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Abstract
In this paper, we study limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces,
idτ : Bs1,τ1

p1,q1(�) ↪→ Bs2,τ2
p2,q2(�) and idτ : Fs1,τ1

p1,q1(�) ↪→ Fs2,τ2
p2,q2(�), where � ⊂ R

d is a
bounded domain, obtaining necessary and sufficient conditions for the continuity of idτ . This
can also be seen as the continuation of our previous studies of compactness of the embeddings
in the non-limiting case. Moreover, we also construct Rychkov’s linear, bounded universal
extension operator for these spaces.

Keywords Besov-type space · Triebel-Lizorkin-type spaces · Smoothness Morrey spaces
on domains · Limiting embeddings · Extension operator.

Mathematics Subject Classification 46E35 · 42B35

1 Introduction

Besov-type spaces Bs,τ
p,q(Rd) and Triebel-Lizorkin-type spaces Fs,τ

p,q(Rd), 0 < p < ∞ (or
p = ∞ in the B-case), 0 < q ≤ ∞, τ ≥ 0, s ∈ R, are part of a class of function spaces built
upon Morrey spacesMu,p(R

d), 0 < p ≤ u < ∞. They are regularly called in the literature
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as smoothness spaces of Morrey type or, shortly, smoothness Morrey spaces, and they have
been increasingly studied in the last decades, motivated firstly by possible applications.

The classical Morrey spacesMu,p , 0 < p ≤ u < ∞, were introduced by Morrey in [19]
and are part of a wider class of Morrey-Campanato spaces, cf. [21]. They can be seen as a
complement to L p spaces, since Mp,p(R

d) = L p(R
d).

The (inhomogeneous) Besov-type and Triebel-Lizorkin-type spaces we work here with
were introduced and intensively studied in [47] by Yuan, Sickel and Yang. Their homoge-
neous versions were previously investigated by El Baraka in [3–5], and also by Yuan and
Yang [41, 42]. Considering τ = 0, one recovers the classical Besov and Triebel-Lizorkin
spaces. Moreover, they are also closely connected with Besov-Morrey spaces N s

u,p,q(Rd)

and Triebel-Lizorkin-Morrey spaces Es
u,p,q(Rd), 0 < p ≤ u < ∞, 0 < q ≤ ∞, s ∈ R,

which are also included in the class of smoothness Morrey spaces. Namely, when p ≤ u,
τ = 1

p − 1
u , then the Triebel-Lizorkin-type space Fs,τ

p,q(Rd) coincides with Es
u,p,q(Rd), and

it is also known that the Besov-Morrey space N s
u,p,q(Rd) is a proper subspace of Bs,τ

p,q(Rd)

with τ = 1
p − 1

u , p < u and q < ∞. The Besov-Morrey spaces were introduced by
Kozono and Yamazaki in [15] and used by them and later on by Mazzucato [17] in the study
of Navier–Stokes equations. In [33] Tang and Xu introduced the corresponding Triebel-
Lizorkin-Morrey spaces, thanks to establishing the Morrey version of the Fefferman-Stein
vector-valued inequality. Some properties of these spaces including their wavelet character-
isations were later described in the papers by Sawano [24, 25], Sawano and Tanaka [28, 29]
and Rosenthal [22]. The surveys [31, 32] by Sickel are also worth of being consulted when
studying these scales. Recently, some limiting embedding properties of these spaces were
investigated in a series of papers [10–14]. As for the Besov-type and Triebel-Lizorkin-type
spaces, also embedding properties have been recently studied in [8, 45, 46].

Undoubtedly the question of necessary and sufficient conditions for continuous embed-
dings of certain function spaces is a natural and classical one. Beyond that, this paper should
essentially be understood as the continuation of our earlier studies in [8]. Proceeding con-
trary to the usual, there we started by studying compactness of the embeddings of Besov-type
(A = B) and Triebel-Lizorkin-type (A = F) spaces,

idτ : As1,τ1
p1,q1(�) ↪→ As2,τ2

p2,q2(�),

where � ⊂ R
d is a bounded domain. Now we finally deal with the continuity of such

embeddings, obtaining sufficient and necessary conditions on the parameters under which
they hold true. According to the results obtained in [8], the embedding idτ is compact if, and
only if,

s1−s2
d

>max

{(
τ2− 1

p2

)
+

−
(

τ1− 1

p1

)
+

,
1

p1
−τ1−min

{
1

p2
−τ2,

1

p2
(1− p1τ1)+

}}
=:γ,

with a+:=max{a, 0}, and there is no continuous embedding idτ when s1 − s2 < d γ . Con-
sequently, only the case when

s1 − s2
d

= γ

is of interest to us here. In what follows, we call this setting ‘limiting situation’, giving
meaning to the expression ‘limiting embedding’. In that way we complement earlier results
in [11, 12, 46] in related settings. Our main results are stated in Theorem 4.9, Propositions 4.3
and 4.6. In the propositions we consider the situation when one of the spaces, the source one
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or the target one, coincides with some classical Besov space Bσ∞,∞(�). The outcome for the
spaces that do not satisfy this assumption can be found in the theorem. In almost all cases we
prove the sharp sufficient and necessary conditions. Only in one case we have a small gap
between them, cf. Remark 4.10.

Of independent interest is also the extension theorem we are able to prove for the spaces
under consideration. The first extension operators for Besov-type and Triebel-Lizorkin-type
spaces were constructed by Sickel, Yang and Yuan in [47], cf. Theorem 6.11 and 6.13 ibidem.
However it is assumed there that domains are C∞ smooth and the extension operators were
not universal. Another not universal construction for the smooth domains was given by
Moura, Neves and Schneider in [20]. The Rychkov universal extension operator for the
Triebel-Lizorkin-type spaces definedonLipschitz domainswas recently constructed byZhou,
Hovemann and Sickel in [52]with additional assumptions p, q ∈ [1,∞). Herewe considered
all admissible parameters p and q . We concentrate on the Besov-type spaces, that are not a
real interpolation space of Triebel-Lizorkin-type spaces, in contrast to the classical case, cf.
[48]. The extension theorem will not only help us to obtain the results about the continuity,
but also will allow us to improve some necessary conditions of such embeddings on R

d .
We follow Rychkov’s approach from [23] and construct such an operator, for all possible
values of p, q ∈ (0,∞]. We learned only recently that in [51, 52] the authors followed a
similar approach to construct such an extension operator adapted to their purposes, that is,
for p, q ≥ 1. For the convenience of the reader we keep our argument for the full range of
parameters here.

This paper is organized as follows. In Sect. 2we recall the definition, onR
d and on bounded

domains � ⊂ R
d , of the spaces considered in the paper and collect some basic properties,

among them the wavelet characterisations. In Sect. 3 we deal with the construction of a
universal linear bounded extension operator for the spaces As,τ

p,q . Section4 is, finally, devoted
to the study of continuity properties of limiting embeddings of the spaces As,τ

p,q (�).Moreover,
wemake use of these results and the extension theorem fromSection 3 to improve prior results
on the continuity of embeddings of the corresponding spaces on R

d , cf. [46].

2 Preliminaries

First we fix some notation. By N we denote the set of natural numbers, by N0 the set N∪{0},
and by Z

d the set of all lattice points in R
dhaving integer components. Let N

d
0 , where

d ∈ N, be the set of all multi-indices, α = (α1, ..., αd) with α j ∈ N0 and |α|:=∑d
j=1 α j . If

x = (x1, ..., xd) ∈ R
d and α = (α1, ..., αd) ∈ N

d
0 , then we put xα = xα1

1 · · · xαd
d . For a ∈ R,

let 	a
 :=max{k ∈ Z : k ≤ a} and a+:=max{a, 0}. All unimportant positive constants
will be denoted by C , occasionally with subscripts. By the notation A � B, we mean that
there exists a positive constant C such that A ≤ C B, whereas the symbol A ∼ B stands for
A � B � A. We denote by B(x, r):={y ∈ R

d : |x − y| < r} the ball centred at x ∈ R
d with

radius r > 0, and | · | denotes the Lebesgue measure when applied to measurable subsets of
R

d .
Given two (quasi-)Banach spaces X and Y , we write X ↪→ Y if X ⊂ Y and the natural

embedding of X into Y is continuous.
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2.1 Smoothness spaces of Morrey type onR
d

Let S(Rd) be the set of all Schwartz functions on R
d , endowed with the usual topology, and

denote by S ′(Rd) its topological dual, namely, the space of all bounded linear functionals
on S(Rd) endowed with the weak ∗-topology. For all f ∈ S(Rd) or S ′(Rd), we use f̂ to
denote its Fourier transform, and f ∨ for its inverse. Let Q be the collection of all dyadic
cubes in R

d , namely, Q:={Q j,k :=2− j ([0, 1)d + k) : j ∈ Z, k ∈ Z
d}. The symbol �(Q)

denotes the side-length of the cube Q and jQ :=− log2 �(Q). Moreover, we denote by χQ j,m

the characteristic function of the cube Q j,m .
Let ϕ0, ϕ ∈ S(Rd). We say that (ϕ0, ϕ) is an admissible pair if

supp ϕ̂0 ⊂ {ξ ∈ R
d : |ξ | ≤ 2} , |ϕ̂0(ξ)| ≥ C if |ξ | ≤ 5/3, (2.1)

and

supp ϕ̂ ⊂ {ξ ∈ R
d : 1/2 ≤ |ξ | ≤ 2} and |ϕ̂(ξ)| ≥ C if 3/5 ≤ |ξ | ≤ 5/3, (2.2)

where C is a positive constant. In what follows, for all ϕ ∈ S(Rd) and j ∈ N,
ϕ j (·):=2 jdϕ(2 j ·).
Definition 2.1 Let s ∈ R, τ ∈ [0,∞), q ∈ (0,∞] and (ϕ0, ϕ) be an admissible pair.

(i) Let p ∈ (0,∞]. The Besov-type space Bs,τ
p,q(Rd) is defined to be the collection of all

f ∈ S ′(Rd) such that

‖ f | Bs,τ
p,q(Rd)‖:= sup

P∈Q
1

|P|τ

⎧⎪⎨
⎪⎩

∞∑
j=max{ jP ,0}

2 jsq

⎡
⎣∫

P

|ϕ j ∗ f (x)|p dx

⎤
⎦

q
p

⎫⎪⎬
⎪⎭

1
q

< ∞

with the usual modifications made in case of p = ∞ and/or q = ∞.
(ii) Let p ∈ (0,∞). The Triebel-Lizorkin-type space Fs,τ

p,q(Rd) is defined to be the collection
of all f ∈ S ′(Rd) such that

‖ f | Fs,τ
p,q(Rd)‖:= sup

P∈Q
1

|P|τ

⎧⎪⎨
⎪⎩
∫
P

⎡
⎣ ∞∑

j=max{ jP ,0}
2 jsq |ϕ j ∗ f (x)|q

⎤
⎦

p
q

dx

⎫⎪⎬
⎪⎭

1
p

< ∞

with the usual modification made in case of q = ∞.

Remark 2.2 These spaces were introduced in [47] and proved therein to be quasi-Banach
spaces. In the Banach case the scale of Nikol’skij-Besov type spaces Bs,τ

p,q(Rd) had already
been introduced and investigated in [3–5]. It is easy to see that, when τ = 0, then Bs,τ

p,q(Rd)

and Fs,τ
p,q(Rd) coincide with the classical Besov space Bs

p,q(Rd) and Triebel-Lizorkin space

Fs
p,q(Rd), respectively. In case of τ < 0 the spaces are trivial, Bs,τ

p,q(Rd) = Fs,τ
p,q(Rd) = {0},

τ < 0. There exists extensive literature on such spaces; we refer, in particular, to the series
of monographs [34–36, 39] for a comprehensive treatment.

Convention. We adopt the nowadays usual custom to write As
p,q(Rd) instead of Bs

p,q(Rd) or

Fs
p,q(Rd), and As,τ

p,q(Rd) instead of Bs,τ
p,q(Rd) or Fs,τ

p,q(Rd), respectively, when both scales of
spaces are meant simultaneously in some context.
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We have elementary embeddings within this scale of spaces (see [47, Proposition 2.1]),

As+ε,τ
p,r (Rd) ↪→ As,τ

p,q(Rd) if ε ∈ (0,∞), r , q ∈ (0,∞], (2.3)

and

As,τ
p,q1(R

d) ↪→ As,τ
p,q2(R

d) if q1 ≤ q2, (2.4)

as well as

Bs,τ
p,min{p,q}(R

d) ↪→ Fs,τ
p,q(Rd) ↪→ Bs,τ

p,max{p,q}(R
d), (2.5)

which directly extends the well-known classical case from τ = 0 to τ ∈ [0,∞), p ∈ (0,∞),
q ∈ (0,∞] and s ∈ R.

It is also known from [47, Proposition 2.6] that

As,τ
p,q(Rd) ↪→ B

s+d(τ− 1
p )

∞,∞ (Rd). (2.6)

The following remarkable feature was proved in [44].

Proposition 2.3 Let s ∈ R, τ ∈ [0,∞) and p, q ∈ (0,∞] (with p < ∞ in the F-case). If

either τ > 1
p or τ = 1

p and q = ∞, then As,τ
p,q(Rd) = B

s+d(τ− 1
p )

∞,∞ (Rd).

Now we come to smoothness spaces of Morrey type N s
u,p,q(Rd) and Es

u,p,q(Rd). Recall

first that the Morrey space Mu,p(R
d), 0 < p ≤ u < ∞, is defined to be the set of all locally

p-integrable functions f ∈ L loc
p (Rd) such that

‖ f | Mu,p(R
d)‖:= sup

x∈Rd ,R>0
R

d
u − d

p

[∫
B(x,R)

| f (y)|p dy

] 1
p

< ∞ .

