the u-parameter curves by r(v) and the tips of the
cones tangent to the v-parameter curves by s(u). Using Eq. (2) and the frame
Eqs. (5) we compute the curve of cone tips

r(v)
(12)
= f(u, v) +

α

κ
Y (u, v) and analogously s(u) = f(u, v) − α

η
X(u, v),

and their derivatives:

rv(v)
(5)
= −ηα

κ
X +

(
α +

(α

κ

)
v

)
Y +

dα

κ
N

(A1)
=

α

κ

( − ηX − κv

κ
Y + dN

)

su(u)
(5)
=

(
α −

(α

η

)
u

)
X − κα

η
Y − cα

η
N

(A1)
=

α

η

(ηu

η
X − κY + −cN

)
. (A2)

After this preparatory work we start to analyze three cases depending on
the values of the geodesic curvature of the parameter lines. First, note that
the (generalized) spheres of the family S(u) with centers s(u) and radii |kv

g |−1

intersect the (generalized) spheres of the family S(v) with centers r(v) and
radii |ku

g |−1 orthogonally since f(u, v) − s(u) ⊥ f(u, v) − r(v).
—Case 1: All parameter curves are geodesics. Consequently, η = κ = 0.

From the Gauss Eq. (8), we obtain 0 = κv − ηu = cd. If c = 0, we further
have Xv = Xu = Yu = 0 (cf. (5)), hence the u-curves are straight lines and
the surface is a cylinder over the v-curves. The case d = 0 works analogously.

—Case 2: The u-curves are geodesics and there exist v-curves that are not
geodesics. Consequently, κ = 0. Due to Lemma 8 and its proof the geodesics are
contained in the planes S(v) = {x ∈ R

3 | 〈x − f(u, v), Y (v)〉} which intersect
the spheres S(u) orthogonally. Therefore, S(v) contains the centers of S(u).

All planes S(v) are orthogonal to any sphere S(u) hence they all pass
through their centers s(u). Let us choose an arbitrary sphere S(u0). Conse-
quently, all planes S(v) pass through s(u0). Now, either all these planes only
share one point, s(u0), or they share a straight line passing through s(u0).

In the first case the spheres S(u) are concentric which implies su(u) = 0
and Eq. (A2) yields ηu = c = 0. This implies Xu = 0 (cf. (5)) and the u-curves
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Figure 12. Two families of orthogonally intersecting
spheres. The centers of one of the families lie on the z-axis
and the centers of the other family in the xy-plane. Left: The
sphere with radius

√
q centered at the origin gets intersected

orthogonal by all spheres S(u) while all the spheres S(v) in-
tersect that sphere in the same circle lying in the xy-plane.
Right: The sphere with radius

√|q| centered at the origin,
gets intersected orthogonally by all spheres S(v) while all the
spheres S(u) contain the north and south pole of the that
sphere

are straight lines that meet in the common center of the spheres. The surface
is therefore a cone.

In the second case the centers of S(u) lie on a straight line s(u). From
κ = 0 we obtain that Y is orthogonal to su(u) (see Eq. (A2)). This implies
that the v-curves lie in planes orthogonal to su(u) and the surface is a surface
of revolution.

—Case 3: Both families of parameter curves contain curves with non-
vanishing geodesic curvature. The Gauss Equation (8) implies that the tangent
vectors of the curves of cone tips are orthogonal at every point

〈rv(v), su(u)〉 =
α

κ

α

η
(−ηu + κv − cd) = 0.

Note that neither rv(v) nor su(u) can be zero because if one family of spheres
is concentric, then the other family has to consist of planes containing the
center. This would contradict the assumption, that both families of parameter
curves contain curves with non-vanishing geodesic curvature. Hence, one of
the curves is a straight line and the other one lies in a plane orthogonal to
this line. W.l.o.g., we assume that r(v) is contained in the z-axis and that s(u)
is contained in the xy-plane. We choose a sphere S(u0) with radius R(u0) =
(κu0

g )−1 and center s(u0) in the xy-plane. For every sphere S(v) we denote the
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distance of its center r(v) to the center s(u0) by D(v) (see Fig. 12). Pythagoras’
theorem implies

‖s(u0)‖2 + ‖r(v)‖2 = D(v)2 = R2(v) + R(u0)2

⇔ R2(v) − ‖r(v)‖2 = ‖s(u0)‖2 − R(u0)2 =: q,

for some q ∈ R. If q > 0 (Fig. 12 left), the last equation implies that all spheres
S(v) intersect the xy-plane in the same circle {(x, y, 0) ∈ R

3 | x2 + y2 = q}.
After applying a Möbius transformation that maps this circle to a straight line
the spheres S(v) become planes that intersect in that line and we are in the
same situation as considered in Case 2. If q < 0 (Fig. 12 right), all the spheres
S(v) intersect the sphere K := {(x, y, z) ∈ R

3 | x2+y2+z2 = −q} orthogonally
and the spheres S(u) intersect the z-axis in the points (0, 0,±q). The inversion
in the sphere with center (0, 0,−q) and radius

√−2q, maps the sphere K to
the xy-plane and the z-axis to itself. Since the spheres S(v) intersect K and
the z-axis orthogonally, their images under the inversion are spheres centered
at the origin. The spheres S(u) get mapped to planes containing the origin
because they contain the points (0, 0,±q). Hence, we are again in the same
situation as discussed in Case 2. If q = 0, all spheres contain the origin. An
inversion at any sphere with the origin as center maps all the spheres to planes.
This situation was considered in Case 1. �
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