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Abstract
We consider final state observability estimates for bi-continuous semigroups on
Banach spaces, i.e. for every initial value, estimating the state at a final time T > 0
by taking into account the orbit of the initial value under the semigroup for t ∈ [0, T ],
measured in a suitable norm. We state a sufficient criterion based on an uncertainty
relation and a dissipation estimate and provide two examples of bi-continuous semi-
groups which share a final state observability estimate, namely the Gauß–Weierstraß
semigroup and the Ornstein–Uhlenbeck semigroup on the space of bounded continu-
ous functions. Moreover, we generalise the duality between cost-uniform approximate
null-controllability and final state observability estimates to the setting of locally con-
vex spaces for the case of bounded and continuous control functions, which seems to
be new even for the case of Banach spaces.

Keywords Final state observability estimate · Bi-continuous semigroups ·
Cost-uniform approximate null-controllability · Saks space · Mixed topology

1 Introduction

Let X be aBanach space and (St )t≥0 a semigroup on X , i.e. S0 = I and St+s = St Ss for
all t, s ≥ 0. Moreover, let Y be another Banach space and C ∈ L(X; Y ), a so-called
observation operator, and T > 0. Then (St )t≥0 satisfies a final state observability
estimatew.r.t. some (Banach) spaceZ of functions on [0, T ] with values in Y , if there
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exists Cobs ≥ 0 such that

‖ST x‖X ≤ Cobs
∥
∥CS(·)x

∥
∥Z (x ∈ X).

Put differently, we can estimate the norm of the final state ST x by just taking into
account the observationsCSt x for t ∈ [0, T ]. Typical applications stem fromevolution
equations on some function space over (a subset of) Rd , where C is a restriction
operator to a suitable subset � ofRd (or of the subset ofRd the functions are defined
on) such that we want to control the final state on all of Rd by just measuring the
evolution on the subset �. Final state observability estimates have been studied in
various contexts due to its relation to null-controllability, see e.g. [1, 2, 4, 9, 10, 18,
21, 23, 25, 29] and references therein.

Classically, the space Z is some Lr -space with r ∈ [1,∞] (when working in
Hilbert spaces, one usually chooses r = 2), and then the final state observability
estimate yields the form

‖ST x‖X ≤
⎧

⎨

⎩

Cobs

(∫ T
0 ‖CSt x‖rY dt

)1/r
if r ∈ [1,∞),

Cobs ess supt∈[0,T ] ‖CSt x‖Y if r = ∞,
(x ∈ X).

Clearly, in order to formulate this final state observability estimate (i.e. to have a
well-defined right-hand side) we need some regularity of the semigroup. Indeed, we
require measurability of t �→ ‖CSt x‖Y for all x ∈ X . Of course, strong continuity
of (St )t≥0 yields continuity of these maps and is therefore sufficient, but also weaker
regularities are suitable. In [1], dual semigroups of strongly continuous semigroups
were considered which yield sufficient regularity.

In this paper we aim at two types of results. First, we consider final state observabil-
ity estimates for so-called bi-continuous semigroups, see e.g. [16, 17], which are not
strongly continuous for the norm-topology on X but only for a weaker topology. Note
that dual semigroups are a special case of bi-continuous ones when considering the
weak∗ topology. There are classical examples of bi-continuous semigroups such as the
Gauß–Weierstraß semigroup on Cb(R

d), the space of bounded continuous functions
(onRd ), as well as the Ornstein–Uhlenbeck semigroup on Cb(R

d). Second, we relate
cost-uniform approximate null-controllability of a control system sharing only weak
continuity properties such as bi-continuity with a final state observability estimate
for the dual system, thus generalising the well-known duality in Hilbert and Banach
spaces [4, 6, 25, 29]. Since this demands to work in Hausdorff locally convex spaces,
we here focus on continuous control functions which results in the space Z above
being a space of vector measures.

The paper is organised as follows. In Sect. 2 we review bi-continuous semigroups
and then turn to final-state observability estimates in Sect. 3 together with two exam-
ples in Sect. 4. Final state observability estimates are then related with cost-uniform
approximate null-controllability via duality, which we will exploit in our context in
Sect. 5.
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2 Bi-continuous semigroups

In this short section we recall some notation and definitions from the theory of bi-
continuous semigroups that we need in subsequent sections. For a vector space X
over the field R or C with a Hausdorff locally convex topology τX we denote by
(X , τX )′ the topological linear dual space and just write X ′ := (X , τX )′ if (X , τX )

is a Banach space. We use the symbol L(X; Y ) := L((X , ‖·‖X ); (Y , ‖·‖Y )) for the
space of continuous linear operators from a Banach space (X , ‖·‖X ) to a Banach space
(Y , ‖·‖Y ) and denote by ‖·‖L(X;Y ) the operator norm on L(X; Y ). If X = Y , we set
L(X) := L(X; X).

Definition 2.1 ([5, I.3.2 Definition]) Let (X , ‖·‖X ) be a normed space and τX a Haus-
dorff locally convex topology on X .

(a) The triple (X , ‖·‖X , τX ) is called a Saks space if (X , ‖·‖X ) is a Banach space,
τX ⊆ τ‖·‖X and (X , τX )′ is norming for X where τ‖·‖X denotes the ‖·‖X -topology.

(b) The mixed topology γX := γ (‖·‖X , τX ) is the finest linear topology on X that
coincides with τX on ‖·‖X -bounded sets and such that τX ⊆ γX ⊆ τ‖·‖X .

The mixed topology is actually Hausdorff locally convex and the definition given
above is equivalent to the one from the literature [28, Section 2.1] by [28, Lemmas
2.2.1, 2.2.2].

Definition 2.2 We call a Saks space (X , ‖·‖X , τX ) sequentially complete if (X , γX )

is sequentially complete.

Due to [28, Corollary 2.3.2] a Saks space (X , ‖·‖X , τX ) is sequentially complete
if and only if (X , τX ) is sequentially complete on ‖·‖X -bounded sets, i.e. every ‖·‖X -
bounded τX -Cauchy sequence converges in X . In combination with [13, Remark 2.3
(c)] this yields that a triple (X , ‖·‖X , τX ) fulfils [17, Assumptions 1] if and only if it
is a sequentially complete Saks space.

Definition 2.3 ([17, Definition 3]) Let (X , ‖·‖X , τX ) be a sequentially complete Saks
space. Let (St )t≥0 in L(X) be a semigroup on X . We say that (St )t≥0 is (locally)
τX -bi-continuous if

(a) it is exponentially bounded, i.e. there exist M ≥ 1 and ω ∈ R such that
‖St‖L(X) ≤ Meωt for all t ≥ 0,

(b) (St )t≥0 is a C0-semigroup on (X , τX ), i.e. for all x ∈ X the map [0,∞) � t �→
Tt x ∈ (X , τX ) is continuous,

(c) it is (locally) bi-equicontinuous, i.e. for every (xn)n∈N in X and x ∈ X with
sup
n∈N

‖xn‖X < ∞ and τX - lim
n→∞ xn = x we have

τX - lim
n→∞ St (xn − x) = 0

(locally) uniformly for t ∈ [0,∞).

As in the case of C0-semigroups on Banach spaces we can define generators for
bi-continuous semigroups.
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Definition 2.4 ([7, Definition 1.2.6]) Let (X , ‖·‖X , τX ) be a sequentially complete
Saks space and (St )t≥0 a locally τX -bi-continuous semigroup on X . The generator
(−A, D(A)) is defined by

D(A) :=
{

x ∈ X | τX - lim
t→0+

St x − x

t
exists in X and sup

t∈(0,1]
‖St x − x‖X

t
< ∞

}

,

−Ax :=τX - lim
t→0+

St x − x

t
, (x ∈ D(A)).

