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Spectral Properties of
Differential–Difference Symmetrized
Operators

Krzysztof Stempak

Abstract. We investigate some spectral properties of differential–
difference operators, which are symmetrizations of differential operators
of the form (d†d)k and (dd†)k, k � 1. Here, d = p d

dx
+ q and d† stands

for the formal adjoint of d on L2((0, b), w dx). In the simpliest case k = 1,
this symmetrization brings in the operator −D2, which can be seen as
a ‘Laplacian’, and Df := Ddf = d(feven)−d†(fodd), a skew-symmetric
operator in L2(I, w dx), I = (− b, 0) ∪ (0, b), is the symmetrization of d.
Investigated spectral properties include self-adjoint extensions, among
them the Friedrichs extensions, of the symmetrized operators.
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1. Introduction

In this paper, we propose a treatment of some class of differential–difference
operators in dimension one from the spectral theory point of view. These
operators emerge as symmetrizations of differential operators on (0, b), 0 <
b � ∞, admitting, in the simplest case, a decomposition of type Ld = d†d;
see Sect. 2.

In some specific frameworks, the analysis of the so-called Jacobi–Dunkl
operators of both compact and non-compact types (see Examples 2.1 and 2.2)
was initiated by Ben Salem and Samaali [1]. Some aspects of harmonic analy-
sis of a (first-order) differential–difference ‘derivative’, a building block of the
Jacobi–Dunkl operator, in the compact case were investigated by Chouchene
[3], and in the non-compact case by Chouchene et al. [4]; see again Examples
2.1 and 2.2.
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Nowak and the author [8] established a general symmetrization proce-
dure in the context of orthogonal expansions associated with a second-order
differential operator L, a ‘Laplacian’. Roughly, the important point of the
symmetrization procedure consisted in removing asymmetry of the decom-
position L = d†d+a, a ∈ R, where d is an associated ‘derivative’ and d† is its
formal adjoint. This general theory was constructed in the multi-dimensional
setting and permitted to shed a new light on the theory of higher order Riesz
transforms for orthogonal expansions. In some cases of orthogonal expansions,
the theory was applied with emphasis on specific harmonic analysis issues.
For instance, Langowski [7] studied the symmetrized Jacobi expansions with
emphasis on potential and Sobolev spaces. See also [5]. Nowak, Szarek and
the author [9] discussed the symmetrized Laguerre expansions with focus on
some harmonic analysis operators.

Recently, the author [11] investigated spectral properties of ordinary dif-
ferential operators admitting the beforementioned decomposition. The present
paper continues this line of investigation but in the setting of symmetrized
operators, i.e., differential–difference operators. Some aspects of such inves-
tigation were already undertaken by the author [12] in a specific case of the
Jacobi–Dunkl operator of compact type. It is worth mentioning that the the-
ory presented in this paper: (a) does not refer to orthogonal expansions, i.e.,
an associated orthonormal system is not postulated (as it was done in [8]);
(b) includes not only second-order but also higher order differential–difference
operators.

The Friedrichs extensions of differential operators, notably for the Sturm–
Liouville operators, were widely investigated in the literature. See [13] and
the references therein. In this paper, we describe the Friedrichs extension of
the differential–difference operators (−1)kD2k on L2(I, w); see Theorem 4.6.
The description is given in terms of D-derivatives and D-Sobolev spaces, and
for k = 1, this extension can be seen as the ‘Dirichlet Laplacian’.

The paper is organized as follows. In Sect. 2, we recall the setting
of Sturm–Liouville operators admitting a special decomposition and out-
line a symmetrization procedure leading to the setting of the corresponding
differential–difference operators; the Liouville form of the latter operators is
also discussed. This is then illustrated by two important examples of Jacobi
differential operators and Jacobi–Dunkl differential–difference operators of
both compact and non-compact types. In Sect. 3, we introduce and investi-
gate weak D-derivatives and compare them with weak d- and d†-derivatives.
In particular, we establish relations between the weak derivatives D

(2k)
weak and

(d†d)k
weak or (dd†)k

weak, k � 1, cf. Proposition 3.7. Section 4 is devoted to in-
troducing and studying D-Sobolev spaces, subsequently applied to describing
the minimal and maximal operators and the Friedrichs extensions. Again, we
relate the Sobolev spaces in the D and d settings, cf. Proposition 4.4. All
such relations, suggested by (2.3), find their cumulation in Proposition 4.7.
Finally, Theorem 4.6 contains the main result on the Friedrichs extension of
(−1)kD2k.
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Notation and Terminology. Throughout the paper, we use standard notions
and symbols. Thus, given a function f on (−b, 0) ∪ (0, b), 0 < b � ∞, we
write feven and fodd for its even and odd parts, feven(x) := (f(x)+f(−x))/2,
fodd(x) := (f(x) − f(−x))/2, respectively. We shall frequently use the fact
that ∫

I

feven/odd (x)g(x)w(x)dx =
∫

I

f(x)geven/odd (x)w(x)dx, (1.1)

whenever the integral (on the left-hand side, say) exist. We also use fairly
standard notation for (complex-valued) function spaces. For instance, ACloc

(O), where O stands for an open subset of R, denotes the space of all functions
f on O, such that f ∈ AC[α, β], for every bounded interval [α, β] ⊂ O. Weak
derivatives of a function f will be denoted by f ′

weak, f ′′
weak, f

(n)
weak. The symbol

〈·, ·〉L2 will mean the inner product in a relevant L2 space. Given an open
interval J ⊂ R and a set of Sturm–Liouville coefficients {v, r, s}, that is a
triple of real-valued functions on J satisfying some natural smoothness and
positivity assumptions, the associated Sturm–Liouville differential expression
is

L{v,r,s} =
1

v(x)

(
− d

dx

(
r(x)

d

dx

)
+ s(x)

)
.

One can associate with L{v,r,s} a boundary value problem or an unbounded
operator on L2(J, v(x) dx).

We shall also apply the following convention: by affixing one of the su-
perscripts ‘−/+’ to an object originally considered on (−b, 0)∪(0, b), we mean
the restriction of this object to (−b, 0) or (0, b), respectively. For instance, for
a function f on (−b, 0) ∪ (0, b), f+ stands for the restriction of f to (0, b).

2. Preliminaries

Let 0 < b � ∞ and I = (−b, 0) ∪ (0, b) := I− ∪ I+ be given, and let w be a
weight function on I+, by which we mean a real-valued positive C∞ function.
For real-valued p, q ∈ C∞(I+), p(x) > 0 for x ∈ I+, consider the first-order
linear differential expression

d = d{w,p,q} = p(x)
d

dx
+ q(x),

treated as an operator on the Hilbert space L2(I+, w dx). We call d the
delta-derivative associated with the triple {w, p, q}. The formal adjoint to
d in L2(I+, w), in the sense that

〈dϕ,ψ〉L2(I+,w) = 〈ϕ, d†ψ〉L2(I+,w), ϕ, ψ ∈ C∞
c (I+), (2.1)

is

d† = −p(x)
d

dx
+ q†(x),

where

q†(x) = q(x) − p(x)
w′(x)
w(x)

− p′(x).
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Note that d† is the delta-derivative associated with the dual triple {w,−p, q†}.
Also, notice that (q†)† = q and (d†)† = d and, in general, skew-symmetry does
not hold, d† �= −d. This lack of skew-symmetry gave an impact for considering
a symmetrization process, see [8].

