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Abstract. We prove that the solutions to the discrete nonlinear Schrödinger equation with non-local alge-
braically decaying coupling converge strongly in L2(R2) to those of the continuum fractional nonlinear
Schrödinger equation, as the discretization parameter tends to zero. The proof relies on sharp dispersive
estimates that yield the Strichartz estimates that are uniform in the discretization parameter. An explicit
computation of the leading term of the oscillatory integral asymptotics is used to show that the best con-
stants of a family of dispersive estimates blow up as the non-locality parameter α ∈ (1, 2) approaches the
boundaries.

1. Introduction

The mathematical description of physical phenomena, in many instances, results
in the formulation of partial differential equations (PDEs) describing state variables
in continuum media. Despite the fact that it is highly unlikely to find exact solu-
tions of many linear or nonlinear PDEs, advances in numerical analysis and scientific
computing open the door to find approximate solutions to complex problems. In par-
ticular, numerical approximations based on finite difference schemes are constructed
by discretizing spatial variables, leading to a system of coupled ordinary differential
equations. In this line of research, the objective is then to determine how well the
approximate solution evaluated in the grid approximates the solutions of the corre-
sponding PDE.
On the other hand, there are well-known universal models that are inherently dis-

crete. Generically referred to as coupled oscillator systems, they describe phenomena
such as localization or synchronization, characteristic of its discrete nature. Best-
known examples are the Fermi–Pasta–Ulam–Tsingou model, the discrete nonlinear
Schrödinger equation and the Kuramoto model. The first two describe dynamics in a
lattice with nearest neighbor interactions, whereas the Kuramotomodel addresses syn-
chronization for globally coupled oscillators. These and similar models continue to be
studied given their applicability in photonics, lasers, and networks such as the power
grid to name some. For such models, a suitable approximation named the long-wave

Mathematics Subject Classification.: 35B30, 35Q40, 35Q55, 35Q60, 35R11, 37K60
Keywords: Continuum limit, Fractional equation, Lattice system, NLS.

0123456789().: V,-vol

http://crossmark.crossref.org/dialog/?doi=10.1007/s00028-023-00881-3&domain=pdf


   30 Page 2 of 35 B. Choi and A. Aceves J. Evol. Equ.

approximation assumes a “smooth” variation of the state variable among neighbor lat-
tices. Specifically in a one-dimensional lattice, this means un±1 ≈ un . In this regime,
it is reasonable to consider continuum approximation. For a 1-d lattice model, the
continuum approximation un±1 → U (x ± h), where h > 0 is small, with nearest
neighbor coupling C(un+1 + un−1) leads to a term proportional to ∂2U

∂x2
and in return,

the system of ODEs is then approximated by a PDE.
Recently, there has been an increased interest in the models based on FNLSE.

While most of the research deals with continuum models, including numerical com-
putations of solutions in the nonlinear regime, less is known about discrete systems
showing global coupling with algebraic decay on the coupling strength with respect
to the distance between nodes in the lattice. This work considers such a case in a
two-dimensional lattice and centers on the question of the validity of a suitable con-
tinuum approximation. This is not always a trivial task as, for instance, invariances and
symmetries may arise or be lost. In contrast to the (continuum) nonlinear Schrödinger
equation that admits the Galilean boost from which traveling wave solutions emerge,
many lattice systems lack translational invariance. It is known that highly localized so-
lutions in a lattice system do not propagate due to the presence of the Peirels–Nabarro
potential [10,26]; for a recent work on FNLSE in this context, see [22]. All this is to
point out the challenges and open problems that need to be studied by a combination
of analytical and numerical tools. In this contribution, we report what we think are first
analytic results on the underlying fundamental question of determining the continuum
approximation on the FNLSE in more than one dimension.

2. Statement of the problem

This work concerns the continuum limit of the discrete fractional nonlinear
Schrödinger equation (FNLSE)

i u̇h = (−�h)
α
2 uh + μ|uh |p−1uh, uh(x, 0) = u0,h(x), (2.1)

to the continuum FNLS

i∂t u = (−�)
α
2 u + μ|u|p−1u, u(x, 0) = u0(x), (2.2)

as h → 0+ where α ∈ (0, 2]\{1}, p > 1, μ = ±1, and u : R2+1 → C, uh : hZ2 ×
R → C. Let (2.1), (2.2) be well-posed in some Banach spaces X, Xh , respectively,
where 0 < h ≤ 1 denotes a discretization parameter. Suppose u0,h ∈ Xh is the
discretized u0 ∈ X . Given an interpolation operator ph : Xh → X and T > 0
such that u(t), uh(t) denote the well-posed solutions on [0, T ], the main problem then
reduces to identifying values of α, p that allows

lim
h→0

sup
t∈[0,T ]

‖phuh(t) − u(t)‖X = 0.
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The study of evolution equations onRwith a general class of interaction kernel was
done in [25] where the continuum limit was proved in the weak sense. By applying
the analytic tools in [15] that yield dispersive estimates for the discrete Schrödinger
evolution that are uniform in h, [16] extended the aforementionedweak convergence to
strong convergence in the L2-setting (with convergence rates) for α = 2 in R

d , d =
1, 2, 3 and α ∈ (0, 2) \ {1} on R. The central perspective in [16], upon which we
develop, that sharp dispersive estimates that are uniform in h control the difference
phuh − u, at least in the scaling-subcritical regime, proved to be fruitful as can be
illustrated in various works such as [11] that studied the case α = 2 onT2 as the spatial
domain, [12] that studied the large box limit for α = 2 in R

d , d = 2, 3, and [13]
that showed the rigorous derivation of the KdV equation from the FPU system. Using
a similar idea, the continuum limit of the space-time FNLS was investigated in [7].
Furthermore, see the works of Ignat and Zuazua [17–20,31] where novel approaches
such as the Fourier filtering and the two-grid algorithm were used.
In practice, obtaining appropriate dispersive estimates reduces to oscillatory integral

estimations, which is of central concern in our approach. Unlike the continuum case,
the dispersion relation for the discrete evolution has degenerate critical points, which
results in weaker dispersion than the continuum Schrödinger evolution. This in return
admitsweaker Strichartz estimates, which limits the class of nonlinearities that leads to
the well-posedness of the corresponding nonlinear equation via the contraction map-

ping argument. To be more quantitative, let U (t) = e−i t (−�)
α
2
, Uh(t) = e−i t (−�h)

α
2

and ‖ f ‖L p
h

:= h
d
p (
∑

x∈hZ2
| f (x)|p) 1

p for p < ∞ with ‖ f ‖L∞
h

= ‖ f ‖L∞(hZ2); see

Sect. 3 for notations. For α = 2, [28, Theorem 1] established1

‖Uh(t)‖L1
h→L∞

h
�h |t |− d

3 ,

where the implicit constant blows up as h → 0+, which contrasts with

‖U (t)‖L1(Rd )→L∞(Rd ) � |t |− d
2 . Our objective is to obtain Strichartz estimates for

the discrete evolution that are uniform in h.
For α < 2, [16, Proposition 3.1] obtained

‖Uh(t)PN f ‖L∞
h

�α

(
N

h

)1− α
3 |t |− 1

3 ‖ f ‖L1
h
, α ∈ (1, 2) (2.3)

for all N ∈ 2Zwith N ≤ 1 on hZwhere the PN denotes the Littlewood–Paley operator.
Our goal is to obtain a two-dimensional analog of (2.3). The proof in [16] cannot be
directly generalized, since the set of degenerate critical points onhZ consists of isolated
points whose corresponding oscillatory integrals cannot be estimated directly by the
Van der Corput lemma. In higher dimensions, the set of degeneracy is geometrically
more complicated. In fact, our analysis shows that the degenerate critical points define

1Denote A � B when there exists a constant of non-interest C > 0 such that A ≤ CB and define A � B
if A � B and B � A.
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a one-dimensional embedded smooth submanifold in the torus [−π, π ]2 where each
singular point admits a unique direction along which the third derivative does not
vanish (fold) except at four points (cusp) at which the fourth derivative does not
vanish. This observation that a singular point is at worst a cusp is consistent with [1].
It is expected that more severe singularities exist in higher dimensions as the structure
of the Hessian of the dispersion relation becomes more complicated. This dimension-
dependent geometric complication is purely a remnant of non-locality since the linear
evolution of classical Schrödinger operator on hZd splits as the d-fold tensor product
on each dimension.
Consider the dispersion relation

wh,m(ξ) =
(

m2 + 4

h2

2∑

i=1

sin2
(
hξi

2

)) α
2

,

and the quantity of interest
∫

T2
h

ei(x ·ξ−twh,m (ξ))η(ξ)dξ,

where T = R

2πZ = [−π, π ] and η ∈ C∞
c (T

2

h ); the dispersion relation of (2.2) is wh,0.
[27] showed that when m = 0, α = 1, which corresponds to the dispersion relation

of the discrete wave equation, then the quantity of interest decays as O(t− 2
3 ) in d = 2

and O(t− 7
6 ) in d = 3. When m > 0, α = 1, which corresponds to the discrete

Klein–Gordon equation, [1] showed that the quantity of interest decays as O(t− 3
4 ) in

d = 2, and the result was extended to higher dimensions (d = 3, 4) in [5]. When
m = 0, α = 2, the time decay of the fundamental solution of the classical discrete

Schrödinger equation was shown to be O(t− d
3 ) in [28].

