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Abstract
In Tao 2016, the author constructs an averaged version of the deterministic three-dimensional
Navier–Stokes equations (3D NSE) which experiences blow-up in finite time. In the last
decades, various works have studied suitable perturbations of ill-behaved deterministic PDEs
in order to prevent or delay such behavior. A promising example is given by a particular choice
of stochastic transport noise closely studied in Flandoli et al. 2021. We analyze the model
in Tao 2016 in view of these results and discuss the regularization skills of this noise in the
context of the averaged 3D NSE.
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1 Introduction

Consider the Navier–Stokes equations (NSE) on R
3 describing the dynamics of an

incompressible viscous fluid

∂t u + (u · ∇)u + ∇ p = Δu,

divu = 0,

u(0, ·) = u0,

(1)

with vector-valued velocity field u : [0,∞) × R
3 → R

3 and scalar-valued pressure field
p : [0,∞) × R

3 → R. By a rescaling argument, we may assume unitary viscosity. The
global well-posedness of 3D NSE forms a long-standing open problem and has attracted the
attention of researchers ever since: it was established in the regime of small initial data (see
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e.g. [15]) as well as in the hyperdissipative case (replacing Δ by −(−Δ)α , for α ≥ 5
4 see e.g.

[13]). The general case remains unresolved; in particular, there exists evidence for blow-up
of solutions to variants of (1) as exploited in e.g. [4, 14–17, 19–21]. This note shall focus
on the following result presented in [23]: consider the projection of (1) onto the space of
divergence-free vector fields, reading

∂t u = Δu + B(u, u),

u(0, ·) = u0.
(2)

Here B denotes the bilinear Euler operator (see e.g. in [23]) which is symmetric and for
sufficiently regular u satisfies the cancellation property

〈B(u, u), u〉L2(R3) = 0 (3)

where 〈u, v〉L2(R3) := ∫
R3 u(x) · v(x)dx in L2(R3). Standard harmonic analysis approaches

then use both symmetry and (3) to investigate the behavior of the system’s energy in view of
well-posedness. However, [23] demonstrates that such an ansatz will not be successful: the
author constructs an explicit, "averaged" version of (2) in which symmetry and cancellation
property remain valid, and for which the corresponding system experiences a blow-up in
finite time.

In recent years it has been investigated whether for ill-posed deterministic PDEs it is
possible to construct a perturbation yielding higher regularity of the corresponding perturbed
system.Especially in the case of stochastic perturbations themotive behind such constructions
is that noise may have a smoothing effect. This goes under the name of regularization by
noise and has been analyzed in various settings; in view of the extensive amount of literature
available on this account, we merely point out a few overview works such as [6] and [12], or
in the context of NSE e.g. [3], and the references therein. A particularly interesting stochastic
perturbation is given by a specific type of transport noise which in the context of the vorticity
formulation of (1) and similar, more general models proved to yield existence of solutions
for arbitrarily long time with large probability, as shown in [7] and [8] respectively. Further
work on regularization by transport noise can be found in for instance [1, 5, 9–11, 18].

1.1 Overview of the Results of ThisWork

The averaged NSE from [23] form an excellent candidate to test the regularization effect
of the above noise: though the model explodes in finite time, we want to exploit whether it
allows for enough regularity in order for transport noise to delay the blow-up. In [8], this is
achieved for systems on the torus if the nonlinearity of the system admits for a continuity,
growth and local monotonicity condition which we will recall in Sect. 2. In particular we
will formulate the result from [8] in the case of divergence-free vector fields with the proof
given in Appendix 1. Consequently, we will consider the averaged NSE on the torus which
equally experience the same blow-up statement derived in [23], see Theorem 5 in Sect. 3.1.
We proceed by discussing the above delay criteria on the level of regularity classes of the
solution. In Sect. 3.2.1, it turns out that (similar to the case of the standard NSE (1)) we do
not obtain local existence and uniqueness of solutions to the averaged NSE in L2. In this
case the above three conditions cannot be shown to hold true, see Theorem 6. In turn in
Sect. 3.2.2, we derive lower bounds on the order of regularity which allow for an analysis
as in [8], see Theorem 7 and Theorem 8. Since the blow-up result of [23] was derived in a
rather high regularity class, we may therefore still conclude regularization by transport noise
in Theorem 9.
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1.2 Notation

Let L2(Kd) denote the space of square-integrable functions onKd with norm ‖·‖L2(Kd ) where
K

d = R
d or Kd = T

d := R
d/Zd . Further let Hα(Kd), α ∈ R, denote the Sobolev space

endowed with norm ‖ ·‖Hα(Kd ) :=
∥
∥
∥(Id − Δ)

α
2 ·
∥
∥
∥
L2(Kd )

. As already used in the introduction,

we will further use 〈·, ·〉L2(Kd ) to denote the inner product in L2(Kd), and 〈·, ·〉 for the dual
pairing of Hα(Kd) and H−α(Kd). Furthermore let Hα

df (K
d) denote the space of divergence-

free functions in Hα(Kd). On the other hand, denoting L p(0, T ; Z) the set of all u : [0, T ] →
Z in L p for some linear space Z with norm ‖ · ‖Z , we define the fractional Sobolev spaces
by

Wβ,p(0, T ; Z) :=
{

u ∈ L p(0, T ; Z) :
∫ T

0

∫ T

0

‖u(t) − u(s)‖p
Z

|t − s|1+β p
dtds < ∞

}

for β ∈ (0, 1), p > 1. If it exists, we will denote byFKd f the Fourier transform of a function
f on K

d . Whenever it is clear from the context, we drop the Kd in the notation. Finally, let
supp denote the support of a function, and let x � y denote x ≤ Cy for some constantC > 0.

2 Main Ingredients

This section shall serve the purpose of bringing together the various objects considered in
this work. It will mainly consist of repetitions of external work and will set the notation
throughout.

2.1 The Averaged NSE

The main idea in [23] is to construct a modification of the projected NSE (2) which on the
one hand preserves energy as well as symmetry and cancellation property of the nonlinearity,
and on the other hand experiences a blow-up. In order to do so, consider a suitable frequency
decomposition of the projected NSE and "average out", i.e. eliminate a carefully selected
choice of frequencies, resulting in a system of the following form

∂t u = Δu + C(u, u),

u(0, ·) = u0,
(4)

where C is called a local cascade operator, introduced below. Thus allowing only for local-
ized frequency interactions gives rise to a concrete blow-up mechanism. Considering the
subcritical case of mild solutions in the regularity class H10

df (R3), the main result in [23] is
as follows:

Theorem 1 (cf. [23, Theorem 3.3]) There exist a symmetric local cascade operator C sat-
isfying the cancellation property, and a divergence-free vector field u0 such that there does
not exist any global mild solution u : [0,∞) → H10

df (R3) to (4).

The construction of such an operator C in [23] is inspired by the work of [14] in case of
the dyadic hyperdissipative NSE: heuristically, a solution u to the projected NSE (2) can be
approximated by a wavelet decomposition of the form

∑

n

un(t)ψn(x) (5)
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for a suitable orthonormal basis {ψn} in L2(R3), and the wavelet coefficients un evolve
according to the following ODEs

∂t un = 2
5n
2 u2n−1 − 22nun − 2

5(n+1)
2 unun+1. (6)

Hence the corresponding energy equation reads

∂t

(
1

2
u2n

)

= 2
5n
2 u2n−1un − 22n X2

n − 2
5(n+1)

2 u2nun+1,

encoding a ’low-to-high-frequency-cascade’: the energy from the previous scale n−1 enters
scale n and, apart from some dissipated portion, will be completely transported to the next
scale n+1. This system experiences a blow-up in H2+ε(R3) for small ε > 0 and dissipation
exponent α < 1

4 ; however, in [2] it has been shown that in the dissipation range containing
the standard NSE, the corresponding model dissipates energy fast enough to prevent such
a blow-up. The construction in [23] allows for a decomposition (5) in such a way that the
system of coefficients un captures an additional time delay in which energy first accumulates
at one scale and is then abruptly transported to the next. This way the energy cascade outruns
the dissipation and yields a blow-up in finite time. Let us now give the precise formulation
of an operator C enabling such behaviour:

Definition 1 (cf. [23, Section 4]) Let ε0 ∈ (0, 1) and m ∈ N. Furthermore let B1, . . . , Bm be
balls in the annulus {ξ ∈ R

3 : 1 < |ξ | < 1 + ε0
2 } such that B1, . . . , Bm,−B1, . . . ,−Bm are

disjoint. For n ∈ Z and i ∈ {1, . . . ,m}, let ψi,n : R3 → R
3 be rescaled L2-functions with

ψi,n(·) := (1 + ε0)
3n
2 ψi ((1 + ε0)

n ·)
where ψi ∈ H10

df (R3) are Schwartz functions with Fourier transform supported on Bi ∪ −Bi
and normalized to ‖ψi‖L2 = 1. Let S = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} and
αi1,i2,i3,μ1,μ2,μ3 ∈ R be bounded structure constants where i1, i2, i3 ∈ {1, . . . ,m} and
(μ1, μ2, μ3) ∈ S. Then a local cascade operator C : H10

df (R3) × H10
df (R3) → H−10

df (R3) is
defined by

C(u, v) :=
∑

n∈Z

∑

(i1,i2,i3,μ1,μ2,μ3)∈{1,...,m}3×S

αi1,i2,i3,μ1,μ2,μ3(1 + ε0)
5n
2

〈u, ψi1,n+μ1〉L2〈v,ψi2,n+μ2〉L2ψi3,n+μ3

(7)

for u, v ∈ H10
df (R3).