In this symmetrization of d = d{w,p,q} the functions from the triple
{w, p, q}, initially considered on I+, are extended to functions on I by setting

w(−x) = w(x), p(−x) = p(x), q(−x) = −q(x), x ∈ I+, (2.2)

so that w and p are even and q (and q†) is odd. Then, we let

Ddf := d(feven) − d†(fodd). (2.3)

Here, we treat d and d† as operators acting on suitable functions on I, with
p, q, and w extended by (2.2). Notice that

• df (and d†f) is even/odd for f odd/even,
• Ddf is even/odd for f odd/even,
• (Ddf)+ = d(f+) for f even and (Ddf)+ = −d†(f+) for f odd.

It is also worth observing that

Ddf = p
df

dx
+ qfeven − q†fodd = p

df

dx
+

1
2
(q − q†)f +

1
2
(
q + q†)

qf,

where qf denotes the reflection of f , qf(x) = f(−x), x ∈ I.
Checking that D := Dd is skew-symmetric in L2(w) := L2(I, w dx) in

the sense that

〈Dϕ,ψ〉L2(w) = −〈ϕ,Dψ〉L2(w), ϕ, ψ ∈ C∞
c (I),

is not difficult using the above representations (as it was explained in [8]), but
this can be also seen as a consequence of (2.1). Namely, for ϕ,ψ ∈ C∞

c (I),
using (2.3) and the identities (consequences of (1.1))

〈f, g〉L2(I,w) = 2〈f, geven/odd〉L2(I+,w),

valid for even/odd f ∈ L2(w), respectively, one gets

〈Dϕ,ψ〉L2(I,w) = 〈d(ϕeven), ψ〉L2(I,w) − 〈d†(ϕodd), ψ〉L2(I,w)

= 2
[〈d(ϕeven), ψodd〉L2(I+,w) − 〈d†(ϕodd), ψeven〉L2(I+,w)

]
= 2

[〈ϕeven, d†(ψodd)〉L2(I+,w) − 〈ϕodd, d(ψeven)〉L2(I+,w)

]
= 〈ϕ, d†(ψodd)〉L2(I,w) − 〈ϕ, d(ψeven)〉L2(I,w)

= −〈ϕ,Dψ〉L2(I,w).

Since D maps C∞
c (I) into C∞

c (I), we can consider, and we do this, the
operators Dn, n � 1, as densely defined operators on L2(w) with domain
C∞

c (I). We let L
(k)
D = (−1)kD2k, k � 1, writing simply LD when k = 1.

Notice that
• L

(k)
D is symmetric and nonnegative on L2(w),

• for f even,
(
L

(k)
D f

)+ = (d†d)k(f+),
• for f odd,

(
L

(k)
D f

)+ = (dd†)k(f+).
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For further reference, we note (cf. [8]) that explicitly

LD = −p2 d2

dx2
− (

2pp′ + p2 w′

w

) d

dx
+ qq† − pq′(·)even + p(q†)′(·)odd

= −p2 d2

dx2
− (

2pp′ + p2 w′

w

) d

dx
+

(
qq† − 1

2
p(q′ − (q†)′))

−1
2
p
(
q′ + (q†)′)( · )

q. (2.4)

We pause for a moment to point out a simple property of function spaces
on I = I− ∪ I+ that will be used throughout (usually without mention). For
instance, for the spaces of smooth compactly supported functions, we identify
C∞

c (I) with the direct sum C∞
c (I−)⊕C∞

c (I+), in the sense that ϕ ∈ C∞
c (I) is

associated with ϕ± ∈ C∞
c (I±). Analogous identification will concern L1

loc(I),
L2(I, w), ACloc(I) and other function spaces.

Spectral analysis of operators of the form Ld = d†d (more generally
Ld + a, a ∈ R) with domain C∞

c (I+), which are symmetric and nonnegative
on L2(I+, w), was recently performed by the author in [11]. Notice that each
Ld is a Sturm–Liouville operator on I+, corresponding to the Sturm–Liouville
triple {w, r, s} with r := wp2 and s := w(q†q − pq′). For the Sturm–Liouville
operators in divergent form L{w,w,0}, we have L{w,w,0} = Ld with

d =
d

dx
, d† = − d

dx
− w′

w
and Ld = − d2

dx2
− w′

w

d

dx
. (2.5)

Consequently, we have

Df =
df

dx
+

w′

w
fodd and LDf = −d2f

dx2
− w′

w

df

dx
−

(w′

w

)′
fodd. (2.6)

We now analyse two specific examples of differential operators which
are in divergent form, and their symmetrizations, so that (2.5) and (2.6) are
used.

Example 2.1. Given parameters α, β ∈ R, let

wα,β(θ) =
∣∣∣ sin

θ

2

∣∣∣2α+1(
cos

θ

2

)2β+1

, θ ∈ (−π, π).

Consider the Jacobi operator

Jα,β = − 1
wα,β

( d

dx

(
wα,β

d

dx

))

= − d2

dθ2
−

(
(α + 1/2) cot

θ

2
− (β + 1/2) tan

θ

2

) d

dθ
,

in the L2((0, π), wα,β dθ) setting. We have Jα,β = d†
α,βdα,β with

dα,β =
d

dθ
, d†

α,β = − d

dθ
− (

(α + 1/2) cot
θ

2
−

(
β + 1/2) tan

θ

2

)
.

The symmetrization of dα,β brings in the skew-symmetric operator on
L2((−π, π), wα,β dθ)

Dα,βf =
df

dθ
+

(
(α + 1/2) cot

θ

2
− (

β + 1/2) tan
θ

2

)
fodd, (2.7)
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and the symmetrized version of Jα,β is Jα,β = −D2
α,β ,

Jα,βf = −d2f

dθ2
− α − β + (α + β + 1) cos θ

sin θ

df

dθ
+

(α + β + 1) + (α − β) cos θ

sin2 θ
fodd .

This is a second-order differential–difference operator called the Jacobi–Dunkl
operator of compact type. For α = β = −1/2, Jα,β and Jα,β reduce to − d2

dθ2

in the L2((0, π),dθ) and L2((−π, π),dθ) settings, respectively.

Some aspects of harmonic analysis of Dα,β in the compact case (and
under restriction α � β � −1/2, α �= −1/2) were investigated by Chouchene
[3], who initiated the study of this operator (denoted in [3] and [1] by Λα,β),
and in the non-compact case (and under restriction α > −1/2, β ∈ R) by
Chouchene et al. [4]. See also [2], it is convenient to observe here that

w′
α,β

wα,β
=

α − β + (α + β + 1) cos θ

sin θ
,

(w′
α,β

wα,β

)′
= − (α + β + 1) + (α − β) cos θ

sin2 θ
.

