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Abstract
An optimal control problem associated to the Keller–Segel with logistic reaction sys-
tem is studied in 2D domains. The control acts in a bilinear form only in the chemical
equation. The existence of an optimal control and a necessary optimality system are
deduced. The main novelty is that the control can be rather singular and the state (cell
density u and the chemical concentration v) remains only in a weak setting, which is
not usual in the literature.
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1 Introduction

1.1 The Controlled Model

In this work we study an optimal control problem for the (attractive or repulsive)
Keller–Segel model in a 2D domain � ⊂ R

2 with logistic source term and bilinear
control acting on the chemical equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂t u − �u + κ∇ · (u ∇v) = r u − μ u2 in � × (0, T ),

∂tv − �v + v = u + f v 1�c in� × (0, T ),

∂nu = ∂nv = 0 on∂� × (0, T ),

u(0, ·) = u0 ≥ 0, v(0, ·) = v0 ≥ 0 in�.

(1)

Here, f : Qc := (0, T ) × �c → R is the control with �c ⊂ � ⊂ R
2

the control domain (denoting 1�c the characteristic function in �c), and the states
u, v : Q := (0, T ) × � → R

2+ are the cellular density and chemical concentration,
respectively. Moreover, r , μ > 0 are coefficients of the logistic reaction, and κ ∈ R

is the chemotaxis coefficient (κ > 0 models attraction and κ < 0 repulsion). We
are interested in studying of optimal control problem associated to the weak solution
setting for system (1), see Definition 1 below.

1.2 Previous Results

In the last decades, there has been a surge of activity on the study of the chemotaxis
model describing the motion of cells directed by the concentration gradient of a chem-
ical substance. Moreover, it is important to consider the biological situation where the
bacterial population may proliferate according to a logistic law and the chemical sig-
nal is produced by cells. On the other hand, the chemotaxis-fluid systems, which is
basically the chemotaxis model coupled with the Navier–Stokes equations, appear
when the interactions between cells and the chemical signal is also extended with
liquid environments. For more details, see the excellent review [3] and the references
therein.

Plenty of analytical results have been obtained for the “uncontrolled" problem (1),
that is, for f ≡ 0. Many of these results are based on classical in time solutions of
such systems following Amann’s works (see, for instance [2]). Amongst the many
articles related to this uncontrolled system, let us mention those on existence of weak
and strong solutions in R

2. In this case, without considering logistic reaction (i.e.
r = μ = 0), the existence of global weak solutions was provided by Liu and Lorz
[16]. In two-dimensional bounded convex domains, the existence of (global) classical
solutions was obtained by Winkler [25]. In the presence of a logistic source, the
existence of global weak solutions (and their long time behavior) has been analyzed
in [14] by Lankeit. In this case, the existence of global mild solutions was examined
in [8]. For 3D domains, we also refer [26] and the references therein.

It is important to mention that remarkable progress has been made in the mathemat-
ical and numerical analysis of optimal control problems for viscous flows described
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by the Navier–Stokes equations and other related models, see e.g., [1, 4, 19]. However,
the literature related to optimal control for chemotaxis problems is still scarce. The
reader can consult distributed linear control in [7] for a mathematical model of cancer
invasion and [21] for the Keller–Segel system. In [17], the authors established the
existence of an optimal control for a parabolic attraction-repulsion chemotaxis model
with logistic source in 2D by introducing a linear distributed (positive) control in the
chemical equation. The case of a Neumann boundary linear control for a chemotaxis
system is treated in [22] for a one-dimensional problem. In these cases, positivity of the
control needs to be imposed to guarantee the positivity of the states. As far as we know,
the case of distributed bilinear control is only treated in [10] for a one-dimensional
system of Keller–Segel type, acting either in the equation for the cell density or the
chemical concentration. In [20], an optimal (distributed) control problem is studied
constrained to a stationary chemotaxis model coupled with the Navier–Stokes equa-
tions. We note that in [5, 6] some results are provided related to the controllability
for the Keller–Segel system and the chemotaxis-fluid model with consumption of
chemoattractant substance, respectively. These results are based on Carleman-type
estimates for the solutions of the adjoint system. Recently, a bilinear optimal control
problem associated to the chemotaxis-Navier–Stokes model (without logistic source)
in bounded 3D domains was examined in [18]. For the chemo-repulsion case, this
problem was studied in [11, 13] for 2D and 3D domains respectively, and in [12] for
2D domains with a potential nonlinear production term, by changing the production
term u in the v equation of (1) by u p, with 1 < p ≤ 2.

1.3 Main Contributions of the Paper

We state the definition of weak solutions and then we will obtain the existence and
uniqueness of such solutions (u, v) of (1)which are boundedwith respect to the control
f .

Definition 1 Let f ∈ L2+(Qc) := L2+(0, T ; L2+(�c)), u0 ∈ L2(�), v0 ∈
W 1+,2+(�) with u0 ≥ 0 and v0 ≥ 0 a.e. in �. A pair (u, v) is called a weak solution
of problem (1) in (0, T ), if

u ≥ 0, v ≥ 0 a.e. in Q = (0, T ) × �,

u ∈ W2 := {u ∈ C([0, T ]; L2(�)) ∩ L2(0, T ; H1(�)), ∂t u ∈ L2(0, T ; H1(�)′)},
v ∈ X2+ := {v ∈ C([0, T ];W 1+,2+(�)) ∩ L2+(0, T ;W 2,2+(�)), ∂tv ∈ L2+(Q)},

the equation (1)1 and boundary condition for u hold in a variational sense, equation
(1)2 and boundary condition for v pointwisely, and initial conditions (1)3 and (1)4 in
the L2(�) and W 1+,2+(�) sense, respectively.

Hereafter, L2+ means L2+ε for small enough ε. Notice that, since we are in 2D
bounded domains, v ∈ C([0, T ];W 1+,2+(�)) implies v ∈ L∞(0, T ; L∞(�)), hence
using that f ∈ L2+(Qc) one has f v ∈ L2+(Q). That means that the maximal regular-
ity expected is v ∈ X2+. The previous weak regularity for u ∈ W2 will be enough to
solve the optimal control problem formulated in (3), which represents an improvement
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over previous optimal control results that needed the strong solution setting to obtain
the first order necessary optimality system (5).