Remark 2.4 The spaces Mu,p(R
d) are quasi-Banach spaces (Banach spaces for p ≥ 1).

They originated from Morrey’s study on PDE (see [19]) and are part of the wider class of
Morrey-Campanato spaces; cf. [21]. They can be considered as a complement to L p spaces.
As a matter of fact, Mp,p(R

d) = L p(R
d) with p ∈ (0,∞). To extend this relation, we put

M∞,∞(Rd) = L∞(Rd). One can easily see that Mu,p(R
d) = {0} for u < p, and that for

0 < p2 ≤ p1 ≤ u < ∞,

Lu(Rd) = Mu,u(Rd) ↪→ Mu,p1(R
d) ↪→ Mu,p2(R

d). (2.7)

In an analogous way, one can define the spaces M∞,p(R
d), p ∈ (0,∞), but using the

Lebesgue differentiation theorem, one can easily prove that M∞,p(R
d) = L∞(Rd).

Definition 2.5 Let 0 < p ≤ u < ∞ or p = u = ∞. Let q ∈ (0,∞], s ∈ R and ϕ0,
ϕ ∈ S(Rd) be as in (2.1) and (2.2), respectively.

(i) The Besov-Morrey space N s
u,p,q(Rd) is defined to be the set of all distributions f ∈

S ′(Rd) such that

∥∥ f | N s
u,p,q(Rd)

∥∥ =
[ ∞∑

j=0

2 jsq
∥∥ϕ j ∗ f | Mu,p(R

d)
∥∥q
]1/q

< ∞ (2.8)

with the usual modification made in case of q = ∞.
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(ii) Let u ∈ (0,∞). The Triebel-Lizorkin-Morrey space Es
u,p,q(Rd) is defined to be the set

of all distributions f ∈ S ′(Rd) such that

∥∥ f | Es
u,p,q(Rd)

∥∥ =
∥∥∥∥
[ ∞∑

j=0

2 jsq |(ϕ j ∗ f )(·)|q
]1/q

| Mu,p(R
d)

∥∥∥∥ < ∞ (2.9)

with the usual modification made in case of q = ∞.

Convention. Again we adopt the usual custom to write As
u,p,q instead of N s

u,p,q or Es
u,p,q ,

when both scales of spaces are meant simultaneously in some context.

Remark 2.6 The spacesAs
u,p,q(Rd) are independent of the particular choices of ϕ0, ϕ appear-

ing in their definitions. They are quasi-Banach spaces (Banach spaces for p, q ≥ 1), and
S(Rd) ↪→ As

u,p,q(Rd) ↪→ S ′(Rd). Moreover, for u = p we re-obtain the usual Besov and
Triebel-Lizorkin spaces,

As
p,p,q(Rd) = As

p,q(Rd) = As,0
p,q(Rd). (2.10)

Besov-Morrey spaces were introduced by Kozono and Yamazaki in [15]. They studied semi-
linear heat equations and Navier–Stokes equations with initial data belonging to Besov-
Morrey spaces. The investigations were continued by Mazzucato [17], where one can find
the atomic decomposition of some spaces. The Triebel-Lizorkin-Morrey spaces were later
introduced by Tang and Xu [33].We follow the ideas of Tang and Xu [33], where a somewhat
different definition is proposed. The ideas were further developed by Sawano and Tanaka [24,
25, 28, 29]. The most systematic and general approach to the spaces of this type can be found
in the monograph [47] or in the survey papers by Sickel [31, 32], which we also recommend
for further up-to-date references on this subject. We refer to the recent monographs [26, 27]
for applications.

It turned out that many of the results from the classical situation have their counterparts
for the spaces As

u,p,q(Rd), e. g.,

As+ε
u,p,r (R

d) ↪→ As
u,p,q(Rd) if ε > 0, r ∈ (0,∞], (2.11)

and As
u,p,q1(R

d) ↪→ As
u,p,q2(R

d) if q1 ≤ q2. However, there also exist some differences.
Sawano proved in [24] that, for s ∈ R and 0 < p < u < ∞,

N s
u,p,min{p,q}(Rd) ↪→ Es

u,p,q(Rd) ↪→ N s
u,p,∞(Rd), (2.12)

where, for the latter embedding, r = ∞ cannot be improved – unlike in case of u = p (see
(2.5) with τ = 0). More precisely,

Es
u,p,q(Rd) ↪→ N s

u,p,r (R
d) if, and only if, r = ∞ or u = p and r ≥ max{p, q}.

On the other hand, Mazzucato has shown in [17, Proposition 4.1] that

E0
u,p,2(R

d) = Mu,p(R
d), 1 < p ≤ u < ∞,

in particular,

E0
p,p,2(R

d) = L p(R
d) = F0

p,2(R
d), p ∈ (1,∞). (2.13)
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Remark 2.7 Let s, u, p and q be as in Definition 2.5 and τ ∈ [0,∞). It is known that

N s
u,p,q(Rd) ↪→ Bs,τ

p,q(Rd) with τ = 1/p − 1/u, (2.14)

cf. [47, Corollary 3.3]. Moreover, the above embedding is proper if τ > 0 and q < ∞. If
τ = 0 or q = ∞, then both spaces coincide with each other, in particular,

N s
u,p,∞(Rd) = B

s, 1p − 1
u

p,∞ (Rd). (2.15)

As for the F-spaces, if 0 ≤ τ < 1/p, then

Fs,τ
p,q(Rd) = Es

u,p,q(Rd) with τ = 1/p − 1/u , 0 < p ≤ u < ∞ ; (2.16)

cf. [47, Corollary 3.3]. Moreover, if p ∈ (0,∞) and q ∈ (0,∞), then

F
s, 1

p
p , q (Rd) = Fs∞, q(Rd) = B

s, 1
q

q , q (Rd) ; (2.17)

cf. [31, Propositions 3.4, 3.5] and [32, Remark 10].

Remark 2.8 Recall that the space bmo(Rd) is covered by the above scale.More precisely, con-
sider the local (non-homogeneous) space of functions of boundedmean oscillation, bmo(Rd),
consisting of all locally integrable functions f ∈ L loc

1 (Rd) satisfying that

‖ f ‖bmo := sup
|Q|≤1

1

|Q|
∫
Q

| f (x) − fQ | dx + sup
|Q|>1

1

|Q|
∫
Q

| f (x)| dx < ∞,

where Q appearing in the above definition runs over all cubes in R
d , and fQ denotes the

mean value of f with respect to Q, namely, fQ := 1
|Q|

∫
Q f (x) dx , cf. [34, 2.2.2 (viii)]. The

space bmo(Rd) coincides with F0∞,2(R
d), cf. [34, Theorem 2.5.8/2]. Hence the above result

(2.17) implies, in particular,

bmo(Rd) = F0∞,2(R
d) = F0,1/p

p,2 (Rd) = B0,1/2
2,2 (Rd), 0 < p < ∞. (2.18)

Remark 2.9 In contrast to this approach, Triebel followed the original Morrey-Campanato
ideas to develop local spacesLr As

p,q(Rd) in [37], and so-called ‘hybrid’ spaces Lr As
p,q(Rd)

in [38],where 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, and− d
p ≤ r < ∞. This construction is based

on wavelet decompositions and also combines local and global elements as in Definitions 2.1
and 2.5. However, Triebel proved in [38, Theorem 3.38] that

Lr As
p,q(Rd) = As,τ

p,q(Rd), τ = 1

p
+ r

d
, (2.19)

in all admitted cases. We return to this coincidence below.

As mentioned previously, in this paper we are interested in studying embeddings of type

idτ : As1,τ1
p1,q1 ↪→ As2,τ2

p2,q2

on domains. To do so, we will strongly rely on the corresponding results for these spaces
on R

d , obtained in [46]. In order to make the reading easier, we recall those results here.
We begin with the situation of Besov-type spaces where the results can be found in [46,
Theorems 2.4, 2.5].

Theorem 2.10 ( [46]) Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ∞ and τi ≥ 0, i = 1, 2.
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(i) Let τ2 > 1
p2

or τ2 = 1
p2

and q2 = ∞. Then the embedding

Bs1,τ1
p1,q1(R

d) ↪→ Bs2,τ2
p2,q2(R

d) (2.20)

holds if, and only if,
s1 − s2

d
≥ 1

p1
− τ1 − 1

p2
+ τ2.

(ii) Let τ1 > 1
p1

or τ1 = 1
p1

and q1 = ∞. Then the embedding (2.20) holds if, and only if,

s1 − s2
d

>
1

p1
− τ1 − 1

p2
+ τ2 and τ2 ≥ 1

p2

or
s1 − s2

d
= 1

p1
− τ1 − 1

p2
+ τ2 and τ2 >

1

p2

or
s1 − s2

d
= 1

p1
− τ1 − 1

p2
+ τ2 and τ2 = 1

p2
and q2 = ∞.

(iii) Assume that τi < 1
pi

or τi = 1
pi

and qi < ∞, i = 1, 2.

(a) The embedding (2.20) holds true if

1

p1
− τ1 − 1

p2
+ τ2 ≥ 0,

τ1

p2
≤ τ2

p1

and

s1 − s2
d

>
1

p1
− τ1 − 1

p2
+ τ2

or
s1 − s2

d
= 1

p1
− τ1 − 1

p2
+ τ2

with

(s1 − s2)(τ1 − τ2) �= 0,
τ1

p2
<

τ2

p1

or (s1 − s2)(τ1 − τ2) �= 0,
τ1

p2
= τ2

p1
,

τ1

q2
≤ τ2

q1
or (s1 − s2)(τ1 − τ2) = 0, q1 ≤ q2,

and p1 ≥ p2 if s1 = s2 and τ1 p1 = τ2 p2 = 1.

(b) The conditions 1
p1

− τ1 − 1
p2

+ τ2 ≥ 0 and τ1
p2

≤ τ2
p1

, and s1 − s2 ≥ d
p1

− dτ1 − d
p2

+ dτ2
as well as q1 ≤ q2 if s1 = s2 are also necessary for the embedding (2.20).

The counterpart for F-spaces reads as follows, we refer to [46, Corollaries 5.8, 5.9] for
details.

Theorem 2.11 ( [46]) Let si ∈ R, 0 < qi ≤ ∞, 0 < pi < ∞ and τi ≥ 0, i = 1, 2.

(i) Let τi > 1
pi

or τi = 1
pi

and qi = ∞, i = 1, 2. Then the embedding

Fs1,τ1
p1,q1(R

d) ↪→ Fs2,τ2
p2,q2(R

d) (2.21)

holds if, and only if,
s1 − s2

d
≥ 1

p1
− τ1 − 1

p2
+ τ2.
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(ii) Assume that τi < 1
pi

, i = 1, 2. Then the embedding (2.21) holds if, and only if,

1

p1
− τ1 − 1

p2
+ τ2 ≥ 0,

τ1

p2
≤ τ2

p1

and

s1 − s2
d

>
1

p1
− τ1 − 1

p2
+ τ2

or
s1 − s2

d
= 1

p1
− τ1 − 1

p2
+ τ2

or s1 = s2 and q1 ≤ q2.

2.2 Spaces on domains

Let � denote an open, nontrivial subset of R
d . We consider smoothness Morrey spaces

on � defined by restriction. Let D(�) be the set of all infinitely differentiable functions
supported in � and denote by D′(�) its dual. Since we are able to define the extension
operator ext : D(�) → S(Rd), cf. [30], the restriction operator re : S ′(Rd) → D′(�) can
be defined naturally as an adjoint operator

〈re( f ), ϕ〉 = 〈 f , ext(ϕ)〉, f ∈ S ′(Rd),

where ϕ ∈ D(�). We will write f |� = re( f ).

Definition 2.12 Let s ∈ R, τ ∈ [0,∞), q ∈ (0,∞] and p ∈ (0,∞] (with p < ∞ in the case
of As,τ

p,q = Fs,τ
p,q ). Then As,τ

p,q(�) is defined by

As,τ
p,q(�):={

f ∈ D′(�) : f = g|� for some g ∈ As,τ
p,q(Rd)

}
endowed with the quasi-norm∥∥ f | As,τ

p,q(�)
∥∥:= inf

{‖g | As,τ
p,q(Rd)‖ : f = g|�, g ∈ As,τ

p,q(Rd)
}
.

Remark 2.13 The spaces As,τ
p,q(�) are quasi-Banach spaces (Banach spaces for p, q ≥ 1).

When τ = 0 we re-obtain the usual Besov and Triebel-Lizorkin spaces defined on domains.
For the particular case of� being a boundedC∞ domain inR

d , some properties were studied
in [47, Section 6.4.2]. In particular, according to [47, Theorem 6.13], for such a domain �,
there exists a linear and bounded extension operator

ext : As,τ
p,q(�) → As,τ

p,q(Rd), where 1≤ p<∞, 0<q ≤∞, s ∈R, τ ≥ 0, (2.22)

such that

re ◦ ext = id in As,τ
p,q(�), (2.23)

where re : As,τ
p,q(Rd) → As,τ

p,q(�) is the restriction operator as above.
Moreover, in [9] we studied the question under what assumptions these spaces consist of

regular distributions only.

