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Abstract
In this paper, we explore the qualitative features of a second-order fuzzy difference
equation with quadratic term

xn+1 = A + Bxn
x2n−1

, n = 0, 1, . . . .

Here the parameters A, B ∈ �+
F and the initial values x0, x−1 ∈ �+

F . Utilizing a
generalization of division (g-division) of fuzzy numbers, we obtain some sufficient
condition on the qualitative features including boundedness, persistence, and conver-
gence of positive fuzzy solution of the model, Moreover two simulation examples are
presented to verify our theoretical analysis.
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1 Introduction

Difference equation is one of themost important dynamicalmodel. It is the analogue of
corresponding differential equation and delay differential equation having an extensive
applications in computer science, control engineering, chemistry, biology, economics,
etc. (see [1–11]). Recently, many authors are interested in studying qualitative features
of rational difference equation. For example, Bešo et al. [12] proposed a second-order
rational difference equation with quadratic term

xn+1 = γ + δ
xn
x2n−1

, n = 0, 1, . . . , (1)

where γ > 0, δ > 0, and the initial values x0 > 0, x−1 > 0.
In 2017, Khyat et al. [13] explored a similar model with quadratic term in both the

numerator and denominator

xn+1 = a + x2n
x2n−1

, n = 0, 1, . . . . (2)

Furthermore, they obtained the globally asymptotically stability of (2) and the direction
of the Neimark–Sacker bifurcation.

In the last few decades, there are many publications on the stability, oscillatory,
periodicity, and boundedness of nonlinear rational difference equations. Moreover a
lot of similar qualitative features also appear in nonlinear rational difference equation
systems (see [14–17]).

Although these models are very simple in their forms, we can not understand fully
the qualitative features of their solutions. In fact, these models inevitably implicit
inherent uncertainty or vague. It is well known that fuzzy set is a powerful tool to cope
with these uncertainties or subjective information in mathematical model. Therefore,
it is a natural method to explore dynamical model with uncertainty or impression by
establishing fuzzy difference equation (FDE) or fuzzy differential equation.

FDE is a special kind of difference equation whose coefficients and the initial con-
dition are fuzzy numbers, and its’ solution is a sequence of fuzzy number. Due to
the advantage of FDE in dealing with inherent imprecision, the study on qualitative
features of these models has become an important research topic both from theoret-
ical viewpoint and in applications. Therefore, in the last decades, there has been an
increasing results on the study of FDE (see [18–33]). It is found that fuzzy set theory
has potential in the application of fuzzy differential equations and fuzzy time series
(see [34–40]).

Inspired by previous works, in this paper, utilizing a generalization of division
(g-division) of fuzzy numbers, we explore the qualitative features of positive fuzzy
solution to the following FDE with quadratic term

xn+1 = A + Bxn
x2n−1

, n = 0, 1, . . . , (3)
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Qualitative analysis of second-order fuzzy difference equation... 1357

where the initial condition x−1, x0, and the parameters A, B are positive fuzzy num-
bers.

The organization of this paper is arranged as follows. Section 2 gives some basic
concepts of fuzzynumbers used throughout the paper. InSect. 3, the qualitative features
of the positive fuzzy solution to FDE (3) are obtained by virtue of g-division of fuzzy
numbers. Section 4 presents two illustrative examples to verify our theoretic results.
A general conclusion and discussion are drawn in Sect. 5.

2 Preliminary and definitions

In this section, we first review some basic concepts and definitions to be used in the
sequel. These particular descriptions are found in many publications [20–22].

A function defined asU : R → [0, 1] is called a fuzzy number if it is normal, fuzzy
convex, upper semi-continuous, and compactly support on R.

For α ∈ (0, 1], we denote the α−cuts of U by [U ]α = {x ∈ R : U (x) ≥ α}, and
for α = 0, the support of U is written as suppU = [U ]0 = {x ∈ R : U (x) > 0}.

It is easy to see that the [U ]α is a closed interval. Provided that suppU ⊂ (0,∞),

thenU is said to be a positive fuzzy number. Particularly, ifU is a positive real number,
then it is said to be a trivial fuzzy number, i.e., [U ]α = [U ,U ], α ∈ (0, 1].

Let U , V be fuzzy numbers, [U ]α = [Ul,α,Ur ,α], [V ]α = [Vl,α, Vr ,α], α ∈ [0, 1],
k > 0. Addition and multiplication of fuzzy numbers are defined as follows.

[U + V ]α = [Ul,α + Vl,α,Ur ,α + Vr ,α], (4)

[kU ]α = [kUl,α, kUr ,α]. (5)

The family of fuzzy numbers with addition and multiplication defined by Eqs. (4) and
(5) is written as�F . Particularly, the family of positive (resp. negative) fuzzy numbers
is denoted by �+

F ( resp. �−
F ).

Definition 2.1 Let U , V ∈ �F , the metric is defined as follows.