Example 2.2. Given parameters α, β ∈ R, consider the Jacobi (function)
operator

Ĵα,β = − 1

ŵα,β

( d

dx
(ŵα,β

d

dx
)
)

= − d2

dx2
− (

(2α + 1) coth x + (2β + 1) tanh x
) d

dx

in the L2((0,∞), ŵα,β dx) setting, where

ŵα,β(x) =
∣∣ sinh x

∣∣2α+1(cosh x)2β+1, x ∈ (−∞,∞).

We have Ĵα,β = d†
α,βdα,β with

dα,β =
d

dx
, d†

α,β = − d

dx
− (

(2α + 1) coth x + (2β + 1) tanh x
)
.

The symmetrization of dα,β brings in the skew-symmetric operator on
L2((−∞,∞), ŵα,β dx)

Dα,βf =
df

dx
+

(
(2α + 1) coth x + (2β + 1) tanh x

)
fodd,

and the symmetrized version of Ĵα,β is Ĵα,β = −D2
α,β . Explicitly (see [1,

p. 368] or (2.4))

Ĵα,βf = −d2f

dx2
−(

(2α+1) coth x+(2β+1) tanh x
)
f+

( 2β + 1
cosh2 x

− 2α + 1
sinh2 x

)
fodd,

is a second-order differential–difference operator called the Jacobi–Dunkl op-
erator of non-compact type. Again, for α = β = −1/2, Ĵα,β and Ĵα,β reduce
to − d2

dx2 on L2((0,∞),dx) and L2((−∞,∞),dx), respectively.

The analysis of the Jacobi–Dunkl operators of both compact and non-
compact types (under some restrictions on α and β) was initiated by Ben
Salem and Samaali [1]. See also [12], where analysis of Jα,β was performed
with emphasis on the so-called exotic cases.
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2.1. Liouville Form

Although the term ‘Liouville (normal) form’ seems to be reserved for differ-
ential contexts, we adopt it here in the differential–difference framework.

We first recall the setting of Sturm–Liouville operators discussed in [11,
Sect. 6.2]. Consider a weight w �≡ 1 on I+. Together with an operator L{w,r,s}
acting on L2(I+, w), its replique in the L2(I+,dx) setting defined through
the unitary isomorphism U+ : L2(I+, w) → L2(I+,dx), U+f =

√
wf , is fre-

quently considered. We have in mind the operator

L◦
{w,r,s} := U+ ◦ L{w,r,s} ◦ (U+)−1,

called the Liouville form of L{w,r,s}. The operators L◦
{w,r,s} and L{w,r,s},

being unitarily intertwined by U+, possess the same spectral properties.
A computation shows that for operators in divergent form, we have

L◦
{w,w,0} = L{1,1,ŝ} with

ŝ =
w′′

2w
−

( w′

2w

)2

,

so that L◦
{w,w,0} becomes a Schrödinger operator with potential ŝ. Clearly,

for L{w,w,0} of the form L{w,w,0} = Ld, with d and d† given by (2.5), we have
the decomposition (Ld)◦ = d◦,†d◦ with

d◦ = U+ ◦ d ◦ (U+)−1, d◦,† = U+ ◦ d† ◦ (U+)−1.

Explicitly

d◦ =
d

dx
− w′

2w
, d◦,† = − d

dx
− w′

2w
.

Passing to the symmetrized case, i.e., to the case of D = Dd, consider
the unitary isomorphism

U : L2(I, w) → L2(I,dx), Uf =
√

wf,

and let

D◦ := U ◦ D ◦ U−1, L◦
D := U ◦ LD ◦ U−1.

Then, L◦
D = −(D◦)2 is also a differential–difference operator. We call L◦

D the
Liouville form of LD. Clearly, being unitarily intertwined, LD and L◦

D possess
analogous spectral properties and we can choose L◦

D to analyse spectral prop-
erties of LD. This remark allows to avoid double discussion of an operator
and its twin, and, at the same moment, permits to analyse potentially easier
form of an operator (L◦

D is a sum of a Schrödinger operator plus a reflection
term). It should be remarked that L◦

Dd
= LDd◦ , and hence, L◦

Dd
= LDd◦ (in

words: the Liouville form of symmetrization is the symmetrization of Liouville
form). Explicitly

Dd◦ =
d

dx
− w′

2w

( · )
q, LDd◦ = − d2

dx2
+

( w′

2w

)2

+
( w′

2w

)′( · )
q.

We continue the analysis begun in Examples 2.1 and 2.2. Here, we ex-
clude the case α = β = −1/2, since then, the corresponding weight functions
equal 1 identically. In the examples, d◦,†

α,β stands for the formal adjoint of d◦
α,β
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on L2((0, π),dθ) or on L2((0,∞),dx), respectively, and D◦
α,β is skew-adjoint

on L2((−π, π),dθ) or L2((−∞,∞),dx), respectively.

Example 2.3. The Liouville form of Jα,β is

J ◦
α,β = − d2

dθ2
+

α2 − 1/4
4 sin2 θ

2

− β2 − 1/4
4 cos2 θ

2

,

and it has the decomposition J ◦
α,β = d◦,†

α,βd
◦
α,β , where (see, e.g., [7, p. 3])

d◦
α,β =

d

dθ
−

(α + 1/2
2

cot
θ

2
− β + 1/2

2
tan

θ

2

)
,

d◦,†
α,β = − d

dθ
−

(α + 1/2
2

cot
θ

2
− β + 1/2

2
tan

θ

2

)
.

The Liouville form of Jα,β , and at the same moment the symmetrization
of J ◦

α,β , is

J◦
α,βf = −d2f

dθ2
+

(α + 1/2
2

cot
θ

2
− β + 1/2

2
tan

θ

2

)2

f

−
(α + 1/2

4 sin2 θ
2

+
β + 1/2
4 cos2 θ

2

)(
feven − fodd

)
,

with the corresponding decomposition J◦
α,β = −(D◦

α,β)2, where (with nota-
tion Dα,β in [7, p. 3])

D◦
α,βf =

df

dθ
−

(α + 1/2
2

cot
θ

2
− β + 1/2

2
tan

θ

2

)(
feven − fodd

)
.

Example 2.4. The Liouville form of Ĵα,β is (see [11, Sect. 7.4])

J ◦
α,β = − d2

dx2
+

(
α2 − 1

4
)
coth2 x +

(
β2 − 1

4
)
tanh2 x + cα,β ,

cα,β = (α + 1/2)(β + 1/2) + α + β + 1, and it has the decomposition Ĵ ◦
α,β =

d◦,†
α,βd

◦
α,β , where

d◦
α,β =

d

dθ
−

((
α +

1
2
)
coth x +

(
β +

1
2
)
tanh x

)
,

d◦,†
α,β = − d

dθ
−

(
(α +

1
2
) coth x + (β +

1
2
) tanh x

)
.