Remark 2.14 Let us mention that we have the counterparts of many continuous embeddings
stated in the previous subsection for spaces on R

d when dealing with spaces restricted to
bounded domains. We recall them in further detail if appropriate and necessary for our
arguments below.
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Later we shall mainly deal with Lipschitz domains. Therefore we recall the concept for
convenience. By a Lipschitz domain we mean either a special or bounded Lipschitz domain.
A special Lipschitz domain is defined as an open set � ⊂ R

d lying above a graph of a
Lipschitz function ω : R

d−1 → R. More precisely,

� = {(x ′, xd) ∈ R
d : xd > ω(x ′)},

where

|ω(x ′) − ω(y′)| ≤ A |x ′ − y′|, x ′, y′ ∈ R
d−1. (2.24)

A bounded Lipschitz domain is a bounded domain � whose boundary ∂� can be covered
by a finite number of open balls Bk so that, possibly after an appropriate rotation, ∂� ∩ Bk

for each k is a part of the graph of a Lipschitz function. Let � be a special Lipschitz domain
defined by a Lipschitz function ω that satisfies the condition (2.24). We put

K :={(x ′, xn) ∈ R
d : |x ′| < A−1xn}

and−K :={−x : x ∈ K }. Then K has the property that x + K ⊂ � for any x ∈ �. Moreover
let S ′(�) denote the subspace of D′(�) consisting of all distributions of finite order and of
at most polynomial growth at infinity, that is, f ∈ S ′(�) if, and only if, the estimate

|〈 f , η〉| ≤ c sup
x∈�,|α|≤M

| Dαη(x)|(1 + |x |)M , η ∈ D(�),

holds with some constants c and M depending on f .

Remark 2.15 As already mentioned, we shall study continuous embeddings of function
spaces on domains. For convenience let us recall what is well known for the classical function
spaces As

p,q(�). Let si ∈ R, 0 < pi , qi ≤ ∞, i = 1, 2, and � ⊂ R
d a bounded Lipschitz

domain. Then

idB
� : Bs1

p1,q1(�) ↪→ Bs2
p2,q2(�)

is continuous if, and only if,

either
s1 − s2

d
> max

{
1

p1
− 1

p2
, 0

}

or
s1 − s2

d
= max

{
1

p1
− 1

p2
, 0

}
and q1 ≤ q2. (2.25)

Assume, in addition, pi < ∞, i = 1, 2. Then

idF
� : Fs1

p1,q1(�) ↪→ Fs2
p2,q2(�)

is continuous if, and only if, either (2.25) is satisfied,

or
s1 − s2

d
= max

{
1

p1
− 1

p2
, 0

}
= 1

p1
− 1

p2
> 0,

or
s1 − s2

d
= max

{
1

p1
− 1

p2
, 0

}
= 0 and q1 ≤ q2.

For (partial) results we refer to [2, Section 2.5.1], [36, p. 60], and, quite recently, the extension
to spaces Fs∞,q(�) in [39, Section 2.6.5]; cf. also our results in [11, Theorem 3.1] and [12,
Theorem 5.2]. However, in most of the above cases, the domain � is there assumed to be
smooth.
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2.3 Wavelet decomposition in Besov-type and Triebel-Lizorkin-type spaces

In this section we describe the wavelet characterisation of Besov-type and Triebel-Lizorkin-
type spaces proved in [16]. This is a key tool when studying embedding properties of function
spaces, since it allows one to transfer the problem to the corresponding sequence spaces.

Let φ̃ be a scaling function on R with compact support and of sufficiently high regularity,
and ψ̃ the corresponding orthonormal wavelet. Then we can extend these wavelets from R

to R
d by the usual tensor procedure, cf. [40, Section 5.1]. This yields a scaling function φ

and associated waveletsψ1, . . . , ψ2d−1, all defined onR
d ; see, e.g. [40, Proposition 5.2]. We

suppose that

φ,ψi ∈ C N1(Rd) and suppφ, suppψi ⊂ [−N2, N2]d , i = 1, . . . , 2d − 1,

for some N1, N2 ∈ N.
For k ∈ Z

d , j ∈ N0 and i ∈ {1, . . . , 2d − 1}, define
φ j,k(x):=2 jd/2φ(2 j x − k) and ψi, j,k(x):=2 jd/2ψi (2

j x − k), x ∈ R
d .

It is well known that ∫

Rd

ψi, j,k(x) xγ dx = 0 if |γ | ≤ N1

(see [40, Proposition 3.1]), and

{φ0,k : k ∈ Z
d} ∪ {ψi, j,k : k ∈ Z

d , j ∈ N0, i ∈ {1, . . . , 2d − 1}}
forms an orthonormal basis of L2(R

d) (see, e. g., [18, Section 3.9] or [36, Section 3.1]).
Hence

f =
∑
k∈Zd

λk φ0,k +
2d−1∑
i=1

∞∑
j=0

∑
k∈Zd

λi, j,k ψi, j,k (2.26)

in L2(R
d), where λk :=〈 f , φ0,k〉 and λi, j,k :=〈 f , ψi, j,k〉. We will denote by λ( f ) the fol-

lowing sequence:

λ( f ):= (
λk, λi, j,k

) = (〈 f , φ0,k〉, 〈 f , ψi, j,k〉
)
.

Definition 2.16 Let s ∈ R, τ ∈ [0,∞) and q ∈ (0,∞].
(i) Let p ∈ (0,∞]. The sequence space bs,τ

p,q :=bs,τ
p,q(Rd) is defined to be the space of all

complex-valued sequences t :={ti, j,m : i ∈ {1, . . . , 2d − 1}, j ∈ N0, m ∈ Z
d} such

that ‖t | bs,τ
p,q‖ < ∞, where

‖t | bs,τ
p,q‖:= sup

P∈Q
1

|P|τ

⎧⎪⎨
⎪⎩

∞∑
j=max{ jP ,0}

2 j(s+ d
2 − d

p )q
2d−1∑
i=1

⎡
⎣ ∑

m: Q j,m⊂P

|ti, j,m |p

⎤
⎦

q
p

⎫⎪⎬
⎪⎭

1
q

,

with the usual modification when p = ∞ or q = ∞.

123



H. F. Gonçalves et al.

(ii) Let p ∈ (0,∞). The sequence space f s,τ
p,q := f s,τ

p,q (Rd) is defined to be the space of all
complex-valued sequences t :={ti, j,m : i ∈ {1, . . . , 2d − 1}, j ∈ N0, m ∈ Z

d} such
that ‖t | f s,τ

p,q‖ < ∞, where

‖t | f s,τ
p,q‖:= sup

P∈Q
1

|P|τ

⎧⎪⎨
⎪⎩
∫

P

⎡
⎣ ∞∑

j=max{ jP ,0}
2 j(s+ d

2 )q
2d −1∑
i=1

∑
m∈Zd

|ti, j,m |q χQ j,m (x)

⎤
⎦

p
q

dx

⎫⎪⎬
⎪⎭

1
p

,

with the usual modification when q = ∞.

As a special case of [16, Theorem 4.12], we have the following wavelet characterisation
of As,τ

p,q(Rd).

Proposition 2.17 ( [16]) Let s ∈ R, τ ∈ [0,∞), q ∈ (0,∞]. Moreover, let N1 ∈ N0 be such
that, when A = B and p ∈ (0,∞],

N1 + 1 > max

{
d + d

p
− dτ − s,

2d

min{p, 1} + dτ + 1, d + d

p
+ d

2
, d + s,

d

p
− s, s + dτ

}
,

and when A = F and p ∈ (0,∞),

N1 + 1 > max

{
d + d

p
− dτ − s,

2d

min{p, q, 1} + dτ + 1, d + d

p
+ d

2
, d + s,

d

p
− s, s + dτ

}
.

Let f ∈ S ′(Rd). Then f ∈ As,τ
p,q(Rd) if, and only if, f can be represented as (2.26) in S ′(Rd)

and

‖λ( f ) | as,τ
p,q‖∗:= sup

P∈Q
1

|P|τ

⎧⎨
⎩

∑
m: Q0,m⊂P

|〈 f , φ0,m〉|p

⎫⎬
⎭

1
p

+‖{〈 f , ψi, j,m〉}i, j,m | as,τ
p,q‖<∞.

Moreover, ‖ f | As,τ
p,q(Rd)‖ is equivalent to ‖λ( f ) | as,τ

p,q‖∗.

3 Extension Operator

As mentioned in Remark 2.13 above, if � is a bounded C∞ domain in R
d , an extension

theorem for the spaces As,τ
p,q(�) was stated in [47], but with the assumption that p ∈ [1,∞).

It is our aim in this section to establish an extended result, which holds for all p ∈ (0,∞]
(p ∈ (0,∞) in the F-case). Similarly to what was done in [48, Proposition 4.13] for Besov-
Morrey spacesN s

u,p,q , we will follow Rychkov [23, Theorem 2.2] in the construction of such
an operator. We start with some preparation.

Let q ∈ (0,∞] and τ ∈ [0,∞). Denote by �q(Lτ
p) the set of all sequences {g j } j∈N0 of

measurable functions on R
d such that

‖{g j } j∈N0 | �q(Lτ
p)‖:= sup

P∈Q
1

|P|τ

⎧⎨
⎩

∞∑
j=max{ jP ,0}

‖g j | L p(P)‖q

⎫⎬
⎭

1/q

< ∞. (3.1)
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Similarly, Lτ
p(�q) with p ∈ (0,∞) denotes the set of all sequences {g j } j∈N0 of measurable

functions on R
d such that

‖{g j } j∈N0 | Lτ
p(�q)‖:= sup

P∈Q
1

|P|τ

∥∥∥∥∥∥∥

⎧⎨
⎩

∞∑
j=max{ jP ,0}

|g j |q
⎫⎬
⎭

1/q

| L p(P)

∥∥∥∥∥∥∥
< ∞. (3.2)

The first auxiliary lemma can be seen as a particular case of [16, Lemma 2.9], where the
authors considered more general quasi-norms.

Lemma 3.1 Let q ∈ (0,∞], τ ∈ [0,∞). Let D1, D2 ∈ (0,∞) with D2 > dτ . For any
sequence {gν}ν∈N0 of measurable functions on R

d , consider

G j (x):=
j∑

ν=0

2−( j−ν)D2gν(x) +
∞∑

ν= j+1

2−(ν− j)D1gν(x), j ∈ N0, x ∈ R
d .

Then there exists a positive constant C, independent of {gν}ν∈N0 , such that, for all p ∈ (0,∞],
‖{G j } j∈N0 | �q(Lτ

p)‖ ≤ C ‖{gν}ν∈N0 | �q(Lτ
p)‖,

and, for all p ∈ (0,∞),

‖{G j } j∈N0 | Lτ
p(�q)‖ ≤ C ‖{gν}ν∈N0 | Lτ

p(�q)‖.

Let (ϕ0, ϕ) be an admissible pair and f ∈ S ′(Rd). For all j ∈ N0, a ∈ (0,∞) and x ∈ R
d ,

we denote

ϕ
∗,a
j f (x):= sup

y∈Rd

|ϕ j ∗ f (y)|
(1 + 2 j |x − y|)a

.

Another tool we will need later is the characterisation of the spaces via Peetre maximal
functions. For the homogeneous version of the spaces, this result was proved in [43, Theo-
rem 1.1]. Here we use the results proved in [50, Theorem 5.1] and [49, Theorem 3.11] for
the more general scale of Besov-type spaces and Triebel-Lizorkin-type spaces with variable
exponents, respectively, which in particular cover our spaces. Adapted to our case, the results
read as follows.

Theorem 3.2 Let s ∈ R, τ ∈ [0,∞), q ∈ (0,∞] and (ϕ0, ϕ) be an admissible pair.

(i) Let p ∈ (0,∞] and a >
d

p
+ dτ . Then

‖ f | Bs,τ
p,q(Rd)‖ ∼ ‖{2 jsϕ

∗,a
j f } j∈N0 | �q(Lτ

p)‖.

(ii) Let p ∈ (0,∞) and a >
d

min{p, q} + dτ . Then

‖ f | Fs,τ
p,q(Rd)‖ ∼ ‖{2 jsϕ

∗,a
j f } j∈N0 | Lτ

p(�q)‖.
Remark 3.3 Note that in the above theorem the sequence {ϕ j } j∈N0 is built upon an admissible
pair (ϕ0, ϕ), as in Definition 2.1. Hence ‖ f |Bs,τ

p,q(Rd)‖ ∼ ‖{2 js(ϕ j ∗ f )} j∈N0 | �q(Lτ
p)‖

and ‖ f |Fs,τ
p,q(Rd)‖ ∼ ‖{2 js(ϕ j ∗ f )} j∈N0 | Lτ

p(�q)‖. However, in [6] and [7] the authors
proved that, for Besov-type and Triebel-Lizorkin-type spaces with variable exponents, one
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can consider more general pairs of functions not only in this result, but also in the definition
of the spaces.

Following Rychkov [23], we will prove the existence of a universal linear bounded exten-
sion operator if � is a Lipschitz domain, recall the explanations given at the end of Sect. 2.2.
We first recall two results of Rychkov we shall need in our argument below.

Lemma 3.4 ([23, Proposition 3.1]) Let � be a special Lipschitz domain. The distribution
f ∈ D′(�) belongs to S ′(�) if, and only if, there exist g ∈ S ′(Rd) such that f = g|�.

Lemma 3.5 ([23, Theorem 4.1 (a)]) Let � be a special Lipschitz domain and K its associated
cone. Let −K :={−x : x ∈ K } be a ‘reflected’ cone. Then there exist functions φ0, φ, ψ0, ψ ∈
S(Rd) supported in −K such that∫

Rd
xαφ(x) dx =

∫
Rd

xαψ(x) dx = 0 for all multi-indices α, (3.3)

and

f =
∑
j∈N0

ψ j ∗ φ j ∗ f in D′(�), for any f ∈ S ′(�), (3.4)

where φ j (·) = 2 jdφ(2 j ·) and ψ j (·) = 2 jdψ(2 j ·), j ∈ N.