Remark 1 In the following we will rather use the short hand notation
∑

n,i,μ as well as αi,μ.

As done in [23], requiring the symmetry condition

αi1,i2,i3,μ1,μ2,μ3 = αi2,i1,i3,μ2,μ1,μ3

as well as the cancellation condition
∑

{a,b,c}={1,2,3}
αia ,ib,ic,μa ,μb,μc = 0

for all i1, i2, i3 ∈ {1, . . . ,m} and (μ1, μ2, μ3) ∈ S, this ensures that C is symmetric and
satisfies the cancellation property

〈C(u, u), u〉L2 = 0 ∀u ∈ H10
df (R3).
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Next consider the corresponding Cauchy problem

∂t u = Δu + C(u, u),

u(0, ·) = u0 := ψ1,n0 ,
(8)

for some n0 ∈ N sufficiently large, and assume that there exists a mild solution u : [0,∞) →
H10
df (R3). Then the following holds:

Lemma 1 (cf. [23, Lemma 4.1]) For each n ∈ Z, t ≥ 0 and i ∈ {1, . . . ,m} define
(FR3ui,n(t)

)
(ξ) := (FR3u(t)

)
(ξ)1{ξ∈(1+ε0)n(Bi∪−Bi )},

Xi,n(t) := 〈u(t), ψi,n〉L2 = 〈ui,n(t), ψi,n〉L2 ,

Ei,n := 1

2
‖ui,n(t)‖2L2 ,

then

1. it holds

sup
t∈[0,T ]

sup
n∈Z

sup
i∈{1,...,m}

(
1 + (1 + ε0)

10n) |Xi,n(t)| < ∞ (9)

and

sup
t∈[0,T ]

sup
n∈Z

sup
i∈{1,...,m}

(
1 + (1 + ε0)

10n) |Ei,n(t)| < ∞ (10)

for all T ∈ (0,∞),
2. for any n ∈ Z, i ∈ {1, . . . ,m}

Ei,n(0) = 1

2
Xi,n(0)

2, (11)

Xi,n(0) = 1{(i,n)=(1,n0)}, (12)

3. for any n ∈ Z, i ∈ {1, . . . ,m}

∂t Xi,n =
∑

i1,i2∈{1,...,m}

∑

μ∈S
αi1,i2,i,μ(1 + ε0)

5(n−μ3)

2 Xi1,n−μ3+μ1Xi2,n−μ3+μ2

+ O
(
(1 + ε0)

2n
√
Ei,n

) (13)

and

∂t Ei,n ≤
∑

i1,i2∈{1,...,m}

∑

μ∈S
αi1,i2,i,μ(1 + ε0)

5(n−μ3)

2 Xi1,n−μ3+μ1Xi2,n−μ3+μ2 Xi,n, (14)

4. for any n ∈ Z, i ∈ {1, . . . ,m}
1

2
Xi,n(t)

2 ≤ Ei,n(t) ≤ 1

2
Xi,n(t)

2 + O

(

(1 + ε0)
2n

∫ t

0
Ei,n(s)ds

)

, (15)

5. it holds

Xi,n(t) = 0 = Ei,n(t) (16)

for all n < n0, i ∈ {1, . . . ,m}, t ≥ 0.
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Observe that up to the O-terms, (13) is of the form (6) and existence of a global mild solution
u implies boundedness of the Xi,n as formalized in (9). Thus in order to prove Theorem 1,
the author constructs a sequence (Xi,n) violating Lemma 1 which specifies a blow-up in H10

df
(cf. [23, Theorem 4.2] as well as the construction in [23, Section 6]).

2.2 Regularization by Transport Noise

In this section, we shall introduce the specific choice of transport noise (cf. [7, Section 2]
and [8, Section 1.2]): on the d-dimensional torus Td consider the following noise

√
Cdν

‖θ‖�2

∑

k∈Zd
0

d−1∑

i=1

θk�((σk,i · ∇)·)Wk,i . (17)

Here Cd = d
d−1 , d ≥ 2, ν > 0, � is the Leray projection and the individual components

are as follows: let �2 = �2(Zd
0) denote the space of square-summable sequences indexed

by Z
d
0 = Z

d\{0} and choose a sequence θ = (θk)k∈Zd
0

∈ �2 with finitely many non-zero
components such that θ satisfies a symmetry condition

θk = θl ∀k, l ∈ Z
d
0 , |k| = |l|.

Further, let {σk,i : k ∈ Z
d
0 , i = 1, . . . , d − 1} be periodic divergence-free smooth vector

fields forming a complex orthonormal system of the space

HC =
{

v ∈ L2(Td ,Cd) :
∫

Td
vdx = 0, divv = 0

}

(18)

and which are defined as follows:

σk,i (x) = ak,i e
2π ik·x , x ∈ T

d , k ∈ Z
d
0 , i = 1, . . . , d − 1.

Here i denotes the imaginary unit and considering a partition Z
d+,Zd− of Zd

0 such that Zd
0 =

Z
d+ ∪Z

d−,Zd+ = −Z
d−, choose for any k ∈ Z

d+ the set {ak,i : i = 1, . . . , d −1} to be an ONB
of k⊥ := {y ∈ R

d : y · k = 0}, and define ak,i = a−k,i for any k ∈ Z
d−.

Finally let {Wk,i : k ∈ Z
d
0 , i = 1, . . . , d − 1} be a family of complex Brownian motions

on a probability space (�,F,P) such that

Wk,i = W−k,i (19)

and their cross-variation satisfies
[
Wk,i ,Wl, j

]

t
= 2tδk+lδi− j ∀k, l ∈ Z

d
0 , i, j ∈ {1, . . . , d − 1} (20)

in order for Wk,i and Wl, j to be independent whenever k �= ±l and i �= j .
Example: In [7], the authors consider a family {Bk,i : k ∈ Z

d
0 , i = 1, . . . , d − 1} of

standard real-valued Brownian motions and define for k ∈ Z
d+

Wk,i := Bk,i + iB−k,i

and for k ∈ Z
d−

Wk,i := Bk,i − iB−k,i .

It is easy to check that {Wk,i : k ∈ Z
d
0 , i = 1, . . . , d − 1} then satisfy (19) and (20).
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2.2.1 The Vorticity Formulation of NSE

For d = 3, the vorticity ξ := ∇ × u of the standard NSE (1) evolves according to

∂tξ + Luξ = Δξ (21)

with Lie derivativeLuξ = (u ·∇)ξ −(ξ ·∇)u consisting of a transport and a vortex stretching
term, respectively. As discussed in [7], we may heuristically recover the form of noise (17)
herewhen separating the vorticity into large-scale and small-scale component and treating the
later as a random perturbation of the former. The small-scale vortex stretching term, however,
complicates the regularization-by-noise analysis but it is shown in [7] that the transport term
on its own already has sufficient regularization skills. More precisely, let BH (R0) denote the
ball of radius R0 in the real subspace H of HC, then the authors of [7] are able to show the
following result:

Theorem 2 (cf. [7, Corollary 1.5]) For R0 > 0, T > 0, and ε > 0, there exists θ ∈ �2 such
that for all ξ0 ∈ BH (R0)

dξ + Luξdt = Δξdt +
√
C3ν

‖θ‖�2

∑

k∈Z3
0

2∑

i=1

θk�((σk,i · ∇)ξ) ◦ dWk,i (22)

admits a unique strong solution up to time T with probability no less than 1 − ε.