Remark 2.5 There is no common agreement whether to use the here presented defi-
nition of a generator or its negative. Throughout the entire paper we will stick to the
definition made above, i.e. −A is the generator.

3 Final state observability estimates for bi-continuous semigroups

The final state observability estimate rests on the following abstract theorem. It pro-
vides a sufficient criterion stating that an abstract uncertainty principle (also called
spectral inequality), see (UP), together with a dissipation estimate, see (DISS), yields
a final state observability estimate, and has its roots in [18], see also [1, 9, 21, 23].

Theorem 3.1 ([1, Theorem A.1]) Let X and Y be Banach spaces, C ∈ L(X; Y ),
(St )t≥0 a semigroup on X, M ≥ 1 and ω ∈ R such that ‖St‖L(X) ≤ Meωt for all
t ≥ 0, and assume that for all x ∈ X the map t �→ ‖CSt x‖Y is measurable. Further,
let λ∗ ≥ 0, (Pλ)λ>λ∗ in L(X), r ∈ [1,∞], d0, d1, d3, γ1, γ2, γ3, T > 0 with γ1 < γ2,
and d2 ≥ 1, and assume that

∀x ∈ X ∀λ > λ∗ : ‖Pλx‖X ≤ d0e
d1λγ1 ‖CPλx‖Y (UP)

and

∀x ∈ X ∀λ > λ∗ ∀t ∈ (0, T /2] : ‖(I − Pλ)St x‖X ≤ d2e
−d3λγ2 tγ3 ‖x‖X . (DISS)

Then there exists Cobs ≥ 0 such that for all x ∈ X we have

‖ST x‖X ≤
⎧

⎨

⎩

Cobs

(∫ T
0 ‖CSt x‖rY dt

)1/r
if r ∈ [1,∞),

Cobs ess supt∈[0,T ] ‖CSt x‖Y if r = ∞.

Remark 3.2 The constant Cobs is explicit in all parameters and of the form

Cobs = C1

T 1/r exp

(

C2

T
γ1γ3

γ2−γ1

+ C3T

)

,

with T 1/r = 1 if r = ∞, and suitable constants C1,C2,C3 ≥ 0 depending on the
parameters; see [1, Theorem A.1] as well as [10, Theorem 2.1].
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In order to obtain a version of this theorem for bi-continuous semigroups, we need
to argue on measurability of [0,∞) � t �→ ‖CSt x‖Y for all x ∈ X .

Lemma 3.3 Let (X , ‖·‖X , τX ) be a sequentially complete Saks space, (St )t≥0 a locally
τX -bi-continuous semigroup on X, (Y , ‖·‖Y , τY ) a Saks space, C : X → Y linear and
sequentially τX -τY -continuous on ‖·‖X -bounded sets, and x ∈ X. Then [0,∞) � t �→
‖CSt x‖Y is measurable.

Proof Since [0,∞) � t �→ ∣
∣
〈

y′,CSt x
〉∣
∣ is continuous for all y′ ∈ (Y , τY )′ by the

assumptions on C and the exponential boundedness of (St )t≥0, and ‖CSt x‖Y =
sup{∣∣〈y′,CSt x

〉∣
∣ | y′ ∈ (Y , τY )′,

∥
∥y′∥∥

Y ′ ≤ 1} for all t ≥ 0, we obtain that
[0,∞) � t �→ ‖CSt x‖Y is lower semi-continuous and hence measurable.

In view of Lemma 3.3, we can apply Theorem 3.1 to obtain the following.

Theorem 3.4 Let (X , ‖·‖X , τX ) be a sequentially complete Saks space, (St )t≥0 a
locally τX -bi-continuous semigroup on X, (Y , ‖·‖Y , τY ) a Saks space, C ∈ L(X; Y )

such that C is also sequentially τX -τY -continuous on ‖·‖X -bounded sets. Further, let
λ∗ ≥ 0, (Pλ)λ>λ∗ a family in L(X), r ∈ [1,∞], d0, d1, d3, γ1, γ2, γ3, T > 0 with
γ1 < γ2, and d2 ≥ 1, and assume that

∀x ∈ X ∀λ > λ∗ : ‖Pλx‖X ≤ d0e
d1λγ1 ‖CPλx‖Y (UP’)

and

∀x ∈ X ∀λ > λ∗ ∀t ∈ (0, T /2] : ‖(I − Pλ)St x‖X ≤ d2e
−d3λγ2 tγ3 ‖x‖X .

(DISS’)

Then there exists Cobs ≥ 0 such that for all x ∈ X we have

‖ST x‖X ≤
⎧

⎨

⎩

Cobs

(∫ T
0 ‖CSt x‖rY dt

)1/r
if r ∈ [1,∞),

Cobs ess supt∈[0,T ] ‖CSt x‖Y if r = ∞.

Remark 3.5 The statements in Theorem 3.1 and Theorem 3.4 can be generalised in
the sense that one can obtain an estimate with an Lr -norm of t �→ ‖CSt x‖Y on a
measurable subset E ⊆ [0, T ] with positive Lebesgue measure; cf. e.g. [2]. However,
in this case the constant Cobs (cf. Remark 3.2) is not explicit anymore.

4 Two examples of bi-continuous semigroups

In this section we consider final state observability for two important examples: the
Gauß–Weierstraß semigroup on Cb(R

d) and the Ornstein–Uhlenbeck semigroup on
Cb(R

d). We begin with the study of restriction operators on Cb(R
d), restricting func-

tions to suitable subsets, and relate this to an abstract uncertainty principle.
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4.1 Restriction operators on Cb(Rd) and the uncertainty principle

Let � ⊆ Rd be non-empty, C : Cb(R
d) → Cb(�) the restriction operator defined by

C f := f |� for f ∈ Cb(R
d). Then C ∈ L(Cb(R

d);Cb(�)). Let τco be the compact-
open topology on Cb(R

d) (as well as on Cb(�)). Then (Cb(�), ‖·‖∞ , τco) is a Saks
space which is sequentially complete if� is locally compact (in particular if� = Rd ).

Lemma 4.1 C : (Cb(R
d), τco) → (Cb(�), τco) is continuous.

Proof The map C is clearly linear. Due to [22, Theorem 46.8] the compact-open
topology τco on Cb(Z) for a Hausdorff topological space Z is given by the system of
seminorms

pZK ( f ) := sup
x∈K

| f (x)| ( f ∈ Cb(Z))

for compact K ⊆ Z . Let K ⊆ � be compact in the relative topology. Then K is
compact in Rd as well and

p�
K (C f ) = sup

x∈K
| f |�(x)| = sup

x∈K
| f (x)| = pR

d

K ( f ) ( f ∈ Cb(R
d)),

which means that C is continuous.

We now use the operator C to provide an uncertainty principle based on the well-
known Logvinenko–Sereda theorem. Let η ∈ Cc[0,∞), 1[0,1/2] ≤ η ≤ 1[0,1]. For
λ > 0 let χλ : Rd → R, χλ := η(|·| /λ), and Pλ ∈ L(Cb(R

d)) be defined by
Pλ f := (F−1χλ) ∗ f , where F denotes the Fourier transformation. By Young’s
inequality and scaling properties of the Fourier transformation, we have

‖Pλ‖ ≤
∥
∥
∥F−1χλ

∥
∥
∥
L1(Rd )

=
∥
∥
∥F−1χ1

∥
∥
∥
L1(Rd )

(λ > 0).

Note that for all f ∈ Cb(R
d) and λ > 0 we have F Pλ f = χλF f and therefore

sptF Pλ f ⊆ B[0, λ] ⊆ [−λ, λ]d , where B[0, λ] := {x ∈ Rd | |x | ≤ λ} is the closed
ball around 0 with radius λ.