The Liouville form of Ĵα,β is

Ĵ◦
α,βf = −d2f

dx2
+

((
α +

1
2
)
coth x +

(
β +

1
2
)
tanh x

)2

f

−
(α + 1/2

sinh2 θ
2

− β + 1/2
cosh2 θ

2

)(
feven − fodd

)
,

and it has the decomposition Ĵ◦
α,β = −(D◦

α,β)2, where

D◦
α,βf =

df

dx
−

((
α +

1
2
)
coth x +

(
β +

1
2
)
tanh x

)(
feven − fodd

)
.
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3. D-derivatives

Until the end of this and the next section, I, w, d, and thus D := Dd, are
fixed. In several places, we shall tacitly use the fact that for a continuous and
positive function w on I, one has L1

loc(I, w) = L1
loc(I,dx); for this space, we

shall write L1
loc(w) for short.

We begin with notion of the weak D(k)-derivative, k � 1.

Definition 3.1. Let f ∈ L1
loc(w) and k � 1. We say that weak D(k)-derivative

of f exists provided that there is gk ∈ L1
loc(w), such that

∫
I

Dkϕ(x)f(x)w(x) dx = (−1)k

∫
I

ϕ(x)gk(x)w(x) dx, ϕ ∈ C∞
c (I).

Then, we set D
(k)
weakf := gk and call it the weak D(k)-derivative of f .

Following the general definition for open subsets of R and specified to I,
we say that f ∈ L1

loc(I,dx) has a weak derivative of order k, k � 1, provided
that there exists hk ∈ L1

loc(I,dx), such that
∫

I

ϕ(k)(x)f(x) dx = (−1)k

∫
I

ϕ(x)hk(x) dx, ϕ ∈ C∞
c (I).

Then, we call hk the weak derivative of f on I and write f
(k)
weak := hk; for

k = 1, 2, we shall simply write f ′
weak, f ′′

weak. It is obvious that existence of
f

(k)
weak on I implies existence of (f±)(k)

weak on I± and vice versa. In such cases,
(f±)(k)

weak are restrictions of f
(k)
weak to I±, respectively, and vice versa, f

(k)
weak, a

function on I, is glued from (f±)(k)
weak as functions on I±.

Recall that existence of kth weak derivative of an f ∈ L1
loc(I,dx) implies

existence of weak derivatives of f of all lower orders. We shall also need the
fact that for h ∈ C∞(I), existence of f

(k)
weak implies existence of (hf)(k)

weak, and
with additional assumption h > 0, the opposite holds: if (hf)(k)

weak exists, then
also f

(k)
weak exists. See, for instance, [11] for details.
Before discussing connections between D(k)-derivatives and weak deriva-

tives, we need the following convenient representation of Dk, the formal k-fold
composition of D.

Proposition 3.2. Let k � 1. Then, Dk can be represented as

Dk =
k∑

j=0

p
[k]
k−j

( d

dx

)k−j +
k∑

j=1

[
q
[k,1]
k−j

(( d

dx

)k−j
)

even
+ q

[k,2]
k−j

(( d

dx

)k−j
)

odd

]
,

(3.1)
where p

[k]
k−j and q

[k,s]
k−j , s = 1, 2, are real-valued C∞ functions on I, even when

j is even and odd when j is odd. Moreover

p
[1]
1 = p, p

[1]
0 = 0, q

[1,1]
0 = q, q

[1,2]
0 = −q†,
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and for k � 2, we have the relations

p
[k]
k = pk, p[k]

m = p
(
(p[k−1]

m )′ + p
[k−1]
m−1

)
, m = k − 1, . . . , 1, 0,

q
[k,1]
k−1 = pq

[k−1,2]
k−2 + qpk−1,

q[k,1]
m = p

(
q[k−1,1]
m

)′ + pq
[k−1,2]
m−1 + qp[k−1]

m + qq[k−1,1]
m , m = k − 2, . . . , 1, 0,

and

q
[k,2]
k−1 = pq

[k−1,1]
k−2 − q†pk−1,

q[k,2]
m = p

(
q[k−1,2]
m

)′ + pq
[k−1,1]
m−1 − q†p[k−1]

m − q†q[k−1,2]
m , m = k − 2, . . . , 1, 0.

Here, by convention, p
[k−1]
−1 = q

[k−1,1]
−1 = q

[k−1,2]
−1 = 0.

Proof. For k = 1, one has D = p d
dx + q(·)even − q†(·)odd, with p even and

q, q† odd, C∞ and real-valued, as required. In the induction step, one obtains
the relevant recurrence relations as direct consequences of Dk = D ◦ Dk−1,
k � 2. Checking the required properties of emerging function coefficients is
easily performed using the induction hypothesis and the identities

d

dx

(
feven/odd

)
=

(
d

dx
f

)
odd/even

,

that include the fact that the derivative of an even/odd function is an odd/even
function. �

We shall also need the following simple lemma used in the proof of
Proposition 3.4.

Lemma 3.3. Let k � 2, f ∈ L1
loc(w) and D

(k)
weakf exists. If for some 1 � m �

k − 1 also D
(m)
weakf exists, then D

(k−m)
weak (D(m)

weakf) exists and equals D
(k)
weakf .

Proof. The proof is straightforward. By assumption

∀ϕ ∈ C∞
c (I)

∫
I

Dmϕ(x)f(x)w(x) dx = (−1)m

∫
I

ϕ(x)D(m)
weakf(x)w(x) dx

(3.2)
and

∀ψ ∈ C∞
c (I)

∫
I

Dkψ(x)f(x)w(x) dx = (−1)k

∫
I

ψ(x)D(k)
weakf(x)w(x) dx.

Taking any ψ ∈ C∞
c (I) and inserting ϕ = Dk−mψ into (3.2) give∫

I

Dkψ(x)f(x)w(x) dx = (−1)m

∫
I

Dk−mψ(x)D(m)
weakf(x)w(x) dx.

Comparing the last two identities gives

∀ψ ∈ C∞
c (I)

∫
I

Dk−mψ(x)D(m)
weakf(x)w(x) dx

= (−1)k−m

∫
I

ψ(x)D(k)
weakf(x)w(x) dx,

as required. �
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It would be desirable to know, in analogy with [11, Proposition 1], that
existence of D(k)

weakf for some k � 2 implies existence of D(r)
weakf for all 1 �

r � k − 1. Unfortunately, currently, this remains to be an open question for
the author.

Proposition 3.4. Let f ∈ L1
loc(w) and k � 1. If D(r)

weakf exist for r = 1, . . . , k,
then f

(r)
weak exist for r = 1, . . . , k, and

∀r ∈ {1, . . . , k} D
(r)
weakf =

r∑
j=0

p
[r]
r−jf

(r−j)
weak

+
r∑

j=1

[
q
[r,1]
r−j

(
f

(r−j)
weak

)
even

+ q
[r,2]
r−j

(
f

(r−j)
weak

)
odd

]
, (3.3)

where p
[r]
r−j and q

[r,s]
r−j , s = 1, 2, are as in (3.1). Conversely, if f

(k)
weak exists,

then D
(r)
weakf exists for r = 1, . . . , k, and one has (3.3).

Proof. For the first claim, we proceed by induction and begin with k = 1.
Let D

(1)
weakf = g1 ∈ L1

loc(w). This means that for all ϕ ∈ C∞
c (I), we have

∫
I

Dϕf wdx = −
∫

I

ϕg1 wdx.