Our objective is to obtain the sharp time decay of the quantity of interest for m =
0, α ∈ (1, 2) in d = 2. In particular, it is shown that the oscillatory integral decays as

O(t− 3
4 ). The main tool that we adopt is the analysis of Newton polyhedron generated

by the Taylor expansion of the phase function x ·ξ − twh,0(ξ) in an adapted coordinate
system, a method pioneered in [30]. Furthermore, the asymptotics in both regimes
α → 1+ (wave limit) and α → 2− (Schrödinger limit) are studied. To our knowledge,
the dependence on the non-local parameter has not been clearly investigated in previous

works. To obtain the asymptotics of the leading term of O(t− 3
4 ) as a function of α,

we represent the phase function in a superadapted coordinate system to apply results
of [8].

The relation of our work to the theory of stability of degenerate oscillatory integrals
is subtle. A cursory observation might suggest that a degenerate integral (our quantity
of interest) would be stable under a small perturbation in the non-local parameter.
However, the phase fails to be smooth for α < 2 and therefore becomes large in
appropriate norm(s) as the support of η becomes arbitrarily close to the origin. In
our approach, it suffices to invoke the stability result [21] under linear perturbations
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in phase. For more general stability results under analytic or smooth perturbations,
see [9,23]. For the support of η close to the origin, sin z ∼ z by the small angle
approximation, after which onemight wish to invoke [3] that obtained sharp dispersive
estimates for radial dispersion relations. However, such approximation is not a linear
perturbation and hence we handle that case by direct computation.
The paper is organized as follows. Notations and main results are presented in

Sect. 3. Assuming the results hold, the desired continuum limit is shown in Sect. 4.
The proof of our main proposition is in Sect. 5, followed by a concluding remark in
Sect. 6.

3. Main results

To discuss continuum limit, the parameters that yield the well-posedness of (2.1),
(2.2) must be identified. For the discrete equation, the linear operator

�h f (x) =
d∑

i=1

f (x + hei ) + f (x − hei ) − 2 f (x)

h2
, x ∈ hZd , (3.1)

defines a bounded, nonnegative, self-adjoint operator on L2
h , and so are its fractional

powers given by functional calculus. Equivalently (−�h)
α
2 is given by the Fourier

multiplier

(−�h)
α
2 = F−1

h

{
d∑

i=1

4

h2
sin2

(
hξi

2

)} α
2

Fh, (3.2)

where the discrete Fourier transform is defined as

f̂ (ξ) = Fh f (ξ) = hd
∑

x∈hZd

f (x)e−i x ·ξ , f (x) = (2π)−d
∫

Td
h

f̂ (ξ)eix ·ξdξ,

for ξ ∈ T
d

h . Recall the Sobolev space on hZd for s ∈ R, p ∈ (1,∞) given by

‖ f ‖Ws,p
h

= ‖〈∇h〉s f ‖L p
h
, ‖ f ‖Ẇ s,p

h
= ‖|∇h |s f ‖L p

h
,

where

〈∇h〉s = F−1
h 〈ξ 〉sFh, |∇h |s = F−1

h |ξ |sFh,

and 〈ξ 〉 = (1 + |ξ |2) 1
2 for ξ ∈ T

d

h . The nonlinearity uh 
→ |uh |p−1uh is locally
Lipschitz continuous due to L2

h ↪→ L∞
h , which yields an immediate well-posedness

of (2.1) in L2
h via the contraction mapping argument. For the continuum case, consider

the family of self-similar solutions

u(x, t) → uλ(x, t) := λ
− α

p−1 u

(
x

λ
,
t

λα

)

,
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and observing that {uλ(·, t)}λ>0 leaves Ḣ sc (Rd) invariant for all t , one obtains the
Sobolev-critical regularity

sc = d

2
− α

p − 1
.

Our analysis is in the scaling-subcritical regime where the time of existence depends
on the Sobolev norm of data. Moreover, suppose the power of nonlinearity is at least
cubic.

Lemma 3.1. FNLSE (2.2) is locally well-posed in Hs(R2) for s > sc and p ≥ 3
in the subcritical sense. For any α > 0, p > 1, d ∈ N, DNLSE (2.1) is globally
well-posed in L2

h. Moreover, they admit conserved mass and energy functionals given
by

M[u(t)] = ‖u(t)‖2L2(R2)
, E[u(t)] = 1

2

∫

R2
||∇| α

2 u|2dx + μ

p + 1

∫

R2
|u|p+1dx,

Mh[uh(t)] = ‖uh(t)‖2L2
h
, Eh[uh(t)] = 1

2
‖(−�h)

α
4 uh(t)‖2L2

h
+ μ

p + 1
‖uh(t)‖p+1

L p+1
h

.

Proof. See [14, Theorem 1.1] and [25, Proposition 4.1] for the first and second state-
ment, respectively. �

More specifically, our setup is in the mass supercritical and energy subcritical
regime, or equivalently,

2(p − 1)

p + 1
< α < 2, (3.3)

in which every u0 ∈ H
α
2 (R2) has a local solution but not necessarily global; for blow-

up criteria in the focusing mass supercritical case via localized virial estimates, see
[2,6].
We specify the discretization described in the introduction. For h > 0, define

dh : L2(Rd) → L2
h by

dh f (x) = h−d
∫

x+[0,h)d
f (x ′)dx ′.

Conversely define ph : L2
h → L2(Rd) by

ph f (x) = f (x ′) + D+
h f (x ′) · (x − x ′), x ∈ x ′ + [0, h)d , x ′ ∈ hZd

(D+
h f )i (x

′) = f (x ′ + hei ) − f (x ′)
h

, i = 1, . . . , d,

where {ei }di=1 generates Z
d . The discretization converges to the continuum solution.

Theorem 3.1. Let p ≥ 3 and max( 87 ,
2(p−1)
p+1 ) < α < 2. For any arbitrary u0 ∈

H
α
2 (R2), let u ∈ C([0, T ]; H α

2 (R2)), uh ∈ C([0, T ]; L2
h) be the well-posed solutions
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from Lemma 3.1 where T = T (‖u0‖H α
2
) > 0. Then there exists Ci = Ci (‖u0‖H α

2
) >

0, i = 1, 2 independent of h > 0 such that

‖phuh(t) − u(t)‖L2(R2) ≤ C1h
α

2+α (‖u0‖H α
2

+ ‖u0‖p

H
α
2
)eC2|t |, t ∈ [0, T ]. (3.4)

Remark 3.1. To estimate the nonlinear part of phuh−u uniformly in h, we show that an
appropriate space-time Lebesgue norm of uh is uniformly bounded in [0, T (‖u0‖H α

2
)]

(see Lemma 4.2). However, our proof is insufficient to conclude that a similar uniform
bound holds in the energy-critical case, and therefore our method does not extend, at
least directly, when α = 2(p−1)

p+1 .

Remark 3.2. The result is local in time, and thus it is of interest to extend (3.4) such
that the estimate holds for t ∈ [0, Te) where 0 < Te ≤ ∞ is the maximal time of
existence of (2.2). This extension is not straightforward due to the existence of finite-
time blow-up solutions in the mass supercritical regime. For example if Te < ∞, then
lim

t→Te−
‖u(t)‖

H
α
2 (R2)

= ∞. Since phuh = Oh(1) by Lemma 4.1, for all h > 0 we

have

sup
t∈[0,Te)

‖phuh(t) − u(t)‖
H

α
2 (R2)

= ∞.

Remark 3.3. Suppose (2.2)were discretized by anothermeans. Let Ah be a self-adjoint
linear operator on L2

h and let vh ∈ C([0, T ]; L2
h) be a solution of

i v̇h = Ahvh + N (vh), vh(x, 0) = u0,h(x). (3.5)

Recall that uh(t), u(t) are well-posed L2-solutions of (2.1), (2.2). If ‖uh(t)−vh(t)‖L2
h

� hθ , then ‖phvh(t) − u(t)‖L2(R2) � hθ ′
for some θ, θ ′ > 0 by (3.4) and the triangle

inequality.

It is expected that our approach would apply to a general class of discrete models
governed by {Ah}. A priori, Ah is assumed to act on L2

h and thus its extension to
L2(Rd) needs to be defined, after which, the limit of Ah as h → 0, if it exists, is

considered. Let mh ∈ A
(
T
d

h

)
and define Fh(Ah f )(ξ) = mh(ξ)Fh f (ξ) where

A

(
T
d

h

)

= { f ∈ L∞
(
T
d

h

)

: F−1
h f ∈ L1

h}.

Denote νh = F−1
h mh . Since the Fourier coefficients are absolutely integrable, νh can

be interpreted as a complex Borel measure on R
d given by

νh(x) =
∑

y∈hZd

F−1
h mh(y)δy(x),

where δy is the Dirac mass at y ∈ hZd . Then for f ∈ L2
h, x ∈ hZd ,

Ah f (x) = νh ∗h f (x) := hd
∑

y∈hZd

F−1
h mh(y) f (x − y).
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For f ∈ C∞
c (Rd), we have f ∗ δy(x) = ∫

Rd f (x − y′)dδy(y′) = f (x − y), and
therefore

Ah f (x) = hdνh ∗ f (x), (3.6)

for f ∈ ⋃

p∈[1,∞]
L p(Rd) and

‖Ah f ‖L p(Rd ) ≤ hd‖νh‖T V ‖ f ‖L p(Rd ), (3.7)

where ‖νh‖T V measures the total variation.