We can now state the main result of this section.

Theorem 3.6 Let � ⊂ R
d be a special or bounded Lipschitz domain if d ≥ 2, or an interval

if d = 1. Then there exists a linear bounded operatorExt which maps As,τ
p,q(�) into As,τ

p,q(Rd)

for all s ∈ R, τ ∈ [0,∞), p ∈ (0,∞] (p < ∞ in the F-case) and q ∈ (0,∞], such that,
for all f ∈ D′(�), Ext f |� = f in D′(�).

Proof We concentrate now on Besov-type spaces with d ≥ 2 and give some details on the
Triebel-Lizorkin scale at the end of the proof.

We apply the extension operator constructed by V. Rychkov in [23] and follow the main
ideas of his proof. By a standard procedure (see [23, Subsection 1.2]), we only need to
consider the case when � is a special Lipschitz domain.

Let � be a special Lipschitz domain. The spaces Bs,τ
p,q(�) are defined by restriction

therefore it follows from Lemma 3.4 and Lemma 3.5 that any distribution f ∈ Bs,τ
p,q(�) can

be represented in the form (3.4) with the functions φ and ψ satisfying (3.3).
For any distribution f ∈ S ′(�), we define the mapping

ext f :=
∑
j∈N0

ψ j ∗ (φ j ∗ f )�. (3.5)

Here we use the notation g� to denote the extension of a function g : � → R from � to R
d

by setting

g�(x) =
{

g(x), if x ∈ �,

0, if x ∈ R
d \ �.

Step 1. Let {g j } j∈N0 be a sequence of measurable functions. Moreover, letMg j
N (x) denote

the Peetre maximal function of g j , namely,

Mg j
N (x):= sup

y∈Rd

|g j (y)|
(1 + 2 j |x − y|)N
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for all x ∈ R
d and N ∈ N ∩

(
d

min{1,p} ,∞
)
. We prove that if {2 js Mg j

N } j∈N0 ∈ �q(Lτ
p), then

the series
∑

j∈N0
ψ j ∗ g j converges in S ′(Rd) and the Bs,τ

p,q(Rd) norm of its sum can be

estimated by ‖{2 js Mg j
N } j∈N0 | �q(Lτ

p)‖.
We start with the following elementary inequality

|φ� ∗ ψ j ∗ g j (x)| ≤ Mg j
N (x)

∫
|φ� ∗ ψ j (y)|(1 + 2 j |y|)N dy . (3.6)

Bui, Paluszyński and Taibleson proved in [1] that
∫

|φ� ∗ ψ j (y)|(1 + 2 j |y|)N dy ≤ CM,N2
−|�− j |M for all M > 0, (3.7)

cf. [1, Lemma 2.1] or [23, proof of Theorem 4.1].We take M > |s|−dτ and put σ = M −|s|.
Then

2�s |φ� ∗ ψ j ∗ g j (x)| � 2−|�− j |σ 2 jsMg j
N (x), x ∈ R

d , � ∈ N0.

If the sequence {g j } j∈N0 is such that ‖{2 js Mg j
N } j∈N0 | �q(Lτ

p)‖ < ∞, then there exists a

constant c such that for any dyadic cube P we have ‖Mg j
N |L p(P)‖ ≤ c|P|τ . In consequence,

any function g j is a tempered distribution and ψ j ∗ g j ∈ S ′(Rd), j ∈ N0.
It holds true that

∥∥ψ j ∗g j | Bs−2σ,τ
p,q (Rd )

∥∥� sup
P∈Q

1

|P|τ

⎧⎨
⎩

∞∑
�=max{ jP ,0}

2−(�2σ+|�− j |σ)q

⎫⎬
⎭
1/q ∥∥∥∥2 jsMg j

N | L p(P)

∥∥∥∥
� 2− jσ

∥∥∥{2ks Mgk
N }k∈N0 | �q (Lτ

p)

∥∥∥ , (3.8)

using that |� − j | ≥ j − �. Therefore
∑

j∈N0
ψ j ∗ g j converges in Bs−2σ,τ

p,q (Rd) and hence

in S ′(Rd), since Bs−2σ,τ
p,q (Rd) ↪→ S ′(Rd). In this way, we further have

2�s

∣∣∣∣∣∣φ� ∗
⎛
⎝ ∞∑

j=0

ψ j ∗ g j

⎞
⎠ (x)

∣∣∣∣∣∣ �
∞∑
j=0

2−|�− j |σ 2 jsMg j
N (x), x ∈ R

d , � ∈ N0.

Applying this, we see that

∥∥∥∥
∞∑
j=0

ψ j ∗ g j | Bs,τ
p,q(Rd)

∥∥∥∥

= sup
P∈Q

1

|P|τ

⎧⎪⎨
⎪⎩

∞∑
�=max{ jP ,0}

2�sq

⎡
⎣∫

P

∣∣∣φ� ∗
⎛
⎝ ∞∑

j=0

ψ j ∗ g j

⎞
⎠ (x)

∣∣∣p
dx

⎤
⎦

q/p
⎫⎪⎬
⎪⎭

1/q

� sup
P∈Q

1

|P|τ

⎧⎨
⎩

∞∑
�=max{ jP ,0}

∥∥∥∥
∞∑
j=0

2−|�− j |σ 2 js Mg j
N | L p(P)

∥∥∥∥
q
⎫⎬
⎭

1/q

.

Now we can apply Lemma 3.1 since σ > dτ . We get
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∥∥∥
∞∑
j=0

ψ j ∗ g j | Bs,τ
p,q(Rd)

∥∥∥ � supP∈Q 1
|P|τ

{∑∞
j=max{ jP ,0}

∥∥2 js Mg j
N | L p(P)

∥∥q
}1/q

= ∥∥{2 js Mg j
N } j∈N0 | �q(Lτ

p)
∥∥. (3.9)

Step 2. Let f ∈ Bs,τ
p,q(�). Then, for any ε ∈ (0,∞), there exists an h ∈ Bs,τ

p,q(Rd) such
that h|� = f in D′(�) and∥∥∥h | Bs,τ

p,q(Rd)

∥∥∥ ≤
∥∥∥ f | Bs,τ

p,q(�)

∥∥∥ + ε. (3.10)

We have φ j ∗ f (y) = φ j ∗ h(y) if y ∈ � since suppφ j ⊂ −K and y + K ⊂ � for any point
y ∈ �. In consequence

sup
y∈�

|φ j ∗ f (y)|
(1 + 2 j |x − y|)N

� sup
y∈Rd

|φ j ∗ h(y)|
(1 + 2 j |x̃ − y|)N

, x /∈ �, (3.11)

where x̃ :=(x ′, 2ω(x ′) − xn) ∈ � is the symmetric point to x = (x ′, xn) /∈ � with respect to
∂�.

Let g j :=(φ j ∗ f )� for all j ∈ N0. It was proved in [23, p. 248] that

sup
y∈�

|g j (y)|
(1 + 2 j |x − y|)N

⎧⎪⎪⎨
⎪⎪⎩

= sup
y∈�

|φ j ∗ f (y)|
(1 + 2 j |x − y|)N

, x ∈ �,

� sup
y∈�

|φ j ∗ f (y)|
(1 + 2 j |x̃ − y|)N

, x /∈ �.

(3.12)

Now, we conclude from (3.9), (3.11) and (3.12) that

∥∥∥ext f | Bs,τ
p,q(Rd)

∥∥∥ =
∥∥∥

∞∑
j=0

ψ j ∗ (φ j ∗ f )� | Bs,τ
p,q(Rd)

∥∥∥ �
∥∥∥{2 js Mg j

N } j∈N0 | �q(Lτ
p)

∥∥∥

� sup
P∈Q

1

|P|τ

⎧⎨
⎩

∞∑
j=max{ jP ,0}

2 jsq
∥∥∥ sup

y∈�

|φ j ∗ h(y)|
(1 + 2 j | · −y|)N

| L p(P)

∥∥∥q

⎫⎬
⎭

1/q

� sup
P∈Q

1

|P|τ

⎧⎨
⎩

∞∑
j=max{ jP ,0}

2 jsq
∥∥∥ sup

y∈Rd

|φ j ∗ h(y)|
(1 + 2 j | · −y|)N

| L p(P)

∥∥∥q

⎫⎬
⎭

1/q

.

Thus the last inequalities, the characterisation of Bs,τ
p,q(Rd) via the Peetre maximal functions

stated in Theorem 3.2 (i) and the choice of g imply that∥∥∥ext f | Bs,τ
p,q(Rd)

∥∥∥ �
∥∥∥h | Bs,τ

p,q(Rd)

∥∥∥ �
∥∥∥ f | Bs,τ

p,q(�)

∥∥∥ + ε. (3.13)

Letting ε → 0, we then know that ext is a bounded linear operator from Bs,τ
p,q(�) into

Bs,τ
p,q(Rd).
Finally, since the supports of ψ0 and ψ lie in −K , it follows that

ext f |� =
∞∑
j=0

ψ j ∗ φ j ∗ f = f in D′(�).

Therefore, ext is the desired extension operator from Bs,τ
p,q(�) into Bs,τ

p,q(Rd), which con-
cludes the proof for the Besov-type spaces.
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Step 3.The proof for the Triebel-Lizorkin-type spaces follows similarly.We can define the
extension operator by the formula (3.5) and use once more the Peetre maximal functionMg j

N
as the main tool for estimations. Therefore, we point out the differences without giving the
details. The estimation of the norm

∥∥ψ j ∗ g j | Fs−2σ,τ
p,q (Rd)

∥∥ is the first difference, but it can
be done similarly as in (3.8), now with the Lτ

p(�q) norm instead of �q(Lτ
p) norm on the right

hand side of the inequality. Afterwards, the counterpart of (3.9) can be obtained using again
Lemma 3.1, but now the estimate related to the spaces Lτ

p(�q). Finally, the characterisation

of Fs,τ
p,q(Rd) via the Peetre maximal functions stated in Theorem 3.2 (ii) leads us to obtain a

similar estimate as (3.13). ��
Remark 3.7 As mentioned above essentially the same proof for Triebel-Lizorkin-type spaces
can be found in [52]with additional restrictions p, q ≥ 1.Note that, in viewof the coincidence
(2.16), also the Triebel-Lizorkin-Morrey spaces Es

u,p,q are covered by our theorem. This
complements the corresponding result obtained in [48, Proposition 4.13] for the class of
Besov-Morrey spaces N s

u,p,q . Very recently similar arguments were used in [51, 52] for the
construction of the extension operator, but restricted to the case p, q ≥ 1. For the sake of
completeness, we briefly sketched our proof here.

Corollary 3.8 Let � ⊂ R
d be an interval if d = 1 or a Lipschitz domain if d ≥ 2. Then there

exists a linear bounded operator ext which maps Es
u,p,q(�) into Es

u,p,q(Rd) for all s ∈ R,
q ∈ (0,∞] and 0 < p ≤ u < ∞, such that, for all f ∈ D′(�), ext f |� = f in D′(�).

Proof This follows immediately from Theorem 3.6 and (2.16). ��

Using Theorem 3.6 and the wavelet decomposition of the spaces As,τ
p,q(Rd), cf. Proposi-

tion 2.17, we can now prove a result on the monotonicity of the spaces As,τ
p,q(�) regarding

the parameter τ , which in fact does not hold when considering the spaces on R
d .

Proposition 3.9 Let 0 < p ≤ ∞ (p < ∞ in the F-case), s ∈ R, 0 < q ≤ ∞, 0 ≤ τ2 ≤ τ1.
Let � ⊂ R

d be a bounded interval if d = 1 or a bounded Lipschitz domain if d ≥ 2. Then

idτ : As,τ1
p,q (�) ↪→ As,τ2

p,q (�).

Proof Let Q̃0 be a dyadic cube that contains� in its interior and let Q̃ be a (fixed) dyadic cube
that contains the supports of all the functionsψi, j,k andφ0,k with non-empty intersectionwith
Q̃0. Let f ∈ As,τ1

p,q (�). The compactly supported smooth functions are pointwise multipliers
in As,τ

p,q(Rd), cf. [31] or [47, Theorem 6.1] for τ ≤ 1
p and Proposition 2.3 for τ > 1

p ,
therefore

‖ f | As,τ
p,q(�)‖ ∼ inf{‖g | As,τ

p,q(Rd)‖ : g ∈ As,τ
p,q(Rd) and suppg ⊂ Q̃0}. (3.14)

There exists a dyadic cube Q̃1 such that 〈g, ψi, j,m〉 = 〈g, φ0,m〉 = 0 for any g ∈ As,τ1
p,q (Rd)

with suppg ⊂ Q̃0 and φ0,�, ψi, j,m such that suppφ0,� � Q̃1, suppψi, j,m � Q̃1. Moreover
there exists a positive constant C such that

1

|P|τ2 ≤ C
1

|P|τ1 for 0 ≤ τ2 ≤ τ1

if P ⊂ Q̃1. Therefore

‖λ(g) |as,τ2
p,q ‖∗ ≤ c‖λ(g) | as,τ1

p,q ‖∗. (3.15)
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By Theorem 3.6 there exists a linear and bounded extension operator ext from As,τ1
p,q (�)

into As,τ1
p,q (Rd). So, using also the wavelet decomposition of these spaces, if ϕ ∈ C∞

0 (Rd) is
supported in Q̃0 and equals 1 on �, then by (3.15)

‖ f | As,τ2
p,q (�)‖ ≤ C ‖λ(ϕext( f )) | as,τ2

p,q ‖∗ ≤ C ‖λ(ϕext( f )) | as,τ1
p,q ‖∗

≤ C ‖ϕext( f ) | As,τ1
p,q (Rd)‖ ≤ C ‖ f | As,τ1

p,q (�)‖. (3.16)

The proof is complete. ��

4 Limiting embeddings

We shall always assume in the sequel that � is a bounded Lipschitz domain in R
d . As

already mentioned, we shall deal – differently from the standard approach – with continuous
embeddings of type

idτ : As1,τ1
p1,q1(�) ↪→ As2,τ2

p2,q2(�)

only after we studied their compactness in [8].
But it will turn out that only the limiting cases are of particular interest. So we collect

first what is more or less obvious. Note that we use the above notation always with the
understanding that either both, source and target space, are of Besov-type (A = B), or both
are of Triebel-Lizorkin-type (A = F).