Theorem 1 Let u0 ∈ L2(�), v0 ∈ W 1+,2+(�) with u0 ≥ 0 and v0 ≥ 0 in �, and
f ∈ L2+(Qc). There exists a unique weak solution (u, v) of system (1) in the sense of
Definition 1. Moreover, there exists a positive constant

K1 := K1(r , μ, κ, |�|, T , ‖u0‖L2 , ‖v0‖W 1+,2+ , ‖ f ‖L2+(Qc)
),

such that

‖(u, v)‖W2×X2+ ≤ K1, (2)

where we denote

‖(u, v)‖W2×X2+ := ‖(∂t u, ∂tv)‖L2(H1)′×L2+(L2+) + ‖(u, v)‖C(L2×W 1+,2+)

+‖(u, v)‖L2(H1)×L2+(0,T ;W 2,2+)

Finally, for any r , μ, κ,�, T , u0, v0, the constant K1 is bounded if f is bounded in
L2+(Qc).

The second main result of this paper will be the existence of a global optimal solution
for the following problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find (u, v, f ) ∈ W2 × X2+ × F minimizing the functional
J (u, v, f ) := γu

2

∫ T
0 ‖u(t) − ud(t)‖2L2(�)

dt

+ γv

2

∫ T
0 ‖v(t) − vd(t)‖2L2(�)

dt + γ f
2+

∫ T
0 ‖ f (t)‖2+

L2+(�c)
dt

subject to (u, v, f ) be a weak solution of the PDE system (1).

(3)

Here, the pair (ud , vd) ∈ L2(Q)2 represents the target states and the nonnegative
numbers γu , γv and γ f measure the cost of the states and control, respectively. With
respect to the control constraint, we assume

F ⊂ L2+(Qc) to be a nonempty, closed and convex set. (4)

The functional J defined in (3) describes the deviation of the cell density u and the
chemical concentration v from a target cell density ud and chemical concentration vd ,
respectively, plus the cost of the control f measured in the L2+-norm.

Theorem 2 Let (u0, v0) ∈ L2(�) × W 1+,2+(�) with u0 ≥ 0 and v0 ≥ 0 in �. If
either γ f > 0 orF is bounded in L2+(Qc), then the bilinear optimal control problem
(3) has at least one global optimal solution (ũ, ṽ, f̃ ).

Finally, we obtain the existence and uniqueness of Lagrange multipliers associated to
any local optimal control of (3):
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Theorem 3 Let s̃ = (ũ, ṽ, f̃ ) ∈ Sad be a local optimal solution of (3). Then, there
exists a unique Lagrange multiplier (λ, η) ∈ X2×W2 satisfying the optimality system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−∂tλ − �λ + κ ∇λ · ∇ṽ − η − rλ + 2μũλ = γu(ũ − ud) in Q,
−∂tη − �η − κ ∇ · (ũ∇λ) + η − f̃ η 1�c = γv(ṽ − vd) in Q,

λ(T ) = 0, η(T ) = 0 in �,

∂λ
∂n = 0,

∂η

∂n
= 0 on (0, T ) × ∂�,

(5)

∫ T

0

∫

�c

(γ f sgn f̃ | f̃ |1+ + ṽ η)( f − f̃ ) ≥ 0, ∀ f ∈ F . (6)

Remark 1 If γ f > 0 and F ≡ L2+(Qc) (that is, no convexity constraints on the
control are imposed), then optimality condition (6) becomes the equality

γ f sgn f̃ | f̃ |1+1�c + ṽ η 1�c = 0.

The rest of the paper is organized as follows. The proofs of Theorems 1, 2 and 3
are given in Sects. 2, 3 and 4, respectively. Conclusions will be made at Sect. 5.

Along this manuscript, the following result on L p regularity will be considered.

Theorem 4 ([9], page 344) For � ∈ C2, let 1 < p < 3, u0 ∈ W 2−2/p,p(�) and
g ∈ L p(Q). Then, the problem

∂t u − �u = g in Q, u(0, ·) = u0 in �, ∂u
∂n = 0 on (0, T ) × ∂�,

admits a unique solution u such that

u ∈ C([0, T ];W 2−2/p,p) ∩ L p(W 2,p), ∂t u ∈ L p(Q).

Moreover, there exists a positive constant C := C(p,�, T ) such that

‖u‖C(W 2−2/p,p) + ‖∂t u‖L p(Q) + ‖u‖L p(W 2,p) ≤ C(‖g‖L p(Q) + ‖u0‖W 2−2/p,p ).

2 Proof of Theorem 1

We prove the existence via the Leray–Schauder fixed point theorem (the precise
statement of this result can be consulted, for instance, in [13], Theorem 2) and the
uniqueness by a comparison argument.

2.1 Existence

Let us introduce the auxiliary spaces

Xu := L4−(Q) and Xv := L∞(Q),
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and the operator R : Xu ×Xv → W2×X2+ ↪→ Xu ×Xv defined by R(ū, v̄) = (u, v),
where (u, v) is the solution of the decoupled linear problem

⎧
⎪⎪⎨

⎪⎪⎩

∫ T
0 〈∂t u, ϕ〉 + ∫ T

0

∫

�
∇u · ∇ϕ + μ ū+ u ϕ

= ∫ T
0

∫

�
r ū+ϕ − κ

∫ T
0

∫

�
ū+∇v · ∇ϕ, ∀ϕ ∈ L2(H1),

∂tv − �v + v = ū+ + f v̄+ 1�c in Q,

u(0) = u0, v(0) = v0, in �, ∂v
∂n = 0, on (0, T ) × ∂�,

(7)

where ū+ := max{ū, 0} ≥ 0, v̄+ := max{v̄, 0} ≥ 0. In fact, first we compute v

and after u. In the following lemmas, we will prove that the hypotheses of the Leray-
Schauder fixed point theorem are satisfied.

Lemma 5 The operator R : Xu × Xv → Xu × Xv is well defined and compact.