After routine manipulations (recall that q and q† are odd), this becomes
∫

I

ϕ′fpw dx = −
∫

I

ϕ(g1 + qfodd − q†feven)w dx,

which means that the weak derivative (fpw)′
weak exists (and equals (g1 +

qfodd − q†feven)w). However, pw > 0 on I is a C∞ function, and hence,
also f ′

weak exists. It remains to justify (3.3) for k = 1. Since we know that
(fpw)′

weak and f ′
weak exist, we have (fpw)′

weak = f ′
weakpw+f(pw)′, and hence,

we can write∫
I

Dϕf wdx = −
∫

I

ϕ(f ′
weakp + fp′ + fpw′/w − qfodd + q†feven) wdx

= −
∫

I

ϕ(pf ′
weak + qfeven − q†fodd)wdx.

To proceed with the induction step, we introduce the notation

〈F,G〉w :=
∫

I

F (x)G(x)w(x) dx,

whenever the integral on the right-hand side exists; we skip the subscript w
when w ≡ 1.

Let k � 2 and assume inductively that the claim holds for k − 1. Next,
take f ∈ L1

loc(w) and assume that for 1 � r � k, D(k)
weakf exist; in particular

〈Dkϕ, f〉 = (−1)k〈ϕ, gk〉, ϕ ∈ C∞(I),
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for some gk ∈ L1
loc(w). Using the representation (3.1), we also have

〈Dkϕ, f〉w = 〈ϕ(k), p
[k]
k fw〉

+
k∑

j=1

[〈
ϕ(k−j), p

[k]
k−jfw

〉
+ 〈(ϕ(k−j))even, q

[k,1]
k−j fw〉

+
〈
(ϕ(k−j))odd, q

[k,2]
k−j fw

〉]
.

From this, one gets

〈ϕ(k), pkfw〉 = (−1)k〈ϕ, gk〉

−
k∑

j=1

〈
ϕ(k−j), p

[k]
k−jfw + (q[k,1]

k−j fw)odd + (q[k,2]
k−j fw)even

〉
.

By the induction hypothesis, the weak derivatives of f of order less than k

exist, and hence, the same is true for each of the terms p
[k]
k−jfw, (q[k,1]

k−j fw)odd

and (q[k,2]
k−j fw)even, j = 1, . . . , k, so

〈ϕ(k), pkfw〉 =
〈
ϕ, (−1)kgk −

k∑
j=1

(−1)k−j
[
p
[k]
k−jfw + (q[k,1]

k−j fw)odd

+(q[k,2]
k−j fw)even

](k−j)

weak

〉
.

This means that the weak derivative of order k of pkfw exists, and hence,
also f

(k)
weak exists.
It remains to justify that the identity in (3.3) holds for r = k. We have

∀ϕ ∈ C∞
c (I)

∫
I

Dkϕ(x)f(x)w(x) dx = (−1)k

∫
I

ϕ(x)D(k)
weakf(x)w(x) dx.

Our aim is now to show that

∀ϕ ∈ C∞
c (I)

∫
I

Dkϕ(x)f(x)w(x) dx = (−1)k

∫
I

ϕ(x)Rkf(x)w(x) dx,

(3.4)
where, for any r ∈ {1, . . . , k}, Rrf denotes the right-hand side of the identity
in (3.3). Then, combining the two above identities will give (3.3) for r = k.

To verify (3.4), we write the sequence of equalities∫
I

Dkϕf w dx = (−1)k

∫
I

ϕD
(1)
weak(D

(k−1)
weak f) w dx

= (−1)k

∫
I

ϕD
(1)
weak(Rk−1f) w dx

= (−1)k

∫
I

ϕRkf w dx.

The first equality is due to the induction hypothesis and Lemma 3.3, and the
second is again due to the induction hypothesis. Finally, the third equality is
obtained using the result from the first step of the induction procedure and
combining it with relations for the coefficients involved in Rkf and Rk−1f .
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This finishes the induction step and hence the proof of the first claim.
The proof of the converse claim, also inductive, relies on appropriate reversing
of just used arguments, and thus, it is omitted. The proof of the proposition
is therefore completed. �

Finally, we notice that the weak derivative f ′
weak of f on I exists if and

only if f ∈ ACloc(I), and then f ′
weak(x) = f ′(x) for almost every x ∈ I. It is

clear that ACloc(I) = ACloc(I−) ⊕ ACloc(I+) in the sense that f ∈ ACloc(I)
if and only if f± ∈ ACloc(I±).

We can reformulate Proposition 3.4 to the following.

Corollary 3.5. Let f ∈ L1
loc(w). If D(1)

weakf exists, then f ∈ ACloc(I) and

D
(1)
weakf = pf ′ + qfeven − q†fodd, (3.5)

a.e. on I. Conversely, if f ∈ ACloc(I), then D
(1)
weakf exists, and one has (3.5)

a.e. on I.
More generally, if D(k)

weakf exists, k � 2, then f ∈ Ck−1(I) and f (k−1) ∈
ACloc(I), and

D
(k)
weakf =

k∑
j=0

p
[k]
k−jf

(k−j)+
k∑

j=1

[
q
[k,1]
k−j

(
f (k−j)

)
even

+q
[k,2]
k−j

(
f (k−j)

)
odd

]
, (3.6)

a.e. on I. Conversely, if f ∈ Ck−1(I) and f (k−1) ∈ ACloc(I), then D
(k)
weakf

exists and one has (3.6) a.e. on I.

The end of this section is devoted to explaining relations between D
(1)
weak-

derivatives and dweak- and d†
weak-derivatives, and moreover, between D

(2k)
weak-

derivatives and (d†d)k
weak- and (d†d)k

weak-derivatives. We begin with notion
of weak delta-derivatives. Recall, cf. [11], that given f ∈ L1

loc(I
+, w), we say

that weak d-derivative of f exists provided that there is g ∈ L1
loc(I

+, w),
such that∫

I+
d†ϕ(x)f(x)w(x) dx =

∫
I+

ϕ(x)g(x)w(x) dx, ϕ ∈ C∞
c (I+).

Then, we set dweakf := g and call g the weak d-derivative of f . If in the
above equality, d† is replaced by d, then we call g the weak d†-derivative
of f and set d†

weakf := g. Analogously, gk ∈ L1
loc(I

+, w) is called the weak
(d†d)k

weak-derivative of f provided that∫
I+

(d†d)kϕ(x)f(x)w(x) dx =
∫

I+
ϕ(x)gk(x)w(x) dx, ϕ ∈ C∞

c (I+).

We then set (d†d)k
weakf := gk. When the order of d† and d is reversed, we say

about the (dd†)k
weak-derivative and write (dd†)k

weakf := gk.
We shall need a simple lemma.

Lemma 3.6. Let f ∈ L1
loc(w) and k � 1. Assume that D(k)

weakf exists.

1. If f is even, then for k even/odd, D(k)
weakf is even/odd;

2. if f is odd, then for k odd/even, D(k)
weakf is even/odd.
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Proof. It is obvious that the above rules apply for ϕ ∈ C∞
c (I) with D

(k)
weak

replaced by Dk. By assumption

∀ϕ ∈ C∞
c (I)

∫
I

Dkϕf w dx = (−1)k

∫
I

ϕD
(k)
weakf w dx.