D(U , V ) = sup
α∈[0,1]

max{| Ul,α − Vl,α |, | Ur ,α − Vr ,α |}. (6)

Obviously, (�F , D) is a complete metric space.

Definition 2.2 [41] Let U , V ∈ �F , [U ]α = [Ul,α,Ur ,α], [V ]α = [Vl,α, Vr ,α], 0 /∈
[V ]α,∀α ∈ [0, 1]. The g-division ÷g of the fuzzy numbers is written asW = U ÷g V
with α−cuts [W ]α = [Wl,α,Wr ,α]( [W ]−1

α = [1/Wr ,α, 1/Wl,α]), where

[W ]α = [U ]α ÷g [V ]α ⇐⇒
⎧
⎨

⎩

(i) [U ]α = [V ]α[W ]α,

(i i) [V ]α = [U ]α[W ]−1
α ,

(7)

if W is a proper fuzzy number.
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Remark 2.1 According to [41], Let U , V ∈ �+
F , if U ÷g V = W ∈ �+

F exists, then
there are two cases
Case (i). if Ul,αVr ,α ≤ Ur ,αVl,α,∀α ∈ [0, 1], then Wl,α = Ul,α

Vl,α
,Wr ,α = Ur ,α

Vr ,α ,

Case (ii). if Ul,αVr ,α ≥ Ur ,αVl,α,∀α ∈ [0, 1], then Wl,α = Ur ,α
Vr ,α

,Wr ,α = Ul,α
Vl,α .

Definition 2.3 Let xn ∈ �+
F , n = 1, 2, . . ., (xn) is said to be persistence (resp.

bounded) provided that there is M > 0 (resp. N > 0) satisfying

supp xn ⊂ [M,∞)(resp. supp xn ⊂ (0, N ]).

The sequence (xn) is bounded and persistence if there are M, N > 0 satisfying

supp xn ⊂ [M, N ], n = 1, 2, . . . .

The sequence (xn) is unbounded if the norm of xn , ‖xn‖, n = 1, 2, . . . , is
unbounded.

Definition 2.4 If a sequence (xn) of positive fuzzy numbers is satisfied with FDE (3),
then xn is said to be a positive solution of FDE (3). x ∈ �+

F is called a positive
equilibrium of FDE (3) if

x = A + Bx

x2
.

Let xn, x ∈ �+
F , n = 0, 1, 2, . . . , we say xn converges to x as n → ∞ if

limn→∞ D(xn, x) = 0.

Lemma 2.1 Let g : R+ × R+ × R+ × R+ → R+ be continuous, A, B,C, D ∈ �+
F .

Then

[g(A, B,C, D)]α = g([A]α, [B]α, [C]α, [D]α), α ∈ (0, 1]. (8)

Lemma 2.2 [8] Let Ix , Iy be some intervals of real numbers and let f : I 2x × I 2y → Ix ,,

g : I 2x × I 2y → Iy be continuously differentiable functions. Then for every initial
conditions (xi , yi ) ∈ Ix × Iy(i = −1, 0), the following system of difference equations

⎧
⎨

⎩

xn+1 = f (xn, xn−1, yn, yn−1),

n = 0, 1, 2, . . . ,
yn+1 = g(xn, xn−1, yn, yn−1).

(9)

has a unique solution {(xi , yi )}+∞
n=−1.

Definition 2.5 [8] A point (x, y) is called an equilibrium point of system (9) if

x = f (x, x, y, y), y = g(x, x, y, y).

That is, (xn, yn) = (x, y) for n ≥ 0 is the solution of (9), or equivalently, (x, y) is a
fixed point of the vector map ( f , g).
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Definition 2.6 [8] Let (x, y) be an equilibrium point of (9). (i) The equilibrium point
(x, y) is called locally stable if for every ε > 0, there exists δ > 0 such that for all
(xi , yi ) ∈ Ix × Iy(i = −1, 0), with | x−1 − x | + | x0 − x |< δ, | y−1 − y | + |
y0 − y |< δ, we have | xn − x |< ε, | yn − y |< ε, for n ≥ 0.
(ii) The equilibrium (x, y) of (9) is called locally asymptotically stable if it is locally
stable, and if there exists γ > 0, such that for all (xi , yi ) ∈ Ix × Iy(i = −1, 0), with
| x−1 − x | + | x0 − x |< γ, | y−1 − y | + | y0 − y |< γ, we have

lim
n→∞ xn = x, lim

n→∞ yn = y.

(iii) The equilibrium (x, y) of (9) is called a global attractor if for every (xi , yi ) ∈
Ix × Iy(i = −1, 0), we have

lim
n→∞ xn = x, lim

n→∞ yn = y.

(iv) The equilibrium (x, y) of (9) is called globally asymptotically stable if it is locally
stable and a global attractor.
(v) The equilibrium (x, y) of (9) is called unstable if it is not stable.

3 Main results

3.1 Existence of positive fuzzy solution

In this section, we first discuss the existence of the positive fuzzy solution of FDE (3).