Proof Since f ∈ L2+(Qc) and v̄ ∈ L∞(Q), then f v̄ ∈ L2+(Q). Hence, there exists
a unique v ∈ X2+ solution of the v-problem in (7). Considering the linear parabolic
u-problem in (7), one has u ∈ W2 owing to v ∈ X2+, hence ∇v ∈ L4+(Q) and then
ū+∇v ∈ L2(Q). Finally, since R maps bounded sets of Xu ×Xv into bounded sets of
W2 × X2+, then R is compact from Xu × Xv to itself. ��
Lemma 6 The set

Tα = {(u, v) ∈ W2 × X2+ : (u, v) = αR(u, v) for some α ∈ [0, 1]}

is bounded in Xu × Xv (independently of α ∈ [0, 1]). In fact, Tα is also bounded in
W2 × X2+, because there exists

M = M(r , μ, κ, |�|, T , ‖u0‖L2 , ‖v0‖W 1+,2+ , ‖ f ‖L2+(Qc)
) > 0, (8)

with M independent of α, such that

‖(u, v)‖W2×X2+ ≤ M, ∀ (u, v) ∈ Tα, ∀α ∈ [0, 1]. (9)

Proof Let (u, v) ∈ Tα for α ∈ (0, 1] (the case α = 0 is trivial). Then, due to Lemma 5,
(u, v) ∈ W2 × X2+ and satisfies the problem

⎧
⎨

⎩

∫ T
0 〈∂t u, ϕ〉 + ∫ T

0

∫

�
∇u · ∇ϕ + μ u+ u ϕ

= α
∫ T
0

∫

�
r u+ϕ − κ

∫ T
0

∫

�
u+∇v · ∇ϕ, ∀ϕ ∈ L2(H1),

∂tv − �v + v = α u+ + α f v+ 1�c a.e. in Q,

(10)

endowedwith the corresponding initial and boundary conditions. Therefore, it suffices
to look for a bound of (u, v) inW2 × X2+ independent of α. This bound is carried out
into six steps:

Step 1: Non-negativity: u, v ≥ 0.
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Taking, in (10)1, ϕ = u− := min{u, 0} ≤ 0 (that is possible because u ∈ L2(H1)),
and considering that u− = 0 if u ≥ 0, ∇u− = ∇u if u ≤ 0, and ∇u− = 0 if u > 0,
we have

1

2

d

dt
‖u−‖2 + ‖∇u−‖2 = κ(u+∇v,∇u−) + α r (u+, u−) − μ ((u+)u, u−) = 0.

Thus u− ≡ 0 and, consequently, u ≥ 0. Similarly, testing (10)2 by v−,

1

2

d

dt
‖v−‖2 + ‖∇v−‖2 + ‖v−‖2 = α(u+, v−) + α( f v+, v−)�c ≤ 0,

which implies v− ≡ 0 and then v ≥ 0. In particular, (u, v, f ) is also the solution
of problem (10) changing u+ by u and v+ by v. Therefore, fixed points of R are in
particular weak solutions of problem (1).

Step 2: Boundedness of
∫

�
u(x, t) dx .

Taking ϕ = 1 in (10)1, we obtain

d

dt

∫

�

u(x, t) dx + μ

∫

�

u2(x, t) dx = α r
∫

�

u(x, t) dx . (11)

Using the Cauchy-Schwartz inequality
∫

�
u(x, t) dx ≤ |�|1/2 (∫

�
u2(x, t) dx

)1/2

and the change of variables y(t) = ∫

�
u(x, t) dx , (11) becomes

y′(t) + μ

|�| y(t)
2 ≤ r y(t). (12)

Through a standard comparison argument with the logistic ODE z′ = r z(1 − z/K )

for the “capacity" constant K = r |�|/μ, from inequality (12) we arrive at the bound

y(t) =
∫

�

u(x, t) dx ≤ max

{

m0,
r |�|
μ

}

:= K1, ∀t ≥ 0. (13)

Step 3: Boundedness of u in L2(0, T ; L2(�)).
Integrating directly over (0, T ) for a fixed T > 0 in (11), and using (13), we obtain

∫ T

0

∫

�

u2(x, t) dx dt ≤ m0 + α r K1 T

μ
≤ m0 + r K1 T

μ
:= K2(T ),

which implies that

‖u‖2L2(Q)
≤ K2(T ).

Step 4: Boundedness of v in L∞(0, T ; H1(�)) ∩ L2(0, T ; H2(�)).
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Taking v as test function in (10)2 and using that α ∈ (0, 1], we obtain

1

2

d

dt
‖v‖2L2 + ‖v‖2H1 ≤ ‖u‖L2‖v‖L2 + ‖ f ‖L2‖v‖2L4

≤ ‖u‖L2‖v‖L2 + ‖ f ‖L2‖v‖L2‖v‖H1 ≤ δ ‖v‖2H1 + Cδ

(
‖u‖2L2 + ‖ f ‖2L2‖v‖2L2

)

(14)

where we have used the following standard inequality in 2D domains

‖u‖L4 ≤ C‖u‖1/2
L2 ‖u‖1/2

H1 , ∀u ∈ H1(�).

Therefore, taking δ small enough in (14), we get

d

dt
‖v‖2L2 + ‖v‖2H1 ≤ C

(
‖u‖2L2 + ‖ f ‖2L2‖v‖2L2

)
.

From Gronwall’s lemma, and due to the boundedness of u and f in L2(Q), one has v

bounded in L∞(0, T ; L2(�)) ∩ L2(0, T ; H1(�)). Now, taking −�v as test function
in (10)2, we obtain

1

2

d

dt
‖∇v‖2L2 + ‖�v‖2L2 + ‖∇v‖2L2 = −α

∫

�

u �v dx − α

∫

�

f v �v dx

≤ ‖u‖L2‖�v‖L2 + ‖ f ‖L2+‖v‖H1‖�v‖L2

≤ δ
(
‖�v‖2L2 + ‖v‖2H1

)
+ Cδ

(
‖u‖2L2 + ‖ f ‖2L2+‖v‖2H1

)
. (15)

Adding (14) to (15) and taking δ small enough, we obtain

d

dt
‖v‖2H1 + ‖v‖2H2 ≤ C

(
‖u‖2

L2 + ‖ f ‖2
L2+‖v‖2

H1

)
.