Definition 4.2 Let � ⊆ Rd . Then � is called thick if � is measurable and there exist
L ∈ (0,∞)d and ρ ∈ (0, 1] such that

λd(� ∩ (x + (0, L))) ≥ ρλd((0, L)) (x ∈ Rd),

where λd denotes the d-dimensional Lebesgue measure, and (0, L) := ∏d
j=1(0, L j )

is the hypercube with sidelengths contained in L .

Thus, a measurable set � ⊆ Rd is thick (with parameters L and ρ) provided the
portion of � in every hypercube with sidelengths contained in L is at least ρ.
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By the Logvinenko–Sereda theorem (see [12, 19]), if � ⊆ Rd is a thick set, then
there exist d0, d1 > 0 such that

‖Pλ f ‖Cb(Rd ) ≤ d0e
d1λ ‖CPλ f ‖Cb(�) (λ > 0, f ∈ Cb(R

d)). (LS)

Thus, (LS) yields an estimate of the form (UP’).

4.2 The Gauß–Weierstraß semigroup on Cb(Rd)

Let k : (0,∞) × Rd → R be given by

kt (x) := k(t, x) := 1

(4π t)d/2 e
−|x |2/(4t) (t > 0, x ∈ Rd),

the so-called Gauß–Weierstraß kernel. For t ≥ 0 we define St ∈ L(Cb(R
d)) by

St f :=
{

f t = 0,

kt ∗ f t > 0.

Note that by Young’s inequality and the fact that ‖kt‖L1(Rd ) = 1 for all t > 0 we
have ‖St f ‖Cb(Rd ) ≤ ‖ f ‖Cb(Rd ) for f ∈ Cb(R

d) and t ≥ 0. It is easy to see that
(St )t≥0 is a semigroup, which is called the Gauß–Weierstraß semigroup. Let τco be
the compact-open topology on Cb(R

d). Then (St )t≥0 is locally τco-bi-continuous; see
e.g. [17, Examples 6 (a)].

For λ > 0 let Pλ ∈ L(Cb(R
d)) be defined as in Subsect. 4.1. By [1, Proposition

3.2], there exist d2 ≥ 1 and d3 > 0 such that

‖(I − Pλ)St f ‖Cb(Rd ) ≤ d2e
−d3λ2t ‖ f ‖Cb(Rd ) (λ > 0, t ≥ 0, f ∈ Cb(R

d)),

(DISS(GW))

i.e. a dissipation estimate (DISS’) is fulfilled.
Thus, if � ⊆ Rd is thick, then (LS) and (DISS(GW)) provide the estimates (UP’)

and (DISS’) and so Theorem 3.4 yields a final state observability estimate for the
Gauß–Weierstraß semigroup on Cb(R

d).

4.3 The Ornstein–Uhlenbeck semigroup on Cb(Rd)

Let M : (0,∞) × Rd × Rd → R be given by

Mt (x, y) := M(t, x, y) := 1

πd/2(1 − e−2t )d/2 e
−|y−e−t x|2/(1−e−2t )

(t > 0, x, y ∈ Rd),
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the so-called Mehler kernel. For t ≥ 0 we define St ∈ L(Cb(R
d)) by

St f :=
{

f t = 0,
∫

Rd Mt (·, y) f (y) dy t > 0.

Since
∫

Rd Mt (·, y) dy = 1 for all t > 0, we have ‖St f ‖Cb(Rd ) ≤ ‖ f ‖Cb(Rd ) for
f ∈ Cb(R

d) and t ≥ 0. It is not difficult to see that (St )t≥0 is a semigroup, which is
called the Ornstein–Uhlenbeck semigroup. Let τco be the compact-open topology on
Cb(R

d). Then (St )t≥0 is locally τco-bi-continuous onCb(R
d); see e.g. [16, Proposition

3.10].
Define k : (0, 1) × Rd → R by

ks(x) := 1

πd/2(1 − s2)d/2 e
−|x |2/(1−s2).

Let s ∈ (0, 1). Then we obtain

Mln 1
s
( 1s x, y) = 1

πd/2(1 − s2)d/2 e
−|y−x |2/(1−s2) = ks(x − y) (x, y ∈ Rd).

Hence,

(

Sln 1
s
f
)

( 1s · ) = ks ∗ f ( f ∈ Cb(R
d)).

For λ > 0 let Pλ ∈ L(Cb(R
d)) as in Subsect. 4.2. Since

Fks(ξ) = e−(1−s2)|ξ |2/4 =: hs(ξ) (ξ ∈ Rd),

for λ > 0 and s ∈ (0, 1) we conclude that

(

(I − Pλ)Sln 1
s
f
)

( 1s · ) = (I − Pλ/s)
(

Sln 1
s
f ( 1s · ))

= F−1((1 − χλ/s)hs
) ∗ f ( f ∈ Cb(R

d)).

Lemma 4.3 There exist d2 ≥ 1 and d3 > 0 such that for λ > 0 and s ∈ (0, 1) we
have

∥
∥
∥F−1((1 − χλ)hs

)
∥
∥
∥
L1(Rd )

≤ d2e
−d3λ2(1−s2).

Proof Let λ > 0, s ∈ (0, 1), and define

σs,λ := (1 − χ√
1−s2λ)hs

(
1√
1−s2

·
)

= (1 − χ√
1−s2λ)e

−|·|2/4.
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Then by a linear substitution we obtain

∥
∥
∥F−1((1 − χλ)hs

)
∥
∥
∥
L1(Rd )

=
∥
∥
∥F−1σs,λ

∥
∥
∥
L1(Rd )

.

Let α ∈ Nd
0 , |α| ≤ d + 1. Then

∣
∣∂ασs,λ

∣
∣ ≤ 1{|·|≥√

1−s2λ/2}
∣
∣
∣∂

αe−|·|2/4
∣
∣
∣

+
∑

β∈Nd
0 ,β<α

(
α

β

) ∣
∣
∣∂

α−β(1 − χ√
1−s2λ)

∣
∣
∣

∣
∣
∣∂

βe−|·|2/4
∣
∣
∣ .

There exists K ≥ 0 such that for all β ∈ Nd
0 with β ≤ α and all ξ ∈ Rd we have

∣
∣
∣∂

βe−|·|2/4(ξ)

∣
∣
∣ ≤ K (1 + |ξ |)|β|e−|ξ |2/4.

Let

C1 := sup
β∈Nd

0 ,β≤α,ξ∈Rd

K (1 + |ξ |)|β|e−|ξ |2/16.

Then, for β ≤ α and |ξ | ≥ √
1 − s2λ/2 we have

∣
∣
∣∂

βe−|·|2/4(ξ)

∣
∣
∣ ≤ C1e

−|ξ |2/16e−(1−s2)λ2/32.

Further, for β < α and ξ ∈ Rd we have

∣
∣
∣∂

α−β(1 − χ√
1−s2λ)(ξ)

∣
∣
∣

≤ (
√

1 − s2λ)−|α−β|
∣
∣
∣∂

α−βχ1

(
ξ√

1−s2λ

)∣
∣
∣1{√1−s2λ/2≤|·|≤√

1−s2λ}(ξ)

≤ C2(
√

1 − s2λ)−|α−β|1{√1−s2λ/2≤|·|≤√
1−s2λ}(ξ)

where C2 := maxβ<α

∥
∥∂α−βχ1

∥
∥
Cb(Rd )

. Hence, there existsC ≥ 0 (which is indepen-

dent of s and λ) such that if
√
1 − s2λ ≥ 1, then for all ξ ∈ Rd we have

∣
∣∂ασs,λ

∣
∣ ≤ Ce−|ξ |2/16e−(1−s2)λ2/32.