Theorem 3.1 Consider FDE (3), where A, B ∈ �+
F , then there is a unique positive

fuzzy solution xn of FDE (3), for x−1, x0 ∈ �+
F .

Proof The proof of Theorem is similar to those of Proposition 2.1 [19]. Assume that
(xn) is a sequence of fuzzy numbers and satisfies FDE (3) with initial values x−1, x0.
Consider the α−cuts, α ∈ (0, 1], n ∈ N+

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[xn]α = [Ln,α, Rn,α],

[A]α = [Al,α, Ar ,α],

[B]α = [Bl,α, Br ,α].

(10)

Applying Lemma 2.1, it follows from (3) and (10) that

[xn+1]α = [Ln+1,α, Rn+1,α] =
[

A + Bxn
x2n−1

]

α

= [A]α + [B]α × [xn]α
[x2n−1]α

= [Al,α, Arα] + [Bl,αLn,α, Br ,αRn,α]
[L2

n−1,α, R2
n−1,α] .
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Utilizing g-division of fuzzy numbers, one of the following two cases occurs.
Case (i)

[xn+1]α = [Ln+1,α, Rn+1,α] =
[

Al,α + Bl,αLn,α

L2
n−1,α

, Ar ,α + Br ,αRn,α

R2
n−1,α

]

. (11)

Case (ii)

[xn+1]α = [Ln+1,α, Rn+1,α] =
[

Al,α + Br ,αRn,α

R2
n−1,α

, Ar ,α + Bl,αLn,α

L2
n−1,α

]

. (12)

If Case (i) holds true, from (11), one gets, for α ∈ (0, 1], n ∈ {0, 1, 2, . . .},

Ln+1,α = Al,α + Bl,αLn,α

L2
n−1,α

, Rn+1,α = Ar ,α + Br ,αRn,α

R2
n−1,α

. (13)

It is clear that there is a unique solution (Ln,α, Rn,α) for any initial value
(Lk,α, Rk,α), k = −1, 0, α ∈ (0, 1]. We only need to show that, for α ∈ (0, 1], n ∈
N+, [Ln,α, Rn,α] makes certain the positive fuzzy solution xn of FDE (3) with the
initial condition xi , i = 0,−1, and

[xn]α = [Ln,α, Rn,α]. (14)

From [18], since x j ∈ �+
F , j = −1, 0, for αi ∈ (0, 1], i = 1, 2, and α1 ≤ α2, it

has

0 < L j,α1 ≤ L j,α2 ≤ R j,α2 ≤ R j,α1 , j = −1, 0. (15)

We declare that, for n = 0, 1, 2, . . . ,

Ln,α1 ≤ Ln,α2 ≤ Rn,α2 ≤ Rn,α1 . (16)

By mathematical induction. From (15), for n = 0, 1, it is true. Suppose that, for
n ≤ k, k ∈ N+, (16) holds true, then it follows from (13) and (16) that, for n = k+1,

Lk+1,α1 = Al,α1 + Bl,α1Lk,α1

L2
k−1,α1

≤ Al,α2 + Bl,α2Lk,α2

L2
k−1,α2

= Lk+1,α2

= Al,α2 + Bl,α2Lk,α2

L2
k−1,α2

≤ Ar ,α2 + Br ,α2 Rk,α2

R2
k−1,α2

= Rk+1,α2

= Ar ,α2 + Br ,α2 Rk,α2

R2
k−1,α2

≤ Ar ,α1 + Br ,α1Rk,α1

R2
k−1,α1

= Rk+1,α1
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So (16) holds true. Also, from (13), it has

L1,α = Al,α + Bl,αL0,α

L2−1,α

, R1,α = Ar ,α + Br ,αR0,α

R2−1,α

, α ∈ (0, 1]. (17)

Since x j ∈ �+
F , j = −1, 0, and A, B ∈ �+

F , then Li,α, Ri,α, i = 0,−1, are left con-
tinuous. So, one gets from (17) that L1,α, R1,α are also left continuous. By inductively,
we can show that, for n ≥ 1, Ln,α and Rn,α are left continuous.

Secondly, we will prove that suppxn = ⋃
α∈(0,1][Ln,α, Rn,α] is compact. It need to

show that
⋃

α∈(0,1][Ln,α, Rn,α] is bounded. Since x j ∈ �+
F , j = −1, 0, and A, B ∈

�+
F , there exist MA > 0, NA > 0, NB > 0, MB > 0, Mj > 0, N j > 0, j = −1, 0,

such that, ∀α ∈ (0, 1],
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[Al,α, Ar ,α] ⊂ [MA, NA],

[Bl,α, Br ,α] ⊂ [MB, NB],

[L j,α, R j,α] ⊂ [Mj , N j ].