Consider, for instance, f even. For k even/odd, take in the above line odd/even
functions ϕ. This gives

∀ϕ ∈ C∞
c (I) 0 = (−1)k

∫
I+

ϕ (D(k)
weakf)odd/even w dx,

and hence, (D(k)
weakf)odd/even = 0 x-a.e. for k even/odd as required. For f

odd, we argue analogously. �

Proposition 3.7. Let f ∈ L1
loc(w). Then:

1. for f odd: D
(1)
weakf exists if and only if d†

weak(f
+) exists; moreover,

d†
weak(f

+) = −(D(1)
weakf)+;

2. for f even: D
(1)
weakf exists if and only if dweak(f+) exists; moreover,

dweak(f+) = (D(1)
weakf)+;

3. for f odd: D(2k)
weakf exists if and only if (d†d)k

weak(f
+) exists; moreover,

(d†d)k
weak(f

+) = (−1)k(D(2k)
weakf)+;

4. for f even: D(2k)
weakf exists if and only if (dd†)k

weak(f
+) exists; moreover,

(dd†)k
weak(f

+) = (−1)k(D(2k)
weakf)+.

Proof. Consider, for instance, f odd and prove (1). For ⇒, we have

∀ϕ ∈ C∞
c (I)

∫
I

Dϕf w dx = −
∫

I

ϕD
(1)
weakf w dx.

Taking above even functions ϕ gives (by Lemma 3.6, D(1)
weakf is even)

2
∫

I+
dϕf w dx = −2

∫
I+

ϕD
(1)
weakf w dx.

This implies the required conclusion with accompanying identity. The oppo-
site implication in 1. goes by reversing the above arguments.

Property 2. is proved analogously. Also, 3. and 4. require similar argu-
ments. For instance, for f odd, proving ⇒ in 3., we begin with

∀ϕ ∈ C∞
c (I)

∫
I

D2kϕf w dx =
∫

I

ϕD
(2k)
weakf w dx.

Taking above odd functions ϕ and noting that D2kϕ = (−1)k(d†d)kϕ gives,
by Lemma 3.6,

2(−1)k

∫
I+

(d†d)kϕf w dx = 2
∫

I+
ϕD

(2k)
weakf w dx,

and hence, the required conclusion with accompanying identity follows. The
opposite implication in 3. again goes by reversing the above argument. �
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4. D-Sobolev Spaces and the Friedrichs Extensions

We now come to introducing and discussing Sobolev spaces associated with
powers of the differential–difference operator D. These spaces can be regarded
in the broader context of theory of Sobolev spaces. They are particularly
well suited to describe some objects like minimal and maximal operators, the
Friedrichs extensions, etc., in the D-framework.

Definition 4.1. The D(k)-Sobolev space Hk
D(I, w), k � 1, is the space

Hk
D(I, w) = {f ∈ L2(w) : D(k)

weakf exists and is in L2(w)}
equipped with the inner product

〈f, g〉Hk
D(I,w) := 〈f, g〉L2(w) + 〈D(k)

weakf,D
(k)
weakg〉L2(w).

The closure of C∞
c (I) in Hk

D(I, w) with respect to the norm generated by
〈·, ·〉Hk

D(I,w), that is

‖f‖Hk
D(I,w) :=

(‖f‖2
L2(w) + ‖D(k)

weakf‖2
L2(w)

)1/2
,

is denoted Hk
D,0(I, w).

Since C∞
c (I) ⊂ Hk

D,0(I, w) ⊂ Hk
D(I, w), Hk

D,0(I, w) and Hk
D(I, w) are

dense in L2(w).
Sobolev spaces in the context of the Jacobi operator Jα,β and the

Jacobi–Dunkl operator Jα,β , α, β > −1, were defined and investigated by
Langowski [6,7]. These spaces were denoted W p,m

α,β (for 1 � p � ∞ and order
m � 1) and their relation to potential spaces was studied. In Definition 4.1
specified to Dα,β , there is no restriction on α and β.

The following proposition has a relatively standard proof, and hence,
we omit it.

Proposition 4.2. The D(k)-Sobolev space Hk
D(I, w) is a Hilbert space.

Consequently, also Hk
D,0(I, w) is a Hilbert space.

A comment is in order on relations between our Definition 4.1 and the
definition of Sobolev spaces that appeared in [7] in the context of the Jacobi
operator J◦

α,β ; see Example 2.3. To be precise in [7, p. 3], J◦
α,β is shifted by

a constant term, so that Jα,β := J◦
α,β + A2

α,β is considered with some restric-
tions on α and β (and Dα,β = D◦

α,β , see Example 2.3), but this change is
immaterial from the spectral theory point of view. The main motivation in
establishing a suitable definition of Sobolev spaces in [7] was to obtain, as a
prize, an isomorphism between these Sobolev spaces and the potential spaces
with properly chosen parameters. This was indeed achieved; see [7, Defini-
tion 3.2 and Theorem 3.3]. Our definition, in the general setting, is seemingly
the most natural and allows to achieve our main goal, a characterization of
Friedrichs extensions.

It is natural to ask when we can claim that

H1
D,0(I, w) = H1

D(I, w).
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Of course, the answer depends on w, compactness of I, and D, and may
be difficult in concrete settings. The ‘classical’ setting is described in the
following.

Example 4.3. Let w ≡ 1, p ≡ 1, q ≡ 0, so that D = d
dx on I = (−b, 0)∪ (0, b),

0 < b � ∞. Then, H1(I) coincides with the direct sum H1(I−) ⊕ H1(I+).
Similarly, H1

0 (I) = H1
0 (I−) ⊕ H1

0 (I+). Hence, the two spaces in question,
H1(I) and H1

0 (I), differ. Additionally, we note that H1
0 (I) coincides with the

space of restrictions to I of functions from the space {f ∈ H1
0 (−b, b) : f(0) =

0}.

Following the line of thoughts in Sect. 3, we now relate the introduced
Sobolev spaces with those defined and studied in [11] and connected to d, d†,
and their compositions. To recall, the delta-Sobolev space Hd was defined in
[11] (where slightly different notation was used) as

Hd(I+, w) = {f ∈ L2(I+, w) : dweakf exists and is in L2(I+, w)}.

Analogous definition applies to d†. For higher order derivatives, we shall con-
sider

H(d†d)k(I+, w) = {f ∈ L2(I+, w) : (d†d)k
weakf exists and is in L2(I+, w)},

k � 1, and its analogue, H(dd†)k(I+, w), with the roles of d and d† reversed
(in [11] an arbitrary composition of d and d† was admitted). Inner products
and norms in these spaces are given in a way analogous to that in Defini-
tion 4.1 and the corresponding closures of C∞

c (I+) are denoted Hd,0(I+, w),
H(d†d)k,0(I+, w), and so on. Also, the closed subspaces of H1

D(I, w), H2k
D (I, w)

and their counterparts, H1
D,0(I, w), H2k

D,0(I, w), consisting of even/odd func-
tions will be denoted by adding the affix even/odd.