Hence, v is bounded in L∞(0, T ; H1(�)) ∩ L2(0, T ; H2(�)).
Step 5: u is bounded in L∞(0, T ; L2(�)) ∩ L2(0, T ; H1(�)).
By testing (10)1 by u, after a few computations, we get

1

2

d

dt
‖u‖2L2 + ‖∇u‖2L2 + μ ‖u‖3L3

≤ κ ‖u‖L4‖∇v‖L4‖∇u‖L2 + r α ‖u‖2L2 ≤ C‖u‖2L2‖∇v‖4L4 + 1

2
‖u‖2H1 + r ‖u‖2L2 .

Adding ‖u‖2
L2 to both sides of this inequality, we arrive at

d

dt
‖u‖2L2 + ‖u‖2H1 ≤ C‖∇v‖4L4‖u‖2L2 + 2 (r + 1)‖u‖2L2 .
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Therefore, applying the Gronwall lemma and using Step 4, we obtain that u is bounded
in L∞(0, T ; L2(�)) ∩ L2(0, T ; H1(�)).

Step 6: v is bounded in L∞(0, T ;W 1+,2+(�)) ∩ L2+(0, T ;W 2,2+(�)).
By interpolation, from Step 4 and Step 5 we also have bounds for v in L∞−(Q)

and u in L4(Q), respectively. Therefore, u+ f v ∈ L2+(Q). Then, the heat regularity
result in Theorem 4 allows us to deduce that v ∈ X2+ and to obtain the corresponding
bound on X2+ depending on ‖v0‖W 1+,2+ (�)

and the bound of u + f v in L2+(Q).
This finishes the proof of Lemma 6. ��

Lemma 7 The operator R : Xu × Xv → Xu × Xv , defined in (7), is continuous.

The proof is similar to Lemma 3.4 in [11].
Consequently, from Lemmas 5, 6 and 7, the Leray-Schauder fixed point theorem

implies that the map R(ū, v̄) has at least one fixed point R(u, v) = (u, v) which is a
weak solution to system (1) in (0, T ).

Finally, we observe that estimate (2) is shown following the same steps given in
the proof of Lemma 6 above (now for the case α = 1).

2.2 Uniqueness of Solution

This proof follows the same argument as in [11], but it is included here for the reader
convenience. Let (u1, v1), (u2, v2) ∈ W2 × X2 be two weak solutions of system (1).
Substracting equations (1) for (u1, v1) and (u2, v2), and denoting (u, v) := (u1 −
u2, v1 − v2), we obtain the following system

⎧
⎪⎪⎨

⎪⎪⎩

∂t u − �u + κ ∇ · (u1∇v + u∇v2) = r u − μ u (u1 + u2) in Q,

∂tv − �v + v = u + f v 1�c in Q,

u(0, ·) = 0, v(0, ·) = 0 in �,
∂u
∂n = 0, ∂v

∂n = 0 on (0, T ) × ∂�.

(16)

Testing (16)1 by u ∈ L2(H1) and (16)2 by v − �v ∈ L2(Q), we have

1

2

d

dt

(
‖u‖2 + ‖∇v‖2

)
+ ‖∇u‖2 + ‖�v‖2 + ‖∇v‖2 + μ

∫

�

u2 (u1 + u2) dx

= r ‖u‖2 + κ (u1∇v + u∇v2,∇u) + (u + f v,−�v). (17)

Note that the term μ

∫

�

u2 (u1 + u2) dx has the good sign.

Applying Hölder and Young inequalities, we obtain

(u1∇v,∇u) ≤ ‖u1‖L4‖∇v‖L4‖∇u‖ ≤ C‖u1‖L4‖∇v‖1/2‖∇v‖1/2
H1 ‖∇u‖

≤ δ(‖∇v‖2H1 + ‖∇u‖2) + Cδ‖u1‖4L4‖∇v‖2, (18)

(u∇v2,∇u) ≤ ‖u‖L4‖∇v2‖L4‖∇u‖ ≤ C‖u‖1/2‖u‖1/2
H1 ‖∇v2‖L4‖∇u‖

≤ δ‖u‖2H1 + Cδ‖∇v2‖4L4‖u‖2, (19)
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(u, v − �v) ≤ δ(‖v‖2 + ‖�v‖2) + Cδ‖u‖2, (20)

( f v, v − �v) ≤ ‖ f ‖L2+‖v‖H1‖v − �v‖L2 ≤ δ‖v‖2H2 + Cδ‖ f ‖2L2+‖v‖2H1 .

(21)

Using (18)-(21) in (17), we obtain

d
dt

(
‖u‖2 + ‖v‖2

H1

)
+ ‖u‖2

H1 + ‖v‖2
H2

≤ C
(
‖u‖2 + ‖u1‖4L4‖∇v‖2 + ‖∇v2‖4L4‖u‖2 + ‖ f ‖2

L2+‖v‖2
H1

)
.

Since ‖u1‖4L4 +‖∇v2‖4L4 +‖ f ‖2
L2+ ∈ L1(0, T ) and u0 = v0 = 0, Gronwall’s lemma

implies uniqueness. This finishes the proof of Theorem 1.

3 Proof of Theorem 2

The admissible set for the optimal control problem (3) is defined by

Sad = {s = (u, v, f ) ∈ W2 × X2+ × F : s is a weak solution of(1)in (0, T )}.

From Theorem 1 one has Sad �= ∅. Let {sm}m∈N := {(um, vm, fm)}m∈N ⊂ Sad be a
minimizing sequence of J , that is, lim

m→+∞ J (sm) = inf
s∈Sad

J (s). Then, by the definition

of Sad , for eachm ∈ N, sm satisfies system (11)1 variationally in L2((H1)′) and (11)2
a.e. (t, x) ∈ Q.