For the proof rewrite the Stratonovich equation (22) into its corresponding Itô-formulation
which by the above choice of parameters is of the form

dξ + Luξdt = (Δξ + Sθ (ξ)) dt +
√
C3ν

‖θ‖�2

∑

k∈Z3
0

2∑

i=1

θk�((σk,i · ∇)ξ)dWk,i (23)

with Itô-Stratonovich correction denoted by Sθ (ξ). Then they show that there exists a suitable
choice of sequence (θN )N∈N such that in a suitable sense specified in [7], in the limit of
N → ∞ the martingale part in (23) vanishes and

lim
N→∞ SθN (ξ) = 3

5
νΔξ.

Hence obtain the limiting equation

∂tξ + Luξ =
(

1 + 3

5
ν

)

Δξ (24)

and the claim then follows by using existence of a unique global strong solution to (24) for
large enough ν.

2.2.2 Criteria for Delayed Blow-up

In the case of Td , d ≥ 2, consider systems of more general form, namely

∂t u = −(−Δ)αu + F(u),

u(0, ·) = u0,
(25)

for α ≥ 1 and a fixed initial condition u0 ∈ L2(Td). Regularization by transport noise is
obtained under the following structural assumptions:
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(H1) Continuity: There exist β1 ≥ 0 and η ∈ (0, α) such that F : Hα−η(Td) → H−α(Td) is
continuous and

‖F(u)‖H−α(Td ) �
(
1 + ‖u‖β1

L2(Td )

) (
1 + ‖u‖Hα(Td )

)
.

(H2) Growth: There exist β2 ≥ 0 and γ2 ∈ (0, 2) such that

|〈F(u), u〉| �
(
1 + ‖u‖β2

L2(Td )

) (
1 + ‖u‖γ2

Hα(Td )

)
.

(H3) Local monotonicity: There exist β3, κ ≥ 0, γ3 ∈ (0, 2) such that β3+γ3 ≥ 2, κ +γ3 ≤ 2
and

|〈u − v, F(u) − F(v)〉| � ‖u − v‖β3
L2(Td )

‖u − v‖γ3
Hα(Td )

(
1 + ‖u‖κ

Hα(Td )
+ ‖v‖κ

Hα(Td )

)
.

(H4) Admissible initial conditions: There exists K ⊂ L2(Td) convex, closed and bounded
with the following property: for any T > 0, we can find ν > 0 big enough such that the
deterministic Cauchy problem

∂t u = −(−Δ)αu + νΔu + F(u),

u(0, ·) = u0,
(26)

admits a global solution u := u(·; u0, ν) ∈ L2(0, T ; Hα(Td)) ∩ C([0, T ]; L2(Td)) for
any u0 ∈ K, and moreover

sup
u0∈K

sup
t∈[0,T ]

‖u(t; u0, ν)‖L2(Td ) < ∞. (27)

Given a deterministic u0 ∈ L2(Td), let τ(u0, ν, θ) denote the random maximal time of
existence of solutions u(t; u0, ν, θ) to

du = (−(−Δ)αu + F(u))dt +
√
Cdν

‖θ‖�2

∑

k∈Zd
0

d−1∑

i=1

θk(σk,i · ∇)u ◦ dWk,i ,

u(0, ·) = u0,

(28)

with trajectories in C([0, T ]; L2(Td)). Then

Theorem 3 (cf. [8, Theorem 1.4]) Assume F satisfies (H1)–(H3) and K ⊂ L2(Td) satisfies
(H4). Then for arbitrary large time T ∈ (0,∞), ν = ν(T ) > 0 as in (H4) and arbitrary
small ε > 0, there exists θ ∈ �2 such that

P [τ(u0, ν, θ) ≥ T ] > 1 − ε ∀u0 ∈ K. (29)

Remark 2 1. Assuming exponential decay of the L2(T3)-norm of the solution to the deter-
ministic system (26) as well as existence of a pathwise unique global solution to (28) for
small initial conditions, then Theorem 3 may even be extended to hold for infinite time
horizon (cf. [8, Theorem 1.4]).

2. By [8,Remark1.3, (iii)], if F preserves the spaceofmean-zero functions, then considering
the dynamics restricted to this closed subspace of L2(Td) as well as for any fixed constant
R ≥ 0, a suitable choice for K is

K =
{

f ∈ L2(Td) :
∫

Td
f dx = 0, ‖ f ‖L2 ≤ R

}

. (30)
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3. A useful implication of (H2) is given in [8, Remark 3.5]: for sufficiently small parameter
δ > 0, standard interpolation yields

(H2’) There exist β̃2 > 0 and γ̃2 < 2 such that

|〈F(u), u〉| �
(
1 + ‖u‖γ̃2

Hα(Td )

) (
1 + ‖u‖β̃2

H−δ(Td )

)
. (31)

4. By [8, Remark 1.3, (ii)], hypothesis (H3) can be further generalized to
(H3’) There exist N ∈ N and non-negative parametersβ

j
3 , γ

j
3 , κ j , κ

′
j , j = 1, . . . , N

such that γ j
3 ∈ (0, 2), β j

3 + γ
j
3 ≥ 2, γ j

3 + κ j ≤ 2 for all j and

|〈u − v, F(u) − F(v)〉|

�
N∑

j=1

‖u − v‖β
j
3

L2(Td )
‖u − v‖γ

j
3
Hα(Td )

(

1 + ‖u‖κ ′
j

L2(Td )
+ ‖v‖κ ′

j

L2(Td )

)(
1 + ‖u‖κ j

Hα(Td )
+ ‖v‖κ j

Hα(Td )

)
.

(32)

Observe that solutions to (25) need not be divergence-free, hence the noise in (28) does not
contain the Leray projection � (compare with (17)). In the course of this note, we will,
however, be in the setting of divergence-free systems. Thus let

D :=
{
u ∈ L2(Td) : divu = 0

}

and τ̃ (u0, ν, θ) denote the analogon to τ(u0, ν, θ) for

du = (−(−Δ)αu + F(u))dt +
√
Cdν

‖θ‖�2

∑

k∈Zd
0

d−1∑

i=1

θk�((σk,i · ∇)u) ◦ dWk,i ,

u(0, ·) = u0.

(33)

Then using the tools of [7] in the proof of Theorem 3 gives the following adapted result:

Theorem 4 Additionally to the assumptions in Theorem 3, let F preserve D. Then for
arbitrary large time T > 0 and arbitrary small ε > 0, there exists θ ∈ �2 such that

P
[
τ̃ (u0, ν, θ) ≥ T

]
> 1 − ε ∀u0 ∈ K ∩ D. (34)

The proof shall be given in Appendix 1.

3 Main Results

In this section,we shall bring together the components introduced in Sect. 2. Since the analysis
for the transport noise in Sect. 2.2.2 currently works only on the torus, we shall first check
whether the analysis from [23] can be transferred to T3.

3.1 The Averaged NSE onT3

Consider the following periodization of the functions ψi,n in Definition 1:

ψ
per
i,n (x) :=

∑

l∈Z3

ψi,n(x + l). (35)
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We observe the following: since ψi is a Schwartz function on R
3, we obtain for all N ∈ N

that

sup
x∈T3

|ψi,n(x + l)|2(1 + |x + l|)N �N 1 ∀l ∈ Z
3, (36)

hence let N > 3, then
∑

l∈Z3

|ψi,n(x + l)|2 �N

∑

l∈Z3

(1 + |x + l|)−N < ∞

and
∫

T3
(1 + |x + l|)−Ndx

is summable. Therefore (35) iswell-defined andwemay exchange integration and summation
to obtain for k ∈ Z

3

(FT3ψ
per
i,n )(k) =

∫

T3

∑

l∈Z3

ψi,n(x + l)e−2π ik·xdx

=
∑

l∈Z3

∫

T3
ψi,n(x + l)e−2π ik·xdx

=
∑

l∈Z3

∫

T3+l
ψi,n(z)e

−2π ik·zdz

=
∫

R3
ψi,n(z)e

−2π ik·zdz

= (FR3ψi,n)(k)

(37)

where we used e−2π ik·x = e−2π ik·(x+l) ∀l ∈ Z
3. Hence

suppFT3ψ
per
i,n = Z

3 ∩ suppFR3ψi,n . (38)

Furthermore we have

(FR3ψi,n)(k) = (1 + ε0)
− 3n

2 (FR3ψi )((1 + ε0)
−nk). (39)

Thus since suppFR3ψi ⊂ Bi ∪ −Bi , it holds

suppFR3ψi,n ⊂ (1 + ε0)
n(Bi ∪ −Bi ) (40)

and

suppFT3ψ
per
i,n ⊂ Z

3 ∩ (1 + ε0)
n(Bi ∪ −Bi ). (41)

Finally note that ψper
i,n is divergence-free. Let ψ̃per

i,n denote the L2-normalization of ψ
per
i,n

ψ̃
per
i,n (x) := 1

‖ψper
i,n ‖L2(T3)

ψ
per
i,n (x)

and consider the corresponding Cauchy problem

∂t u = Δu + C(u, u),

u(0, ·) = u0 := ψ̃
per
1,n0

,
(42)
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where

C(u, v) := Cper(u, v)

:=
∑

n,i,μ

αi,μ(1 + ε0)
5n
2 〈u, ψ̃

per
i1,n+μ1

〉L2(T3)〈v, ψ̃
per
i2,n+μ2

〉L2(T3)ψ̃
per
i3,n+μ3

.