The following result is a direct consequence of Proposition 3.7; the proof
of the proposition is straightforward, and hence, we skip it. Below, if X is a
linear space of functions on I, then X+ stands for the space of restrictions of
all functions from X to I+.

Proposition 4.4. We have

Hd(I+, w) = H1
D,even(I, w)+ and Hd†(I+, w) = H1

D,odd(I, w)+.

Moreover, for k � 1, we have

H(d†d)k(I+, w) = H2k
D,odd(I, w)+ and H(dd†)k(I+, w) = H2k

D,even(I, w)+.

Analogous identities hold when Hd Hd† , H(d†d)k , H(dd†)k , H1
D,even/odd and

H2k
D,even/odd, are replaced by Hd,0, H(d†d)k,0, H2k

D,0,even/odd, etc., respectively.

4.1. Minimal and Maximal Operators

We now define the minimal and maximal operators related to the symmetric
operator T

(k)
D := (−iD)k with domain C∞

c (I), k � 1, (so that T
(2k)
D is just

L
(k)
D in our former notation). We follow the well-known path of constructing

these two operators. The minimal and maximal operators are important,
because self-adjoint extensions of T

(k)
D , if exist, lie in between. Notice that
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for k even, T
(k)
D is nonnegative, and hence, self-adjoint extensions of T

(k)
D do

exist.
Define T

(k)
D,min as the closure T

(k)
D ; T

(k)
D is closable, since Dom

(
(T (k)

D )∗) is

dense in L2(w). Define T
(k)
D,max as the operator with domain Dom(T (k)

D,max) =
Hk

D(I, w), given by the rule

T
(k)
D,maxf = (−i)kD

(k)
weakf.

We have T
(k)
D,min ⊂ T

(k)
D,max, since T

(k)
D,max is closed. Indeed, assume that fn ∈

Hk
D(I, w), and for some f, g ∈ L2(w), we have fn → f and (−i)kD

(k)
weakfn → g.

This means that {fn} and {(−i)kD
(k)
weakfn} are Cauchy sequences in L2(w),

and hence, {fn} is a Cauchy sequence in Hk
D(I, w). By Proposition 4.2, there

is F ∈ Hk
D(I, w), such that fn converges to F in Hk

D(I, w). Consequently,
fn → F in L2(w), and hence, f = F ∈ Hk

D(I, w). Since also (−i)kD
(k)
weakfn →

g in L2(w), a simple argument then shows that g = (−i)kD
(k)
weakf .

Proposition 4.5. We have (T (k)
D,min)∗ = T

(k)
D,max and (T (k)

D,max)
∗ = T

(k)
D,min.

Moreover, every self-adjoint extension T of T
(k)
D satisfies T

(k)
D,min ⊂ T ⊂

T
(k)
D,max.

Proof. We begin with the first equality and prove the inclusion (T (k)
D,min)∗ ⊃

T
(k)
D,max. Let f ∈ Dom(T (k)

D,max). This means that D
(k)
weakf exists and belongs

to L2(w). In other words, it holds

∀ϕ ∈ C∞
c (I) 〈(−iD)kϕ, f〉L2(w) = 〈ϕ, T

(k)
D,maxf〉L2(w),

which means that f ∈ Dom
(
(T (k)

D,max)
∗) = Dom

((
T

(k)
D,max

)∗) and T
(k)
D,maxf =

(T (k)
D )∗f =

(
T

(k)
D

)∗
f .

To prove the opposite (T (k)
D,min)∗ ⊂ T

(k)
D,max, let f ∈ Dom

(
(T (k)

D,min)∗) and

set g = (T (k)
D,min)∗f . This means, in particular, that

∀ϕ ∈ C∞
c (I) 〈(−iD)kϕ, f〉L2(w) = 〈ϕ, g〉L2(w).

Consequently, D
(k)
weakf exists and equals (−i)kg. Hence, f ∈ Dom(T (k)

D,max)

and g = T
(k)
D,maxf .

Since T
(k)
D,min is closed, we have (T (k)

D,min)∗∗ = T
(k)
D,min, and thus, the

second claimed equality is a consequence of the first one. The last claim of
the proposition is obvious. �

4.2. Friedrichs Extensions

To continue, we need to recall basic facts on the Friedrichs extension. It is
well known that any densely defined symmetric and nonnegative operator S
has a self-adjoint extension which is also nonnegative. The construction of
this operator (which works in a more general setting of lower semibounded
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operators), denoted SF , was given by Friedrichs in 1933 and is nowadays
called the Friedrichs extension of S.

The construction of SF is based on the theory of (sesquilinear) forms.
An important result in this theory says that for a given (H, 〈·, ·〉H), there is
a one-to-one correspondence between the set of all densely defined Hermitian
nonnegative closed forms and the set of all self-adjoint nonnegative operators
on H. If s is such a form, then in this correspondence, As denotes the rele-
vant operator; if A is such an operator, then sA denotes the relevant form.
Moreover, for every A, we have A(sA) = A, and for every s, we have s(As) = s.

More precisely, the associated operator As is defined by first determining
its domain

Dom(As) = {h ∈ Dom(s) : ∃uh ∈ H ∀h′ ∈ Dom(s) s[h, h′] = 〈uh, h′〉H},

and then by setting its action on h ∈ Dom(As) by Ash = uh. See [10, Chap-
ter 10 and Sect. 3 of Chapter 12]. Also, recall that closedness of a nonnegative
form s means that the norm ‖x‖s := (s[x, x]2+〈x, x〉2H)1/2 defined on Dom(s)
is complete.

The construction of the Friedrichs extension now goes as follows. Let S
be as above and let sS [x, y]=〈Sx, y〉H , x, y∈Dom(S), be the form associated
with S. It is immediately seen that sS is densely defined Hermitian and non-
negative. However, more importantly, sS is closable; see [10, Lemma 10.16].
Let sS be the closure of sS . Although the completion procedure in the defini-
tion of sS is abstract from its nature, it can be shown that sS may be realized
in H, which means, in particular, that Dom(sS)⊂H. Then, SF is just AsS ,
the operator associated with sS . See, for instance, [10, Definition 10.6].

Let k � 1. Define the form t
(k)
D by

t
(k)
D [f, g] =

∫
I

D
(k)
weakf(x)D(k)

weakg(x)w(x) dx, f, g ∈ Hk
D(I, w), (4.1)

so that Dom(t(k)
D ) = Hk

D(I, w). The form t
(k)
D restricted to Hk

D,0(I, w) will be

denoted t
(k)
D,0, and hence, Dom(t(k)

D,0) = Hk
D,0(I, w). The form t

(k)
D is Hermitian

and nonnegative. Moreover, it is closed and this fact is just a consequence
of the completeness of the norm ‖ · ‖Hk(I,w). The same is valid for t

(k)
D,0. Let

Lk := Lk,D and Lk,0 := Lk,D,0 be the operators associated with the forms
t
(k)
D and t

(k)
D,0, respectively. By the general theory, Lk and Lk,0 are self-adjoint

and nonnegative. It is worth mentioning that for k = 1, the operators L1 and
L1,0 should be thought off as the Neumann and Dirichlet ‘Laplacians’, two
distinguished nonnegative self-adjoint extensions of the (minus) ‘Laplacian’
−D2.