From the definition of J and the assumption that either γ f > 0 or F is bounded in
L2+(Qc), it follows that

{ fm}m∈N is bounded in L2+(Qc). (22)

From (8)–(9), there exists C > 0, independent of m, such that

‖(um, vm)‖W2×X2+ ≤ C . (23)

Therefore, from (22), (23), and taking into account that F is a closed convex subset
of L2+(Qc) (hence it is weakly closed in L2+(Qc)), there exists s̃ = (ũ, ṽ, f̃ ) ∈
W2× X2+ ×F such that, for some subsequence of {sm}m∈N, still denoted by {sm}m∈N,
the following convergences hold, as m → +∞:

um → ũ weakly in L2(H1) and weakly* in L∞(L2), (24)

vm → ṽ weakly in L2+(W 2,2+) and weakly* in L∞(W 1+,2+), (25)

∂t um → ∂t ũ weakly in L2((H1)′), (26)

∂tvm → ∂t ṽ weakly in L2+(Q), (27)

fm → f̃ weakly in L2+(Qc), and f̃ ∈ F . (28)
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From convergences (24)–(27), using Sobolev embeddings and Aubin-Lions compact-
ness results (see, for instance, [15, 23]), one has

(um, vm) → (ũ, ṽ) strongly in C0([0, T ]; ((H1(�))′ × L2(�)), (29)

vm → ṽ strongly in L∞(Q)), (30)

(um,∇vm) → (ũ,∇ṽ) strongly in L4−(Q)) × L4+(Q). (31)

In particular, using (28), (30) and (31), the limit of the nonlinear terms of (11) can be
controlled as follows:

um · ∇vm → ũ · ∇ṽ strongly in L2(Q), (32)

fmvm1�c → f̃ ṽ 1�c weakly in L2+(Q). (33)

Moreover, from convergence (29), (um(0), vm(0)) converges to (ũ(0), ṽ(0)) in
H1(�)′ × L2(�), and since um(0) = u0, vm(0) = v0, it follows that ũ(0) = u0
and ṽ(0) = v0. Thus, s̃ satisfies the initial conditions given in (1). Therefore, consid-
ering the convergences (24)–(33), and taking the limit in Eq. (10) replacing (u, v, f )
by (um, vm, fm), as m goes to +∞, it is possible to conclude that s̃ = (ũ, ṽ, f̃ ) is a
weak solution of the system (1), that is, s̃ ∈ Sad . Therefore,

lim
m→+∞ J (sm) = inf

s∈Sad

J (s) ≤ J (s̃). (34)

On the other hand, since J is lower semicontinuous on Sad , one has J (s̃) ≤
lim inf
m→+∞ J (sm), which jointly with (34), implies that s̃ is a global optimal control.

4 Proof of Theorem 3

4.1 A Generic LagrangeMultipliers Theorem

We consider the Lagrange multipliers theorem given in [27] (see also [24, Chapter 6],
for more details) that we will apply to get first-order necessary optimality conditions
for any local optimal solution (ũ, ṽ, f̃ ) of problem (3). First, we consider the following
(generic) optimization problem:

min
s∈M J (s) subject to G(s) = 0, (35)

where J : X → R is a functional, G : X → Y is an operator, X and Y are Banach
spaces, and M is a nonempty closed and convex subset of X. The corresponding
admissible set for problem (35) is

S = {s ∈ M : G(s) = 0}.
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Definition 2 (Lagrangian) The functional L : X × Y
′ → R given by

L(s, ξ) = J (s) − 〈ξ,G(s)〉Y′

is called the Lagrangian functional related to problem (35).

Definition 3 (Lagrange multiplier) Let s̃ ∈ S be a local optimal solution for problem
(35). Suppose that J and G are Fréchet differentiable in s̃. Then, any ξ ∈ Y

′ is called
a Lagrange multiplier for (35) at the point s̃ if

L′
s(s̃, ξ)[r ] = J ′(s̃)[r ] − 〈ξ,G ′(s̃)[r ]〉Y′ ≥ 0, ∀r ∈ C(s̃), (36)

where C(s̃) = {θ(s − s̃) : s ∈ M, θ ≥ 0} is the conical hull of s̃ inM.

Definition 4 Let s̃ ∈ S. It will be said that s̃ is a regular point if

G ′(s̃)[C(s̃)] = Y.

Theorem 8 ([24, Theorem 6.3, p. 330], [27, Theorem 3.1]) Let s̃ ∈ S be a local
optimal solution for problem (35). Suppose that J is Fréchet differentiable in s̃, and
G is continuously Fréchet-differentiable in s̃. If s̃ is a regular point, then there exist
Lagrange multipliers for (35) at s̃.

4.2 Application of the LagrangeMultiplier Theory

Now, in order to reformulate the optimal control problem (3) in the abstract setting
(35), we introduce the Banach spaces

X := W2 × X̃2+ × L2+(Qc), Y := L2((H1)′) × L2+(Q),

where

X̃2+ = {v ∈ X2+ : ∂nv|∂� = 0},

and the operator G = (G1,G2) : X → Y, where

G1 : X → L2((H1)′), G2 : X → L2+(Q)

are defined at each point s = (u, v, f ) ∈ X by

⎧
⎨

⎩

〈G1(s), ϕ〉 = 〈∂t u, ϕ〉L2(H1),L2((H1)′) + (∇u − κ u∇v,∇ϕ)L2

+ (−r u + μ u2, ϕ)L2 , ∀ϕ ∈ L2(H1),

G2(s) = ∂tv − �v + v − u − f v 1�c in L2+(Q).

Thus, the optimal control problem (3) is reformulated as follows

min
s∈M J (s) subject to G(s) = 0, (37)
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where

M := (û, v̂, 0) + Ŵ2 × X̂2+ × F , (38)

with (û, v̂) the global weak solution of (1) without control, i.e., f̂ = 0, F is defined
in (4) and

Ŵ2 = {u ∈ W2 : u(0) = 0}, X̂2+ = {v ∈ X2+ : v(0) = 0, ∂nv|∂� = 0}.