Therefore, increasing C , for all x ∈ Rd we obtain

∣
∣
∣xαF−1σs,λ(x)

∣
∣
∣ =

∣
∣
∣F−1(∂ασs,λ)(x)

∣
∣
∣ ≤ Ce−(1−s2)λ2/32. (1)
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By choosing j ∈ {1, . . . , d} and α := (d + 1)e j for the j-th canonical unit vector e j ,

we observe ‖x‖d+1∞
∣
∣F−1σs,λ(x)

∣
∣ ≤ Ce−(1−s2)λ2/32 and hence

∣
∣
∣F−1σs,λ(x)

∣
∣
∣ ≤ Ce−(1−s2)λ2/32 |x |−d−1 (2)

for all x ∈ Rd \ {0}, where we increased C .
Therefore, if

√
1 − s2λ ≥ 1, we can conclude by (1) for α = 0 and (2) that

∥
∥F−1((1 − χλ)hs

)∥
∥
L1(Rd )

= ∥
∥F−1σs,λ

∥
∥
L1(Rd )

≤ Ce−(1−s2)λ2/32
( ∫

B[0,1]
1 dx +

∫

Rd\B[0,1]
|x |−d−1 dx

)

≤ Ce−(1−s2)λ2/32,

where we increased C again.
It remains to prove the estimate for the case

√
1 − s2λ < 1. Note that

∥
∥
∥F−1(χλhs)

∥
∥
∥
L1(Rd )

=
∥
∥
∥F−1χλ ∗ F−1hs

∥
∥
∥
L1(Rd )

≤
∥
∥
∥F−1χλ

∥
∥
∥
L1(Rd )

‖ks‖L1(Rd ) =
∥
∥
∥F−1χ1

∥
∥
∥
L1(Rd )

,

where the last equality follows form scaling properties of the Fourier transformation
and the fact that ks is normalised in L1(R

d).
Thus, for

√
1 − s2λ < 1 we obtain

∥
∥
∥F−1(χλhs)

∥
∥
∥
L1(Rd )

≤
∥
∥
∥F−1χ1

∥
∥
∥
L1(Rd )

e1/32e−(1−s2)λ2/32,

which ends the proof.

In view of Lemma 4.3, we obtain the dissipation estimate (DISS’) as follows. Note
that for t ≥ 0 we have e2t − 1 ≥ 2t . Let t > 0 and λ > 0, and set s := e−t ∈ (0, 1).
Then, for f ∈ Cb(R

d), Young’s inequality and Lemma 4.3 yield

‖(I − Pλ)St f ‖Cb(Rd ) =
∥
∥
∥

(

(I − Pλ)Sln 1
s
f
)

( 1s · )
∥
∥
∥
Cb(Rd )

≤
∥
∥
∥F−1((1 − χλ/s)hs

)
∥
∥
∥
L1(Rd )

‖ f ‖Cb(Rd )

≤ d2e
−d3λ2s−2(1−s2) ‖ f ‖Cb(Rd ) = d2e

−d3λ2(e2t−1) ‖ f ‖Cb(Rd )

≤ d2e
−2d3λ2t ‖ f ‖Cb(Rd ) . (DISS(OU))

Thus, if � ⊆ Rd is thick and C : Cb(R
d) → Cb(�) is the restriction map as in

Subsect. 4.2, then (LS) and (DISS(OU)) provide the estimates (UP’) and (DISS’) and
so Theorem 3.4 yields a final state observability estimate for the Ornstein–Uhlenbeck
semigroup on Cb(R

d).
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5 Cost-uniform approximate null-controllability and duality

In this section we want to show that cost-uniform approximate null-controllability is
equivalent to final state observability of the dual system, which is known in the setting
of norm-strongly continuous semigroups; see [4, 6, 25, 29]. In the bi-continuous setting
this needs a bit of preparation so that we can formulate the corresponding definitions.
Since we work in Hausdorff locally convex spaces, the choice of the “correct” integral
may be delicate. We therefore provide the duality for continuous control functions,
and thus relate it to a final state observability estimate of the dual system w.r.t. a space
of vector measures.

Definition 5.1 Let (X , ‖·‖X , τX ) be a Saks space and T > 0. We set

Cτ,b([0, T ]; X) := { f ∈ C([0, T ]; (X , τX )) | ‖ f ‖∞ := sup
t∈[0,T ]

‖ f (t)‖X < ∞}

where C([0, T ]; (X , τX )) is the space of continuous functions from [0, T ] to (X , τX ).

Remark 5.2 Let (X , ‖·‖X , τX ) be a Saks space and T > 0.

(a) Since the mixed topology γX coincides with τX on ‖·‖X -bounded sets by [28,
Lemma 2.2.1], and a subset of X is ‖·‖X -bounded if and only if it is γX -bounded
by [28, Corollary 2.4.1] we have

Cτ,b([0, T ]; X) = Cb([0, T ]; (X , γX )) = C([0, T ]; (X , γX )).

We define two topologies on this space. First, the one given by the norm

‖ f ‖∞ := sup
t∈[0,T ]

‖ f (t)‖X ( f ∈ Cτ,b([0, T ]; X)).

Second, the Hausdorff locally convex topology γ∞ induced by the directed system
of seminorms given by

pγ∞( f ) := sup
t∈[0,T ]

pγX ( f (t)) ( f ∈ Cτ,b([0, T ]; X))

for pγX ∈ PγX where PγX is a directed system of seminorms that induces the
mixed topology γX . Clearly, γ∞ is coarser than the ‖·‖∞-topology. Further,
(Cτ,b([0, T ]; X), ‖·‖∞) is a Banach space.

(b) We note that a subset B ⊆ Cτ,b([0, T ]; X) is ‖·‖∞-bounded if and only if it is
γ∞-bounded since a subset of X is ‖·‖X -bounded if and only if it is γX -bounded
by [28, 2.4.1 Corollary]. So ((Cτ,b([0, T ]; X), γ∞)′, τb) is a topological sub-
space of Cτ,b([0, T ]; X)′ = ((Cτ,b([0, T ]; X), ‖·‖∞)′, ‖·‖Cτ,b([0,T ];X)′) where τb
denotes the topology of uniform convergence on γ∞-bounded sets. In the fol-
lowing we use the notation

∥
∥y′∥∥

(Cτ,b([0,T ];X),γ∞)′ := ∥
∥y′∥∥

Cτ,b([0,T ];X)′ for all

y′ ∈ (Cτ,b([0, T ]; X), γ∞)′.
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Proposition 5.3 Let (X , ‖·‖X , τX ) be a sequentially complete Saks space, (St )t≥0 a
locally τX -bi-continuous semigroup on X and T > 0. Let v ∈ Cτ,b([0, T ]; X) and
set

f : [0, T ] → X , f (t) := ST−tv(t).

Then f ∈ Cτ,b([0, T ]; X).

Proof We denote by PτX a system of directed seminorms that generates the topology
τX on X . Let (tn)n∈N be a sequence in [0, T ] that converges to t ∈ [0, T ] and set xn :=
v(tn) − v(t) for n ∈ N. The sequence (xn)n∈N is ‖·‖X -bounded and τX - lim

n→∞ xn = 0

due to our assumptions on v. We have for p ∈ PτX that

p( f (tn) − f (t)) = p(ST−tnv(tn) − ST−tv(t))

≤ p(ST−tnv(tn) − ST−tnv(t)) + p(ST−tnv(t) − ST−tv(t))

≤ p(ST−tn xn) + p((ST−tn − ST−t )v(t))

≤ sup
s∈[0,T ]

p(Ssxn) + p((ST−tn − ST−t )v(t)).

Combining our estimate above with the local bi-equicontinuity and τX -strong continu-
ity of the semigroup, we deduce that ( f (tn))n∈N converges to f (t) in (X , τX ). Hence,
f ∈ C([0, T ]; (X , τX )). Furthermore, as the semigroup is exponentially bounded,
there are M ≥ 1 and ω ∈ R such that for all t ∈ [0, T ]

‖ f (t)‖X = ‖ST−tv(t)‖X ≤ ‖ST−t‖L(X) ‖v(t)‖X ≤ Meω(T−t) ‖v(t)‖X
≤ Me|ω|T ‖v(t)‖X ,

which yields that f is ‖·‖X -bounded on [0, T ] because v([0, T ]) is ‖·‖X -
bounded.