(18)

Hence from (17) and (18), one can get, for n = 1,

[L1,α, R1,α] ⊂
[

MA + MBM0

M2−1

, NA + NBN0

N 2−1

]

, α ∈ (0, 1]. (19)

From which, it follows that

⋃

α∈(0,1]
[L1,α, R1,α] ⊂

[

MA + MBM0

M2−1

, NA + NBN0

N 2−1

]

, α ∈ (0, 1]. (20)

Hence,
⋃

α∈(0,1][L1,α, R1,α] is compact, and
⋃

α∈(0,1][L1,α, R1,α] ⊂ (0,∞). Deduc-

ing inductively, one can get that
⋃

α∈(0,1][Ln,α, Rn,α] is compact, moreover, for
n = 1, 2, . . . ,

⋃

α∈(0,1]
[Ln,α, Rn,α] ⊂ (0,∞). (21)

And since Ln,α, Rn,α are left continuous, from (16) and (21), we get that [Ln,α, Rn,α]
makes certain a positive sequence xn satisfying (14).

Now we show that, for the initial conditions xi (i = 0,−1), xn is the solution of
(3). Since, ∀α ∈ (0, 1],

[xn+1]α = [Ln+1,α, Rn+1,α]
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1362 Q. Zhang et al.

=
[

Al,α + Bl,αLn,α

L2
n−1,α

, Ar ,α + Br ,αRn,α

R2
n−1,α

]

=
[

A + Bxn
x2n−1

]

α

.

Therefore, xn is the solution of FDE (3) with initial conditions xi , i = 0,−1.
Suppose that, for the initial values xi ∈ �+

F , i = 0,−1, xn is another solution of
(3). Then, deducing as above, it has, for n ∈ N+

[xn]α = [Ln,α, Rn,α], α ∈ (0, 1]. (22)

Then, (14) and (22) imply that [xn]α = [xn]α, α ∈ (0, 1], n ∈ N+, so xn = xn .
If Case (ii) occurs, The proof is similar to the proof above. This completes the proof

of Theorem 3.1. �

3.2 Dynamics of FDE (3)

In order to obtain results on qualitative features of the positive solutions, Case (i) and
Case (ii) are considered respectively.

If Case (i) occurs, the following lemma is required.

Lemma 3.1 Consider the following difference equations

yn+1 = p + cyn
y2n−1

, n = 0, 1, . . . , (23)

where p2 > c > 0, yi ∈ (0,+∞), i = 0,−1. Then

p ≤ yn ≤ p3

p2 − c
+ y3, n ≥ 4. (24)

Proof It is clear that, for n ≥ 1, yn > p, zn > q from (23). Moreover, for n ≥ 4,

yn = p + cyn−1

y2n−2

≤ p + c

p2
yn−1, (25)

By induction, it can get that, for n − k ≥ 3

yn ≤ p + c

p
+ c

p4
yn−2 ≤ p + c

p
+ c2

p3
+ c3

p6
yn−3 ≤ p + c

p
+ c2

p3
+ c3

p5
+ c4

p8
yn−4

≤ · · · ≤
k∑

i=1

ci−1

p2i−3 + ck

p2k
yn−k = p

1 − c/p2

[

1 −
(

c

p2

)k
]

+ ck

p2k
yn−k

≤ p3

p2 − c
+ yn−k (26)

Noting n − k ≥ 3 is equal to k ≤ n − 3. The proposition is true. �
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Theorem 3.2 Consider FDE (3), where A, B ∈ �+
F , and x−1, x0 ∈ �+

F . Suppose that
there exist MA > 0, NA > 0, MB > 0, NB > 0, ∀α ∈ (0, 1], such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

MA ≤ Al,α ≤ Ar ,α ≤ NA,

MB ≤ Bl,α ≤ Br ,α ≤ NB,

M2
A > MB, N 2

A > NB .

(27)

Then every positive fuzzy solution xn of FDE (3) is bounded and persists.

Proof If Case (i) occurs. Let xn be a positive fuzzy solution of FDE (3). It is obvious
from (11) that, for n = 1, 2, . . . , α ∈ (0, 1],

MA ≤ Ln,α, MA ≤ Rn,α. (28)

Then, from (21), Lemma 3.1, and Al,α ≥ MA, it has, for n ≥ 5,

[Ln,α, Rn,α] ⊂ [MA, Tα], (29)

where

Tα = N 3
A

N 2
A − NB

+ R3,α.

Then since xn ∈ �+
F , there exists T > 0, satisfying,

Tα ≤ T , ∀α ∈ (0, 1]. (30)

Therefore, (29) and (30) imply that [Ln,α, Rn,α] ⊂ [MA, T ], then, for n ≥
4,

⋃
α∈(0,1][Ln,α, Rn,α] ⊂ [MA, T ], so ⋃

α∈(0,1][Ln,α, Rn,α] ⊆ [MA, T ]. Thus the
positive fuzzy solution xn is bounded and persists.

To show that the convergence of positive fuzzy solution xn , we give the following
lemmas. �
Lemma 3.2 Consider the following difference equation

yn+1 = p + cyn
y2n−1

, n = 0, 1, 2, . . . , (31)

Assume p2 > 4c
3 . Then the equilibrium y of (31) is locally asymptotically stable.