For convenience we use the following abbreviation:

γ (τ1, τ2, p1, p2) := max

{(
τ2 − 1

p2

)
+

−
(

τ1 − 1

p1

)
+

,
1

p1
− τ1 − 1

p2
+ τ2,

1

p1
− τ1 − min

{
1

p2
− τ2,

1

p2
(1 − p1τ1)+

}}

=

⎧⎪⎨
⎪⎩

1
p1

− τ1 − 1
p2

+ τ2, if τ2 ≥ 1
p2

,

1
p1

− τ1, if τ1 ≥ 1
p1

, τ2 < 1
p2

,

max{0, 1
p1

− τ1 − 1
p2

+ max{τ2, p1
p2

τ1}}, if τ1 < 1
p1

, τ2 < 1
p2

.

(4.1)

Here and in the sequel we put piτi = 1 in case of pi = ∞ and τi = 0. Similarly we shall
understand pi

pk
= 1 if pi = pk = ∞.

Theorem 4.1 ([8]) Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ∞ (with pi < ∞ in case of A = F),
τi ≥ 0, i = 1, 2.

(i) The embedding

idτ : As1,τ1
p1,q1(�) ↪→ As2,τ2

p2,q2(�)

is compact if, and only if,

s1 − s2
d

> γ (τ1, τ2, p1, p2).

(ii) There is no continuous embedding

idτ : As1,τ1
p1,q1(�) ↪→ As2,τ2

p2,q2(�)
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if

s1 − s2
d

< γ (τ1, τ2, p1, p2). (4.2)

This result was proved in [8] and shows us that we are indeed left to deal with the limiting
case

s1 − s2
d

= γ (τ1, τ2, p1, p2).

Firstwe prove the following lemma that extends [11, Theorem3.1] to the case u = p = ∞.
We recall that N s∞,∞,q(Rd) = Bs∞,q(Rd).

Lemma 4.2 Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ui < ∞ or pi = ui = ∞, i = 1, 2. Then

N s1
u1,p1,q1(�) ↪→ N s2∞,∞,q2(�) if, and only if,

s1 − s2
d

>
1

u1
or

s1 − s2
d

= 1

u1
and q1 ≤ q2, (4.3)

and

N s1∞,∞,q1(�) ↪→ N s2
u2,p2,q2(�) if, and only if, s1 > s2 or s1 = s2 and q1 ≤ q2.

(4.4)

Proof The necessity of the conditions in (4.3) follows easily by the following chain of embed-
dings

Bs1
u1,q1(�) ↪→ N s1

u1,p1,q1(�) ↪→ N s2∞,∞,q2(�) = Bs2∞,q2(�)

and the properties of embeddings of classical Besov spaces. Whereas the sufficiency can be
proved in the same way as in the proof of [11, Theorem 3.1].

To prove the second embedding it is sufficient to note that

N s1∞,∞,q1(�) = Bs1∞,q1(�) ↪→ Bs2
u2,q2(�) ↪→ N s2

u2,p2,q2(�).

On the other hand it follows from (4.3) that

B
s1+ d

u1
u1,q1 (�) ↪→ N s1∞,∞,q1(�) ↪→ N s2

u2,p2,q2(�).

So if the last embedding holds, then it follows from [11, Corollary 3.7] that s1 > s2, or
s1 = s2 and q1 ≤ q2. ��
Proposition 4.3 Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ∞ (with pi < ∞ in case of A = F),
τi ≥ 0, i = 1, 2. Assume

τ2 ≥ 1

p2
with q2 = ∞ if τ2 = 1

p2
.

Then the embedding

idτ : As1,τ1
p1,q1(�) ↪→ As2,τ2

p2,q2(�)

is continuous if, and only if,

s1 − s2
d

≥ γ (τ1, τ2, p1, p2).
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Proof Note that by Theorem 4.1 we are left to deal with the limiting case s1 −
s2 = dγ (τ1, τ2, p1, p2) only. In view of Proposition 2.3 we always have As2,τ2

p2,q2(�) =
B

s2+d(τ2− 1
p2

)

∞,∞ (�) now. Assume first τ1 ≥ 1
p1

with q1 = ∞ if τ1 = 1
p1
, then by the same

result also As1,τ1
p1,q1(�) = B

s1+d(τ1− 1
p1

)

∞,∞ (�) such that idτ is continuous if, and only if,

id : B
s1+d(τ1− 1

p1
)

∞,∞ (�) ↪→ B
s2+d(τ2− 1

p2
)

∞,∞ (�).

But this is always true if s1−s2
d = γ (τ1, τ2, p1, p2) = 1

p1
− τ1 − 1

p2
+ τ2, recall Remark 2.15.

Assume next 0 ≤ τ1 < 1
p1
. We put 1

u1
= 1

p1
− τ1. We first show the sufficiency of

s1 − s2 = dγ (τ1, τ2, p1, p2) for the continuity of idτ . We use (2.15), (2.5), Proposition 2.3
and Lemma 4.2 to obtain

As1,τ1
p1,q1(�) ↪→ Bs1,τ1

p1,∞(�) = N s1
u1,p1,∞(�) ↪→ B

s2+d(τ2− 1
p2

)

∞,∞ (�) = As2,τ2
p2,q2(�).

On the other hand, for the necessity,

N s1
u1,p1,min{p1,q1}(�) ↪→ As1,τ1

p1,q1(�) ↪→ As2,τ2
p2,q2(�) = B

s2+d(τ2− 1
p2

)

∞,∞ (�)

and (4.3) implies s1 − s2 = dγ (τ1, τ2, p1, p2) if idτ is continuous.
It remains to consider the case τ1 = 1

p1
, q1 < ∞. Now we benefit from the following

chains of embeddings

As1,τ1
p1,q1(�) ↪→ B

s1+d(τ1− 1
p1

)

∞,∞ (�) ↪→ B
s2+d(τ2− 1

p2
)

∞,∞ (�) = As2,τ2
p2,q2(�) (4.5)

for the sufficiency of the condition s1 − s2 = dγ (τ1, τ2, p1, p2), and

Bs1
∞,min(p1,q1)

(�) ↪→ As1,τ1
p1,q1(�) ↪→ As2,τ2

p2,q2(�) = B
s2+d(τ2− 1

p2
)

∞,∞ (�), (4.6)

for its necessity, cf. (2.5) and [47, Proposition 2.4]. ��

Remark 4.4 Note that the above result is the direct counterpart of our result for spaces on
R

d obtained in Theorem 2.10 (i), since γ (τ1, τ2, p1, p2) = 1
p1

− τ1 − 1
p2

+ τ2 in the above
setting.

Remark 4.5 Recall the definition of the spaces bmo(Rd) in Remark 2.8 and define bmo(�)

by restriction, that is, in analogy to Definition 2.12. Then

bmo(�) = F0,1/p
p,2 (�) = B0,1/2

2,2 (�), 0 < p < ∞, (4.7)

extending (2.18) and (2.17) to domains �. Taking bmo(�) as the source space, that is,
τ1 = 1

p1
, s1 = 0, then Proposition 4.3 implies that for s ∈ R, 0 < p, q ≤ ∞, and τ ≥ 1

p

with q = ∞ if τ = 1
p , then

idτ : bmo(�) ↪→ As,τ
p,q(�)

is continuous if, and only if, s ≤ −d(τ − 1
p ) ≤ 0. If bmo(�) was the target space, then

Proposition 4.3 cannot be applied since q2 = 2 < ∞.
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In view of Theorem 4.1 and Proposition 4.3 we are left to study the situation

s1 − s2
d

= γ (τ1, τ2, p1, p2) and τ2 ≤ 1

p2
with q2 < ∞ if τ2 = 1

p2
(4.8)

in the sequel. Next we give some counterpart of Proposition 4.3 dealing with the case when
in the source space the parameter τ1 is large.

Proposition 4.6 Let si ∈ R, 0 < qi ≤ ∞, 0 < pi ≤ ∞, τi ≥ 0, i = 1, 2. Assume that (4.8)
is satisfied and

τ1 ≥ 1

p1
with q1 = ∞ if τ1 = 1

p1
.

Then the embedding

idτ : As1,τ1
p1,q1(�) ↪→ As2,τ2

p2,q2(�)

is continuous if, and only if,

q2 = ∞.

Proof First note that γ (τ1, τ2, p1, p2) = 1
p1

− τ1 by (4.1) and thus As1,τ1
p1,q1(�) =

B
s1+d(τ1− 1

p1
)

∞,∞ (�) = Bs2∞,∞(�) in view of Proposition 2.3.
We first deal with the case A = B and start with the sufficiency of q2 = ∞. Then

Proposition 4.3 covers the case τ2 = 1
p2

and we may assume τ2 < 1
p2
, recall (4.8). But in

view of (2.6) and (2.15) we get

Bs1,τ1
p1,q1(�) ↪→ B

s1+d(τ1− 1
p1

)

∞,∞ (�) ↪→ N s2
u2,p2,∞(�) = Bs2,τ2

p2,∞(�).

Now assume A = F and again τ2 < 1
p2
. If f ∈ Fs1,τ1

p1,q1(�) = B
s1+d(τ1− 1

p1
)

∞,∞ (�), recall

Proposition 2.3, then there exists some g ∈ B
s1+d(τ1− 1

p1
)

∞,∞ (Rd) such that f = g|� We can
choose g such that it can be represented as in (2.26)with the summation over k ∈ Z

d restricted
to the indices k such that |k| ≤ K for some fixed K since � is a bounded domain. Moreover
we can choose g in such a way that

‖λk | �∞(Zd )‖ + sup
j∈N

2
j(s1+d(τ1− 1

p1
)+d

2 )
sup

i=1,...,2d−1; k∈Zd
|λi, j,k |≤C‖ f | B

s1+d(τ1− 1
p1

)

∞,∞ (�)‖,

for some constant C > 0 independent of f . We have to show that f ∈ Fs2,τ2
p2,∞(�) and ‖ f |

Fs2,τ2
p2,∞(�)‖ ≤ c‖ f | B

s1+d(τ1− 1
p1

)

∞,∞ (�)‖. It is sufficient to note that for any i = 1, . . . , 2d −1,∥∥∥∥∥supj,k
2

j(s2− d
u2

+ d
2 )|λi, j,k |2 j d

u2 χ j,k(·) | Mu2,p2(R
d)

∥∥∥∥∥
≤ C sup

j∈N
2

j(s1+d(τ1− 1
p1

)+ d
2 )

sup
i=1,...,2d−1; k∈Zd

|λi, j,k |. (4.9)

The rest follows from the wavelet characterisation of Es2
u2,p2,∞(Rd) = Fs2,τ2

p2,∞(Rd), 1
u2

=
1
p2

− τ2, cf. [16]. But (4.9) follows easily from the identities s2 = s1 + d(τ1 − 1
p1

) and

‖2 j d
u2 χ j,k(·) | Mu2,p2(R

d)‖ = 1.
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Nowwe prove the necessity and assume that idτ : As1,τ1
p1,q1(�) ↪→ As2,τ2

p2,q2(�) is continuous.
We start with the case A = B. If p2 = ∞, then τ = 0 by assumption (4.8) and Bs2,τ2∞,q2(�) =
Bs2∞,q2(�). So both the source and the target space are classical Besov spaces and it is well-
known that, in that case, q2 = ∞, recall Remark 2.15. So it remains to consider the case
p2 < ∞. To simplify the notation we assume that the support of the wavelets ψi, j,m such
that Q j,m ⊂ Q0,0 are contained in �. If it is not true one can easily rescale the argument.

We take a sequence λ = (λi, j,m)i, j,m, i = 1, ..., 2d − 1, j ∈ N0, m ∈ Z
d , defined by the

formula

λi, j,m =
{
2− j(s2+ d

2 ) if i = 1 and Q j,m ⊂ Q0,0,

0 otherwise.

Then, using the sequence space version of Proposition 2.3,

‖λ | bs1,τ1
p1,q1‖ ∼ ‖λ | b

s1+d(τ1− 1
p1

)

∞,∞ ‖ = 1

since s2 = s1 + d(τ1 − 1
p1

). Here we used the notation bσ
p,q = bσ,0

p,q . On the other hand, for
any dyadic cube P ⊂ Q0,0 and any j ≥ jP , we have

2
j(s2+ d

2 − d
p2

)

⎛
⎝ ∑

Q j,m⊂P

|λi, j,m |p2

⎞
⎠

1
p2

= 2
− jP

1
p2 .

So if q2 < ∞, then

‖λ | bs2,τ2
p2,q2‖ = ∞.

Therefore, if q2 < ∞, the function

f =
∑

i, j,m

λi, j,mψi, j,m

belongs to Bs1,τ1
p1,q1(�) but not to Bs2,τ2

p2,q2(�), which contradicts our assumption and thus finishes
the proof of the necessity for the B-case.