Remark 2 From Definition 2, the Lagragian associated to the optimal control problem
(37) is the functional L : X × L2(H1) × L2−(Q) → R given by

L(s, λ, η) = J (s) − 〈λ,G1(s)〉L2(H1),L2((H1)′) − (η,G2(s))L2−,L2+ .

The set M defined in (38) is a closed convex subset of X and the admissible set of
control problem (37) is

Sad = {s = (u, v, f ) ∈ M : G(s) = 0}. (39)

Concerning to the differentiability of the functional J and the constraint operator G,
one has the following results.

Lemma 9 The functional J : X → R is Fréchet differentiable and its Fréchet deriva-
tive in s̃ = (ũ, ṽ, f̃ ) ∈ X in the direction r = (U , V , F) ∈ X is

J ′(s̃)[r ] = γu

∫ T

0

∫

�

(ũ − ud)U + γv

∫ T

0

∫

�

(ṽ − vd)V + γ f

∫ T

0

∫

�c

sgn( f̃ )| f̃ |1+F .

(40)

Lemma 10 The operator G : X → Y is continuous-Fréchet differentiable and its
Fréchet derivative in s̃ = (ũ, ṽ, f̃ ) ∈ X in the direction r = (U , V , F) ∈ X is the
linear operator G ′(s̃)[r ] = (G ′

1(s̃)[r ],G ′
2(s̃)[r ]) defined by

⎧
⎨

⎩

〈G ′
1(s̃)[r ], ϕ〉 = 〈∂tU , ϕ〉 + (∇U − κ U∇ṽ − κ ũ∇V ,∇ϕ)

+ (−r U + 2μ ũ U , ϕ), ∀ϕ ∈ L2(H1),

G ′
2(s̃)[r ] = ∂t V − �V + V −U − f̃ V 1�c − F ṽ 1�c .

(41)

4.3 The Linearized Problem (41) is Surjective

Lemma 11 If s̃ = (ũ, ṽ, f̃ ) ∈ Sad (Sad defined in (39)), then s̃ is a regular point.

Proof From Definition 4, one has that s̃ = (ũ, ṽ, f̃ ) ∈ Sad is a regular point if for any
(gu, gv) ∈ Y = L2((H1)′)×L2+(Q) there exists r = (U , V , F) ∈ Ŵ2× X̂2+×C( f̃ )
such that G ′(s̃)[r ] = (gu, gv), where C( f̃ ) := {θ( f − f̃ ) : θ ≥ 0, f ∈ F} is the
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conical hull of f̃ in F . Since 0 ∈ C( f̃ ) = {θ( f − f̃ ) : θ ≥ 0, f ∈ F}, it suffices to
show the existence of (U , V ) ∈ Ŵ2 × X̂2+ solving the linear problem

⎧
⎨

⎩

〈∂tU , ϕ〉 + (∇U − κ U∇ṽ − κ ũ∇V ,∇ϕ)

+(−r U + 2μ ũ U , ϕ) = 〈gu, ϕ〉, ∀ϕ ∈ L2(H1),

∂t V − �V + V −U − f̃ V 1�c = gv in L2+(Q).

(42)

To this end, we will use the Leray-Schauder fixed point Theorem for the operator

S : (U , V ) ∈ L4−(Q) × L∞(Q) �→ (U , V ) ∈ Ŵ2 × X̂2+,

where (U , V ) is the solution of the decoupled problem (first V and after U )

⎧
⎨

⎩

〈∂tU , ϕ〉 + (∇U − κ U∇ṽ − κ ũ∇V ,∇ϕ)

= (r U − 2μ ũ U , ϕ) + 〈gu, ϕ〉, ∀ϕ ∈ L2(H1),

∂t V − �V + V = U + f̃ V 1�c + gv in Q.

(43)

Let us show that S satisfies the hypothesis of the Leray-Schauder Theorem.
Step 1 (S is well-defined, continuous and bounded).
We prove that S maps bounded sets in L4−(Q) × L∞(Q) in bounded sets in

(U , V ) ∈ W2 × X2+. In particular, using that problem (42) is linear, it is not difficult
to prove the continuity of S from L4−(Q) × L∞(Q) to itself.

Since (U , V ) ∈ L4−(Q)×L∞(Q), then f V ∈ L2+(Q). Applying L2+-regularity
to the heat equation (43)2 (Theorem 4), one has V ∈ X2+ and

‖V ‖X2+ ≤ C
(
‖U‖L2+ + ‖ f̃ ‖L2+(Qc)

‖V ‖L∞ + ‖gv‖L2+(Q)

)
. (44)

Taking ϕ = U in (43)1, we arrive at

d

dt
‖U‖2L2 + ‖U‖2H1 ≤ C1(1 + ‖∇ṽ‖4L4)‖U‖2L2

+C2

(
‖ũ‖2L4‖∇V ‖2L4 + (1 + ‖ũ‖2L4)‖U‖2L2 + ‖gu‖2(H1)′

)
. (45)

Finally, using 2D interpolation estimates, we have

‖ũ‖2L4(Q)
‖∇V ‖2L4(Q)

≤ ‖ũ‖2W2
‖V ‖2X2

.

Then, using (44), Gronwall’s Lemma applied to (45) guarantees the bound for U in
W2.

Step 2 (compactness): Using that W2 × X2+ is compactly embedded in L4−(Q) ×
L∞(Q), it follows that the operator S is compact.

Step 3 (boundedness of possible fixed points): Now, we will show that the set
Sα := {(U , V ) ∈ Ŵ2 × X̂2+ : (U , V ) = α S(U , V ) for some α ∈ [0, 1]} is bounded
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in L4−(Q) × L∞(Q) (with respect to α). Indeed, if (U , V ) ∈ Sα, then (U , V ) ∈
Ŵ2 × X̂2+ and it solves the coupled linear problem

⎧
⎨

⎩

〈∂tU , ϕ〉 + (∇U − κ U∇ṽ − κ ũ∇V ,∇ϕ)

= α(r U − 2μ ũ U , ϕ) + α〈gu, ϕ〉, ∀ϕ ∈ L2(H1),

∂t V − �V + V = αU + α f̃ V 1�c + αgv in Q.