Analogous to Lemma 1 define

(FT3ui,n(t))(k) := (FT3u(t))(k)1{k∈Z3∩(1+ε0)n(Bi∪−Bi )},
Xi,n(t) := 〈u(t), ψ̃per

i,n 〉L2 ,

Ei,n(t) := 1

2
‖ui,n(t)‖2L2 .

First we observe the following: it holds

‖ui,n(t)‖Hκ

=
∥
∥
∥(Id − Δ)

κ
2 ui,n(t)

∥
∥
∥
L2

=
⎛

⎝
∑

k∈Z3

∣
∣
∣FT3

(
(Id − Δ)

κ
2 ui,n(t)

)∣∣
∣
2

⎞

⎠

1
2

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑

k ∈ Z
3∩

(1 + ε0)
n(Bi ∪ −Bi )

(
1 + 4π2|k|2n)κ ∣∣FT3u(t)

∣
∣2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1
2

�
(
1 + 4π2(1 + ε0)

2n)− β
2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∑

k ∈ Z
3∩

(1 + ε0)
n(Bi ∪ −Bi )

(
1 + 4π2|k|2n)κ+β ∣

∣FT3u(t)
∣
∣2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1
2

≤ (
1 + 4π2(1 + ε0)

2n)− β
2 ‖u(t)‖Hκ+β

(43)

for any κ, β ∈ R. Then the blow-up result formulated in Theorem 4 carries over to T
3 as a

consequence of the following

Theorem 5 Assume that u : [0,∞) → H10
df (T3) is a mild solution to (42), then

(Xi,n)i∈{1,...,m},n∈Z and (Ei,n)i∈{1,...,m},n∈Z satisfy (9)–(16) in Lemma 1.

Proof From (43) we immediately deduce

sup
t∈[0,T ]

sup
n∈Z

sup
i∈{1,...,m}

(1 + (1 + ε0)
10n)

√
2Ei,n(t)

= sup
t∈[0,T ]

sup
n∈Z

sup
i∈{1,...,m}

(1 + (1 + ε0)
10n)‖ui,n(t)‖L2

≤ sup
t∈[0,T ]

sup
n∈Z

(1 + (1 + ε0)
10n)(1 + 4π2(1 + ε0)

2n)−5‖u(t)‖H10

≤ ‖u‖C0
t H10

x
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as well as

sup
t∈[0,T ]

sup
n∈Z

sup
i∈{1,...,m}

(1 + (1 + ε0)
10n)|Xi,n(t)| ≤ sup

t,n,i
(1 + (1 + ε0)

10n)‖ui,n(t)‖L2

which gives (9) by u ∈ C0
t H

10
x .

Analysing the time evolution of the above quantities we obtain for Xi,n

∂t Xi,n(t) = 〈Δu(t), ψ̃per
i,n 〉L2 + 〈C(u(t), u(t)), ψ̃per

i,n 〉L2 .

Using (41), the first summand is of the form

〈Δu(t), ψ̃per
i,n 〉L2 =

∑

k∈Z3

(FT3(Δu(t)))(k) · (FT3ψ̃
per
i,n )(k)

= −4π2
∑

k∈Z3

|k|2(FT3u(t))(k) · (FT3ψ̃
per
i,n )(k)

= −4π2
∑

k∈Z3∩(1+ε0)n(Bi∪−Bi )

|k|2(FT3u(t))(k) · (FT3ψ̃
per
i,n )(k)

= −4π2
∑

k∈Z3

|k|2(FT3ui,n(t))(k) · (FT3ψ̃
per
i,n )(k)

= 〈Δui,n(t), ψ̃
per
i,n 〉L2 .

Similarly and since

(FT3C(u(t), u(t)))(k)

=
∑

n,i,μ

αi,μ(1 + ε0)
5n
2 〈u(t), ψ̃per

i1,n+μ1
〉L2〈u(t), ψ̃per

i2,n+μ2
〉L2(FT3ψ̃

per
i3,n+μ3

)(k)

we obtain

〈C(u(t), u(t)), ψ̃per
i,n 〉L2

=
∑

k∈Z3

∑

ñ, j,μ

α j,μ(1 + ε0)
5ñ
2 〈u(t), ψ̃per

j1,ñ+μ1
〉L2〈u(t), ψ̃per

j2,ñ+μ2
〉L2

(FT3ψ̃
per
j3,ñ+μ3

)(k) · (FT3ψ̃
per
i,n )(k)

=
∑

k∈Z3

∑

i1,i2,μ

αi1,i2,i,μ(1 + ε0)
5(n−μ3)

2

〈u(t), ψ̃per
i1,n−μ3+μ1

〉L2〈u(t), ψ̃per
i2,n−μ3+μ2

〉L2

∣
∣
∣(FT3ψ̃

per
i,n )(k)

∣
∣
∣
2

=
∑

i1,i2,μ

αi1,i2,i,μ(1 + ε0)
5(n−μ3)

2 Xi1,n−μ3+μ1(t)Xi2,n−μ3+μ2(t)

which in total yields

∂t Xi,n(t) = 〈Δui,n(t), ψ̃
per
i,n 〉L2

+
∑

i1,i2,μ

αi1,i2,i,μ(1 + ε0)
5(n−μ3)

2 Xi1,n−μ3+μ1(t)Xi2,n−μ3+μ2(t).

Furthermore by (43) it holds

〈Δui,n(t), ψ̃
per
i,n 〉L2 ∈ O

(
(1 + ε0)

2n
√
Ei,n(t)

)
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which yields (13). Additionally we have

Xi,n(0) = 〈u(0), ψ̃per
i,n 〉L2 = 〈u0, ψ̃per

i,n 〉L2 = 〈ψ̃per
1,n0

, ψ̃
per
i,n 〉L2

= 1{(i,n)=(1,n0)}.

For the local energy we obtain by a similar analysis as for Xi,n :

∂t Ei,n(t)

=
∑

k∈Z3

(FT3(Δui,n(t)))(k) · (FT3ui,n(t))(k)

+
∑

i1,i2,μ

αi1,i2,i,μ(1 + ε0)
5(n−μ3)

2 Xi1,n−μ3+μ1(t)Xi2,n−μ3+μ2(t)

(FT3ψ̃
per
i,n )(k) · (FT3ui,n(t))(k)

= 〈Δui,n(t), ui,n(t)〉L2

+
∑

i1,i2,μ

αi1,i2,i,μ(1 + ε0)
5(n−μ3)

2 Xi1,n−μ3+μ1(t)Xi2,n−μ3+μ2(t)Xi,n(t).

The rest of the proof is analogous to the proof of Lemma 1 in [23]. ��

3.2 LocalWell-Posedness

Observe that the analysis in [8] requires the existence of unique local solutions both to (25)
as well as (28) and (33) (cf. Remark 1.3 (i) in [8]). Consider systems of the form

∂t u = Δu + F(u) (44)

where

F(u) := C(u, u)

=
∑

n,i,μ

αi,μ(1 + ε0)
5n
2 〈u, ψ̃

per
i1,n+μ1

〉L2(T3)〈u, ψ̃
per
i2,n+μ2

〉L2(T3)ψ̃
per
i3,n+μ3

. (45)

Recall that in Tao’s model, the coefficients αi,μ are chosen in such a way that the cancellation
property

〈F(u), u〉L2 = 0 (46)

holds for all u ∈ H10
df . Thus if u ∈ H10

df , then we easily deduce

∂t‖u(t)‖2L2 = −‖∇u(t)‖2L2 (47)

and hence the energy equality

sup
t∈[0,T ]

‖u(t)‖2L2 +
∫ T

0
‖∇u(t)‖2L2dt = ‖u0‖2L2 (48)

for T ∈ [0,∞]. Thus let us define a weak solution to (44) in the following way:
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Definition 2 A vector field u ∈ L∞(0, T ; L2
df (T

3)) ∩ L2(0, T ; H1
df (T

3)) is called a weak
solution to (44) if

−
∫ T

0

∫

T3
〈u, ∂tφ〉dxdt −

∫ T

0

∫

T3
〈F(u), φ〉dxdt +

∫ T

0

∫

T3
〈∇u,∇φ〉dxdt

=
∫

T3
〈u0, φ(0)dx

(49)

for any divergence-free test function φ ∈ C∞
c ([0, T ) × T

3).