Proposition 5.4 Let (X , ‖·‖X , τX ) be a sequentially complete Saks space, (St )t≥0
a locally τX -bi-continuous semigroup on X, (U , ‖·‖U , τU ) a Saks space, and B ∈
L(U ; X) such that B is also sequentially τU -τX -continuous on ‖·‖U -bounded sets.
Let T > 0, u ∈ Cτ,b([0, T ];U ) and set f : [0, T ] → X, f (t) := ST−t Bu(t). Then f
is τX -Pettis integrable and γX -Pettis integrable and both integrals coincide.

Proof The statement follows from [14, 2.5Proposition (a)] andProposition 5.3 because
the map v : t �→ Bu(t) belongs to Cτ,b([0, T ]; X).

Now, we have everything at hand to formulate the definition of cost-uniform
approximate null-controllability in the bi-continuous setting. Let (X , ‖·‖X , τX ) be
a sequentially complete Saks space, (U , ‖·‖U , τU ) a Saks space, (St )t≥0 a locally
τX -bi-continuous semigroup on X with generator (−A, D(A)), and B ∈ L(U ; X)

such that B is also sequentially τU -τX -continuous on ‖·‖U -bounded sets, and T > 0.
We consider the linear control system

ẋ(t) = −Ax(t) + Bu(t) (t > 0),

x(0) = x0 ∈ X ,
(ConSys)
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where u ∈ Cτ,b([0, T ];U ). The function x is called state function and u is called
control function. The uniquemild solution of (ConSys) is given byDuhamel’s formula

x(t) = St x0 +
∫ t

0
St−r Bu(r)dr (t ∈ [0, T ])

due to [17, Proposition 11 (a)] and Proposition 5.4. Let PτX be a directed system of
seminorms that induces the topology τX .

Definition 5.5 We say that (ConSys) is cost-uniform approximately τX -null-controll-
able in time T via Cτ,b([0, T ];U ) if there exists C ≥ 0 such that for all x0 ∈ X ,
ε > 0 and pτX ∈ PτX there exists u ∈ Cτ,b([0, T ];U ) with ‖u‖∞ ≤ C ‖x0‖X such
that pτX (x(T )) ≤ ε.

We note that this definition of cost-uniform approximate τX -null-controllability
does not depend on the choice of PτX .

Remark 5.6 We can analogously define the notion of cost-uniform approximate γX -
null-controllability in time T via Cτ,b([0, T ];U ) by using pγX ∈ PγX instead of
pτX ∈ PτX . In view of Proposition 5.13 and Remark 5.14 these two notions are
equivalent.

Next, we prepare the definition of final state observability of the dual system where
we need to clarify which kind of duality we have to use.

Definition 5.7 Let (X , ‖·‖X , τX ) be a Saks space and K = R or C the scalar field of
X .

(a) We call (X , ‖·‖X , τX ) C-sequential if (X , γX ) is C-sequential, i.e. every convex
sequentially open subset of (X , γX ) is already open (see [24, p. 273]).

(b) We call (X , ‖·‖X , τX ) aMazur space if (X , γX ) is a Mazur space, i.e.

X ′
γ := (X , γX )′ = {x ′ : X → K | x ′ linear and γX -sequentially continuous}

(see [27, p. 40]).

Examples of C-sequential Saks spaces can be found in [13, Example 2.4, Remarks
3.19, 3.20, Corollary 3.23].

Remark 5.8 Let (X , ‖·‖X , τX ) be a Saks space.

(a) If (X , ‖·‖X , τX ) is C-sequential, then it is a Mazur space by [27, Theorem 7.4]
(cf. [14, 3.6 Proposition (b)]).

(b) The space

X◦ := {x ′ ∈ X ′ | x ′ τX -sequentially continuous on ‖·‖X -bounded sets}

is a closed linear subspace of the norm dual X ′ and hence a Banach space with
norm given by ‖x◦‖X◦ := ‖x◦‖X ′ for x◦ ∈ X◦ due to [8, Proposition 2.1] (note
that the proof of [8, Proposition 2.1] does not use [8, Hypothesis A (ii)] which is
the sequential completeness of (X , ‖·‖X , τX )). We have X◦ = X ′

γ if and only if
(X , γX ) is a Mazur space by [14, 3.5 Remark].
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Let (X , ‖·‖X ) and (U , ‖·‖U ) be Banach spaces. We recall that the dual operator
B ′ of an element B ∈ L(U ; X) is defined by 〈B ′x ′, u〉 := 〈x ′, Bu〉 for x ′ ∈ X ′ and
u ∈ U .

Proposition 5.9 Let (X , ‖·‖X , τX ) be a sequentially complete C-sequential Saks
space and (St )t≥0 a locally τX -bi-continuous semigroup on X. Then the opera-
tors given by S◦

t x
◦ := S′

t x
◦ for t ≥ 0 and x◦ ∈ X◦ belong to L(X◦) and form

a τc(X◦, (X , ‖·‖X ))-strongly continuous, exponentially bounded semigroup on X◦
where τc(X◦, (X , ‖·‖X )) denotes the topology of uniform convergence on ‖·‖X -com-
pact sets.

Proof Since (X , γX ) is C-sequential, in particular Mazur by Remark 5.8 (a), (St )t≥0
is quasi-γX -equicontinuous and X◦ = X ′

γ by [13, Theorem 3.17 (a)] and Remark 5.8
(b). In particular, S◦

t is the γX -dual map of St for all t ≥ 0. Furthermore, (S◦
t )t≥0 is

exponentially bounded (w.r.t. ‖·‖L(X◦)) because (St )t≥0 is exponentially bounded. It
follows that S◦

t ∈ L(X◦) for all t ≥ 0 and (S◦
t )t≥0 is a σ(X◦, X)-strongly continuous

semigroup. As σ(X◦, X) and themixed topology γ ◦ := γ (‖·‖X◦ , σ (X◦, X)) coincide
on ‖ · ‖X◦ -bounded sets by Definition 2.1 (b), (S◦

t )t≥0 is also γ ◦-strongly continuous.
Due to [13, Proposition 3.22 (a)] we have γ ◦ = τc(X◦, (X , ‖·‖X )).

The semigroup (S◦
t )t≥0 in the setting of Proposition 5.9 resembles a bi-continuous

semigroup. For instance, we note that the generator (−A◦, D(A◦)) of (S◦
t )t≥0 from

Proposition 5.9 is given by

D(A◦) =
{

x◦ ∈ X◦ | τc(X
◦, (X , ‖·‖X ))- lim

t→0+
S◦
t x

◦ − x◦

t
exists in X◦},

−A◦x = τc(X
◦, (X , ‖·‖X ))- lim

t→0+
S◦
t x

◦ − x◦

t
(x◦ ∈ D(A◦))

and fulfils

D(A◦) =
{

x◦ ∈ X◦ | σ(X◦, X)- lim
t→0+

S◦
t x

◦ − x◦

t
ex. in X◦,

sup
t∈(0,1]

∥
∥S◦

t x
◦ − x◦∥∥

X◦
t

< ∞
}

,

−A◦x = σ(X◦, X)- lim
t→0+

S◦
t x

◦ − x◦

t
(x◦ ∈ D(A◦))

by [5, I.1.10 Proposition] for the mixed topology γ ◦ = τc(X◦, (X , ‖·‖X )) and the
exponential boundedness of (S◦

t )t≥0 (cf. [14, p. 6] in the bi-continuous setting).What is
missing for bi-continuity are sequential completeness of the corresponding Saks space
(X◦, ‖ · ‖X◦ , σ (X◦, X)) and (local) bi-equicontinuity.