Proposition 3.1. Define Ah as (3.6). Then, Ah : L p(Rd) → L p(Rd) is bounded for
all p ∈ [1,∞] with the operator norms satisfying

‖Ah‖L p→L p ≥ ‖Ah‖L2→L2 = ‖mh‖L∞
(
Td
h

).

Proof. Since Ah is a convolution against a finite measure with bounded symbol mh ,
Ah is a translation-invariant bounded linear operator on L p(Rd) for all p ∈ [1,∞]
that satisfies (3.7). Since Ah is bounded on L p(Rd), it is bounded on L p′

(Rd) by
duality. By the Riesz–Thorin theorem, we have

‖Ah‖L2→L2 ≤ ‖Ah‖
1
2
L p→L p‖Ah‖

1
2

L p′→L p′ = ‖Ah‖L p→L p .

The last equality is given by the fact that any translation-invariant bounded linear
operator on L2(Rd) is given by a bounded multiplier on the Fourier space. �

As an example, consider two classes of multipliers

σh(ξ) =
(

4

h2

d∑

i=1

sin2
(
hξi

2

)) α
2

, mh(ξ) = cd,αh
d

∑

z∈hZd\{0}

1 − cos ξ · z
|z|d+α

, (3.8)

where cd,α = 4
α
2 �( d+α

2 )

π
d
2 |�(− α

2 )|
. It can be verified that mh defines

Ah f (x) = cd,αh
d

∑

y∈hZd\{x}

f (x) − f (y)

|x − y|d+α
. (3.9)

Proposition 3.2. Both (−�h)
α
2 and Ah, where Ah is as (3.9), are divergent as h → 0

in the space of bounded linear operators on L2(Rd) in the uniform operator topology.
On the other hand, (−�h)

α
2 , Ah converge to (−�)

α
2 strongly in L2 in the Schwartz

class.
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Proof. By direct computation,

‖σh‖L∞
(
Td
h

), ‖mh‖L∞
(
Td
h

) �d h−α,

and hence the divergence by Proposition 3.1. The statements on strong convergence
in L2 follows as [25, Lemma 3.9], noting that

σh(ξ), mh(ξ) −−−→
h→0

|ξ |α, ∀ξ ∈ R
d ,

followed by the Dominated Convergence Theorem to interchange the limit as h tends
to zero and the integral in ξ , justified by

|σh(ξ)|, |mh(ξ)| � |ξ |α,

independent of h > 0. �

A potential issue with mh in (3.8) is that the Euclidean metric | · | does not yield
the physically relevant distance between two points on hZd when d ≥ 2. Define
mq

h(ξ) = hd
∑

z∈hZd\{0}
1−cos ξ ·z

|z|d+α
q

where | · |q denotes the lq norm for q ∈ [1,∞].

Proposition 3.3. For all ξ ∈ R
d , mq

h(ξ) −−−→
h→0

c|ξ |α for some nonzero constant c

if and only if q = 2. For all q ∈ [1,∞] \ {2}, an operator Aq
h defined by mq

h is
nonnegative and self-adjoint on L2(Rd), defined on the dense domain Hα(Rd).

Proof. Let ξ = |ξ |ξ ′ where ξ ′ ∈ Sd−1, the unit sphere. Let ρ(ξ ′) ∈ R
d×d be a rotation

operator that takes the d th standard basis vector to ξ ′, i.e., ξ ′ = ρ(ξ ′)ed . Then, α < 2
justifies the limit of Riemann sum, and by changing variables,

lim
h→0

mq
h(ξ) =

∫

Rd

1 − cos ξ · z
|z|d+α

q
dz = |ξ |α

∫
1 − cos zd

|ρ(ξ ′)z|d+α
q

dz.

Apriori, the integral in the last expression, call it I (ξ), reduces to a continuous function
on Sd−1 that is constant if and only if q = 2, observing the norm-invariance under
rotation if and only if q = 2. The domain of Ah

q consists of f ∈ L2(Rd) such that
|ξ |α I (ξ) f̂ ∈ L2. Observing that inf

ξ∈Rd
|I (ξ)| > 0 due to the norm equivalence of {|· |q}

and

I (ξ) �
∫

1 − cos zd
|ρ(ξ ′)z|d+α

dz =
∫

1 − cos zd
|z|d+α

dz = c−1
d,α > 0,

it follows that D(Aq
h) = Hα(Rd). That Aq

h is nonnegative and self-adjoint follows
from I ≥ 0.

�

The continuum limit in higher dimensions, therefore, depends on the geometry
of the underlying discrete model. This would potentially lead to complications on a
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spatial domain with an irregular lattice structure, which we leave as an open-ended
thought. To this end, our analysis is restricted to (−�h)

α
2 .

To show the main result, linear dispersive estimates of the discrete evolution are
developed. Let ψ ∈ C∞

c ((−2π, 2π); [0, 1]) be an even function where ψ = 1 for
ξ ∈ [−π, π ] and let η(ξ) := ψ(|ξ |) − ψ(2|ξ |). For dyadic integers N ≤ 1, define
Littlewood–Paley projections given by

PN = PN ,h := F−1η

(
hξ

N

)

F ,

where F is the Fourier transform on Rd . Since ξ ∈ T
d

h , PN is a smooth projector onto
π
2
N
h ≤ |ξ | ≤ 2π N

h and altogether resolves the identity

∑

N≤1

PN = I d.

The sum has an upper bound in N since hξ = Od(1).
Adopting the notations in [1], define subsets of M := T

2 \ {0} given by

K3 =
{(

±π

2
,±π

2

)}
, K2 = {ξ ∈ M \ K3 : det D2w(ξ) = 0}, K1 = M \ (K2 ∪ K3),

wherew(ξ) =
(

d∑

i=1
sin2( ξi

2 )

) α
2

. Themain proposition concerns a family of frequency-

localized dispersive estimates with sharp time decay. Furthermore, the lower bounds
of implicit constants blow up both in the wave and in the Schrödinger limit.

Proposition 3.4. For all t > 0, N ≤ 1, 0 < h ≤ 1, 1 < α < 2, there exists
0 < Ci (α) < ∞, i = 1, 2, 3 such that

‖Uh(t)PN f ‖L∞
h

≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C3(α)
( N
h

)2− 3
4 α |t |− 3

4 ‖ f ‖L1
h
, supp(η( ·

N )) ∩ K3 �= ∅
C2(α)

( N
h

)2− 5
6 α |t |− 5

6 ‖ f ‖L1
h
, supp(η( ·

N )) ∩ (K2 \ K3) �= ∅
C1(α)

( N
h

)2−α |t |−1‖ f ‖L1
h
, supp(η( ·

N )) ∩ (K1 \ K2 ∪ K3) �= ∅,

(3.10)

and

C3(α) �η (2 − α)−
1
4 , C2(α) �η (α − 1)

2
3− 5α

12 , C1(α) �η (α − 1)−
1
2 . (3.11)

For more details on the domain of N ∈ 2Z that satisfy (3.10), see (5.18). By
interpolating the estimates in (3.10), one obtains

Corollary 3.1. Assume the hypotheses of Proposition 3.4. Then,

‖Uh(t)PN f ‖L∞
h

�α (
N

h
)2−

3
4α|t |− 3

4 ‖ f ‖L1
h
.
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Remark 3.4. Assuming Proposition 3.4, it is straightforward to obtain the Strichartz
estimates for the linear evolution by averaging in t, N , which we briefly describe.
Suppose ‖Uh(t)PN‖L1

h→L∞
h

�α ( Nh )β |t |−σ for some β, σ > 0. Define the Strichartz

pair (q, r) ∈ [2,∞]2 by the relation

1

q
+ σ

r
= σ

2
, (q, r, σ ) �= (2,∞, 1). (3.12)

As in [3, p.1127], define Ũ (t) = PNUh

(
( Nh )

β
σ t
)
P∼N where P∼N := PN/2 + PN +

P2N . Then, {Ũ (t)}t∈R satisfies the hypotheses of [24, Theorem 1.2] from which fol-
lows

‖Uh(t)PN f ‖Lq
t L

r
h

�q,r (
N

h
)β( 12− 1

r )‖PN f ‖L2
h

� ‖PN |∇h |β( 12− 1
r ) f ‖L2

h
.

Squaring both sides and summing in N ,

‖Uh(t) f ‖Lq
t L

r
h

�

⎛

⎝
∑

N≤1

‖Uh(t)PN f ‖2
Lq
t L

r
h

⎞

⎠

1
2

�

⎛

⎝
∑

N≤1

‖PN |∇h |β( 12− 1
r ) f ‖2

L2
h

⎞

⎠

1
2

� ‖|∇h |β( 12− 1
r ) f ‖L2

h
, (3.13)

for r ∈ [2,∞)where the first inequality follows from the Littlewood–Paley inequality
on the lattice [15, Theorem 4.2]. As an example, Corollary 3.1 asserts (β, σ ) =
(2 − 3

4α, 3
4 ) and hence by (3.13),

‖Uh(t) f ‖Lq
t L

r
h

�q,r,α ‖|∇h |
(
2− 3

4α
)(

1
2− 1

r

)

f ‖L2
h
.

The derivative loss occurs for α < 8
3 or α < 2 on hZ2 (for all h > 0) or R2,

respectively.