Theorem 4.6. Let k � 1. The operators Lk and Lk,0 are self-adjoint and non-
negative extensions of (−1)kD2k. Moreover, Lk,0 is the Friedrichs extension
of (−1)kD2k.
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Proof. We first check that both operators extend (−1)kD2k. It suffices to
consider Lk,0 only. From the general definition

Dom(Lk,0) = {f ∈ Hk
D,0(I, w) : ∃uf ∈ L2(w)

∀g ∈ Hk
D,0(I, w) t

(k)
D,0[f, g] = 〈uf , g〉L2(w)},

and Lk,0f = uf . We claim that C∞
c (I) ⊂Dom(Lk,0) and Lk,0ϕ = (−1)kD2kϕ

for ϕ∈C∞
c (I). For this purpose, we need to check that given ϕ ∈ C∞

c (I), for
every g ∈ Hk

D,0(I, w), it holds∫
I

Dkϕ(x)D(k)
weakg(x)w(x) dx = 〈(−1)kD2kϕ, g〉L2(w). (4.2)

Verification of (4.2) is based on the integration by parts formula for absolutely
continuous functions on a closed finite interval. Let J := J− ∪ J+, J± ⊂ I±,
be the union of two closed intervals, such that the support of ϕ included in
J . We check (4.2) with I replaced by J .

When k = 1 and g ∈ H1
0 (I, w), (4.2) then becomes∫

J

Dϕ(x)D(1)
weakg(x)w(x) dx = −

∫
J

D2ϕ(x)g(x)w(x) dx.

This equality indeed holds, since, by Corollary 3.5, the weak derivative g′
weak

exists on I, and consequently, g is absolutely continuous on J . Moreover,
D

(1)
weakg = pg′ + qgeven − q†godd a.e. on I and an application of the integration

by parts formula plus a small calculation shows the required equality. The
general case goes along the same lines using the general part of Corollary 3.5.
Indeed, inserting

Dk
weakg(x) =

k∑
j=0

p
[k]
k−jg

(k−j) +
k∑

j=1

[
q
[k,1]
k−j

(
g(k−j)

)
even

+ q
[k,2]
k−j

(
g(k−j)

)
odd

]

into the left-hand side of (4.2) (with I replaced by J) and then performing
k-times integration by parts (recall that g is (k − 1)-times differentiable on I
and g(k−1) is absolutely continuous on J) lead to the right-hand side of (4.2).

It remains to prove that Lk,0 = ((−1)kD2k)F . We take the form
s(k)[f, g] = 〈(−1)kD2kf, g〉w on the domain Dom(s(k)) = C∞

c (I) and con-
sider its closure s(k). We now claim that

s(k) = t
(k)
D,0. (4.3)

This is enough for our purpose since then, with the notation preceding The-
orem 4.6, we have

Dom
(
((−1)kD2k)F

)
= Dom(A

s(k)) = Dom(A
t
(k)
D,0

),

and as one immediately sees, the latter space coincides with Dom(Lk,0). More-
over, it follows that ((−1)kDk)F f = Lk,0f for f from these joint domains.
Returning to (4.3), we note that it is a consequence of the fact that C∞

c (I)
lies densely in Dom(t(k)

D,0) = Hk
D,0(I, w) and t

(k)
D,0 is closed. Here are details.

Clearly, t(k)
D,0 extends s(k), and hence, the inclusion ⊂ follows. For the opposite

inclusion, let f ∈ Dom(t(k)
D,0) = Hk

D,0(I, w) and take {ϕn} ⊂ C∞
c (I), such that
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ϕn → f in H1
0 (I, w). Notably, this means that ϕn → f and Dkϕn → D

(k)
weakf

in L2(w). We want to show that f ∈ Dom(s(k)).
For this, it suffices to ensure existence of {ϕn} ⊂ C∞

c (I) convergent to
f in L2(w), such that s(k)[ϕn − ϕm, ϕn − ϕm] → 0 as n,m → ∞; see [10,
p. 224]. However

s(k)[ϕn − ϕm, ϕn − ϕm] = 〈(−1)kD2k(ϕn − ϕm), ϕn − ϕm〉L2(w)

= 〈Dk(ϕn − ϕm),Dk(ϕn − ϕm)〉L2(w),

and the latter required convergence to 0 follows, since Dkϕn being convergent
in L2(w) is a Cauchy sequence there. �

The end of this section is devoted to discussion of relations between
the Friedrichs extensions of (−1)kD2k and (d†d)k and (dd†)k. Consider the
operators

Te/o : L2
even/odd(I, w) → L2(I+, w), Te/of = f+.

Then, up to the multiplicative constant
√

2, Te/o are unitary isomorphisms.
The isomorphism Te identifies D and d, and (−1)kD2k and (d†d)k, k �
1. Similarly, the isomorphism To identifies D and −d†, and (−1)kD2k and
(dd†)k. (Recall that the domains of considered operators are either C∞

c (I) or
C∞

c (I+).)
From now on, to fix the attention, we consider only Te; To is treated

analogously. By Proposition 4.4, the pairs of Sobolev spaces H1
D,even(I, w)

and Hd(I+, w), H2k
D,even(I, w) and H(d†d)k(I+, w), and their counterparts with

the 0 affix, are also identified through Te. This gives an impact to compare
the Friedrichs extensions. Recall that the Friedrichs extension of (−1)kD2k

we denoted as Lk,0. The Friedrichs extensions of (d†d)k and (dd†)k we shall
denote by L(d†d)k and L(dd†)k , respectively. These extensions were described
in [11, Theorem 5.2].

Proposition 4.7. We have

L(d†d)k = (Lk,0)+e and L(dd†)k = (Lk,0)+o ,

in the sense that Dom(L(d†d)k) = Dom(Lk,0)+e and Dom(L(dd†)k) =
Dom(Lk,0)+o , and L(d†d)k(f+) = (Lk,0f)+ for f ∈ Dom(Lk,0)e, and anal-
ogously in the second case.

Proof. We focus on considering the first pair only; for the second pair, one
argues analogously. The proof relies on observing that the constructions of
the Friedrichs extensions of (−1)kD2k and (d†d)k agree on the level of forms.
Recall that for the construction of Lk,0, the form t

(k)
D defined in (4.1) with

domain restricted to Hk
D,0(I, w) was used. On the other hand, as explained

in the proof of [11, Theorem 5.2] (with slightly different notation), the form

t
(k)
d [f, g] =

∫
I+

d
(k)
weakf(x)d(k)

weakg(x)w(x) dx,

on the domain H(d†d)k,0(I+, w) was used to define L(d†d)k . It is immediately
seen that if the domain of the form t

(k)
D is further restricted to Hk

D,0(I, w)e,



MJOM Spectral Properties of Differential Page 21 of 22   177 

then these two forms are identified through Te. Consequently, the resulting
self-adjoint extensions coincide. �
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