In this section, we shall discuss whether there exist unique weak solutions to (44). In general,
local existence and uniqueness are guaranteed by the hypotheses (H1)–(H3) roughly as
follows: first considering a Galerkin approximation on a finite-dimensional subspace, (H1)
and (H3) provide that locally, corresponding solutions exist and are unique. Moreover by
(H2), they satisfy an energy inequality, and with the help of (H1) again we may pass to the
limit to recover local unique solutions for the original system.

3.2.1 Violation of Hypotheses

It turns out, however, that for u ∈ L∞(0, T ; L2
df (T

3)) ∩ L2(0, T ; H1
df (T

3)) neither of the
hypotheses is satisfied:

Theorem 6 The operator F as defined in (45) does not satisfy (H1)–(H3).

Proof In attempting to prove the hypotheses, the procedure is as follows: in order to estimate
terms of the form |〈F(u), φ〉|, we need to first justify the interchange of integration and
summation over n ∈ Z, i.e. that

∑

n,i,μ

∣
∣
∣αi,μ(1 + ε0)

5n
2 〈u, ψ̃

per
i1,n+μ1

〉L2〈u, ψ̃
per
i2,n+μ2

〉L2〈ψ̃per
i3,n+μ3

, φ〉
∣
∣
∣

is well-defined. We consider the sums over n < 0 and n ≥ 0 separately: in the former case

since the factor (1+ ε0)
5n
2 is already summable for n < 0, we may crudely estimate terms of

the form 〈v, ψ̃
per
i,n 〉L2 by ‖v‖Hκ for any κ ≥ 0 using that the functions ψ̃

per
i,n are L2-normalized.

In the case of n ∈ N0, instead estimate via the observation (43) to compensate the in this

case diverging factor (1 + ε0)
5n
2 .

Violation of (H1):
Let u1, u2 ∈ H1−η(T3) and φ ∈ H1(T3), then in view of |〈F(u1) − F(u2), φ〉| we

estimate the summands in
∑

n,i,μ

∣
∣
∣αi,μ(1 + ε0)

5n
2 〈ψ̃per

i3,n+μ3
, φ〉

(
〈u1 − u2, ψ̃

per
i1,n+μ1

〉L2〈u1, ψ̃per
i2,n+μ2

〉L2 + 〈u2, ψ̃per
i1,n+μ1

〉L2〈u1 − u2, ψ̃
per
i2,n+μ2

〉L2

)∣∣
∣ .

For n ∈ N0, we estimate
∣
∣
∣(1 + ε0)

5n
2 〈u1 − u2, ψ̃

per
i1,n+μ1

〉L2〈u1, ψ̃per
i2,n+μ2

〉L2〈ψ̃per
i3,n+μ3

, φ〉
∣
∣
∣

�
(
1 + 4π2(1 + ε0)

2n) 1
4−η ‖u1 − u2‖H1−η‖u1‖H1−η‖φ‖H1

(50)
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which is summable for η < 1
4 . However in view of the second claim on ‖F(u)‖H−1(T3), we

obtain
∣
∣
∣(1 + ε0)

5n
2 〈u, ψ̃

per
i1,n+μ1

〉L2〈u, ψ̃
per
i2,n+μ2

〉L2〈ψ̃per
i3,n+μ3

, φ〉
∣
∣
∣

�
(
1 + 4π2(1 + ε0)

2n) 1
4 ‖u‖L2‖u‖H1‖φ‖H1

(51)

which is not summable over n ∈ N0.
Violation of (H2):
Observe that even the more general form (H2’) in Remark 2, (3), is not satisfied: let

α, β, γ ∈ [0, 1], then interpolation gives an estimate of the form

(
1 + 4π2(1 + ε0)

2n) 5
4− 1

2 (α+β+γ ) ‖u‖
3−(α+β+γ )

1+δ

H−δ ‖u‖
3δ+α+β+γ

1+δ

H1 ‖φ‖H1

for which (H2’) requires

3δ + α + β + γ

1 + δ
∈ (0, 2)

whereas for summability we need α + β + γ > 5
2 yielding

3δ + α + β + γ

1 + δ
> 3 − 1

2(1 + δ)
> 2.

Violation of (H3):
We show that also here the more general form (H3’) (see Remark 2, (4)) is violated: let

γ ∈ [0, 1], then we first estimate

|〈u1 − u2, F(u1) − F(u2)〉| ≤ ‖u1 − u2‖Hγ ‖F(u1) − F(u2)‖H−γ . (52)

Let α, β ∈ [0, 1], then similar to our analysis for (H1) we estimate via interpolation
∣
∣
∣(1 + ε0)

5n
2 〈u1 − u2, ψ̃

per
i1,n+μ1

〉L2〈u1, ψ̃per
i2,n+μ2

〉L2〈ψ̃per
i3,n+μ3

, φ〉
∣
∣
∣

�
(
1 + 4π2(1 + ε0)

2n) 5
4− 1

2 (α+β+γ )

‖u1 − u2‖1−α

L2 ‖u1 − u2‖α
H1‖u1‖1−β

L2 ‖u1‖β

H1‖φ‖H1

(53)

hence summability requires again α + β + γ > 5
2 . Together with (52) we obtain a total

estimate of the form

|〈u1 − u2, F(u1) − F(u2)〉|
� ‖u1 − u2‖2−(α+γ )

L2 ‖u1 − u2‖α+γ

H1

(
‖u1‖1−β

L2 ‖u1‖β

H1 + ‖u2‖1−β

L2 ‖u2‖β

H1

)
.

(54)

Hypotheses (H3’) hence requires in particular that

(α + γ ) + β2 ≤ 2

which however violates the above summability condition

0 >
5

4
− 1

2
(α + β + γ ) ≥ 1

4
. ��

The take-away message from this proof is that though at first sight the cascade operators are

of seemingly simple structure, it is the factor (1+ε0)
5n
2 that dictates whether one may deduce
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the desired estimates. Note that this factor encodes the relation of the cascade operator to the
Euler bilinear operator B (at least in a dyadic framework as in [14]) and mimics its scaling
behaviour. Furthermore our analysis works irrespective of the precise form of the coefficients
αi,μ whereas in [23] these parameters are carefully chosen so as to facilitate the blow-up.

Remark 3 A similar behaviour can be observed in the case of standard NSE: consider

∂t u = Δu + F(u) (55)

with F(u) = B(u, u) = −�((u · ∇)u), then we may investigate the hypotheses with the
help of [24, Lemma 2.1] stating that

|〈B(u, v), w〉| � ‖u‖Hm1 ‖v‖Hm2+1‖w‖Hm3

where

3

2
≤ m1 + m2 + m3, 0 ≤ mi �= 3

2
, i = 1, 2, 3. (56)

Violation of (H1) follows immediately. For (H2’) observe that by interpolation and using
m2 = 0 we may estimate

|〈B(u, u), u〉| ≤ ‖u‖
2−(m1+m3)

1+δ

H−δ ‖u‖1+
m1+m3+2δ

1+δ

H1 (57)

where (H2’) requires

1 + m1 + m3 + 2δ

1 + δ
< 2 ⇒ m1 + m3 < 1 − δ

which is in conflict with the requirement (56). In the case of (H3’), for two divergence-free
vector fields u1, u2 we use the identity

|〈u1 − u2, F(u1) − F(u2)〉| = |〈u1 − u2, (u1 · ∇)(u1 − u2) + ((u1 − u2) · ∇)u2〉|. (58)
Then by [24, Lemma 2.1] we estimate

|〈(u1 · ∇)(u1 − u2), u1 − u2〉| ≤ ‖u1‖Hm1 ‖u1 − u2‖Hm2+1‖u1 − u2‖Hm3 (59)

hence we require m2 = 0. By interpolation it holds

|〈(u1 · ∇)(u1 − u2), u1 − u2〉| ≤ ‖u1‖1−m1
L2 ‖u1‖m1

H1‖u1 − u2‖1−m3
L2 ‖u1 − u2‖1+m3

H1 (60)

where (H3’) requires

(1 + m3) + m1 ≤ 2 ⇒ m1 + m3 ≤ 1

violating (56). One proceeds similarly for the second summand.