For v ∈ R
d , define �v(ξ) = v · ξ − w(ξ) for ξ ∈ R

d and let ζ ∈ C∞
c (Rd) be a test

function. Consider

J = J�v,ζ (τ ) :=
∫

Rd
eiτ�v(ξ)ζ(ξ)dξ,

where τ > 0 without loss of generality, for τ < 0 amounts to taking the complex
conjugate of J�v,ζ . To show (3.10), observe that

‖Uh(t)PN f ‖L∞
h

= ‖Kt,N ,h ∗ f ‖L∞
h

≤ ‖Kt,N ,h‖L∞
h

‖ f ‖L1
h

by the Young’s inequality applied to the convolution in hZd where

Kt,N ,h(x) = (2π)−d
∫

Td
h

e
i

⎧
⎨

⎩
x ·ξ−t

(

4
h2

d∑

i=1
sin2(

hξi
2 )

) α
2
⎫
⎬

⎭
η

(
hξ

N

)

dξ.
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Change variables ξ 
→ ξ
h and define τ = 2α t

hα , v = x
hτ

to obtain

Kt,N ,h(x) = (2πh)−d
∫

Td
eiτ(v·ξ−w(ξ))η

(
ξ

N

)

dξ.

A priori since x ∈ hZd , it follows that v ∈ τ−1
Z
d , which we consider as a subset of

R
d . If σ0 > 0 is the sharp decay rate for J�v,ζ in the sense that

sup
v∈Rd

|J�v,ζ (τ )| ≤ C(ζ )|τ |−σ0 (3.14)

holds for all τ ∈ R \ {0} for some C(ζ ) > 0 and no bigger σ ′ > 0 satisfies (3.14),
then

‖Kt,N ,h‖L∞
h

≤ (2πh)−dC
(
η(

·
N

)
)

|τ |−σ0 = (2π)−d2−σ0α
C
(
η( ·

N )
)

hd−σ0α
|t |−σ0 .

Hence, our goal reduces to obtaining (3.14) for a dyadic family of Littlewood–Paley
functions. Outside of a neighborhood of the origin, �v is analytic, and therefore the
major contributions to J are due to critical points ξ ∈ R

d that satisfy ∇�v(ξ) = 0, or
equivalently, v = ∇w(ξ) =: vξ . In any arbitrary dimension,

∇w(ξ) = α

4
w(ξ)−( 2

α
−1)(sin ξ1, . . . , sin ξd),

|∇w(ξ)|2 = α2

16

d∑

i=1
sin2 ξi

(
d∑

i=1
sin2 ξi

2

)2−α
.

(3.15)

For any α > 1, |∇w(ξ)| −−−→
ξ→0

0 and sup
ξ∈Td

|∇w(ξ)| = C(α, d) ∈ (0,∞). With a slight

abuse of notation, define ∇w : Td → R
d where ∇w(0) = 0. Then, ∇w is continuous

and its compact image defines a light cone. If |v| �α,d,h 1 (spacelike event), then
J decays faster than τ−n for any n ∈ N, by integration by parts, with the implicit
constant dependent on n and the distance between v and the light cone (see Lemma
5.1). Inside the light cone (including the boundary), J undergoes an algebraic decay
due to critical points. For such v, it is generically true that the corresponding critical

point(s) ξ ∈ T
d are non-degenerate, and therefore J decays as τ− d

2 . However, there
exists a low-dimensional subset of Td that retards even further the decay rate of d

2 .
We consider this problem of resolution of singularities for d = 2.

To systematically study the decay and asymptotics of J as a function of v and
ζ , consider the Taylor series expansion of �v . Let ξ ∈ T

2\{0} and vξ = ∇w(ξ).
Consider �vξ so that ∇�vξ (ξ) = 0. Pick ζ ∈ C∞

c around ξ such that ξ is the unique
critical point in the support. Then, J�vξ

,ζ has an asymptotic expansion

J�vξ
,ζ = d0(ζ )τ−σ0 + o(τ−σ0), (3.16)
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as τ → ∞where σ0, or the oscillatory index, is chosen to be the minimal number such
that for any neighborhood of ξ , sayU , there exists ζU ∈ C∞

c (U ) such that d0(ζU ) �= 0;
in particular, σ0 depends only on the phase, not the smooth bump function. Under some
hypotheses, σ0, d0 are deduced from the higher order Taylor expansion of �vξ (see
Lemma 5.6), a process that we briefly describe.

Let � be a real-valued analytic function on a small neighborhood of the origin.
Assume �(0) = 0, ∇�(0) = 0 and therefore the Taylor expansion of � at the origin
in the multi-index notation is

�(x) =
∑

|α|≥2

cαx
α =

∑

|α|≥2

∂α�(0)

α! xα.

Define the Taylor support T = {α ∈ N
d : cα �= 0} and assume that � is of finite type,

i.e., T �= ∅. Define the Newton polyhedron of �, call it N , to be the convex hull of
⋃

α∈T
α + R

d+ =
⋃

α∈T
α + {x ∈ R

d : xi ≥ 0},

and the Newton diagram Nd to be the union of all compact faces of N . Let Npr , the
principal part of Newton diagram, be the subset of Nd that intersects the bisectrix
{x1 = x2 = · · · = xd}. Define the principal part of � (or the normal form) as

�pr (x) =
∑

|α|≥2, α∈Npr

cαx
α.

Let d = d(�) = inf{t : (t, t, . . . , t) ∈ N } be the distance from the origin toN . Since
� is of finite type, 0 < d < ∞. Note that T is not invariant under analytic coordinate
transformations. Let dx be the distance computed in the x coordinate system and
define the height of � as h(�) = sup

x
dx where the supremum is over all analytic

coordinate systems. The coordinate system (x) is adapted if dx = h. In R
2, see [30,

Proposition 0.7,0.8] for sufficient conditions for (x) to be adapted. An adapted system
need not be unique. To obtain the asymptotics of oscillatory integrals, we work in
a superadapted coordinate system defined specifically in dimension two in [8] as a
coordinates system in which �pr (x,±1) have no real roots of order greater than or
equal to dx (�), possibly except x = 0. In particular, if d(�) > 1 and �pr (x,±1) is
a quadratic polynomial with no repeated roots, then (x, y) is superadapted.

See the introductions of [1,8,21,30], from which this paper adopts all relevant
terminologies, for a brief survey of the relationship between oscillatory integrals and
Newton polyhedra. To illustrate these ideas, consider an example. Let �(x, y) =
x2 + y2 + x3. Then,

T = {(2, 0), (0, 2), (3, 0)}
N = {(x, y) ∈ R

2 : x + y ≥ 2, x, y ≥ 0},
Nd = Npr = {(x, y) ∈ R

2 : x + y = 2, 0 ≤ x ≤ 2}
�pr (x, y) = x2 + y2, d(x,y) = 1.
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Since �pr (x,±1) = x2 + 1 has no real root, the given coordinates system is super-
adapted.

4. Continuum limit

The proof of Theorem 3.1 is given.

Lemma 4.1. Let β ∈ [0, 1], p > 1, d ∈ N. The implicit constants in the following
estimates are independent of h > 0 and dependent only on β, d.

1. ‖dh f ‖Hβ
h

� ‖ f ‖Hβ(Rd ).

2. ‖ph fh‖Hβ(Rd ) � ‖ fh‖Hβ
h
.

3. ‖phdh f − f ‖L2(Rd ) � hβ‖ f ‖Hβ(Rd ).

4. ‖phUh(t) fh − U (t)u0‖L2(Rd ) � h
β

1+β |t |(‖ fh‖Hβ
h

+ ‖u0‖Hβ(Rd )) + ‖ph fh −
u0‖L2(Rd ).
If fh is the discretizationof u0, i.e., fh = u0,h, then‖phUh(t)u0,h−U (t)u0‖L2(Rd )

� 〈t〉h β
1+β ‖u0‖Hβ(Rd ).

5. ‖ph(|uh |p−1uh) − |phuh |p−1 phuh‖L2(Rd ) � hβ‖uh‖p−1
L∞
h

‖uh‖Hβ
h
.

Proof. See [16,25]. �

Lemma 4.2. Let p ≥ 3 and max( 87 ,
2(p−1)
p+1 ) < α < 2. There exists δ = δ(α, p) > 0

sufficiently small such that a Strichartz pair (q, r), defined by (3.12) with σ = 3
4 and

q := 2α
2−α+δ

, satisfies p − 1 < q and yields the uniform L∞
h estimate given by

‖Uh(t) fh‖Lq
t L

∞
h

� ‖ fh‖
H

α
2
h

.

Proof. Let s = α
2 − (2 − 3

4α)( 12 − 1
r ). Then, it can be verified by direct computation

that s > 2
r using δ > 0. Hence, by the Sobolev embedding and (3.13), respectively,

‖Uh(t) fh‖Lq
t L

∞
h

� ‖Uh(t) fh‖Lq
t W

s,r
h

� ‖ fh‖
H

α
2
h

.

Furthermore, it can be directly verified that (q, r) ∈ [2,∞]2. From the Strichartz pair
relation and the definition of q, we have r ≤ ∞ iff α > 8

7 . Lastly, by choosing δ > 0
sufficiently small, p − 1 < q is satisfied. �

Remark 4.1. From (3.3), we have

2 ≤ p − 1 <
2α

d − α
,

from which the definition of q in Lemma 4.2 is motivated.
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Lemma 4.3. Assume the hypothesis of Theorem 3.1 and let q be given by Lemma 4.2.