Proof Let y be an equilibrium of (31), we obtain that y = p+
√

p2+4c
2 . The linearized

equation of (31) at equilibrium y is

yn+1 − 2c

p2 + 2c + p
√
p2 + 4c

yn + 4c

p2 + 2c + p
√
p2 + 4c

yn−1 = 0, (32)
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Since p2 > 4c
3 , it can get

6c

p2 + 2c + p
√
p2 + 4c

< 1.

By virtue of Theorem 1.3.7 [8], the equilibrium y of (31) is locally asymptotically
stable. �
Lemma 3.3 Consider Eq. (23), if p2 > 4c

3 . Then every positive solution (yn) of (23)
tends to the positive equilibrium

y = p + √
p2 + 4c

2
.

Proof From system (23), we obtain a unique equilibrium y

= p+
√

p2+4c
2 . If (yn) is a positive solution of (23). Let

�1 = lim
n→∞ sup yn, λ1 = lim

n→∞ inf yn .

Applying Lemma 3.1, we get 0 < p < λ1 ≤ �1 < ∞. From (23), it implies that

�1 ≤ p + c�1

λ21
, λ1 ≥ p + cλ1

�2
1

.

This can derive that

�1 ≤ λ1.

Thus �1 = λ1. Namely limn→∞ yn exists. Since y of (23) is the unique positive
equilibrium, then limn→∞ yn = y.

Combining two lemmas above, we have the following theorem �
Theorem 3.3 Consider Eq. (23), if p2 > 4c

3 , then the unique positive equilibrium y of
(23) is globally asymptotically stable.

Theorem 3.4 If A2
l,α > 4

3 Bl,α, A2
r ,α > 4

3 Br ,α , for all α ∈ (0, 1], then every positive
fuzzy solution xn of FDE (3) converges to the fuzzy positive equilibrium x as n → ∞.

Proof Suppose that there is a fuzzy number x satisfying

x = A + Bx

x2
, [x]α = [Lα, Rα], α ∈ (0, 1]. (33)

in which Lα, Rα ≥ 0. Then, from (33), one gets

Lα = Al,α + Bl,αLα

L2
α

, Rα = Ar ,α + Br ,αRα

R2
α

. (34)

123



Qualitative analysis of second-order fuzzy difference equation... 1365

Hence we have from (34) that

Lα =
Al,α +

√
A2
l,α + 4Bl,α

2
, Rα =

Ar ,α +
√
A2
r ,α + 4Br ,α

2
.

Let xn be a positive fuzzy solution of FDE (3) satisfying (11). Since A2
l,α >

4
3 Bl,α, A2

r ,α > 4
3 Br ,α, α ∈ (0, 1]. Utilizing Lemma 3.3 to system (13), then

lim
n→∞ Ln,α = Lα, lim

n→∞ Rn,α = Rα, (35)

Then, from (35), it has

lim
n→∞ D(xn, x) = lim

n→∞ sup
α∈(0,1]

{max{| Ln,α − Lα |, | Rn,α − Rα |}} = 0.

The proof of the theorem is completed.
Secondly, if Case (ii) occurs, i.e., for n ∈ {0, 1, 2, . . .},

Ln+1,α = Al,α + Br ,αRn,α

R2
n−1,α

, Rn+1,α = Ar ,α + Bl,αLn,α

L2
n−1,α

, α ∈ (0, 1]. (36)

The following lemmas are required. �

Lemma 3.4 Consider the following difference equations system.

yn+1 = p + dzn
z2n−1

, zn+1 = q + cyn
y2n−1

, n = 0, 1, . . . , (37)

where yi , zi ∈ (0,+∞), i = −1, 0. If

p > d > 1, q > c > 1. (38)

Then, for n ≥ 4,

p ≤ yn ≤ p(p2q2 + pqd)

p2q2 − cd
+ y2, q ≤ zn ≤ q(p2q2 + pqc)

p2q2 − cd
+ z2. (39)

Proof Let Yn = yn
p , Zn = zn

q , then Eq. (37) can be transformed into the following
systems

Yn+1 = 1 + d

pq

Zn

Z2
n−1

, Zn+1 = 1 + c

pq

Yn
Y 2
n−1

, n = 0, 1, 2, . . . , (40)
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From (40), we have Yn ≥ 1, Zn ≥ 1, for n ≥ 1. And, for n ≥ 4,

⎧
⎪⎨

⎪⎩

Yn ≤ 1 + d
pq Zn−1 ≤ 1 + d

pq + cd
p2q2

Yn−2,

Zn ≤ 1 + c
pq Yn−1 ≤ 1 + c

pq + cd
p2q2

Zn−2.