Remark 5.10 Let (X , ‖·‖X , τX ) be a sequentially complete Saks space and (St )t≥0 a
τX -bi-continuous semigroup on X with generator (−A, D(A)). If

(i) X◦ ∩ {x ′ ∈ X ′ | ‖x ′‖X ′ ≤ 1} is sequentially complete w.r.t. σ(X◦, X),
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(ii) every ‖ · ‖X ′ -bounded σ(X◦, X)-null sequence in X◦ is τX -equicontinuous on
‖·‖X -bounded sets,

(see [8, Hypothesis B and C]), then (X◦, ‖ ·‖X◦ , σ (X◦, X)) is a sequentially complete
Saks space and (S◦

t )t≥0 is a locally σ(X◦, X)-bi-continuous semigroup on X◦ by [8,
Proposition 2.4] with generator (−A◦, D(A◦)) fulfilling

D(A◦) = {x◦ ∈ X◦ | ∃y◦ ∈ X◦ ∀x ∈ D(A) : 〈−Ax, x◦〉 = 〈x, y◦〉},
−A◦x◦ = y◦ (x◦ ∈ D(A◦)),

by [3, Lemma 1].

We refer to [14, 3.9 Example] for examples of sequentially complete Saks spaces
satisfying (i) and (ii) of Remark 5.10.

Proposition 5.11 Let (X , ‖·‖X , τX ) and (U , ‖·‖U , τU ) be Saks spaces, and B ∈
L(U ; X) such that B is also sequentially τU -τX -continuous on ‖·‖U -bounded sets.
Then B◦ := B ′|X◦ ∈ L(X◦;U ◦) and is also σ(X◦, X)-σ(U ◦,U )-continuous.

Proof Let x◦ ∈ X◦, u ∈ U and (un)n∈N a ‖·‖U -bounded sequence in U that τU -
converges to u. Since B ∈ L(U ; X) and B is also sequentially τU -τX -continuous on
‖·‖U -bounded sets, we have that (Bun)n∈N is ‖·‖X -bounded and τX -convergent to
Bu. This implies

〈B◦x◦, u〉 = 〈x◦, Bu〉 = lim
n→∞〈x◦, Bun〉,

yielding B◦x◦ ∈ U ◦ and the σ(X◦, X)-σ(U ◦,U )-continuity of B◦. Furthermore, we
note that

∥
∥B◦x◦∥∥

U◦ = ∥
∥B◦x◦∥∥

U ′ = sup
‖u‖U≤1

|〈B◦x◦, u〉|

= sup
‖u‖U≤1

|〈x◦, Bu〉| ≤ sup
‖u‖U≤1

‖Bu‖X
∥
∥x◦∥∥

X◦

= ‖B‖L(U ;X)

∥
∥x◦∥∥

X◦

and thus B◦ ∈ L(X◦;U ◦).

Remark 5.12 Let (X , ‖·‖X , τX ) and (U , ‖·‖U , τU ) be Saks spaces, B ∈ L(U ; X).
Consider the following assertions:

(a) B is τU -τX -continuous on ‖·‖U -bounded sets.
(b) B is sequentially τU -τX -continuous on ‖·‖U -bounded sets.

Then (a)⇒(b) holds. Moreover, if (U , ‖·‖U , τU ) is C-sequential, then (b)⇒(a) holds.

Proof The implication (a)⇒(b) is obviously true. Let assertion (b) hold. It follows
from [28, Theorem 2.3.1] that B is sequentially γU -τX -continuous. Hence, (a) holds
by [27, Theorem 7.4] if (U , γU ) is C-sequential.
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Proposition 5.13 Let (V , ‖·‖V ), (W , ‖·‖W ) be Banach spaces, (Z , ‖·‖Z , τZ ) a Saks
space,PγZ a directed system of seminorms that induces the topology γZ , F ∈ L(V ; Z)

and G ∈ L(W ; Z). Then the following assertions are equivalent:

(a) There exists c1 ≥ 0 such that
∥
∥F ′z′

∥
∥
V ′ ≤ c1

∥
∥G ′z′

∥
∥
W ′ for all z′ ∈ Z ′

γ .
(b) There exists c2 ≥ 0 such that

{Fv | v ∈ V , ‖v‖V ≤ 1} ⊆ {Gw | w ∈ W , ‖w‖W ≤ c2}γZ .

(c) There exists c3 ≥ 0 such that for all v ∈ V , ε > 0 and pγZ ∈ PγZ there is w ∈ W
with ‖w‖W ≤ c3 ‖v‖V such that pγZ (Fv + Gw) ≤ ε.

Moreover, we can choose c1 = c2 = c3.

Proof First, we note that if M and N are convex sets in Z , then we have N ⊆ M
γZ if

and only if
sup
z∈M

Re〈z′, z〉 ≤ sup
z∈N

Re〈z′, z〉 (3)

for all z′ ∈ Z ′
γ by [4, p. 220]. Second, let z′ ∈ Z ′

γ . For every z ∈ Z there is λz ∈ C

with |λz | ≤ 1 such that |〈z′, z〉| = Re〈z′, λz z〉. Thus, if M and N are additionally
circled sets, then (3) is equivalent to

sup
z∈M

|〈z′, z〉| ≤ sup
z∈N

|〈z′, z〉|

for all z′ ∈ Z ′
γ . Hence, setting N := {Fv | v ∈ V , ‖v‖V ≤ 1}, M := {Gw | w ∈

W , ‖w‖W ≤ c2} and observing that N , M ⊆ Z are convex, circled sets, we obtain
the equivalence of (a) and (b), and that we can choose c1 = c2.

Let us turn to the equivalence of (b) and (c). For ε > 0 and pγZ ∈ PγZ we set
Uε,pγZ

:= {z ∈ Z | pγZ (z) ≤ ε}. For any M ⊆ Z we have

M
γZ =

⋂

ε>0, pγZ ∈PγZ

M +Uε,pγZ
(4)

(see e.g. [11, 2.1.4 Proposition]). Let assertion (b) hold, v ∈ V with v �= 0, ε > 0 and
pγZ ∈ PγZ . Then there are w̃ ∈ W with ‖w̃‖W ≤ c2 and z ∈ Z with pγZ (z) ≤ ε

‖v‖V
such that F

(

− v
‖v‖V

)

= Gw̃ + z by (b) and (4). From writing

−Fv = ‖v‖V F

( −v

‖v‖V

)

= ‖v‖V (Gw̃ + z) = G(‖v‖V w̃) + ‖v‖V z,

setting w := ‖v‖V w̃, and using ‖w‖W = ‖v‖V ‖w̃‖W ≤ c2 ‖v‖V and

pγZ (Fv + Gw) = pγZ (−‖v‖V z) = ‖v‖V pγZ (z) ≤ ‖v‖V ε

‖v‖V = ε,

we conclude that (c) holds (the case v = 0 is obvious).
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Now, let assertion (c) hold. Let v ∈ V with ‖v‖V ≤ 1, ε > 0 and pγZ ∈ PγZ . Then
there is w̃ ∈ W with ‖w̃‖W ≤ c3 such that pγZ (Fv + Gw̃) ≤ ε. Setting w := −w̃,
using ‖w‖ = ‖w̃‖W ≤ c3 and Fv = Gw + Fv + Gw̃, we see that (b) holds due
to (4). The proof of the equivalence of (b) and (c) also shows that we can choose
c2 = c3.

The proof of the equivalence of (a) and (b) is just an adaptation of the proof of [4,
Theorem 2.2, (iii)⇔(iv)].

Remark 5.14 Let (Z , ‖·‖Z , τZ ) be a Saks space. Since the mixed topology γZ coin-
cides with τZ on ‖·‖Z -bounded sets, we may equivalently replace the γZ -closure by
the τZ -closure in Proposition 5.13 (b) and thus PγZ in (c) by a directed system of
seminorms PτZ that induces the topology τZ , too.