Given u0 ∈ H
α
2 (R2), let T � ‖u0‖

− 1
1

p−1− 1
q

H
α
2

. By Lemma 3.1, let u, uh be the well-posed

solutions corresponding to initial data u0, u0,h. Then, u, uh satisfy

‖u‖
L∞
t∈[0,T ]H

α
2
x

+ ‖u‖Lq
t∈[0,T ]L∞

x
� ‖u0‖H α

2
,

‖uh‖
L∞
t∈[0,T ]H

α
2
h

+ ‖uh‖Lq
t∈[0,T ]L∞

h
� ‖u0,h‖

H
α
2
h

.
(4.1)

Proof. The estimate for u is derived from the proof of local well-posedness by the
contraction mapping argument. Similarly the time of existence for the discrete evolu-

tion that ensures the estimate (4.1) is Th ∼ ‖u0,h‖
− 1

1
p−1− 1

q

H
α
2
h

. By Lemma 4.1, Th � T

uniformly in h, and therefore u, uh are well defined on [0, T ]. �

Proof of Theorem 3.1. Let u0 ∈ H
α
2 (R2). There exists T ∼ ‖u0‖

− 1
1

p−1− 1
q

H
α
2

and u ∈
C([0, T ]; H α

2 (R2)), unique in a (smaller) Strichartz space (see [14, Theorem 1.1]),
satisfying

u(t) = U (t)u0 − iμ
∫ t

0
U (t − s)(|u|p−1u)(s)ds.

For h > 0, consider u0,h = dhu0 ∈ L2
h and the global solution uh ∈ C1([0,∞); L2

h)

given by Lemma 3.1. Similarly as above,

phuh(t) = phUh(t)u0,h − iμ
∫ t

0
phUh(t − s)(|uh |p−1uh)(s)ds.

The difference phuh(t) − u(t) is given by

= phUh(t)u0,h −U (t)u0

− iμ
∫ t

0
(phUh(t − s) −U (t − s)ph) (|uh |p−1uh)(s)ds

− iμ
∫ t

0
U (t − s)

(
ph(|uh |p−1uh)(s) − |phuh |p−1 phuh(s)

)
ds

− iμ
∫ t

0
U (t − s)

(
|phuh |p−1 phuh(s) − |u|p−1u(s)

)
ds =: I + I I + I I I + I V .

Following the proof of [16, Theorem 1.1], we have

‖I‖L2 � h
α

2+α 〈t〉‖u0‖H α
2

‖I I‖L2 , ‖I I I‖L2 � h
2

2+α 〈t〉2‖u0‖p

H
α
2

‖I V ‖L2 �
∫ t

0
(‖uh(s)‖L∞

h
+ ‖u(s)‖L∞

x
)p−1‖phuh(s) − u(s)‖L2ds.
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and altogether,

‖phuh(t) − u(t)‖L2 � h
α

2+α 〈t〉2(‖u0‖H α
2

+ ‖u0‖p

H
α
2
)

+
∫ t

0
(‖uh(s)‖L∞

h
+ ‖u(s)‖L∞

x
)p−1‖phuh(s) − u(s)‖L2ds.

By the Gronwall’s inequality,

‖phuh(t) − u(t)‖L2 � h
α

2+α 〈t〉2(‖u0‖H α
2

+ ‖u0‖p

H
α
2
)e
∫ t
0 (‖uh(s)‖L∞

h
+‖u(s)‖L∞

x
)p−1ds

.

(4.2)

Applying (4.1) to (4.2), we obtain (3.4) where C1,C2 > 0 depend on various param-
eters including ‖u0‖H α

2
, but not h. This completes the proof. �

5. Proof of Proposition 3.4

Let α ∈ (1, 2) unless otherwise specified. For ζ ∈ C∞
c (M), the quantity J�v,ζ is

at worst a non-degenerate integral almost everywhere with respect to the Lebesgue
measure on R

2
v .

Lemma 5.1. Let ζ ∈ C∞
c (U ) where U ⊆ R

d\{0}. For v ∈ R
d , suppose inf

ξ∈U |v −
∇w(ξ)| ≥ m > 0 on U. Then, |J�v,ζ | �n,m,ζ |τ |−n for all τ ∈ R\{0}, n ∈ N.

Non-degenerate critical points are treated by the method of stationary phase. A
well-known asymptotics [29, Chapter 8, Proposition 6] is given.

Lemma 5.2. Let ξ ∈ M, v ∈ R
2 satisfy v = ∇w(ξ) and det D2w(ξ) �= 0. Then,

there exists a small neighborhood around ξ such that for all ζ ∈ C∞
c supported in the

neighborhood,

J�v,ζ = a0τ
−1 + o(τ−1),

as τ → ∞ where

a0 = ei
π
4 sgnD

2w(ξ)eiτw(ξ)ζ(ξ)

√
2π

| det D2w(ξ)| .

If D2w(ξ) is singular, i.e., if ξ ∈ M satisfies H(ξ, α) := det D2w(ξ) = 0, then the
asymptotic formula of Lemma 5.2 is not applicable; ξ = 0 is not considered since the
oscillatory integrals from Proposition 3.4 have test functions supported outside of the
origin. Note that

D2w(ξ) = − α

16w(ξ)
4
α
−1

(
α cos2 ξ1 + 2(cos ξ2 − 2) cos ξ1 + 2 − α (2 − α) sin ξ1 sin ξ2

(2 − α) sin ξ1 sin ξ2 α cos2 ξ2 + 2(cos ξ1 − 2) cos ξ2 + 2 − α

)

(5.1)
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is well-defined for ξ ∈ M and blows up (in the sense of determinant) as ξ → 0. It
can be shown directly that D2w(ξ) is not the zero matrix for any ξ ∈ M . If D2w(ξ)
is of full rank, then the decay of J�vξ

,ζ can be analyzed via Lemmas 5.1 and 5.2, and

henceforth suppose rank(D2w(ξ)) = 1. Then, H(ξ, α) = h̃(ξ, α)h(ξ, α) where

h̃(ξ, α) = α2

128w(ξ)
8
α
−2

(cos ξ1 + cos ξ2 − 2)

h(ξ, α) = α cos ξ1 cos ξ2(cos ξ1 + cos ξ2) − 4 cos ξ1 cos ξ2 + (2 − α)(cos ξ1 + cos ξ2).

Since h, h̃ are symmetric under ξ1 
→ ±ξ1, ξ2 
→ ±ξ2, (ξ1, ξ2) 
→ (ξ2, ξ1), the
domain of analysis could be restricted to the first quadrant either above or below the
identity ξ1 = ξ2. By definition, h̃ is nonzero on M and therefore the roots of H
correspond to those of h. Following the approach in [1], the representation of h is in
polynomials under the change of variables a = cos ξ1, b = cos ξ2, and is given by

h(a, b, α) = αab(a + b) − 4ab + (2 − α)(a + b).

For brevity, let

Eα = {(a, b) ∈ [−1, 1)2 : h(a, b, α) = 0},
E =

⋃

α∈(1,2)

Eα.

For α ∈ [1, 2), since ∇(a,b)h �= 0 on [−1, 1)2, Eα is a smooth one-dimensional
embedded submanifold by the implicit function theorem. This is false for α = 2; a
cusp (a, b) = (0, 0), which corresponds to ξ = (±π

2 ,±π
2 ), appears when α = 2

since ∇(a,b)h(0, 0) = 0. By direct computation, Eα1 ∩ Eα2 = {(0, 0)} for all α1, α2 ∈
[1, 2]. Hence, there exists a smooth map E\{0} � (a, b) 
→ α ∈ (1, 2) satisfying
h(a, b, α) = 0 by the implicit function theorem, observing that ∂αh(a, b, α) = (a +
b)(ab − 1) is nonvanishing on E\{0}. Observe that Eα consists of two connected
components; one component, say �1

(a,b)(α), passes through the origin whereas the

other, say �2
(a,b)(α), does not. As α → 1+, �2

(a,b)(α) becomes arbitrarily close to

(a, b) = (1, 1) whose corresponding point in T
2, the origin, is not in M . In fact,

⋂

α0∈(1,2]

⋃

α∈[1,α0)
Eα = �1

(a,b)(1),
⋂

α0∈[1,2)

⋃

α∈(α0,2]
Eα = {ab = 0}.

See Fig. 1 for the contour plots of Eα .
Let {e1, e2} be the standard basis ofR2, and with a slight abuse of notation, consider

{e1, e2} as a global orthonormal frame of T2. For each ξ ∈ M , let {k1(ξ), k2(ξ)} be an
orthonormal basis of Tξ M , the tangent space at ξ , with the coordinate system (x, y),
i.e., for all v ∈ Tξ M , there exists unique (x, y) ∈ R

2 such that v = xk1(ξ) + yk2(ξ).
Moreover, assume {k1(ξ), k2(ξ)} diagonalizes D2w(ξ) as

D2w(ξ) = (k1(ξ) k2(ξ)
)
(

∂xxw(ξ) 0
0 ∂yyw(ξ)

)
(
k1(ξ) k2(ξ)

)−1
,
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Figure 1. The contour plots of Eα and its correspondence in
(ξ1, ξ2) ∈ M are given for different values of α

where ∂x = k1(ξ) · ∇ξ , ∂y = k2(ξ) · ∇ξ are the directional derivatives. Suppose
∂yyw(ξ) = 0 for all ξ ∈ E , or equivalently, k2(ξ) is the direction along which
D2w(ξ) is degenerate. Then, it follows that ∂xxw(ξ) �= 0 since D2w(ξ) is not a zero
matrix. Due to diagonalization, ∂xyw(ξ) = 0.
To further investigate the higher-order directional derivatives, [1, Lemma 5.4] is

extended by induction and the product rule for derivatives whose proof is immediate
and hence omitted.