(41)

Deducing inductively, it can conclude that, for n − 2k ≥ 2,

Yn ≤ 1 + d

pq
+ cd

p2q2
Yn−2 ≤ 1 + d

pq
+ cd

p2q2
+ cd2

p3q3
Zn−3

≤ 1 + d

pq
+ cd

p2q2
+ cd2

p3q3
+ c2d2

p4q4
Yn−4

≤ · · · ≤ 1 + d

pq
+ cd

p2q2
+ cd2

p3q3
+ c2d2

p4q4
+ · · · + c2k−1d2k

p2k−1q2k−1 + c2kd2k

p2kq2k
Yn−2k

= 1

1 − cd
p2q2

[

1 −
(

cd

p2q2

)k−1
]

+
d
pq

1 − cd
p2q2

[

1 −
(

cd

p2q2

)k
]

+ c2kd2k

p2kq2k
Yn−2k

≤ p2q2 + pqd

p2q2 − cd
+ Yn−2k . (42)

Zn ≤ 1 + c

pq
+ cd

p2q2
Zn−2 ≤ 1 + c

pq
+ cd

p2q2
+ c2d

p3q3
Yn−3

≤ 1 + c

pq
+ cd

p2q2
+ c2d

p3q3
+ c2d2

p4q4
Zn−4

≤ · · · ≤ 1 + c

pq
+ cd

p2q2
+ c2d

p3q3
+ c2d2

p4q4
+ · · · + c2kd2k−1

p2k−1q2k−1 + c2kd2k

p2kq2k
Zn−2k

= 1

1 − cd
p2q2

[

1 −
(

cd

p2q2

)k−1
]

+
c
pq

1 − cd
p2q2

[

1 −
(

cd

p2q2

)k
]

+ c2kd2k

p2kq2k
Zn−2k

≤ p2q2 + pqc

p2q2 − cd
+ Zn−2k . (43)

Noting n − 2k ≥ 2 is equal to k ≤ (n − 2)/2. The proposition is true. �
Lemma 3.5 Consider Eq. (37), if condition (38) holds true, then the unique positive
equilibrium point (y, z) of (37) is locally asymptotically stable.

Proof From (37), we obtain a positive equilibrium (y, z) =
(
pq − d + c + √

(pq − d + c)2 + 4pqd

2p
,
pq − c + d + √

(pq − c + d)2 + 4pqc

2q

)

.

The linearized equation of (37) at the equilibrium (y, z) is

�n+1 = B�n, (44)
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here �n = (yn, yn−1, zn, zn−1)
T ,

B =

⎛

⎜
⎜
⎜
⎝

0 0 d
z2

− 2d
z2

1 0 0 0
c
y2

− 2c
y2

0 0

0 0 1 0

⎞

⎟
⎟
⎟
⎠

.

Let λi , i = 1, 2, 3, 4 be the eigenvalues of matrix B, L = diag(l1, l2, l3, l4) be a
diagonal matrix, l1 = l3 = 1, di = d2+i = 1 − iε(i = 2), and

0 < ε < min

{
1

2
− 3d

2z2
,
1

2
− 3c

2y2

}

. (45)

Clearly, L is an invertible matrix. Calculating LBL−1, one has

LBL−1 =

⎛

⎜
⎜
⎜
⎝

0 0 d
z2
l1l

−1
3 − 2d

z2
l1l

−1
4

l2l
−1
1 0 0 0

c
y2
l3l

−1
1 − 2c

y2
l3l

−1
2 0 0

0 0 l4l
−1
3 0

⎞

⎟
⎟
⎟
⎠

From l1 > l2 > 0, l3 > l4 > 0, it implies that

l2l
−1
1 < 1, l4l

−1
3 < 1.

Furthermore, noting (45), we have

d

z2
l1l

−1
3 + 2d

z2
l1l

−1
4 = d

z2

(

1 + 2

1 − 2ε

)

<
3d

z2(1 − 2ε)
< 1,

c

y2
l3l

−1
1 + 2c

z2
l3l

−1
2 = c

y2

(

1 + 2

1 − 2ε

)

<
3c

y2(1 − 2ε)
< 1.

It is clear that B has the same eigenvalues as LBL−1, and

max
1≤i≤4

| λi | ≤ ‖LBL−1‖∞

= max

{

l2l
−1
1 , l4l

−1
3 ,

d

z2
l1l

−1
3 + 2d

z2
l1l

−1
4 ,

c

y2
l3l

−1
1 + 2c

y2
l3l

−1
2

}

< 1.

Therefore the equilibrium (y, z) of (37) is locally asymptotically stable. �

Lemma 3.6 Consider Eq. (37), if (38) hold true, then every positive solution (yn, zn)
of (37) converges to the equilibrium point (y, z).
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Proof From (37), we obtain positive equilibrium (y, z) =
(
pq − d + c + √

(pq − d + c)2 + 4pqd

2p
,
pq − c + d + √

(pq − c + d)2 + 4pqc

2q

)

.