3.2.2 Order of Well-Posed Derivatives

Denote v := (Id − Δ)ρu, then v satisfies

∂tv = Δv + Fρ(v) (61)

where

Fρ(v) := (Id − Δ)ρF(u). (62)
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This section shall discuss the minimal threshold value of ρ > 0 for which Fρ is well-defined
in the sense that

Fρ(v) =
∑

n,i,μ

αi,μ(1 + ε0)
5n
2 〈u, ψ̃

per
i1,n+μ1

〉L2〈u, ψ̃
per
i2,n+μ2

〉L2(Id − Δ)ρψ̃
per
i3,n+μ3

(63)

and attains the hypotheses from Sect. 2.2.2. First recall that it holds

‖v‖Hγ =
∥
∥
∥(Id − Δ)

γ
2 v

∥
∥
∥
L2

=
∥
∥
∥(Id − Δ)ρ+ γ

2 u
∥
∥
∥
L2

= ‖u‖H2ρ+γ (64)

and denote vi = (Id − Δ)ρui , i = 1, 2.

Theorem 7 Fρ satisfies (H1), (H2’) and (H3’) if ρ > 1
8 .

Proof In case of (H1), claim 2, we estimate for n ∈ N0
∣
∣
∣(1 + ε0)

5n
2 〈u, ψ̃

per
i1,n+μ1

〉L2〈u, ψ̃
per
i2,n+μ2

〉L2〈(Id − Δ)ρψ̃
per
i3,n+μ3

, φ〉L2

∣
∣
∣

�
(
1 + 4π2(1 + ε0)

2n) 5
4−(2ρ+1) ‖u‖H2ρ ‖u‖H2ρ+1‖φ‖H1

(65)

which is summable if

ρ >
1

8
.

For (H2’) we use interpolation as in the proof of Theorem 6 to obtain the estimate
∣
∣
∣(1 + ε0)

5n
2 〈u, ψ̃

per
i1,n+μ1

〉L2〈u, ψ̃
per
i2,n+μ2

〉L2〈(Id − Δ)ρψ̃
per
i3,n+μ3

, u〉
∣
∣
∣

�
(
1 + 4π2(1 + ε0)

2n) 5
4− 1

2 (α+β+γ ) ‖u‖Hα‖u‖Hβ ‖(Id − Δ)ρu‖Hγ

≤ (
1 + 4π2(1 + ε0)

2n) 5
4− 1

2 (α+β+γ ) ‖v‖
3−(α+β+γ−4ρ)

1+δ

H−δ ‖u‖
3δ+α+β+γ−4ρ

1+δ

H1

(66)

which is summable if α + β + γ > 5
2 and satisfies the requirements of (H2’) if

ρ >
1

4
(δ + α + β + γ − 2) >

1

4

(

δ + 1

2

)

>
1

8
.

Finally for (H3’), let γ ∈ [0, 1], then we first estimate

|〈v1 − v2, Fρ(v1) − Fρ(v2)〉| ≤ ‖v1 − v2‖Hγ ‖Fρ(v1) − Fρ(v2)‖H−γ . (67)

We continue as in the proof of Theorem 6: in the case of n ∈ N0, let α and β be such that
α − 2ρ, β − 2ρ ∈ [0, 1]. Then via interpolation we obtain for φ ∈ Hγ (T3)

∣
∣
∣(1 + ε0)

5n
2 〈u1 − u2, ψ̃

per
i1,n+μ1

〉L2〈u1, ψ̃per
i2,n+μ2

〉L2〈(Id − Δ)ρψ̃
per
i3,n+μ3

, φ〉
∣
∣
∣

�
(
1 + 4π2(1 + ε0)

2n) 5
4− 1

2 (α+β+γ−2ρ) ‖u1 − u2‖Hα‖u1‖Hβ ‖φ‖Hγ

≤ (
1 + 4π2(1 + ε0)

2n) 5
4− 1

2 (α+β+γ−2ρ)

‖v1 − v2‖1−(α−2ρ)

L2 ‖v1 − v2‖α−2ρ
H1 ‖v1‖1−(β−2ρ)

L2 ‖v1‖β−2ρ
H1 ‖φ‖Hγ

(68)

which is summable if α + β + γ > 5
2 . Thus we obtain

|〈v1 − v2, Fρ(v1) − Fρ(v2)〉|
� ‖v1 − v2‖2−(α+γ−2ρ)

L2 ‖v1 − v2‖α+γ−2ρ
H1

(
‖v1‖1−(β−2ρ)

L2 ‖v1‖β−2ρ
H1 + ‖v2‖1−(β−2ρ)

L2 ‖v2‖β−2ρ
H1

)
(69)
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which satisfies the requirements in (H3’) if

2(1 − 2ρ) ≥ α + β + γ >
5

2
⇒ ρ >

1

8
. ��

Remark 4 In case of the standard NSE, using [24, Lemma 2.1] we estimate for (H1), claim
2,

|〈(Id − Δ)ρB(u, u), φ〉| ≤ ‖u‖Hm1 ‖u‖Hm2+1‖(Id − Δ)ρφ‖Hm3

= ‖v‖Hm1−2ρ ‖v‖Hm2+1−2ρ ‖φ‖Hm3+2ρ .
(70)

Hence we require m3 = 1 − 2ρ. Since claim 2 in (H1) requires for an estimate involving
the L2(T3)- and the H1(T3)-norm, assume m1 − 2ρ ∈ [0, 1],m2 + 1 − 2ρ ∈ [0, 1]. Via
interpolation we obtain

‖v‖Hm1−2ρ ‖v‖Hm2+1−2ρ � ‖v‖1+4ρ−(m1+m2)

L2 ‖v‖1−4ρ+m1+m2
H1

and claim 2 in (H1) requires

1 − 4ρ + m1 + m2 = 1 ⇒ 4ρ = m1 + m2.

Further with the requirement in [24, Lemma 2.1] we obtain

3

2
≤ m1 + m2 + m3 = 1 + 2ρ ⇒ 1

4
≤ ρ.

This threshold equally holds in the case of (H2’) and (H3’) via a similar analysis.

In terms of regularizability as specified by Theorem 4, we finally need to check whether also
(H4) is satisfied:

Theorem 8 If ρ > 1
4 , then we obtain (H4) with K as in Remark 2, (30).

Proof In view of Remark 2, (30), we show that the system (61) preserves the set of mean-zero
functions in L2(R3). More precisely we show that Fρ has zero mean: first observe that

∫

T3

(
(Id − Δ)ρψ̃

per
i3,n+μ3

)
(x)dx = 1

23
FT3

(
(Id − Δ)ρψ̃

per
i3,n+μ3

)
(0)

= 1

23

(
(1 + 4π2| · |2)ρFT3ψ̃

per
i3,n+μ3

)
(0)

= 1

23

(
FT3ψ̃

per
i3,n+μ3

)
(0) = 0

(71)

since FT3ψ̃
per
i,n are supported away from 0. In order to justify that we may interchange

integration and derivatives with summation, further observe that it holds with the help of
(43)

∫

T3

∣
∣
∣
(
(Id − Δ)ρψ̃

per
i3,n+μ3

)
(x)

∣
∣
∣ dx ≤

∥
∥
∥ψ̃

per
i3,n+μ3

∥
∥
∥
H2ρ

�
(
1 + 4π2(1 + ε0)

2n)ρ .

(72)

Hence using u(t) ∈ H1(T3) together with (43) we estimate

(1 + ε0)
5n
2 |〈u, ψ̃

per
i1,n+μ1

〉L2 ||〈u, ψ̃
per
i2,n+μ2

〉L2 |
∫

T3

∣
∣
∣
(
(Id − Δ)ρψ̃

per
i3,n+μ3

)
(x)

∣
∣
∣ dx

�
(
1 + 4π2(1 + ε0)

2n) 1
4−ρ

.