Proposition 5.15 Let (X , ‖·‖X , τX ) be a sequentially complete C-sequential Saks
space, (U , ‖·‖U , τU ) a Saks space, (St )t≥0 a locally τX -bi-continuous semigroup
on X and B ∈ L(U ; X) such that B is also τU -τX -continuous on ‖·‖U -bounded sets.
(a) (St B)t≥0 is quasi-γU -γX -equicontinuous.
(b) Let T > 0 and BT : Cτ,b([0, T ];U ) → X be given by

BT u :=
∫ T

0
ST−t Bu(t)dt .

Then BT ∈ L(Cτ,b([0, T ];U ); X) = L((Cτ,b([0, T ];U ), ‖·‖∞); (X , ‖·‖X )) and
BT is also γ∞–γX -continuous.

(c) Let BT ◦
x◦ := BT ′

x◦ for x◦ ∈ X◦. Then BT ◦
x◦ ∈ (Cτ,b([0, T ];U ), γ∞)′ for all

x◦ ∈ X◦.

Proof (a) Let M ⊆ U be a ‖·‖U -bounded set. Then the restriction B|M : M →
X of B to M is τU |M -τX -continuous. Since B ∈ L(U ; X), the set B(M) is ‖·‖X -
bounded. As the mixed topology γX coincides with τX on ‖·‖X -bounded sets by
Definition 2.1 (b), it follows that B|M is τU |M -γX -continuous, yielding that B is γU -
γX -continuous by [5, I.1.7 Corollary]. Due to [13, Theorem 3.17 (a)] (St B)t≥0 is
quasi-γU -γX -equicontinuous, proving part (a).

(b) Let PγX and PγU be directed systems of seminorms that induce the mixed
topologiesγX andγU , respectively. For pγX ∈ PγX we setVpγX

:= {x ∈ X | pγX (x) <

1} and denote its polar set by V ◦
pγX

:= {x ′ ∈ X ′
γ | ∀ x ∈ VpγX

: |x ′(x)| ≤ 1}. It
follows from part (a) that there are C ≥ 0 and pγU ∈ PγU such that for all u ∈
Cτ,b([0, T ];U ) we have

pγX (BT u) = sup
x ′∈V ◦

pγX

∣
∣
∣〈x ′,

∫ T

0
ST−t Bu(t)dt〉

∣
∣
∣ ≤ sup

x ′∈V ◦
pγX

∫ T

0
|〈x ′, ST−t Bu(t)〉|dt

≤ T sup
x ′∈V ◦

pγX

sup
t∈[0,T ]

|〈x ′, ST−t Bu(t)〉| = T sup
t∈[0,T ]

pγX (ST−t Bu(t))

≤
(a)

CT sup
t∈[0,T ]

pγU (u(t)) (5)
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where we used [20, Proposition 22.14] in the first and second to last equation to
get from pγX to supx ′∈V ◦

pγX
and back. Thus, BT is γ∞-γX -continuous. Furthermore,

since X ′
γ is norming for X by [15, Lemma 5.5 (a)], we may choose PγX such that

‖x‖X = suppγX ∈PγX
pγX (x) for all x ∈ X by [13, Remark 2.2 (c)]. Due to our previous

estimates and the exponential boundedness of (St )t≥0 we obtain

∥
∥
∥BT u

∥
∥
∥
X

= sup
pγX ∈PγX

pγX (BT u) ≤
(5)

T sup
pγX ∈PγX

sup
t∈[0,T ]

pγX (ST−t Bu(t))

= T sup
t∈[0,T ]

‖ST−t Bu(t)‖X ≤ T sup
t∈[0,T ]

‖ST−t‖L(X) ‖Bu(t)‖X
≤ T Me|ω|T ‖B‖L(U ;X) sup

t∈[0,T ]
‖u(t)‖U ,

yielding BT ∈ L(Cτ,b([0, T ];U ); X).
(c) It follows from X◦ = X ′

γ by Remark 5.8 (a) and part (b) that BT ◦
is the dual

map of the γ∞-γX -continuous map BT and hence BT ◦
x◦ ∈ (Cτ,b([0, T ];U ), γ∞)′

for all x◦ ∈ X◦.

Now,we are ready towrite down the dual system of (ConSys) and to phrase the kind
of final state observability of this dual system we are seeking for. Let (X , ‖·‖X , τX )

be a sequentially complete C-sequential Saks space, (U , ‖·‖U , τU ) a Saks space,
(St )t≥0 a locally τX -bi-continuous semigroup on X with generator (−A, D(A)), and
B ∈ L(U ; X) such that B is τU -τX -continuous on ‖·‖U -bounded sets, and T > 0.
Using Proposition 5.9 and Proposition 5.11, the dual system of (ConSys) is given by

ẋ(t) = −A◦x(t) (t > 0),

y(t) = B◦x(t) (t ≥ 0),

x(0) = x0 ∈ X◦.
(ObsSys)

Definition 5.16 We say that (ObsSys) satisfies a final state observability estimate
in (Cτ,b([0, T ];U ), γ∞)′ if there exists Cobs ≥ 0 such that

∥
∥S◦

T x
◦∥∥

X◦ ≤ Cobs

∥
∥
∥BT ◦

x◦
∥
∥
∥

(Cτ,b([0,T ];U ),γ∞)′

for all x◦ ∈ X◦.

We spend the remaining part of this section with proving that cost-uniform approx-
imate τX -null-controllability in time T via Cτ,b([0, T ];U ) of (ConSys) is equivalent
to a final state observability estimate of (ObsSys) in (Cτ,b([0, T ];U ), γ∞)′, and that
the latter space is actually a certain space of vector measures.

Let � be a Hausdorff locally compact space, (U , ϑU ) a Hausdorff locally con-
vex space and PϑU a directed system of seminorms that induces ϑU . We denote by
B(�) the Borel σ -algebra on �, by M(�) the space of all bounded complex (or real)
Borel measures on �, and by M(�; (U , ϑU )′) the space of all finitely additive vector
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measures ν : B(�) → (U , ϑU )′, i.e. ν(N1 ∪ N2) = ν(N1) + ν(N2) for all disjoint
N1, N2 ∈ B(�), such that

(i) ν(·)u ∈ M(�) for all u ∈ U , and
(ii) there exist p ∈ PϑU and C ≥ 0 such that

sup
(N ,Up)

∣
∣

∑

(N ,u)∈(N ,Up)

ν(N )u
∣
∣ ≤ C

where the supremum is taken over all finite partitions N of � into disjoint Borel
sets and all finite sets Up in U such that p(u) ≤ 1 for all u ∈ Up.

Let (U , ‖·‖U , τU ) be a Saks space and T > 0. By [26, Theorem 1], the compactness
of [0, T ] and Remark 5.2 (a) the map

�γ : M([0, T ];U ′
γ ) → (Cτ,b([0, T ];U ), γ∞)′, �γ (ν)(u) :=

∫ T

0
u(t)dν,

is a linear isomorphism. By the same theorem in combination with [26, Lemma 4] the
map

�‖·‖ : M([0, T ];U ′) → (C([0, T ]; (U , ‖·‖U )), ‖·‖∞)′, �‖·‖(ν)(u) :=
∫ T

0
u(t)dν,

is a topological isomorphism w.r.t. the semivariation norm on M([0, T ];U ′) and the
dual norm on (C([0, T ]; (U , ‖·‖U )), ‖·‖∞)′ and

∥
∥�‖·‖(ν)

∥
∥

(C([0,T ];(U ,‖·‖U )),‖·‖∞)′ = ‖ν‖var (ν ∈ M([0, T ];U ′))

where the semivariation norm is given by

‖ν‖var := sup
(N ,U‖·‖U )

∣
∣

∑

(N ,u)∈(N ,U‖·‖U )

ν(N )u
∣
∣ (ν ∈ M([0, T ];U ′))

and the supremum is taken over all (N ,U‖·‖U ) as in (ii) above with p replaced by
‖·‖U . We note that it follows from U ′

γ being a topological subspace of U ′ (see [5,
I.1.18 Proposition]) and γU being coarser than the ‖·‖U -topology, that M([0, T ];U ′

γ )

is a topological subspace of M([0, T ];U ′) (if equipped with the relative topology).