(46)

Taking ϕ = U in (46)1, one obtains (see (45))

d

dt
‖U‖2 + ‖∇U‖2 + 2α μ

∫

�

ũ U 2

≤ C
(
α + ‖∇ṽ‖4

L4

)
‖U‖2 + C ‖ũ‖4

L4‖∇V ‖2 + α2 ‖gu‖2(H1)′ .
(47)

Now, testing (46)2 by V − �V ∈ L2+(Q), one gets

d

dt
‖V ‖2H1 + ‖V ‖2H2 ≤ C α2‖ f ‖2L2+ ‖V ‖2H1 + α2

(
‖gv‖2 + ‖U‖2

)
. (48)

From inequalities (47) and (48) and using that α ≤ 1, one obtains

d

dt

(‖U‖2 + ‖V ‖2H1

) + ‖U‖2H1 + ‖V ‖2H2

≤ C
(
1 + ‖∇ṽ‖4L4

) ‖U‖2 + C
(
‖ f ‖2L2+ + ‖ũ‖4L4

)
‖V ‖2H1 + C

(
‖gu‖2(H1)′ + ‖gv‖2

)
.

Using that U (0) = V (0) = 0 and ‖gu‖2(H1)′ , ‖gv‖2L2 , ‖ f ‖2
L2+ , ‖ũ‖2

L4 and ‖∇ṽ‖2
L4

belongs to L1(0, T ), Gronwall’s Lemma implies that

‖(U , V )‖W2×X2 ≤ C .

Finally, applying the L2+-regularity of the parabolic-Neumann problem (Theorem 4),
one has ‖V ‖X2+ ≤ C .

Step 4 (conclusion): Applying the Leray-Schauder fixed point theorem, one has
the existence of (U , V ) ∈ W2 × X2+, a solution of problem (42). Its uniqueness is
directly deduced from the linearity of problem (42). ��

4.4 Existence of LagrangeMultipliers

Now, the existence of Lagrange multiplier for problem (3) associated to any local
optimal solution s̃ = (ũ, ṽ, f̃ ) ∈ Sad will be shown.

Theorem 12 Let s̃ = (ũ, ṽ, f̃ ) ∈ Sad be a local optimal solution for the control
problem (3). Then, there exists a Lagrange multiplier ξ = (λ, η) ∈ L2(H1)×L2−(Q)
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such that, for all (U , V , F) ∈ Ŵ2 × X̂2+ × C( f̃ ),

γu

∫ T

0

∫

�

(ũ − ud)U + γv

∫ T

0

∫

�

(ṽ − vd)V + γ f

∫ T

0

∫

�c

sgn( f̃ )| f̃ |1+F

−
∫ T

0
〈∂tU , λ〉 −

∫ T

0

∫

�

(∇U − κ U∇ṽ − κ ũ∇V ,∇λ) + (−rU + 2μũU , λ)

−
∫ T

0

∫

�

(

∂t V − �V + V −U − f̃ V 1�c

)

η +
∫ T

0

∫

�c

F ṽ1�cη ≥ 0. (49)

Proof From Lemma 11, s̃ ∈ Sad is a regular point. Therefore, from Theorem 8, (36)2
and Remark 2, there exists a Lagrange multiplier ξ = (λ, η) ∈ L2(H1) × L2−(Q)

such that

L′
s(s, λ, η)[r ]= J ′(s̃)[r ] − 〈λ,G ′

1(s̃)[r ]〉L2(H1),L2((H1)′ −(η,G ′
2(s̃)[r ])L2 ≥ 0,(50)

for all r = (U , V , F) ∈ Ŵ2 × X̂2+ × C( f̃ ). The proof follows from (40), (41), and
(50). ��
From Theorem 12, an optimality system for problem (3) can be derived.

Corollary 13 Let s̃ = (ũ, ṽ, f̃ ) ∈ Sad be a local optimal solution for the control
problem (3). Then any Lagrange multiplier (λ, η) ∈ L2(H1) × L2−(Q) provided by
Theorem 12 satisfies the system

∫ T

0
〈∂tU , λ〉 +

∫ T

0

∫

�

(∇U − κ U∇ṽ) · ∇λ + (−rU + 2μũU , λ) −
∫ T

0

∫

�

Uη

= γu

∫ T

0

∫

�

(ũ − ud)U , ∀U ∈ Ŵ2, (51)

∫ T

0

∫

�

(

∂t V − �V + V

)

η −
∫ T

0

∫

�c

f̃ Vη + κ

∫ T

0

∫

�

ũ∇V · ∇λ

= γv

∫ T

0

∫

�

(ṽ − vd)V , ∀ V ∈ X̂2+, (52)

and the optimality condition

∫ T

0

∫

�c

(γ f sgn( f̃ )| f̃ |1+ + ṽη)( f − f̃ ) ≥ 0, ∀ f ∈ F . (53)

Proof From (49), taking (V , F) = (0, 0), and using that Ŵ2 is a vector space, (51)
holds. Similarly, taking (U , F) = (0, 0) in (49), and taking into account that X̂2+ is
a vector space, (52) is deduced. Finally, taking (U , V ) = (0, 0) in (49), one obtains

γ f

∫ T

0

∫

�c

sgn( f̃ )| f̃ |1+F +
∫ T

0

∫

�c

ṽ η F ≥ 0, ∀ F ∈ C( f̃ ).
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Thus, choosing F = θ( f − f̃ ) ∈ C( f̃ ) for all f ∈ F and θ ≥ 0, (53) is deduced. ��
Remark 3 A pair (λ, η) ∈ L2(H1) × L2−(Q) satisfying (51)–(52) corresponds to the
concept of a very weak solution (at least for the η-variable) of the linear problem (5).

4.5 Regularity of LagrangeMultipliers

Theorem 14 Let s̃ = (ũ, ṽ, f̃ ) ∈ Sad be a local optimal solution for problem (3).
Then, problem (5) has a unique solution (λ, η) such that

(λ, η) ∈ X2 × W2.