The case A = F follows by (2.5) and by what we just proved for the Besov-type spaces.
Note that, for the F-spaces, we always have p < ∞. Therefore, by the following chain of
embeddings

Bs1,τ1
p1,min{p1,q1}(�) ↪→ Fs1,τ1

p1,q1(�) ↪→ Fs2,τ2
p2,q2(�) ↪→ Bs2,τ2

p2,max{p2,q2}(�),

we obtain the necessity of the condition max{p2, q2} = ∞, which here reads as q2 = ∞. ��
Remark 4.7 Note that the above result differs from its R

d -counterpart in Theorem 2.10 (ii).
In that case, there is never a continuous embedding in the setting of Proposition 4.6, that is,
when conditions (4.8) and τ1 ≥ 1

p1
with q1 = ∞ when τ1 = 1

p1
are satisfied.

Remark 4.8 Again we return to the special case when the source or target space of idτ

coincides with bmo(�). Parallel to Remark 4.5 we cannot apply Proposition 4.6 in case
of As1,τ1

p1,q1(�) = bmo(�). Otherwise, if As2,τ2
p2,q2(�) = bmo(�), then Proposition 4.6 implies

that there is never a continuous embedding of type

idτ : As,τ
p,q(�) ↪→ bmo(�)
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in the limiting case (4.8) which reads here as 0 < p ≤ ∞ (with p < ∞ in case of A = F),
0 < q ≤ ∞, τ ≥ 0 and s = d( 1p − τ). Moreover, there is no such continuous embedding

whenever τ2 = 1
p2

and q2 < ∞ in the limiting case (4.8).

For the rest of this section we shall now assume that

0 ≤ τi ≤ 1

pi
with qi < ∞ if τi = 1

pi
, i = 1, 2, and τ1 + τ2 > 0, (4.10)

and thus

s1 − s2
d

= γ (τ1, τ2, p1, p2) = max

{
0,

1

p1
− τ1 − 1

p2
+ max

{
τ2,

p1
p2

τ1

}}
. (4.11)

In view of the embeddings and coincidences (2.14), (2.15) and (2.16), together with our
previous findings for the spaces As

u,p,q(�) in [11, 12] (as well as some R
d -counterparts of

As,τ
p,q(Rd) in Theorems 2.10 and 2.11), we expect some q-dependence now. For the moment,

we restrict ourselves to the case of Bs,τ
p,q spaces.

Theorem 4.9 Let 0 < p1, p2 ≤ ∞, si ∈ R, 0 < qi ≤ ∞, 0 ≤ τi ≤ 1
pi

, i = 1, 2. Assume
that the conditions (4.10) hold and that

s1 − s2
d

= γ (τ1, τ2, p1, p2) = max

{
0,

1

p1
− τ1 − 1

p2
+ max

{
τ2,

p1
p2

τ1

}}
.

(i) The embedding

idτ : Bs1,τ1
p1,q1(�) ↪→ Bs2,τ2

p2,q2(�) (4.12)

is continuous if one of the following conditions holds:

s1 − s2
d

= 1

p1
− τ1 − 1

p2
+ τ2 > 0, and p1τ1 < p2τ2, (4.13)

or
s1 − s2

d
= 1

p1
− τ1 − 1

p2
+ p1

p2
τ1 > 0 and q1 ≤ p1

p2
q2, (4.14)

or s1 = s2 and q1 ≤ min

{
1,

p1
p2

}
q2. (4.15)

(ii) If the embedding (4.12) is continuous and one of the following conditions holds

γ (τ1, τ2, p1, p2) = 0, (4.16)

or γ (τ1, τ2, p1, p2) = 1

p1
− τ1 − 1

p2
+ p1

p2
τ1 > 0, (4.17)

then q1 ≤ q2.
If the embedding (4.12) is continuous for any q1 and q2 with fixed s1, s2, p1, p2, τ1, τ2,
then (4.13) holds.

Remark 4.10 As mentioned above, we are left to consider the embedding in the limiting case
(4.11) when (4.10) is satisfied. However, in case of τi = 1

pi
, qi = ∞, for i = 1 or i = 2, the

above Theorem 4.9 coincides with Propositions 4.3 or 4.6, respectively. So in fact situation
(4.10) is the only interesting one now.

We have always p1 < p2 in (4.14) sowe have a small gap between sufficient and necessary
conditions on qi here. We meet a similar situation if s1 = s2, p1 < p2, τ1 = 1

p1
and q1 < ∞

in (4.15). In all other cases the result is sharp.
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Proof (of Theorem 4.9) Step 1. We start by proving part (i). For this, we use an argument
similar to the one used in the proof of Proposition 3.9, based on the extension operator from
Theorem 3.6 and the wavelet decomposition of the spaces Bs,τ

p,q(Rd), cf. Proposition 2.17.

We use the same notation as there. Let us denote by˜bs,τ
p,q(Q̃0) the sequence space defined by

˜bs,τ
p,q(Q̃0):=

{
t = {ti, j,m}i, j,m : ti, j,m ∈ C, j ∈ N0, i = 1, . . . , 2d − 1,

m ∈ Z
d , Q j,m ⊂ Q̃0, ‖t | ˜bs,τ

p,q‖ < ∞
}

,

where

‖t | ˜bs,τ
p,q‖:= sup

P∈Q; P⊂Q̃0

1

|P|τ

⎧⎪⎨
⎪⎩

∞∑
j=max{ jP ,0}

2 j(s+ d
2 − d

p )q
2d−1∑
i=1

⎡
⎣ ∑

m: Q j,m⊂P

|ti, j,m |p

⎤
⎦

q
p

⎫⎪⎬
⎪⎭

1
q

.

(4.18)

Then, we have to prove that for some C > 0

‖t | ˜bs2,τ2
p2,q2‖ ≤ C ‖t | ˜bs1,τ1

p1,q1‖ (4.19)

holds true for all t ∈ ˜bs1,τ1
p1,q1 . Here and in the sequel we assume for convenience that pi , qi <

∞, otherwise the modifications are obvious. Please note, once more, that the assumption
P ⊂ Q̃0 implies that

1

|P|a ≤ C
1

|P|b if a ≤ b and #{m : Q j,m ⊂ P} ∼ 2 jd min{1, 2− jP d} if j ≥ jP .

(4.20)

Moreover, if 1 ≤ |P| ≤ |Q̃0|, then
1

|P|τ2 ∼ 1

|P|τ1 (4.21)

for any τ1 and τ2. To shorten the notation we put γ = γ (τ1, τ2, p1, p2).
Substep 1.1. If γ = 1

p1
− τ1 − 1

p2
+ τ2 > 0, then p1

p2
τ1 ≤ τ2. In this case the statement

follows from Theorem 3.6 and Theorem 2.10 (iii) if τ1 �= τ2.
Indeed Theorem 3.6 and Remark 3.7 imply that there exists a common bounded exten-

sion operator ext for the spaces Bs1,τ1
p1,q1(�) and Bs2,τ2

p2,q2(�) and we thus have the following
commutative diagram

Bs1,τ1
p1,q1(�)

id−−−−→ Bs2,τ2
p2,q2(�)

ext

⏐⏐)
*⏐⏐re

Bs1,τ1
p1,q1(R

d)
id−−−−→ Bs2,τ2

p2,q2(R
d).

Now the case (4.13) follows from Theorem 2.10 (iii), as well as the situation when

s1 − s2
d

= 1

p1
−τ1 − 1

p2
+ τ2 > 0, τ1 �= τ2,

p1
p2

= τ2

τ1
and q1 ≤ p1

p2
q2. (4.22)
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Substep 1.2. Let γ = 1
p1

− τ1 − 1
p2

+ τ2 > 0 and τ1 = τ2. In that case p1 < p2 and

s1 − d
p1

= s2 − d
p2
. Let t = {ti, j,m}i, j,m ∈ ˜bs1,τ1

p1,q1 and let ‖t | ˜bs1,τ1
p1,q1‖ = 1. To simplify the

notation we put λi, j,m = 2
− j(s1+ d

2 − d
p1

)
ti, j,m and τ = τ1 = τ2.

For any i , j and m we have

|λi, j,m | ≤ 2− jdτ ,

and in consequence

|λi, j,m |p2 ≤ |λi, j,m |p12− jdτ(p2−p1). (4.23)

In a parallel way, for any dyadic cube P ⊂ Q̃0 we have∑
Q j,m⊂P

|λi, j,m |p1 ≤ 2− jP dτ p1 , (4.24)

so in consequence

⎛
⎝ ∑

Q j,m⊂P

|λi, j,m |p2

⎞
⎠

q2
p2

≤
⎛
⎝ ∑

Q j,m⊂P

|λi, j,m |p1

⎞
⎠

q2
p2

2
− jdτ(p2−p1)

q2
p2

≤ c 2
− jP dτ

p1
p2

q22
− jdτ(1− p1

p2
)q2 (4.25)

for any i = 1, . . . , 2d − 1. Summing up over j we get

∞∑
j= jP

2d−1∑
i=1

⎛
⎝ ∑

Q j,m⊂P

|λi, j,m |p2

⎞
⎠

q2
p2

≤ c 2d2
− jP dτ

p1
p2

q2
∞∑

j= jP

2
− jdτ(1− p1

p2
)q2 = C2− jP dτq2 .

(4.26)

This proves that t = {ti, j,m}i, j,m ∈ ˜bs2,τ2
p2,q2 and ‖t | ˜bs2,τ2

p2,q2‖ ≤ C .
Substep 1.3. Let γ = 0, i.e., s1 = s2. Then p2 ≤ p1 and 1

p1
− 1

p2
≤ τ1 − τ2 or p2 > p1

and τ1 = 1
p1
. First we assume that p2 ≤ p1 and 1

p1
− 1

p2
≤ τ1−τ2. We conclude by Hölder’s

inequality for any i = 1, . . . , 2d − 1, that

⎡
⎣ ∑

m: Q j,m⊂P

|ti, j,m |p2

⎤
⎦

1
p2

≤ 2
d( j− jP )( 1

p2
− 1

p1
)

⎡
⎣ ∑

m: Q j,m⊂P

|ti, j,m |p1

⎤
⎦

1
p1

. (4.27)

In consequence, for any q ∈ (0,∞],
⎧⎪⎨
⎪⎩

∞∑
j=max{ jP ,0}

2
j(s2+ d

2 − d
p2

)q
2d−1∑
i=1

⎡
⎣ ∑

m: Q j,m⊂P

|ti, j,m |p2

⎤
⎦

q
p2

⎫⎪⎬
⎪⎭

1
q

≤ 2
jP d( 1

p1
− 1

p2
)

×

⎧⎪⎨
⎪⎩

∞∑
j=max{ jP ,0}

2
j(s1+ d

2 − d
p1

)q
2 j(s2−s1)q

2d−1∑
i=1

⎡
⎣ ∑

m: Q j,m⊂P

|ti, j,m |p1

⎤
⎦

q
p1

⎫⎪⎬
⎪⎭

1
q

. (4.28)
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If γ (τ1, τ2, p1, p2) = 0, then s1 = s2 and a = 1
p1

− 1
p2

+ τ2 ≤ τ1 = b. So (4.19) follows
from (4.28) and (4.20)-(4.21) for any q1 ≤ q2.

Now let γ = 0, p2 > p1 and τ1 = 1
p1
. First we consider the case τ2 = 1

p2
. Let

‖t | ˜bs1,τ1
p1,q1‖ = 1, (4.29)

which implies that, for every cube P ∈ Q, P ⊂ Q̃0 and for every j ≥ max{ jP , 0}, we have

1

|P|τ1q1
2

j(s1+ d
2 − d

p1
)q1

2d−1∑
i=1

⎡
⎣ ∑

m: Q j,m⊂P

|ti, j,m |p1

⎤
⎦

q1
p1

≤ 1.

In particular, we know that for every cube Qν,m ∈ Q, Qν,m ⊂ Q̃0, with ν ≥ 0 and for every
i = 1, ..., 2d − 1, we have

2
ν(s1+ d

2 − d
p1

+dτ1)|ti,ν,m | = 2ν(s1+ d
2 )|ti,ν,m | ≤ 1.

So the condition p1 < p2 implies

2ν(s1+ d
2 )p2 |ti,ν,m |p2 ≤ 2ν(s1+ d

2 )p1 |ti,ν,m |p1 . (4.30)

We have to prove that ‖t | ˜bs2,τ2
p2,q2‖ � 1. Let us fix a cube P ∈ Q, P ⊂ Q̃0. Thus, by the

inequality (4.30), it follows that for q1 = p1
p2

q2 we have

∞∑
j=max{ jP ,0}

2
j(s2+ d

2 − d
p2

)q2
2d−1∑
i=1

⎡
⎣ ∑

m: Q j,m⊂P

|ti, j,m |p2

⎤
⎦

q2
p2

=
∞∑

j=max{ jP ,0}
2
− j d

p2
q2

2d−1∑
i=1

⎡
⎣ ∑

m: Q j,m⊂P

2 j(s1+ d
2 )p2 |ti, j,m |p2

⎤
⎦

q2
p2

≤
∞∑

j=max{ jP ,0}
2
− j d

p1
q1

2d−1∑
i=1

⎡
⎣ ∑

m: Q j,m⊂P

2 j(s1+ d
2 )p1 |ti, j,m |p1

⎤
⎦

q1
p1

=
∞∑

j=max{ jP ,0}
2

j(s1+ d
2 − d

p1
)q1

2d−1∑
i=1

⎡
⎣ ∑

m: Q j,m⊂P

|ti, j,m |p1

⎤
⎦

q1
p1

≤ ‖t | ˜bs1,τ1
p1,q1‖q1 |P|τ1q1 .