Lemma 5.3. For m ≥ 2, let f ∈ Cm+1(U ) where ξ0 ∈ U ⊆ R
d . Suppose D2 f (ξ0)

has rank d−1 and let kd be a normalized eigenvector corresponding to eigenvalue zero.
Suppose (kd(ξ0) · ∇ξ )

j f (ξ0) = 0 for 2 ≤ j ≤ m. Then, (kd(ξ0) · ∇ξ )
m+1 f (ξ0) = 0

if and only if (kd(ξ0) · ∇ξ )
m−1 det D2 f (ξ0) = 0.

The inflection points of sin2( ξi
2 ) persist to exist as singular points of D2w(ξ) even

when α < 2. By symmetry, the qualitative behavior of J�v,ζ is the same near each
point in K3.

Lemma 5.4. If ξ ∈ Eα\K3, then ∂3yw(ξ) �= 0.Moreover, ∂3yw(P) = 0 for all P ∈ K3.

Proof. For ξ ∈ Eα , since ∇ξ H(ξ, α) = h̃(ξ)∇ξh(ξ, α) where h̃(ξ) �= 0, it suffices to
show v · ∇ξh(ξ, α) = 0 implies ξ ∈ K3 where v is any scalar multiple of k2(ξ). From
(5.1), let

v =
( −(2 − α) sin ξ1 sin ξ2

α cos2 ξ1 + 2(cos ξ2 − 2) cos ξ1 + 2 − α

)

or

(
α cos2 ξ2 + 2(cos ξ1 − 2) cos ξ2 + 2 − α

−(2 − α) sin ξ1 sin ξ2

)

(5.2)

Take the former; the proof for the latter is similar and thus is omitted. First assume
sin ξ2 �= 0.
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In the (a, b) coordinates, ∇ξh = −(sin ξ1∂ah, sin ξ2∂bh), and our task reduces to
solving

sin ξ2

(
−(2 − α)(1 − a2)∂ah + (αa2 + 2(b − 2)a + 2 − α)∂bh

)
= 0, (5.3)

by applying Lemma 5.3 with m = 2. Modulo sin ξ2, (5.3) is a polynomial equation
of degree 3 in b (or a) and therefore can be solved explicitly. The intersection of
h(a, b, α) = 0 and (5.3) occurs at (a, b) = (0, 0).
If ξ lies at the intersection of sin ξ2 = 0 and h(ξ, α) = 0, then it can be directly

verified that the left vector of (5.2) is zero whereas the right vector is a scalar multiple

of

(
1
0

)

. Then, the claim can be proved similarly as before. �

The higher-order derivatives at critical points determine the height of the phase
function.

Lemma 5.5. For all ξ ∈ M,

h(�vξ ) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if ξ /∈ Eα,

6
5 if ξ ∈ Eα \ K3,

4
3 if ξ ∈ K3.

Proof. Let ξ /∈ Eα . In any given coordinate system, say (x̃, ỹ), if ∂x̃ ỹw(ξ) �= 0, then
d(x̃,ỹ) = 1. If ∂x̃ ỹw(ξ) = 0, then both ∂2x̃w(ξ), ∂2ỹw(ξ) �= 0 due to non-degeneracy.
In either case, d(x̃,ỹ) = 1. Taking supremum over all such coordinate systems, the first
claim has been shown. The rest follows similarly as [1, Lemma 3.1] using Lemma 5.4.
In particular, the Newton diagrams for ξ ∈ Eα\K3 and ξ ∈ K3 are given by

Nd = {3x + 2y = 6 : 0 ≤ x ≤ 2},
Nd = {2x + y = 4 : 1 ≤ x ≤ 2},

respectively. �

The computation of heights depends only on the nonzero Taylor coefficients of
�v and therefore does not reflect the variations on α. However, the leading terms of
asymptotics (3.16) depend on α. Define

I�v,ζ (ε) =
∫

{0<�v<ε}
ζ(ξ)dξ.

As in (3.16), I has an asymptotic expansion as ε → 0+,

I�v,ζ ∼
∞∑

j=0

(c j (ζ ) + c′
j (ζ ) log ε)εr j , I−�v,ζ ∼

∞∑

j=0

(C j (ζ ) + C ′
j (ζ ) log ε)εr j ,

where {r j } is an increasing arithmetic sequence of positive rational numbers such that
the (minimal) r0 is determined only by the phase function that renders at least one of
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c0, c′
0,C0,C ′

0 nonzero. For 0 ≤ m ≤ ∞, let − 1
m be the slope of the subset ofNd that

the bisectrix intersects. Define �+
vξ ,pr (x,±1) = �vξ ,pr (x,±1) if �vξ ,pr (x,±1) > 0

and zero otherwise. A summary of [8, Theorem 1.1,1.2] that applies to our case is
given.

Lemma 5.6. Let ξ ∈ Eα . Then, �vξ = �vξ (x, y) in the coordinate system defined by
{k1(ξ), k2(ξ)} is superadapted. The slowest decay of the asymptotics is given by σ0 =
r0 = 1

h(�vξ
)
. The leading terms have vanishing logarithmic terms, i.e., c′

0 = C ′
0 = 0,

and moreover

c0 = lim
ε→0

I�vξ
,ζ (ε)

εσ0
= ζ(0, 0)

m + 1

∫

R

�+
vξ ,pr (x, 1)

−σ0 + �+
vξ ,pr (x,−1)−σ0dx

d0 = lim
τ→∞

J�vξ
,ζ (τ )

τ−σ0
= σ0�(σ0)

(
ei

πσ0
2 c0 + e−i

πσ0
2 C0

)
,

(5.4)

where C0 is computed similarly by replacing �vξ by its negative.

Since ∂3yw(P) = 0 for all P ∈ K3 (see Lemma 5.4), the decay of J is the slowest
on K3. Recalling that K3 ⊆ ⋂

α∈(1,2)
Eα , it is of interest to determine d0(α) on K3.

Lemma 5.7. Let ξ ∈ K3 and let ζ ∈ C∞
c be supported in a small neighborhood

around ξ in which ξ is the unique critical point of �vξ . Then,

d0(α) = c · ζ(ξ)α− 3
4 (2 − α)−

1
4 ,

where c ∈ C \ {0} is independent of ζ and α.

Proof. Without loss of generality, let ξ = (π
2 , π

2 ). Define k1 = e1(ξ)+e2(ξ)√
2

, k2 =
−e1(ξ)+e2(ξ)√

2
where the linear span of {k1, k2} is coordinatized in (x, y). Using (ξ1, ξ2)

as a coordinate for {e1(0), e2(0)}, we have

ξ1 = π

2
+ x − y√

2
, ξ2 = π

2
+ x + y√

2
.

We first claim (x, y) defines a superadapted system for �vξ at (x, y) = (0, 0). Note
that �vξ ,pr = −wpr and

w(x, y) =
{

sin2
(
1

2

(
π

2
+ x − y√

2

))

+ sin2
(
1

2

(
π

2
+ x + y√

2

))} α
2

.

The second order derivatives are

∂xxw(ξ) = −α

8
(2 − α), ∂xyw(ξ) = ∂yyw(ξ) = 0, (5.5)

and the third order derivatives are

∂yyyw(ξ) = ∂xxyw(ξ) = 0, ∂xyyw(ξ) = − α

4
√
2
, ∂xxxw(ξ) = α(α2 − 6α + 4)

16
√
2

.
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By direct computation, it can be verified that ∂
j
yw(ξ) = 0 for all j ≥ 2. These

derivatives determine the Newton polyhedron, Newton diagram, and wpr given by

N = {2x + y ≥ 4, x ≥ 1, y ≥ 0}, Nd = {2x + y = 4, 1 ≤ x ≤ 2},
�vξ ,pr = −wpr (x, y) = α(2 − α)

16
x2 + α

8
√
2
xy2 =: Ax2 + Bxy2.

(5.6)

The bisectrix intersects Nd at x = y = 4
3 = d(�vξ ) > 1. Since �vξ ,pr (x,±1) =

Ax2 + Bx has two real roots, {0,− B
A }, our first claim has been shown. It follows

immediately from Lemma 5.6 that r0 = σ0 = 1
d(�vξ

)
= 3

4 . Moreover, c′
0 = C ′

0 = 0

and

c0 = 2

3
ζ(0, 0)

∫

R

�+
vξ ,pr (x, 1)

− 3
4 + �+

vξ ,pr (x,−1)−
3
4 dx

= 4

3
ζ(0, 0)

(∫ − B
A

−∞
(Ax2 + Bx)−

3
4 dx +

∫ ∞

0
(Ax2 + Bx)−

3
4 dx

)

= 2
27
4 π

1
2 �( 14 )

3�( 34 )
ζ(0, 0)α− 3

4 (2 − α)−
1
4 , (5.7)

by using (5.6); the computation of C0, which amounts to replacing �vξ by −�vξ , is
similar and thus is omitted. The conclusion of lemma follows immediately from the
explicit form of d0 in (5.4) and (5.7). �
Remark 5.1. If α = 2, ∂xxw(ξ) = 0 by (5.5). Consequently, the quadratic term of
�vξ ,pr vanishes and the Newton diagram is given by

Nd = {x + y = 3, 1 ≤ x ≤ 3}.
By analogy with the proof of Lemma 5.7, it is expected that the reciprocal of the
distance of this diagram, 23 , yields the sharp decay rate of the corresponding oscillatory
integral. Indeed, this expectation coincides with the result obtained in [28].