Suppose that (yn, zn) is an arbitrary positive solution of (37). Noting (35)–(37), one
has

lim
n→∞ sup yn = H1, lim

n→∞ inf yn = h1, lim
n→∞ sup zn = H2, lim

n→∞ inf zn = h2.(46)

where hi , Hi ∈ (0,+∞), i = 1, 2. Then, noting (37) and (46), we have

H1 ≤ p + dH2

h22
, h1 ≥ p + dh2

H2
2

, H2 ≤ q + cH1

h21
, h2 ≥ q + ch1

H2
1

.

From which we have

H1 − h1 ≤ d

(
h2
H2
2

− H2

h22

)

, H2 − h2 ≤ c

(
h1
H2
1

− H1

h21

)

. (47)

We claim that

H1 = h1, H2 = h2. (48)

Suppose contrarily that H1 > h1, then from the first inequality of (47), it can conclude
h2 > H2, which is a contradiction. So H1 = h1. Similarly we can get H2 = h2.
Noting (37) and (48), then limn→∞ yn = y, limn→∞ zn = z. The proof of Lemma 3.6
is completed.

Combining Lemma 3.5 with Lemma 3.6. We have the following theorem. �
Theorem 3.5 Consider Eq. (37). If relation (38) holds true, then the unique positive
equilibrium (y, z) is globally asymptotically stable.

Theorem 3.6 If

Al,α > Br ,α > 1, Ar ,α > Bl,α > 1, ∀α ∈ (0, 1]. (49)

and, for n = 0, 1, 2, . . . ,

Rn,αL2
n−1,α

Ln,αR2
n−1,α

≤ Bl,α
Br , α

,∀α ∈ (0, 1]. (50)

Then every positive fuzzy solution of FDE (3) converges to the positive fuzzy equilib-
rium x as n → +∞.
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Proof The proof is similar to those of Theorem 3.4. Assume that there is a positive
fuzzy number x satisfying (33). From (33), condition (49) and (50), we can get

Lα = Al,α + Br ,αRα

R2
α

, Rα = Ar ,α + Bl,αLα

L2
α

. (51)

Hence we can from (51) have that

⎧
⎪⎪⎨

⎪⎪⎩

Lα = Al,α Ar ,α+Br ,α−Bl,α+√
(Al,α Ar ,α+Br ,α−Bl,α)2+4Al,α Ar ,αBl,α

2Ar ,α
,

Rα = Al,α Ar ,α+Bl,α−Br ,α+√
(Al,α Ar ,α+Bl,α−Br ,α)2+4Al,α Ar ,αBr ,α

2Al,α
.

(52)

Suppose that xn is a positive fuzzy solution of FDE (3) such that (10) holds. Noting
(50) and (51), utilizing Lemma 3.5 and Lemma 3.6 to (36), we have

lim
n→∞ Ln,α = Lα, lim

n→∞ Rn,α = Rα, (53)

Then

lim
n→∞ D(xn, x) = lim

n→∞ sup
α∈(0,1]

{max{| Ln,α − Lα |, | Rn,α − Rα |}} = 0.

The proof of the theorem is completed. �
Remark 3.1 In fuzzy discrete dynamical systems. To find qualitative behavior of solu-
tions for discrete fuzzy difference equation, it is very vital to utilize which operations
such as addition, scalar multiplication, division of fuzzy numbers. In [19–22, 25, 26,
28–31], Using Zadeh extension principle, the authors obtained dynamical behaviors
of some fuzzy difference equations. However, utilizing g-division of fuzzy numbers,
Zhang et al. [23, 24] studied the dynamical behaviors of some nonlinear fuzzy differ-
ence equations. Compared with the former, The advantage is that the support sets of
positive fuzzy solution of latter is smaller than those of former. In fact, it is obvious that
the degree of fuzzy uncertainty is reduced by virtue of g-division of fuzzy numbers.
Based on this fact above, Therefore, we consider the qualitative behaviors of the fuzzy
difference equation with quadratic term by virtue of g-division of fuzzy numbers.

4 Numerical examples

In this section, two illustrative examples are presented to verify the effectiveness of
theoretic results.

Example 4.1 Consider the following fuzzy difference equation

xn+1 = A + Bxn
x2n−1

, n = 0, 1, . . . , (54)
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where A, B ∈ �+
F and the initial conditions xi ∈ �+

F , i = 0,−1 are as follows

A(x) =
⎧
⎨

⎩

x − 3, 3 ≤ x ≤ 4

−x + 5, 4 ≤ x ≤ 5
, B(x) =

⎧
⎨

⎩

x − 4, 4 ≤ x ≤ 5

−x + 6, 5 ≤ x ≤ 6
(55)

x−1(x) =
⎧
⎨

⎩

2x − 4, 2 ≤ x ≤ 2.5

−2x + 6, 2.5 ≤ x ≤ 3
, x0(x) =

⎧
⎨

⎩

x − 1, 1 ≤ x ≤ 2

−x + 3, 2 ≤ x ≤ 3
(56)

From (55), one has

[A]α = [3 + α, 5 − α] , [B]α = [4 + α, 6 − α] , α ∈ (0, 1]. (57)

From (56), one has

[x−1]α = [2 + 1

2
α, 3 − 1

2
α], [x0]α = [1 + α, 3 − α], α ∈ (0, 1]. (58)

Therefore, it follows that

⎧
⎪⎨

⎪⎩

⋃
α∈(0,1][A]α = [3, 5], ⋃

α∈(0,1][B]α = [4, 6],
⋃

α∈(0,1][x−1]α = [2, 3], ⋃
α∈(0,1][x0]α = [1, 3].