In consequence for any cube P ⊂ Q̃0 we have

1

|P|τ2

⎛
⎜⎝

∞∑
j=max{ jP ,0}

2
j(s2+ d

2 − d
p2

)q2
2d−1∑
i=1

⎡
⎣ ∑

m: Q j,m⊂P

|ti, j,m |p2

⎤
⎦

q2
p2

⎞
⎟⎠

1
q2

≤ |P|
τ1q1

q2
−τ2 ≤ 1

123



Limiting embeddings of Besov-type and Triebel-Lizorkin-type...

since τ1q1 − τ2q2 = 0. So by monotonicity if τ2 = 1
p2
, then for any q1 and q2 such that

q1 ≤ p1
p2

q2,

∥∥∥t |
˜

b
s2,

1
p2

p2,q2

∥∥∥ ≤ ‖t | ˜bs1,τ1
p1,q1‖.

If γ = 0 and τ1 = 1
p1
, then τ2 ≤ 1

p2
. If τ2 < 1

p2
, then it follows from Substep 1.2 that

‖t | ˜bs2,τ2
p2,q2‖ ≤ C

∥∥∥t |
˜

b
s2,

1
p2

p2,q2

∥∥∥,
so the final statement follows from the last two inequalities.

Substep 1.4. Now let γ = 1
p1

− τ1 − 1
p2

+ τ1
p1
p2

> 0 and 0 ≤ τ1 ≤ 1
p1
. Please note that

this assumption implies τ1
p1
p2

≥ τ2, p1τ1 < 1 and p1 < p2.

The case τ1
p1
p2

= τ2 is covered by (4.22) since τ2 = τ1
p1
p2

< τ1. Let γ > 0 and τ2 <
p1
p2

τ1.

We take τ0 such that τ0 = p1
p2

τ1. The above considerations show that

‖t | ˜bs2,τ0
p2,q2‖ ≤ C ‖t | ˜bs1,τ1

p1,q1‖
if q1 ≤ p1

p2
q2. Since τ2 < τ0 it follows from Substep 1.2 that

‖t | ˜bs2,τ2
p2,q2‖ ≤ C ‖t | ˜bs2,τ0

p2,q2‖.
Step 2. Now we come to the necessity. We do some preparation first.
By the diffeomorphic properties of Besov-type spaces, using translations and dilations if

necessary we can assume that the domain � satisfies the following conditions: there exists
some number ν0 ∈ Z such that

• Qν0,0 ⊂ �,
• if Q j,m ⊂ Qν0,0, j ≥ 0, then suppψi, j,m ⊂ �,
• if Q0,m ⊂ Qν0,0, then suppφ0,m ⊂ �.

Due to the isomorphism resulting from the wavelet decomposition between function and
sequence spaces, and similar to the explanation given in Substep 2.1 of the proof of [11,
Theorem 3.1], one can equivalently prove the necessary conditions for the embedding

˜bs1,τ1
p1,q1(Qν0,0) ↪→ ˜bs2,τ2

p2,q2(Qν0,0),

with ν0 < 0. For convenience, let us denote Q̃ = Qν0,0.

Substep 2.1. We show that q1 ≤ q2 is necessary when s1 = s2. We assume q1 > q2. Then
we can choose a sequence of positive numbers {γ j } j∈N0 ∈ �q1(N0)\�q2(N0). Let us define
the sequence t = {ti, j,m}i, j,m , i = 1, ..., 2d − 1, j ∈ N0, m ∈ Z

d , by

ti, j,m :=
{
2− j(s1+ d

2 )γ j if i = 1 and Q j,m ⊂ [0, 1)d ,

0 otherwise.
(4.31)

Then,
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‖t | ˜bs1,τ1
p1,q1‖ = sup

P∈Q; P⊂Q̃

1

|P|τ1

⎛
⎜⎝

∞∑
j=max{ jP ,0}

2
j(s1+ d

2 − d
p1

)q1
2d−1∑
i=1

⎡
⎣ ∑

m: Q j,m⊂P

|ti, j,m |p1

⎤
⎦

q1
p1

⎞
⎟⎠

1
q1

= sup
P∈Q; P⊂Q̃

1

|P|τ1

⎛
⎜⎝

∞∑
j=max{ jP ,0}

2 j(s1+ d
2 )q1

2d−1∑
i=1

⎡
⎣∫

P

⎛
⎝ ∑

m∈Zd

|ti, j,m |χ j,m(x)

⎞
⎠

p1

dx

⎤
⎦

q1
p1

⎞
⎟⎠

1
q1

= sup
P∈Q; P⊂Q̃

1

|P|τ1

⎛
⎝ ∞∑

j=max{ jP ,0}
2 j(s1+ d

2 )q12− j(s1+ d
2 )q1 |γ j |q1 |P ∩ [0, 1)d |

q1
p1

⎞
⎠

1
q1

= ‖{γ j } j∈N0 | �q1‖ < ∞,

where the last equality holds because τ1 ≤ 1
p1
. On the other hand, we obtain similarly that

‖t | ˜bs2,τ2
p2,q2‖ = sup

P∈Q; P⊂Q̃

1

|P|τ2

⎛
⎜⎝

∞∑
j=max{ jP ,0}

2
j(s2+ d

2 − d
p2

)q2
2d−1∑
i=1

⎡
⎣ ∑

m: Q j,m⊂P

|ti, j,m |p2

⎤
⎦

q2
p2

⎞
⎟⎠

1
q2

= ‖{γ j } j∈N0 | �q2‖ = ∞,

which contradicts the embedding.
Substep 2.2. Now we show that the condition q1 ≤ q2 is also necessary when s1−s2

d =
1
p1

− τ1 − 1
p2

+ p1
p2

τ1 > 0. Let us assume q1 > q2. We adapt the counter-example used in
Substep 2.4 of the proof [10, Theorem 3.2]. For any 0 > ν ≥ ν0, we put

kν :=	2d|ν|p1τ1
,
where 	x
 = max{l ∈ Z : l ≤ x}. Then 1 ≤ kν < 2d|ν| and

kν ≤ cp1,τ1 2
d(μ−ν) kμ, if ν ≤ μ < 0. (4.32)

For convenience, we assume cp1,τ1 = 1 (otherwise the proper modifications have to be done).

As there, we define a sequence t (ν) = {t (ν)
i, j,m}i, j,m , i = 1, ..., 2d − 1, j ∈ N0, m ∈ Z

d , in
the following way: we assume that kν elements of the sequence equal 1 and the rest equals
0. If j �= 0, i �= 1 or Q0,m � Qν,0, then t (ν)

i, j,m = 0. Because of (4.32), we can choose the
elements that equal 1 in such a way that the following property holds:

if Qμ,l ⊆ Qν,0 and Qμ,l =
2−dμ⋃
i=1

Q0,mi , then at most kμ elements t (ν)
1,0,mi

equal 1.

Now we define a new sequence t = {ti, j,m}i, j,m ∈ ˜bs1,τ1
p1,q1 by

ti, j,m = γ j t (ν)
i,0,m, if j = ν − ν0 and Q0,m ⊂ Qν,0,

where {γ j } j∈N0 is a sequence of positive numbers with {2 j(s1+ d
2 − d

p1
+τ1) γ j } j∈N0 ∈

�q1(N0)\�q2(N0). If Qμ,l ⊂ Qν0,0, then for fixed j ≥ μ, there are at most kμ−l non-zero
elements ti, j,m such that Q j,m ⊂ Qμ,l . Thus∑

m:Q j,m⊂Qμ,l

|ti, j,m |p1 ≤ γ
p1
j 2d( j−μ)τ1 p1
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and the last sum is kμ− jγ
p1
j if μ = ν0. Therefore,

‖t | ˜bs1,τ1
p1,q1‖= sup

P∈Q; P⊂Q̃

1

|P|τ1

⎛
⎜⎝

∞∑
j=max{ jP ,0}

2
j(s1+ d

2 − d
p1

)q1
2d −1∑
i=1

⎡
⎣ ∑

m: Q j,m⊂P

|ti, j,m |p1

⎤
⎦

q1
p1

⎞
⎟⎠

1
q1

≤ sup
P∈Q; P⊂Q̃

1

|P|τ1

⎛
⎝ ∞∑

j=max{ jP ,0}
2

j(s1+ d
2 − d

p1
)q1 γ

q1
j 2d( j− jP )τ1q1

⎞
⎠

1
q1

= sup
P∈Q; P⊂Q̃

⎛
⎝ ∞∑

j=max{ jP ,0}
2

j(s1+ d
2 − d

p1
+dτ1)q1 γ

q1
j

⎞
⎠

1
q1

= ‖{2 j(s1+ d
2 − d

p1
+dτ1) γ j } j∈N0 | �q1‖ < ∞. (4.33)

Similarly we obtain

⎛
⎝ ∑

m: Q j,m⊂Qμ,l

|ti, j,m |p2

⎞
⎠

q2
p2

≤
(
γ

p2
j kμ− j

) q2
p2 ≤ γ

q2
j 2

d( j−μ)τ1 p1
q2
p2 ,

and when μ = ν0

⎛
⎝ ∑

m: Q j,m⊂Qν0,0

|ti, j,m |p2

⎞
⎠

q2
p2

=
(
γ

p2
j kν0− j

) q2
p2 ≥ C γ

q2
j 2

d( j−ν0)τ1 p1
q2
p2 ,

for some constant C independent of γ . Then,

C γ
q2
j 2

ν0d
p1τ1

p2
q2 ≤

⎛
⎝ ∑

m: Q j,m⊂Qν0,0

|ti, j,m |p2

⎞
⎠

q2
p2

2
− jd

p1τ1
p2

q2 ,

which yields

‖{2 j(s1+ d
2 − d

p1
+dτ1) γ j } j∈N0 | �q2‖

≤ C

⎧⎪⎨
⎪⎩

∞∑
j=0

2
j(s2+ d

2 − d
p2

)q2 2
ν0d

p1τ1
p2

q2
2d−1∑
i=1

⎛
⎝ ∑

m: Q j,m⊂Qν0,0

|ti, j,m |p2

⎞
⎠

q2
p2

⎫⎪⎬
⎪⎭

1
q2

∼ 2
ν0d

p1τ1
p2

⎧⎪⎨
⎪⎩

∞∑
j=max{0, jP }

2
j(s2+ d

2 − d
p2

)q2
2d−1∑
i=1

⎛
⎝ ∑

m: Q j,m⊂Qν0,0

|ti, j,m |p2

⎞
⎠

q2
p2

⎫⎪⎬
⎪⎭

1
q2

≤ ‖t | ˜bs2,τ2
p2,q2‖ � ‖t | ˜bs1,τ1

p1,q1‖ < ∞,

using (4.33) in the last step and [47, Lemma 3.3] in the second, since τ2 < 1
p2

here. This

contradicts our assumption on the sequence {2 j(s1+ d
2 − d

p1
+τ1) γ j } j∈N0 , and completes the

proof in this case. ��
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Before we turn our interest to Triebel-Lizorkin-type spaces, we shall discuss some special
case and compare it with the classical result as recalled in Remark 2.15. We concentrate on
the limiting case (4.11) under the assumptions (4.10) again. Let us assume now τ1 = τ2 =: τ ,
i.e., 0 < τ ≤ min{ 1

p1
, 1

p2
} with qi < ∞ if τ = 1

pi
, i = 1, 2. In that case we find that (4.11)

reads as s1 − s2 = d max{0, 1
p1

− 1
p2

}. Then Theorem 4.9 implies the following.

Corollary 4.11 Let 0 < pi ≤ ∞, si ∈ R, 0 < qi ≤ ∞, 0 < τ ≤ min{ 1
p1

, 1
p2

}, with qi < ∞
if τ = 1

pi
= min{ 1

p1
, 1

p2
}, i = 1, 2. Assume that

s1 − s2
d

= γ (τ, τ, p1, p2) = max

{
0,

1

p1
− 1

p2

}
.

Then the embedding

idτ : Bs1,τ
p1,q1(�) ↪→ Bs2,τ

p2,q2(�) (4.34)

is continuous if, and only if, either p1 < p2, or p1 ≥ p2 with q1 ≤ q2.

Proof The sufficiency follows from (4.13) in case of p1 < p2, and from (4.15) for p1 ≥ p2.
Note that the case (4.14) is not applicable in this situation. The necessity is implied by (4.16)
in case of p1 ≥ p2, and the last statement in (ii) if p1 < p2. Again, (4.17) is not possible in
this context. ��
Remark 4.12 Let us explicitly comment on the difference between the above result for τ > 0
and the classical one for τ = 0 as recalled in Remark 2.15. Only in case of embeddings of
spaces with the same smoothness s1 = s2 (and thus p1 ≥ p2) we have an influence of the
fine parameters qi , that is, q1 ≤ q2. This is parallel to the classical case τ = 0 and could thus
be expected. However, what is far more surprising, is the outcome for s1 > s2 and p1 < p2:
in contrast to the classical setting for τ = 0 we do not have any q-dependence here as long
as τ > 0 (and small enough, such that we are still in the new Morrey-type situation, unlike
in Propositions 4.3 and 4.6). Again this explains the special rôle of the hybrid parameter τ

which influences both smoothness and integrability.

Remark 4.13 Note that Proposition 3.9 can be obtained also as an immediate consequence
of Theorem 4.9 and the Propositions 4.6 and 4.3.

We collect now the counterpart of Theorem 4.9 for the Triebel-Lizorkin-type spaces.
When τi < 1

pi
, i = 1, 2, the result follows immediately from [12, Theorem 5.2] and the

coincidence of Fs,τ
p,q and Es

u,p,q spaces if τ = 1
p − 1

u , and it reads as follows.