Lemma 5.8. For all ξ ∈ Eα \ K3, let ζ be as Lemma 5.7 such that its support does
not intersect K3. Then, we have

d0 = c · ζ(ξ)|h̃(ξ, α)∂yh(ξ, α)|− 1
3 |TrD2w(ξ)|− 1

6 , (5.8)

where c ∈ C \ {0} is independent of ζ, α, ξ .

Proof. By taking ∂y = k2(ξ) · ∇ξ on H ,

∂y H(ξ, α) = h̃(ξ, α)∂yh(ξ, α) = ∂2xw(ξ)∂3yw(ξ),

by h(ξ, α), ∂2yw(ξ) = 0. Since the trace of a matrix is the sum of eigenvalues,
TrD2w(ξ) = ∂2xw(ξ), and therefore

∂3yw(ξ) = h̃(ξ, α)∂yh(ξ, α)

TrD2w(ξ)
. (5.9)



   30 Page 22 of 35 B. Choi and A. Aceves J. Evol. Equ.

By Lemma 5.5, ∂2xw(ξ), ∂3yw(ξ) �= 0, which yields σ0 = r0 = 5
6 and

wpr (x, y) = ∂2xw(ξ)

2
x2 + ∂3yw(ξ)

6
y3

±�vξ ,pr (x,± 1) = ± ∂2xw(ξ)

2
x2 ± ∂3yw(ξ)

6
,

and therefore the coordinate system (x, y) is superadapted. By Lemma 5.6, it suffices
to compute c0, given by

c0 = c · ζ(ξ)

∫

R

�+
vξ ,pr (x, 1)

− 5
6 + �+

vξ ,pr (x,−1)−
5
6 dx

= c · ζ(ξ)|∂2xw(ξ)|− 1
2 |∂3yw(ξ)|− 1

3

= c · ζ(ξ)|h̃(ξ, α)∂yh(ξ, α)|− 1
3 |TrD2w(ξ)|− 1

6 ,

where the last equation is by (5.9). �
It is insightful to apply (5.8) to obtain the series expansion of d0. For {(a, b) :

h(a, b, α) = 0}, it suffices to consider a ≥ b or a ≤ b by the symmetry of h under
(a, b) 
→ (b, a). Define the two roots of h(a, b, α) = 0 in terms of a, α as

BP (a, α) = 4a − αa2 − (2 − α) +
√(

αa2 − 4a + 2 − α
)2 − 4a2α(2 − α)

2aα
, a ∈ [−1, 0)

B(a, α) = 4a − αa2 − (2 − α) −
√(

αa2 − 4a + 2 − α
)2 − 4a2α(2 − α)

2aα
, a ∈ [2 − α

α
, 1].
(5.10)

Several comments regarding BP , B are summarized below. The following lemma can
be verified by direct computation using (5.10).

Lemma 5.9. For all α ∈ (1, 2), the curve a 
→ BP (a, α) parametrizes �1
(a,b)(α) ∩

{a ≤ b} and a 
→ B(a, α) parametrizes �2
(a,b)(α) ∩ {a ≥ b}. The pointwise conver-

gence lim
a→0− BP (a, α) = 0, lim

α→2− BP (a, α) = 0 holds. Furthermore, B(·, α) obtains

the global maxima on [ 2−α
α

, 1] at the boundary where B( 2−α
α

, α) = B(1, α) = 2−α
α

.

The globalminimum is obtained at am = ( 2−α
α

)
1
2 and B(am, α) ≥ 1−(1+√

2)(α−1).

Corollary 5.1. Consider d0 = d0(a, BP (a, α), α, ζ ) defined on �1
(a,b)(α) ∩ {a ≤ b}

and let ζ ∈ C∞
c be supported in a small neighborhood around (a, BP (a, α)) excluding

(a, b) = (0, 0). Then, for some c ∈ C \ {0} independent of a, α, ζ ,

d0 = c · ζ(a, BP (a, α))|a|− 1
3

∞∑

j=0

a j (α)|a| j (5.11)

holds where the series converges absolutely for all a ∈ [−1, 0). The coefficients {a j }
can be computed explicitly; for example, a0(α) = c′(2 − α)− 1

6 α− 5
6 where c′ is a

nonzero numerical constant independent of ζ, α.
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Proof. The series expansion (5.11) is shown by the general formula (5.8). The point-
wise absolute convergence on a ∈ [−1, 0) follows from the analyticity of the RHS of
(5.8) on ξ ∈ M corresponding to �1

(a,b)(α) ∩ {a ≤ b}. �

Remark 5.2. By direct computation, a j (α) contains the term (2−α)−p j for all j ≥ 0
for some p j > 0, and therefore one obtains a singular behavior of the leading term of
J as α → 2−. Another interesting regime is when ξ → P , or equivalently a → 0−,
along Eα . A qualitative difference between a cusp (ξ = P) and a fold (ξ �= P) is

manifested quantitatively by the blow-up |a|− 1
3 as a → 0−.

On the other hand, consider the case α → 1+. By symmetry, consider �2
(a,b)(α) ∩

{a ≥ b}. The asymptotic behavior of d0(a(α), B(a(α), α), α) where a(α) ∈ [ 2−α
α

, 1
]

is computed as α → 1+.

Corollary 5.2. Consider d0 = d0(a(α), B(a(α), α), α, ζ ) and let ζ ∈ C∞
c be sup-

ported in a small neighborhood around (a(α), B(a(α), α)). Then, there exists α0 > 1
such that

|d0| � |ζ(a, B(a, α))|(α − 1)
2
3− 5α

12 ,

whenever α ∈ (1, α0] and a ∈ [ 2−α
α

, 1]. Furthermore, the implicit constants depend
only on α0.

Proof. Let a = 1 − ã, b = 1 − b̃. By a ∈ [ 2−α
α

, 1] and Lemma 5.9,

0 ≤ ã ≤ 2

α
(α − 1),

2

α
(α − 1) ≤ b̃ ≤ (1 + √

2)(α − 1). (5.12)

Observe that the image of �2
(a,b) under the inverse cosine lies in

[−π
2 , π

2

]2, and it can
be verified that for z ∈ [0, π

2 ],

z

2
≤ sin z ≤ z, 1 − z2

2
≤ cos z ≤ 1 − z2

4
,

√
2z

1
2 ≤ cos−1(1 − z) ≤ 2z

1
2 . (5.13)

Define (ξ1, ξ2) ∈ M as the inverse cosine of (a(α), B(a(α), α)), respectively; for
definiteness, let ξi ≥ 0. In the polar coordinate where r2 = ξ21 + ξ22 , (5.13) is used to
obtain

|h̃(ξ, α)| � α2

w(ξ)
8
α
−2

(cos ξ1 + cos ξ2 − 2) � r−6+2α, (5.14)

where we neglect any powers of α since they can be uniformly bounded for α ∈ (1, 2).

To estimate TrD2w, define (r̃ , θ̃ ) such that r̃2 = ã2 + b̃2, tan θ̃ = b̃
ã . Then,

|TrD2w| � rα−4|α(a2 + b2) + 2((b − 2)a + (a − 2)b) + 4 − 2α|
= rα−4| − 2α(ã + b̃) + α(ã2 + b̃2) + 4ãb̃|
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We claim

−2α(ã + b̃) ≤ −2α(ã + b̃) + α(ã2 + b̃2) + 4ãb̃ ≤ −α(ã + b̃).