(73)
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Hence for ρ > 1
4 we justified

∫

T3
Fρ(v)(x)dx =

∫

T3

∑

n,i,μ

αi,μ(1 + ε0)
5n
2 〈u, ψ̃

per
i1,n+μ1

〉L2〈u, ψ̃
per
i2,n+μ2

〉L2

(
(Id − Δ)ρψ̃

per
i3,n+μ3

)
(x)dx

=
∑

n,i,μ

αi,μ(1 + ε0)
5n
2 〈u, ψ̃

per
i1,n+μ1

〉L2〈u, ψ̃
per
i2,n+μ2

〉L2

∫

T3

(
(Id − Δ)ρψ̃

per
i3,n+μ3

)
(x)dx = 0.

(74)

��

3.3 Regularization of the Periodic Averaged NSE

Recall that in the case of the periodic averaged NSE we consider the system (44) given by

∂t u = Δu + C(u, u),

u(0, ·) = ψ̃
per
1,n0

,
(75)

and the corresponding blow-up result holds in the setting of H10
df (T3). Let

v = (Id − Δ)5u,

then on the one hand clearly it holds

‖v(t)‖L2 = ‖(Id − Δ)5u(t)‖L2 = ‖u(t)‖H10 ,

and on the other hand (H1)–(H4) hold as seen in the previous section. We may therefore
conclude:

Theorem 9 For arbitrary large time T ∈ (0,∞) and ν = ν(T ) > 0 as in (H4) the solution
to

dv = (Δv + F5(v))dt +
√
C3ν

‖θ‖�2

∑

k∈Z3
0

2∑

i=1

θk�((σk,i · ∇)v) ◦ dWk,i ,

v(0, ·) = (Id − Δ)5ψ̃
per
1,n0

,

(76)

does not blow up in C([0, T ]; L2
df (T

3)) with high probability in the sense of Theorem 4. In
particular, this implies delay of blow-up for solutions to (75) in H10

df (T3).
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Appendix A: Proof of Theorem 4

The proof closely follows [8] making use of results from [7], thereby using the same or
similar notation: let T , R > 0 be fixed parameters. As in [7] and [8], we first consider the
cut-off equation

du = (
Λ2αu + gR(u)F(u)

)
dt +

√
Cdν

‖θ‖�2

∑

k∈Zd
0

d−1∑

i=1

θk�((σk,i · ∇)u) ◦ dWk,i ,

u(0, ·) = u0,

(77)

where we denote Λ2α := (−Δ)α and gR(u) := gR
(‖u‖H−δ

)
, δ > 0, for a Lipschitz-

continuous cut-off function gR : [0,∞) → [0, 1] with gR(x) = 1 for x ∈ [0, R], and
gR(x) = 0 for x > R + 1. Similarly to [7] we obtain the corresponding Itô-formulation

du = (
Λ2αu + gR(u)F(u) + Sθ (u)

)
dt

+
√
Cdν

‖θ‖�2

∑

k∈Zd
0

d−1∑

i=1

θk�((σk,i · ∇)u)dWk,i ,

u(0, ·) = u0,

(78)

where

Sθ (u) := Cdν

‖θ‖2
�2

∑

k∈Zd
0

d−1∑

i=1

θ2k �
(
(σk,i · ∇)�((σ−k,i · ∇)u)

)
. (79)

Definition 3 (cf. [7, Definition 1.1] and [8, Definition 3.1]) Let (�,F, (Ft ),P) be a probabil-
ity space with a family of Brownian motions

{
Wk,i

}
as in Sect. 2.2. Further let u0 ∈ L2(Td)

be divergence-free. A process u with trajectories in C([0, T ], L2
df (T

d) ∩ L2(0, T ; Hα
df (T

d))

is a strong solution to (77), if it is (Ft )-adapted and for any φ ∈ Hα
df (T

d) (〈u(t),�((σk,i ·
∇)φ)〉L2(Td ))t is an (Ft )-continuous semimartingale, and with probability one it holds for
all t ∈ [0, T ]

〈u(t), φ〉L2(Td )

= 〈u0, φ〉L2(Td )

+
∫ t

0
〈−Λ2αu(s) + gR(u(s))F(u(s)) + Sθ (u(s)), φ〉L2(Td )ds

+
√
Cdν

‖θ‖�2

∑

k∈Zd
0

d−1∑

i=1

θk

∫ t

0
〈u(s),�((σk,i · ∇)φ)〉L2(Td )dW

k,i .

(80)
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In order to show existence of strong solutions in the sense of the above definition, we follow
the standard agenda:

1. Show existence of global weak solutions to

du = (−Λ2αu + gR(u)F(u) + Sθ (u)
)
dt

+
√
Cdν

‖θ‖�2

∑

k∈Zd
0

d−1∑

i=1

θk�((σk,i · ∇)u)dWk,i .
(81)

2. Show pathwise uniqueness of weak solutions to (81).
3. Conclude via a Yamada–Watanabe argument.

On (1): For N ∈ N, let HN := {σk,i : |k| ≤ N , i = 1, . . . , d−1}, and for H the real subspace
of HC (defined in (18)) denote the corresponding orthogonal projection by �N : H → HN .
Consider the Galerkin approximation of (81):

duN = (−Λ2αuN + gR(uN )�N F(uN ) + Sθ (uN )
)
dt

+
√
Cdν

‖θ‖�2

∑

k∈Zd
0

d−1∑

i=1

θk�N ((σk,i · ∇)uN )dWk,i .
(82)

We obtain the following a-priori estimates: via Itô’s formula it holds

d‖uN (t)‖2L2

= 2
〈
uN (t),−Λ2αuN (t) + gR(uN (t))�N F(uN (t)) + Sθ (uN (t))

〉
L2 dt

+ 2

〈

uN ,

√
Cdν

‖θ‖�2

∑

k∈Zd
0

d−1∑

i=1

θk�N ((σk,i · ∇)uN (t))dWk,i

〉

L2

+ Cdν

‖θ‖2
�2

∑

k∈Zd
0

d−1∑

i=1

θ2k

∥
∥�N ((σk,i · ∇)uN (t))

∥
∥2
L2 dt .

(83)

Observe that on the one hand since σk,i are divergence-free, it holds

〈uN (t),�N ((σk,i · ∇)uN (t))〉L2 = 0

hence the martingale part vanishes, and on the other hand as seen in [7] it holds

2〈uN (t), Sθ (uN (t))〉L2 = − Cdν

‖θ‖2
�2

∑

k∈Zd
0

d−1∑

i=1

θ2k

∥
∥�((σk,i · ∇)uN (t))

∥
∥2
L2

which in total gives

d

dt
‖uN (t)‖2L2 ≤ −2

∥
∥Λαu

∥
∥
L2 + 2〈uN (t), gR(uN (t))�N F(uN (t))〉L2 . (84)

Using Remark 2 (3) (for which we assume that δ > 0 is small enough such that (H2’) holds)
and the analysis in [8] it holds

|〈uN (t), gR(uN (t))�N F(uN (t))〉L2 |
� 1 + 1

2α
‖uN (t)‖2Hα

≤ 1 + 1

2

(
‖uN (t)‖2L2 + ∥

∥ΛαuN (t)
∥
∥2
L2

)
,

(85)
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hence we obtain a constant C such that

sup
t∈[0,T ]

‖uN (t)‖2L2 +
∫ T

0

∥
∥ΛαuN (t)

∥
∥2
L2 dt ≤ C

(
1 + ‖u0‖2L2

)
. (86)

In the following we consider the case α > 1 and follow the analysis in [8] (for α = 1, proceed
by using the results in [7]): recall

Lemma 2 (cf. [8, Lemma 3.3]) For any β, γ, ε > 0 and any p < ∞ define

Sγ,β := L2(0, T ; Hα(Td)) ∩ C([0, T ]; L2(Td)) ∩ Cγ ([0, T ]; Hβ(Td)),

X ε,p := L2(0, T ; Hα−ε(Td)) ∩ L p(0, T ; L2(Td)) ∩ C([0, T ]; H−ε(Td)),

then the embedding Sγ,β ↪→ X ε,p is compact and for any finite K ≥ 0 the set

XK :=
{

f ∈ X ε,p : sup
t∈[0,T ]

‖ f (t)‖L2(Td ) + ‖ f ‖L2Hα(Td ) ≤ K

}

is closed in X ε,p and hence a Polish space with metric inherited from X ε,p.