Corollary 4.14 Let 0 < p1, p2 < ∞, si ∈ R, 0 < qi ≤ ∞, 0 ≤ τi < 1
pi

, i = 1, 2. Assume
that

s1 − s2
d

= γ (τ1, τ2, p1, p2) = max

{
0,

1

p1
− τ1 − 1

p2
+ max

{
τ2,

p1
p2

τ1

}}
.

(i) The embedding

idτ : Fs1,τ1
p1,q1(�) ↪→ Fs2,τ2

p2,q2(�) (4.35)

is continuous if one of the following conditions holds:

1

p1
− 1

p2
> τ1 − τ2 (4.36)
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or
1

p1
− 1

p2
≤ τ1 − τ2 and q1 ≤ min

{
1,

p1
p2

}
q2. (4.37)

(ii) If there is a continuous embedding idτ in (4.35), then the parameters satisfy the condition
(4.36), or (4.37) holds with q1 ≤ q2.

We return to the situation τ1 = τ2 > 0 studied in Corollary 4.11, but now in case of
F-spaces.

Corollary 4.15 Let 0 < pi < ∞, si ∈ R, 0 < qi ≤ ∞, i = 1, 2, and 0 ≤ τ < min{ 1
p1

, 1
p2

}.
Assume that

s1 − s2
d

= γ (τ, τ, p1, p2) = max

{
0,

1

p1
− 1

p2

}
.

Then the embedding

idτ : Fs1,τ
p1,q1(�) ↪→ Fs2,τ

p2,q2(�) (4.38)

is continuous if, and only if, either p1 < p2, or p1 ≥ p2 with q1 ≤ q2.

Proof This is an immediate consequence of Corollary 4.14 when τ > 0 and of the classical
situation when τ = 0, cf. Remark 4.12. ��
Remark 4.16 In contrast to Remark 4.12 concerning Besov-type spaces, we thus obtain the
natural counterpart of the well-known classical situation (τ = 0) to the situation τ > 0,
recall Remark 2.15.

We study now some more possible situations regarding Triebel-Lizorkin-type spaces.

Corollary 4.17 Let 0 < p1, p2 < ∞, si ∈ R, 0 < qi ≤ ∞, 0 ≤ τi ≤ 1
pi

, with qi < ∞ if

τi = 1
pi

i = 1, 2. Assume that

s1 − s2
d

= γ (τ1, τ2, p1, p2) = max

{
0,

1

p1
− τ1 − 1

p2
+ max

{
τ2,

p1
p2

τ1

}}
.

(i) The embedding (4.35) is continuous if one of the following conditions holds:

τ1 = 1

p1
, τ2 ≤ 1

p2
and q1 ≤ q2, (4.39)

or τ1 <
1

p1
and τ2 = 1

p2
. (4.40)

(ii) If the embedding (4.35) is continuous and τ1 = 1
p1

and τ2 = 1
p2

, then q1 ≤ q2.

Moreover, if τ1 = 1
p1

and τ2 < 1
p2

, then the continuity of the embedding (4.35) implies
q1 ≤ max{p2, q2}.

Proof The case τ1 = 1
p1

and τ2 = 1
p2

can be reduced to Theorem 4.9 due to (2.17). So we

are left with the cases τ1 = 1
p1

and τ2 < 1
p2

in (4.39), and τ1 < 1
p1

and τ2 = 1
p2

in (4.40). In
both cases we can use the coincidence (2.17). To prove that the condition (4.40) is sufficient
we first take a sufficiently small number q3 such that τ1 < 1

q3
. We consider the following

factorisation

Fs1,τ1
p1,q1(�) ↪→ Bs1,τ1

p1,∞(�) ↪→ Bs2,1/q3
q3,q3 (�) = Fs2,1/p2

p2,q3 (�) (4.41)
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since

s1 − s2
d

= γ (τ1,
1

p2
, p1, p2) = 1

p1
− τ1 = γ (τ1,

1

q3
, p1, q3) > 0.

Please note that the continuity of the second embedding follows from Theorem 4.9 since the
condition (4.13) is satisfied. By elementary embeddings the statement holds for any q2 ≥ q3.

Regarding the case τ1 = 1
p1

and τ2 < 1
p2
, we have now γ (τ1, τ2, p1, p2) = 0, so s1 = s2.

Then

Fs1,1/p1
p1,q1 (�) = Bs1,1/q1

q1,q1 (�) ↪→ B
s2,

1
q2

q2,q2 (�) = F
s2,

1
p2

p2,q2 (�) ↪→ Fs2,τ2
p2,q2(�), (4.42)

where we made use of Proposition 3.9 in the last embedding. Moreover,

γ

(
1

q1
,
1

q2
, q1, q2

)
= 0,

so the statement follows once more from (2.17) and Theorem 4.9.
Now we come to the necessity part of our result. The necessity of the condition q1 ≤ q2

in the case of τ1 = 1
p1

and τ2 = 1
p2

follows from the second part of Theorem 4.9. So we are

left with the case τ1 = 1
p1

and τ2 < 1
p2
. Here we can use the following factorisation

Bs1,1/q1
q1,q1 (�) = Fs1,1/p1

p1,q1 (�) ↪→ Fs2,τ2
p2,q2(�) ↪→ Bs2,τ2

p2,max{p2,q2}(�). (4.43)

Now Theorem 4.9 implies q1 ≤ max{p2, q2} since

γ

(
1

p1
, τ2, p1, p2

)
= γ

(
1

q1
, τ2, q1, p2

)
= 0.

��
Remark 4.18 We return to the special situation of (4.7), i.e., to bmo(�) as a source or target
space of idτ . In continuation of Remarks 4.5 and 4.8 we now concentrate on the situation
covered by Theorem 4.9 and Corollary 4.17, that is, we assume in this remark that τ ≤ 1

p

with q < ∞ if τ = 1
p for the target space As,τ

p,q(�) in (4.44) and the source space As,τ
p,q(�)

in (4.45). First we deal with

idτ : bmo(�) ↪→ As,τ
p,q(�) (4.44)

such that the limiting situation reads as s = 0 in that case. Then Theorem 4.9 and Corol-
lary 4.17 imply that idτ is continuous if

s = 0, τ ≤ 1

p
, and

{
q ≥ max{p, 2}, A = B,

q ≥ 2, A = F .

Regarding the necessity, when A = B, the condition q ≥ 2 is necessary for the continuity of
idτ . In addition, when A = F , then q ≥ 2 is also necessary when τ = 1

p , while for τ < 1
p the

condition max{p, q} ≥ 2 is necessary. Note that one can also use (4.7) and Proposition 3.9
for the sufficiency argument. In the second setting,

idτ : As,τ
p,q(�) ↪→ bmo(�), (4.45)

the limiting case means s = d( 1p − τ). Then for the continuity of idτ it is sufficient that

either τ <
1

p
, or τ = 1

p
and

{
q ≤ min{p, 2}, A = B,

q ≤ 2, A = F,
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where for τ = 1
p the condition q ≤ 2 is also necessary for the continuity of idτ .

Remark 4.19 Note that one can formulate counterparts of our above embedding results for
spaces of type As,τ

p,q(�) in terms of the hybrid spaces Lr As
p,q(�) as introduced in Remark 2.9

using the coincidence (2.19). We define the spaces Lr As
p,q(�) by restriction, parallel to the

approach inDefinition 2.12. In [8, Remark 3.4]we have explicated the compactness condition
for the embedding

idL : Lr1 As1
p1,q1(�) ↪→ Lr2 As2

p2,q2(�),

which in the special case r1 = r2 = r reads as

s1 − s2 >

{
0, r ≥ 0,

r min{ p1
p2

− 1, 0}, r < 0,

where 0 < pi < ∞, 0 < qi ≤ ∞, si ∈ R, i = 1, 2, and−d min{ 1
p1

, 1
p2

} ≤ r < ∞ is always
assumed. For convenience we only discuss this special setting r1 = r2 = r and A = B here,
but the other cases can be done in a parallel way.

So the limiting case for the continuity of the embedding is just

s1 − s2 =
{
0, r ≥ 0,

r min{ p1
p2

− 1, 0}, r < 0.
(4.46)

Corollary 4.20 Let 0 < pi < ∞, si ∈ R, 0 < qi ≤ ∞, i = 1, 2, and −d min
{

1
p1

, 1
p2

}
<

r < ∞. Let

idL : Lr Bs1
p1,q1(�) ↪→ Lr Bs2

p2,q2(�). (4.47)

(i) If r > 0, then idL is continuous if, and only if, s1 ≥ s2.
(ii) Let r = 0.

(iia) If q2 = ∞, then idL is continuous if, and only if, s1 ≥ s2.
(iib) If q2 < ∞ and q1 = ∞, then idL is continuous if, and only if, s1 > s2.
(iic) If qi < ∞, i = 1, 2, then idL is continuous if s1 > s2 or s1 = s2 and q1 ≤

min{1, p1
p2

}q2. Conversely, if idL is continuous, then either s1 > s2 or s1 = s2 and
q1 ≤ q2.

(iii) Let r < 0.

(iiia) Assume that p1 ≥ p2. Then idL is continuous if, and only if, s1 > s2 or s1 = s2 and
q1 ≤ q2.

(iiib) Assume p1 < p2. Then idL is continuous if s1−s2 > r(
p1
p2

−1), or s1−s2 = r(
p1
p2

−1)

and q1 ≤ p1
p2

q2. Conversely, the continuity of idL implies s1 − s2 > r(
p1
p2

− 1), or

s1 − s2 = r(
p1
p2

− 1) and q1 ≤ q2.

Proof In view of Remark 4.19 we only need to consider the limiting case (4.46), the rest is
covered by Theorem 4.1 and the coincidence (2.19), extended to spaces on domains. Then (i)
and (iia) are covered by Proposition 4.3 together with r = d(τi − 1

pi
), i = 1, 2. Likewise (iib)

is a consequence of Proposition 4.6 since there is no continuous embedding in the limiting
case s1 = s2. Part (iic) follows from Theorems 4.9 and 4.1, as well as part (iii). ��

We finish our paper by collecting some immediate extensions of Theorems 2.10 and 2.11
regarding the embeddings on R

d . The first result improves part (b) of Theorem 2.10 (iii), and
it follows from Theorem 3.6 and Theorem 4.9.
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Corollary 4.21 Let 0 < p1, p2 ≤ ∞, si ∈ R, 0 < qi ≤ ∞, 0 ≤ τi ≤ 1
pi

, with qi < ∞ if

τi = 1
pi

, i = 1, 2. If

idR
d

τ : Bs1,τ1
p1,q1(R

d) ↪→ Bs2,τ2
p2,q2(R

d) (4.48)

is continuous and s1−s2
d = 1

p1
− τ1 − 1

p2
+ p1

p2
τ1 > 0, then

q1 ≤ q2.

Proof By Theorem 3.6, we have

Bs1,τ1
p1,q1(�)

ext−→ Bs1,τ1
p1,q1(R

d)
idR

d
τ−−→ Bs2,τ2

p2,q2(R
d)

re−→ Bs2,τ2
p2,q2(�),

i.e., id�
τ = re ◦ idRd

τ ◦ ext. Hence, the continuity of idRd

τ implies the continuity of id�
τ , which,

in turn, by Theorem 4.9 implies q1 ≤ q2. ��
Next we show that, in case of τ1 = τ2, the embedding idR

d

τ in (4.48) holds under weaker
assumptions on the parameters than the ones stated in Theorem 2.10 (iii)-(a). Namely, in this
case, we do not need any condition on the parameters q1, q2.

Corollary 4.22 Let 0 < p1, p2 ≤ ∞, si ∈ R, 0 < qi ≤ ∞, 0 ≤ τi ≤ 1
pi

, with qi < ∞ if

τi = 1
pi

, i = 1, 2. If

s1 − s2
d

= 1

p1
− τ1 − 1

p2
+ τ2 > 0 and τ1 = τ2,

then the embedding idR
d

τ in (4.48) is continuous.

Proof This result can beproved in the samewayas its counterpart for embeddings ondomains,
cf. Substep 1.2 of the proof of Theorem 4.9. Therefore, we omit the argument here. ��
Lastly, we turn to the Triebel-Lizorkin-type spaces and state a result which gives us sufficient
and necessary conditions for the continuity of the embedding on R

d , when τ2 is large and τ1
is small. Specifically, we assume that

τ2 ≥ 1

p2
with q2 = ∞ if τ2 = 1

p2
and τ1 ≤ 1

p1
with q1 < ∞ if τ1 = 1

p1
,

(4.49)

as this case that was not considered in Theorem 2.11 (i).

Corollary 4.23 Let 0 < p1, p2 < ∞, si ∈ R, 0 < qi ≤ ∞, τi ≥ 0, i = 1, 2. Assume that
condition (4.49) holds. Then the embedding

idR
d

τ : Fs1,τ1
p1,q1(R

d) ↪→ Fs2,τ2
p2,q2(R

d) (4.50)

holds if, and only if,
s1 − s2

d
≥ 1

p1
− τ1 − 1

p2
+ τ2.

Proof The sufficiency part follows from the fact that

Fs1,τ1
p1,q1(R

d) ↪→ B
s1+d(τ1− 1

p1
)

∞,∞ (Rd) ↪→ B
s2+d(τ2− 1

p2
)

∞,∞ (Rd) = Fs2,τ2
p2,q2(R

d),

due to (2.6) and Proposition 2.3, and the corresponding result for the classical Besov spaces.
For the necessity, we use a similar argument as in the proof of Corollary 4.21, via the

extension operator from Theorem 3.6. In this case, Theorem 4.1 (i) and Proposition 4.3 will
give us the complete result. ��
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