Proof Let s = T − t , with t ∈ (0, T ) and λ̃(s) = λ(t), η̃(s) = η(t). Then, system (5)
is equivalent to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂s λ̃ − �λ̃ − κ ∇λ̃ · ∇ṽ − η̃ − r λ̃ + 2μũλ̃ = γu(ũ − ud) in Q,

∂s η̃ − �η̃ + η̃ − κ ∇ · (ũ∇λ̃) − f̃ η̃ 1�c = γv(ṽ − vd) in Q,

λ̃(0) = 0, η̃(0) = 0 in �,

∂λ̃

∂n
= 0,

∂η̃

∂n
= 0 on (0, T ) × ∂�.

(54)

In order to prove the existence of a solution for (54), the Leray–Schauder fixed point
Theorem can be applied as before, now for the operator

T̂ : (λ̄, η̄) ∈ L∞− × L4− �→ (λ, η) ∈ X2 × W2,

where (λ, η) = T̂ (λ̄, η̄) solves the decoupled problem (first computing λ and after μ)

⎧
⎪⎪⎨

⎪⎪⎩

∂sλ − �λ − κ ∇λ · ∇ṽ = η̄ + r λ̄ − 2μũλ̄ + γu(ũ − ud) in Q,

∂sη − �η + η − κ ∇ · (ũ∇λ) = f̃ η̄ 1�c + γv(ṽ − vd) in Q,

λ(0) = 0, η(0) = 0 in �,
∂λ
∂n = 0, ∂η

∂n = 0 on (0, T ) × ∂�.

The proof follows the same lines as before and it will be omitted. Indeed, the key point
is to show that the set of possible fixed points

T̂α := {(λ, η) ∈ X2 × W2 : (λ, η) = αT̂ (λ, η) for some α ∈ [0, 1]}

is bounded in X2×W2 (with respect toα). In fact, if (λ, η) ∈ T̂α, then (λ, η) ∈ X2×W2
and it solves the coupled linear problem

⎧
⎪⎪⎨

⎪⎪⎩

∂sλ − �λ + κ ∇λ · ∇ṽ − α rλ + 2α μũλ − α η = α γu(ũ − ud) in Q,

∂sη − �η + η − f̃ η 1�c − κ ∇ · (ũ∇λ) = α γv(ṽ − vd) in Q,

λ(0) = 0, η(0) = 0 in �,
∂λ
∂n = 0, ∂η

∂n = 0 on (0, T ) × ∂�.

(55)
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Now, taking λ−�λ ∈ L2(Q) as test function in (55)1 and η ∈ L2(H1) as test function
in (55)2, the following bound is obtained via Gronwall’s Lemma:

‖(λ, η)‖X2×W2 ≤ C(‖ũ‖W2 , ‖ṽ‖X2 , ‖ f̃ ‖L2+(Qc)
, ‖ud‖L2(Q), ‖vd‖L2(Q)).

Therefore, applying Leray-Schauder fixed point theorem, the existence of a solution
of problem (5), (λ, η) ∈ X2×W2, is obtained. Its uniqueness is directly deduced from
the linearity of problem (5). ��

In the following result, more regularity and uniqueness of the Lagrange multiplier
(λ, η) given by Theorem 12 will be obtained via the uniqueness of problem (5).

Theorem 15 Let s̃ = (ũ, ṽ, f̃ ) ∈ Sad be a local optimal solution for the control
problem (3). Then the Lagrange multiplier, provided by Theorem 12, is unique and
satisfies (λ, η) ∈ X2 × W2.

Proof Let (λ, η) ∈ L2(H1) × L2−(Q) be a Lagrange multiplier given in Theorem
12, which is a very weak solution of problem (5). In particular, (λ, η) satisfies (51)–
(52). On the other hand, from Theorem 14, system (5) has a unique solution (λ, η) ∈
X2 × W2. Then, it suffices to identify (λ, η) with (λ, η).

With this objective, for any (U , V ) ∈ Ŵ2 × X̂2+, we write (5) for (λ, η) (instead of
(λ, η)), test the first equation by U , the second one by V , and integrate by parts over
� to obtain

∫ T

0
〈∂tU , λ〉 +

∫ T

0

∫

�

(∇U − κ U∇ṽ) · ∇λ + (−rU + 2μũU )λ −Uη

= γu

∫ T

0

∫

�

(ũ − ud)U ,

(56)

∫ T

0

∫

�

(

∂t V − �V + V − f̃ V 1�c

)

η + κ ũ∇V · ∇λ = γv

∫ T

0

∫

�

(ṽ − vd)V .

(57)

Now, take the difference between (51) for (λ, η) and (56) for (λ, η), the difference
between (52) and (57), and add the respective equations. Since the right-hand side
terms vanish, one obtains

∫ T

0
〈∂tU , λ − λ〉(H1)′,H1 +

∫ T

0

∫

�

(∇U − κ U∇ṽ − κ ũ∇V ) · ∇(λ − λ)

+
∫ T

0

∫

�

(−rU + 2μũU , λ − λ)

+
∫ T

0

∫

�

(

∂t V − �V + V −U − f̃ V 1�c

)

(η − η) = 0.

Then, if (U , V ) ∈ Ŵ2× X̂2+ is the unique solution of the linear system (42) associated
to any (gu, gv) ∈ L2((H1)′) × L2+(Q) (given by Lemma 11), we arrive at
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∫ T

0
〈gu, λ − λ〉(H1)′,H1 +

∫ T

0

∫

�

gv(η − η) = 0.

Through density arguments, it is easy to deduce that λ − λ = 0 and η − η = 0, which
implies that (λ, η) = (λ, η). As a consequence of the regularity of (λ, η), it holds that
(λ, η) ∈ X2 × W2. ��
All previous arguments of Sect. 4 prove Theorem 3.

5 Conclusions

The existence and uniqueness of aweak solution for problem (1) in 2D-domains allows
one to deduce the existence of (at least) a global optimal solution of (3), leading the
system near to the desired stated of cellular density and chemical concentration. The
existence of a unique and regular Lagrange multiplier characterized by its optimality
system (5)–(6) is also proven. The fact of using only weak solutions for problem (1) is
a novelty with respect to the previous results in related models appearing in [11–13].
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