Hence we proceed to verify that there exist p > 1, β, γ > 0 such that

sup
N∈N

E
[(‖uN‖L2Hα + ‖uN‖L∞L2 + ‖uN‖Cγ H−β

)p]
< ∞. (87)

Denote

MN (t) :=
√
Cdν

‖θ‖�2

∫ t

0

∑

k∈Zd
0

d−1∑

i=1

θk�N ((σk,i · ∇)uN (s))dWk,i
s ,

then for any t, s ∈ [0, T ] we deduce from a similar analysis as in [8] that

E

[
‖MN (t) − MN (s)‖2p

H−β

]
� ‖θ‖2p�∞

(
1 + ‖u0‖2L2

)p |t − s|p. (88)

Further, by assumption on F it holds for

vN (t) :=
∫ t

0
−Λ2αuN (s) + gR(uN (s))�N F(uN (s))ds

that

‖vN‖
C

1
2 H−α

≤ ‖vN‖W 1,2H−α

≤
(
1 + ‖uN‖β1

L∞L2

) (
1 + ‖uN‖L2Hα

)
.

(89)

It thus remains to estimate
∥
∥
∥
∥

∫ ·

0
Sθ (uN (s))ds

∥
∥
∥
∥
W 1,2H−α

:

Observe from [7] that it holds for any t, s ∈ [0, T ] and l ∈ Z
d
0 , j ∈ {1, . . . , d − 1}

∣
∣
∣
∣

〈∫ t

s
Sθ (uN (r))dr , σl, j

〉

L2

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ t

s
〈uN (r)), Sθ (σl, j )〉L2dr

∣
∣
∣
∣

� ‖uN‖L∞L2 |l|2|t − s|
(90)
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and hence

∥
∥
∥
∥

∫ t

s
Sθ (uN (r))dr

∥
∥
∥
∥

2

H−α

=
∑

l, j

∣
∣
∣
〈∫ t

s Sθ (uN (r))dr , σl, j
〉

L2

∣
∣
∣
2

|l|−2α

� ‖uN‖2L∞L2 |t − s|2
∑

l

|l|2(1−α)

(91)

where the series converges for α > 1. In total this gives
∥
∥
∥
∥

∫ ·

0
Sθ (uN (s))ds

∥
∥
∥
∥
C

1
2 H−α

� ‖uN‖L∞L2 (92)

and concludes the proof of (87). Thus we obtain existence of weak solutions as in [8] (for the
reader’s convenience we repeat here the core arguments): denote μN := Law(uN ), then by
Lemma 2 and Prokhorov’s theorem, the family {μN }N is tight inX ε,p andwe can find K large
enough such that {μN }N are supported on XK and thus tight therein as well. Existence of
weak solutions then follows from Skorokhod’s representation theorem: for W := (Wk,i )k,i

denote PN := Law(uN ,W ), then {PN }N is tight inXK ×C
(
[0, T ],CZ

2
0

)
. Hencewe can find

another probability space (�̃, F̃, (F̃t ), P̃) and corresponding (ũN , W̃N ) such that (ũN , W̃N )

converge to (ũ, W̃ ) P̃-almost surely in XK × C
(
[0, T ],CZ

2
0

)
and Law(ũN , W̃N ) = PN .

Furthermore ũ solves (77) with W̃ by P̃-almost sure convergence where the nonlinear part
converges due to continuity of F on XK (see Lemma 3.4, [8]).
On (2): For pathwise uniqueness assume that on some probability space (�,F, (Ft ),P) there
exist two weak solutions u1, u2 to (78) with the same W and same initial condition u0. Let
ũ := u1 − u2, then for φ ∈ C∞(Td) it holds

〈ũ(t), φ〉L2

=
∫ t

0
〈−Λ2α ũ(s) + (gR(u1(s))F(u1(s)) − gR(u2(s))F(u2(s))) + Sθ (ũ(s)), φ〉L2ds

+
√
Cdν

‖θ‖�2

∑

k∈Zd
0

d−1∑

i=1

θk

∫ t

0
〈�((σk,i · ∇)ũ(s)), φ〉L2dWk,i

s .

(93)

By Itô’s formula we obtain as before

d

dt
‖ũ(t)‖2L2

= −2‖Λα ũ(t)‖2L2 + 〈gR(u1(t))F(u1(t)) − gR(u2(t))F(u2(t)), ũ(t)〉L2

= (3.11) in [8].

(94)

Estimating the nonlinear part by the same analysis as in [8] yields

d

dt
‖ũ(t)‖2L2 ≤ (

1 + ‖u1(t)‖2Hα + ‖u2(t)‖2Hα

) ‖ũ(t)‖2L2 ,

‖ũ(0)‖2L2 = 0,
(95)

where the term in brackets is integrable, andhence implies pathwise uniqueness byGronwall’s
lemma.

Part (3) is then a consequence of the Yamada–Watanabe theorem (e.g. [22, Theorem 2.1]).
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Next consider the following choice

θN
k = 1

|k|λ1{N≤|k|≤2N }, k ∈ Z
d
0 , N ∈ N, (96)

for some λ > 0. For any smooth divergence-free vector field φ, Theorem 5.1 in [7] implies
that

lim
N→∞ SθN (φ) = 3ν

5
Δφ (97)

in L2(Td). With this we shall prove the following result:

Theorem 10 (cf. [8, Proposition 3.7] and [7, Theorem 1.4]) Let {uN
0 }N ⊂ L2

df (T
d) converge

weakly in L2
df (T

d) to some u0 ∈ L2
df (T

d). Further let uN denote the unique strong solution
to (77) associated to θN defined in (96) starting at uN

0 . Then for every ε > 0, p ≥ 2, uN

converges in probability in the topology of X ε,p to the unique solution u := u(·; u0, ν) to

∂t u = −Λ2αu + 3ν

5
Δu + gR(u)F(u),

u(0, ·) = u0.
(98)

Proof Recall from (86) that it holds

sup
t∈[0,T ]

‖uN (t)‖2L2 +
∫ T

0

∥
∥
∥ΛαuN (t)

∥
∥
∥
2

L2
dt ≤ C

(
1 + ‖uN

0 ‖2L2

)
.

Since (uN
0 )N is weakly convergent in L2(Td), it is bounded therein and we may thus find a

constant C such that

sup
N∈N

(

sup
t∈[0,T ]

‖uN (t)‖2L2 +
∫ T

0

∥
∥
∥ΛαuN (t)

∥
∥
∥
2

L2
dt

)

≤ C P-a.s. (99)

Similar to previous estimates we may further find q > 1, β, γ > 0 such that

sup
N∈N

E

[(
‖uN‖L∞L2 + ‖uN‖L2Hα + ‖uN‖Cγ H−β

)q]
< ∞. (100)

Thus for every ε > 0 and q ≥ 2 by [8, Lemma 3.3], the sequence of laws (μN )N , μN :=
Law(uN ), is tight in X ε,q and, for K big enough, also in XK (by (99)). By Prokhorov’s theo-
rem, wemay thus extract a subsequence (μNn )n which converges weakly to some probability
measure μ on XK . For every φ ∈ C∞(Td), let the function T φ : XK → C([0, T ];R) be
defined by

(
T φ f

)
(t) := 〈 f (t), φ〉L2 − 〈u0, φ〉L2

−
∫ t

0
gR( f (s))〈F( f (s)), φ〉L2ds

−
∫ t

0
〈 f (s),−Λ2αφ + SθN (φ)〉L2ds,

then due to Lemma 3.4 in [8] and (97), T φ is continuous onXK . Following the same reasoning
as in [8], it therefore holds μ = δu where u is the unique solution to (98) which concludes
the proof. ��
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We conclude as in the proof of [8, Theorem 1.4]: Let ε > 0, T ∈ (0,∞) be fixed, then by
hypothesis (H4) there exist ν > 0, R > 1 such that

sup
u0∈K∩D

sup
t∈[0,T ]

‖u(t; u0, ν)‖L2 ≤ R − 1

hence u(·; u0, ν) is a solution to the deterministic equation without cut-off. Let
uR(·; u0, θN , ν) denote the solution to the cut-off equation (77) with θN as in (96). By
choice of K and due to Theorem 10 it holds

lim
N→∞ sup

u0∈K∩D
P

[

sup
t∈[0,T ]

∥
∥
∥uR(t; u0, θN , ν)

∥
∥
∥
H−δ

> R

]

≤ lim
N→∞ sup

u0∈K∩D
P

[

sup
t∈[0,T ]

∥
∥
∥uR(t; u0, θN , ν) − u(t; u0, ν)

∥
∥
∥
H−δ

> 1

]

= 0

(101)

and hence there exists N big enough such that uniformly in u0 ∈ K ∩ D it holds

P

[

sup
t∈[0,T ]

∥
∥
∥uR(t; u0, θN , ν)

∥
∥
∥
H−δ

≤ R

]

> 1 − ε, (102)

i.e. uR solves (77) without cut-off.
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