Theorem 5.17 Let (X , ‖·‖X , τX ) be a sequentially complete C-sequential Saks space,
(U , ‖·‖U , τU ) a Saks space, (St )t≥0 a locally τX -bi-continuous semigroup on X and
B ∈ L(U ; X) such that B is also τU -τX -continuous on ‖·‖U -bounded sets. For T > 0
we have B◦S◦

(·)x◦ � λ ∈ M([0, T ];U ′
γ ) and BT ◦

x◦ = �γ (B◦S◦
T−(·)x◦ � λ) for all

x◦ ∈ X◦ as well as
∥
∥
∥BT ◦

x◦
∥
∥
∥

(C([0,T ];(U ,‖·‖U )),‖·‖∞)′
=

∥
∥
∥B◦S◦

(·)x
◦ � λ

∥
∥
∥

var
(x◦ ∈ X◦)
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where

(B◦S◦
(·)x

◦ � λ)(N )u :=
∫

N
〈B◦S◦

t x
◦, u〉dt (N ∈ B([0, T ]), u ∈ U )

for the Lebesgue measure λ.

Proof. First, we recall that X◦ = X ′
γ by Remark 5.8 (a) as the C-sequential space

(X , γX ) is Mazur. Let x◦ ∈ X◦. Due to Proposition 5.15 (b) and Proposition 5.9 the
map BT is γ∞-γX -continuous and

〈BT ◦
x◦, u〉 =

∫ T

0
〈x◦, ST−t Bu(t)〉dt =

∫ T

0
〈B◦S◦

T−t x
◦, u(t)〉dt

for all u ∈ Cτ,b([0, T ];U ).
For N ∈ B([0, T ]) and u ∈ U we define (B◦S◦

(·)x◦�λ)(N )u := ∫

N 〈B◦S◦
t x

◦, u〉dt
and show that B◦S◦

T−(·)x◦ �λ ∈ M([0, T ];U ′
γ ). By the proof of Proposition 5.15 (b)

there are C ≥ 0 and pγU ∈ PγU such that

|〈B◦S◦
T−t x

◦, u〉| = |〈x◦, ST−t Bu〉| ≤ CpγU (u)

for all t ∈ [0, T ] and all u ∈ U . In combination with the continuity of the map
t �→ 〈B◦S◦

T−t x
◦, u〉 on [0, T ] by Proposition 5.9 and Proposition 5.11 this implies

that B◦S◦
T−(·)x◦ � λ : B([0, T ]) → U ′

γ is a well-defined finitely additive vector
measure and that

(B◦S◦
T−(·)x

◦ � λ)(·)u =
∫

(·)
〈B◦S◦

T−t x
◦, u〉dt (u ∈ U )

belongs to M(�). LetN be a finite partition of [0, T ] into disjoint Borel sets and UpγU
a finite subset of U such that pγU (u) ≤ 1 for all u ∈ UpγU

. Then we have

∣
∣

∑

(N ,u)∈(N ,UpγU
)

(B◦S◦
T−(·)x

◦ � λ)(N )u
∣
∣ = ∣

∣
∑

(N ,u)∈(N ,UpγU
)

∫

N
〈B◦S◦

T−t x
◦, u〉dt∣∣

≤
∑

(N ,u)∈(N ,UpγU
)

λ(N )CpγU (u)

≤ C
∑

N∈N
λ(N ) = Cλ([0, T ]) = CT ,

yielding B◦S◦
T−(·)x◦�λ∈M([0, T ];U ′

γ ).Analogously, B◦S◦
(·)x◦�λ∈M([0, T ];U ′

γ ).
Finally, since

〈BT ◦
x◦, u〉 =

∫ T

0
〈B◦S◦

T−t x
◦, u(t)〉dt =

∫ T

0
u(t)d(B◦S◦

T−(·)x
◦ � λ)

= �γ (B◦S◦
T−(·)x

◦ � λ)(u)
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for all u ∈ Cτ,b([0, T ];U ) and

〈BT ◦
x◦, u〉 = �γ (B◦S◦

T−(·)x
◦ � λ)(u) = �‖·‖(B◦S◦

T−(·)x
◦ � λ)(u)

for all u ∈ C([0, T ]; (U , ‖·‖U )), it holds that

∥
∥
∥BT ◦

x◦
∥
∥
∥

(C([0,T ];(U ,‖·‖U )),‖·‖∞)′
=

∥
∥
∥�‖·‖(B◦S◦

T−(·)x
◦ � λ)

∥
∥
∥

(C([0,T ];(U ,‖·‖U )),‖·‖∞)′

=
∥
∥
∥B◦S◦

T−(·)x
◦ � λ

∥
∥
∥

var
.

LetN be a finite partition of [0, T ] and U‖·‖U a finite set inU such that ‖u‖U ≤ 1 for
all u ∈ U‖·‖U . Then T − N := {T − N | N ∈ N } is also a finite partition of [0, T ],
and

∑

(N ,u)∈(N ,U‖·‖U )

(B◦S◦
T−(·)x

◦ � λ)(N )u =
∑

(N ,u)∈(N ,U‖·‖U )

∫

N
〈B◦S◦

T−t x
◦, u〉dt

= −
∑

(T−N ,u)∈(T−N ,U‖·‖U )

∫

T−N
〈B◦S◦

t x
◦, u〉dt .

Thus, we obtain

∥
∥
∥BT ◦

x◦
∥
∥
∥

(C([0,T ];(U ,‖·‖U )),‖·‖∞)′
=

∥
∥
∥B◦S◦

T−(·)x
◦ � λ

∥
∥
∥

var
=

∥
∥
∥B◦S◦

(·)x
◦ � λ

∥
∥
∥

var
.

Theorem 5.18 Let (X , ‖·‖X , τX ) be a sequentially complete C-sequential Saks space,
(U , ‖·‖U , τU ) a Saks space, (St )t≥0 a locally τX -bi-continuous semigroup on X and
B ∈ L(U ; X) such that B is also τU -τX -continuous on ‖·‖U -bounded sets, and T > 0.
Then the following assertions are equivalent:

(a) The system in (ConSys) is cost-uniform approximately τX -null-controllable in time
T via Cτ,b([0, T ];U ).

(b) The system in (ObsSys) satisfies a final state observability estimate in (Cτ,b([0, T ];
U ), γ∞)′.

If additionally τU = τ‖·‖U , then each of the preceding assertions is equivalent to:

(c) There exists Cobs ≥ 0 such that

∀ x◦ ∈ X◦ : ∥
∥S◦

T x
◦∥∥

X◦ ≤ Cobs

∥
∥
∥B◦S◦

(·)x
◦ � λ

∥
∥
∥

var
.

Proof This statement follows from the equivalence of (a) and (c) in Proposition 5.13
with V := Z := X , W := Cτ,b([0, T ];U ) equipped with ‖·‖∞, F := ST and
G := BT in combination with Theorem 5.17, Remark 5.14 and X◦ = X ′

γ .
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Even in the setting of Banach spaces, i.e. τX = τ‖·‖X , τU = τ‖·‖U , where we have
Cτ,b([0, T ];U ) = C([0, T ]; (U , ‖·‖U )) and

(Cτ,b([0, T ];U ), γ∞)′ = (C([0, T ]; (U , ‖·‖U )), ‖·‖∞)′ = M([0, T ];U ′)

as well as X◦ = X ′, the results of Theorem 5.18 seem to be new.
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