(59)

It is clear that Case (i) occurs, so Eq. (54) can results in a difference equation system
with parameter α,

Ln+1,α = Al,α + Bl,αLn,α

L2
n−1,α

, Rn+1,α = Ar ,α + Br ,αRn,α

R2
n−1,α

, α ∈ (0, 1]. (60)

Therefore, A2
l,α > 4

3 Bl,α, A2
r ,α > 4

3 Br ,α∀α ∈ (0, 1], and the initial value xi ∈
�+

F , (i = 0,−1), so applying Theorem 3.2, then every positive solution xn of Eq.
(54) is bounded and persistent.

In addition, from Theorem 3.4, there is a unique positive equilibrium x = (4, 5, 6).
Moreover every positive fuzzy solution xn of Eq. (54) converges to x with respect to
D as n → ∞ (see Figs. 1, 2, 3).

Example 4.2 Consider Eq. (54), where A, B ∈ �+
F and the initial value xi ∈ �+

F , i =
0,−1 are as follows

A(x) =
⎧
⎨

⎩

x − 6, 6 ≤ x ≤ 7

−2x + 15, 7 ≤ x ≤ 7.5
, B(x) =

⎧
⎨

⎩

2x − 3, 1.5 ≤ x ≤ 2

−x + 3, 2 ≤ x ≤ 3
(61)

123



Qualitative analysis of second-order fuzzy difference equation... 1371

Fig. 1 The dynamics of system (60)

Fig. 2 The solution of system (60) at α = 0 and α = 0.25

x−1(x) =
⎧
⎨

⎩

2x − 4, 2 ≤ x ≤ 2.5

−2x + 6, 2.5 ≤ x ≤ 3
, x0(x) =

⎧
⎨

⎩

x − 1, 1 ≤ x ≤ 2

−x + 3, 2 ≤ x ≤ 3
(62)
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Fig. 3 The solution of system (60) at α = 0.75 and α = 1

From (61), one has

[A]α =
[

6 + α, 7.5 − 1

2
α

]

, [B]α =
[

1.5 + 1

2
α, 3 − α

]

, α ∈ (0, 1]. (63)

From (62), one has

[x−1]α =
[

2 + 1

2
α, 3 − 1

2
α

]

, [x0]α = [1 + α, 3 − α], α ∈ (0, 1]. (64)

Therefore, it follows that

⋃

α∈(0,1]
[A]α = [6, 7.5],

⋃

α∈(0,1]
[B]α = [1.5, 3],

⋃

α∈(0,1]
[x−1]α = [2, 3],

⋃

α∈(0,1]
[x0]α = [1, 3]. (65)

It is clear that Case (ii) occurs, so Eq. (54) can result in a difference equation systems
with parameter α,

Ln+1,α = Al,α + Br ,αRn,α

R2
n−1,α

, Rn+1,α = Ar ,α + Bl,αLn,α

L2
n−1,α

, α ∈ (0, 1]. (66)

It is clear that the initial value xi ∈ �+
F (i = 0,−1), and (47) is satisfied, so applying

Theorem 3.6, there is a unique positive equilibrium x = (6.3879, 7.2749, 7.7348).
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Fig. 4 The Dynamics of system (66)

Fig. 5 The solution of system (66) at α = 0 and α = 0.25

Moreover every positive fuzzy solution xn of Eq. (54) converges x with respect to D
as n → ∞. (see Figs. 4, 5, 6)
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Fig. 6 The solution of system (66) at α = 0.75 and α = 1

5 Conclusion

In this work, utilizing g-division of fuzzy numbers, the qualitative features of second-
order FDE xn+1 = A + Bxn

x2n−1
are studied. The main theoretic results are as follows.

(i) The existence and uniqueness of positive fuzzy solution of FDE (3) are obtained
under the positive initial values x−1, x0.

(ii) The positive fuzzy solution is bounded and persistence either Case (i) or Case
(ii) occurs.Moreover, every positive fuzzy solution xn tend to the unique equilibrium x
as n → ∞, if A2

l,α > 4
3 Bl,α, A2

r ,α > 4
3 Br ,α, α ∈ (0, 1]. And also, every positive fuzzy

solution xn of FDE (3) converges to the unique equilibrium x as n → ∞. if Al,α >

Br ,α > 1, Ar ,α > B1,α > 1 and
Rn,αL2

n−1,α

Ln,αR2
n−1,α

≤ Bl,α
Br ,α

, α ∈ (0, 1], n = 0, 1, 2, . . ..
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