The lower bound is trivial since ã, b̃ ≥ 0. The upper bound is equivalent to

ã2 + b̃2

ã + b̃
= r̃

sin θ̃ + cos θ̃
≤ α

α + 2
,

which holds uniformly on α ∈ (1, 2) if r̃ ≤ 1
3 . Hence for all ã, b̃ sufficiently small,

|TrD2w| � rα−4(ã + b̃) � rα−4(α − 1), (5.15)

by (5.12). Likewise for sufficiently small ã, b̃

|∂yh| � (α − 1)b̃
1
2 � (α − 1)

3
2 . (5.16)

For all ε > 0, since �2
(a,b)(α) ⊆ {(a, b) ∈ [1 − ε, 1] × [1 − ε, 1]} whenever α ∈

(1, α0(ε)] for some α0(ε) > 1, there exists α0 > 1 sufficiently close to 1 such that all
small angle approximations are justified (see (5.13)) and

|d0|
c · ζ(a(α), B(a(α), α))

= |h̃(ξ1, ξ2, α)∂yh(ξ1, ξ2, α)|− 1
3 |TrD2w(ξ1, ξ2)|− 1

6

� (α − 1)−
2
3 r

8
3− 5α

6 .

by (5.8), (5.14), (5.15), and (5.16). Combining with

r � |ξ1| + |ξ2| = cos−1(1 − ã) + cos−1(1 − b̃) � (α − 1)
1
2 ,

the proof is complete. �

Remark 5.3. As can be seen in Fig. 1, the trajectory α 
→ ( 2−α
α

, 2−α
α

)
traces the

intersection of �2
(a,b) and the bisectrix. For a(α) = 2−α

α
, an explicit computation

yields

d0 = c · ζ(a(α), a(α))2− 5α
12 α−( 76− 5α

12 )(α − 1)
2
3− 5α

12 (2 − α)−
1
2 ,

for some c ∈ C \ {0} independent of α, ζ . Suppose supp(ζ ) is sufficiently small such
that ζ(a(α), a(α)) = 1. Then, note that d0 −−−−→

α→2− ∞ as
( 2−α

α
, 2−α

α

)
approaches the

origin, which corresponds to the cusp K3. Furthermore, d0 −−−−→
α→1+ 0 as

( 2−α
α

, 2−α
α

)

approaches (a, b) = (1, 1), which corresponds to the origin of T2 where w(ξ) blows
up.
Another example of trajectory, given by (a, b) = (1, 2−α

α
) with the leading term

d0 = c · ζ

(

1,
2 − α

α

)

α− 5
12 (4−α)(α − 1)

2
3− 5α

12 , (5.17)

shows a different qualitative behavior as α → 2−.
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Proof of Proposition 3.4. For all τ > 0,

sup
v∈R2

|J�v,η( ·
N )| ≤ ‖η‖L1(T2)N

2,

by the triangle inequality. Hence τ ≥ 1.
Considering supp

(
η( ·

N )
) = {|ξ | ∈ [π

2 N , 2πN ]} and

min
ξ∈K2∪K3

|ξ | = cos−1
(
2 − α

α

)

, max
ξ∈�2

(ξ1,ξ2)
(α)

|ξ | = √
2 cos−1

(
2 − α

α

)

obtained at
{

(ξ1, ξ2) :
(

± cos−1
(
2 − α

α

)

, 0

)

,

(

0,± cos−1
(
2 − α

α

))}

,

{

(ξ1, ξ2) : ± cos−1
(
2 − α

α

)

,± cos−1
(
2 − α

α

)}

⊆ M,

respectively, define Nα ∈ 2Z to be the largest number satisfying

2πNα < rα := cos−1
(
2 − α

α

)

.

Note that Nα increases as α increases with lim
α→1+ Nα = 0 and N2 = 2−3. Using the

support condition of η( ·
N ), the set of N ∈ 2Z that satisfies the RHS of (3.10) is given

by

supp
(
η
( ·
N

))
∩ K3 �= ∅ ⇐⇒ N ∈ S3 := {20, 2−1}

supp
(
η
( ·
N

))
∩ (K2 \ K3) �= ∅ ⇐⇒ N ∈ S2 :=

[
1

2π
rα,

2
√
2

π
rα

]

\ S3

supp
(
η
( ·
N

))
∩ (K1 \ (K2 ∪ K3)) �= ∅ ⇐⇒ N ∈ S1 :=

((
2
√
2

π
rα, 2−2

]

∪ (0, Nα]
)

\ (S2 ∪ S3).

(5.18)

Suppose N > Nα . For every ξ ∈ T
2\B(0, rα

2 ), there exists a neighborhood �ξ(α)

containing ξ and a constant Cξ (α) > 0 such that for all ζ ∈ C∞
c (�ξ ),

sup
v∈R2

|J�v,ζ | ≤ Cξ‖ζ‖C3(R2)τ
− 1

h(�vξ )
, (5.19)

by [21, Theorem 1.1]. By compactness, an open cover {�ξ } of T2\B(0, rα
2 ) reduces

to a finite subcover {�ξ j }n0j=1, where n0 = n0(α) ∈ N, and let {φ j }n0j=1 be a (α-
dependent) partition of unity subordinate to the finite subcover. Note that if ξ ∈ K1,
then Uξ ∩ K2 = ∅, and if ξ ∈ K2, then Uξ ∩ K3 = ∅ since the oscillatory indices of
�vξ at ξ are distinct on each K j . Consequently each ξ ∈ K3 contributes to the finite
subcover for all α ∈ (1, 2).
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Let ηN , j (·) = η( ·
N )φ j (·). Then, ‖ηN , j‖C3 � N−3 where the implicit constant

depends on the given partition of unity. Since N > Nα , we have N−3 ≤ C(α)N 2− 3
4α

where C(α) = N
−5+ 3

4α
α .

By Lemma 5.5 and τ ≥ 1, the slowest decay occurs on K3 with h(�v) = 4
3 . By

Lemma 5.5, (5.19), and the triangle inequality,

sup
v∈R2

|J�v,η( ·
N )| ≤ sup

v∈R2

n0∑

j=1

|J�v,ηN , j |

≤
⎛

⎝
n0∑

j=1

Cξ j ‖ηN , j‖C3

⎞

⎠ τ− 3
4 �α

n0∑

j=1

Cξ j · N 2− 3
4ατ− 3

4 . (5.20)

For N > Nα , a similar argument using the partition of unity and (5.19) yields (3.10)
with sharp decay rates σ0 ∈ { 34 , 5

6 , 1}.
Suppose N ≤ Nα ≤ 1

8 . Recalling that v = x
hτ
, do a change of variable ξ 
→ Nξ to

obtain

sup
v∈R2

|J�v,η( ·
N )(τ )| = N 2 sup

x∈R2

∣
∣
∣
∣

∫

R2
ei(x ·ξ−τw(Nξ))η(ξ)dξ

∣
∣
∣
∣ .

By adopting the proof of [3, Proposition 1], we obtain sharp dispersive estimates
of a free solution governed by a non-smooth, non-homogeneous dispersion relation.
A change of variables

zi = 2

N
sin

(
Nξi

2

)

, ξi = 2

N
sin−1

(
Nzi
2

)

, τ 
→ 2ατ,

with Jc(z) =
((

1 −
(
Nz1
2

)2
)(

1 −
(
Nz2
2

)2
))− 1

2

, yields

N 2
∫

R2
ei(x ·ξ−τw(Nξ))η(ξ)dξ = N 2

∫

R2
ei(x ·ξ(z)−τNαρα)η(ξ(z))Jc(z)dz

= N 2
∫ ∞

0
e−iτNαρα

G(ρ, x, N )ρdρ := I,

where we denote (r, θ) and (ρ, φ) as the polar coordinates for x = (x1, x2) and
z = (z1, z2), respectively, and

G(ρ, x, N ) = G(ρ) =
∫

S1
eix ·ξ(z)η(ξ(z))Jc(z)dφ(z)

=
∫ 2π

0
eiλ�G (φ)η(ξ(ρ, φ))Jc(z(ρ, φ))dφ,

where λ = ρr and

�G(φ) = 2

ρN

(

cos θ sin−1
(
Nρ cosφ

2

)

+ sin θ sin−1
(
Nρ sin φ

2

))

. (5.21)
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By the support condition of η,

(
Nπ

4

)2
≤ sin−1

(
Nz1
2

)2
+ sin−1

(
Nz2
2

)2
≤ (Nπ)2,

and the small angle approximation z ≤ sin−1 z ≤ 2z on z ∈ [0, 1√
2
], one obtains

π

4
≤ ρ ≤ 2π,

since N |zi |
2 = | sin( Nξi

2 )| ≤ 1√
2
. When clear in context, we use the same symbols η, Jc

for the representations in different variables. We prove

|I | � (α − 1)−
1
2 N 2−ατ−1, (5.22)

from which the proof is complete by interpolating with the trivial bound |I | � N 2.
Let r0 > 0, independent of N , to be specified later and suppose r ≤ r0. Integration

by parts yields

I = N 2−α

iατ

∫

e−iτNαρα

∂ρ(G(ρ)ρ2−α)dρ. (5.23)

Since |G| � 1 and the domain of integration is supported away from the origin,

|G(ρ)∂ρ(ρ2−α)| � 1.

By the chain rule ∂ρ = cosφ∂z1 + sin φ∂z2 and the estimate,

|∂zi ei x ·ξ(z)| = |∂zi ei
2xi
N sin−1(

Nzi
2 )| = |xi |

√
1 − (

Nzi
2 )2

≤ √
2|xi | ≤ √

2r0,

one obtains

sup
N≤Nα

∣
∣
∣
∣

∫

S1
∂ρ

(
eix ·ξ(z)

)
η(ξ(z))Jc(z)dφ(z)

∣
∣
∣
∣ � r0.

By repeated applications of the product and chain rule,

sup
N≤Nα

|∂kρη(ξ(z))| �k,η 1, sup
N≤Nα

|∂kρ Jc(z)| �k 1,

for all k ≥ 0 and therefore

|∂ρ(G(ρ)ρ2−α)| � 1 + r0,

altogether implying

|I | �r0,α N 2−ατ−1.
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Suppose r > r0. From (5.21),

∂φ�G(ρ, φ) = − cos θ sin φ
(

1 −
(
Nρ cosφ

2

)2
) 1

2

+ sin θ cosφ
(

1 −
(
Nρ sin φ

2

)2
) 1

2

∂2φ�G(ρ, φ) = −
(

1 −
(
Nρ

2

)2
)

⎛

⎜
⎜
⎜
⎜
⎝

cos θ cosφ

(1 − (
Nρ cosφ

2 )2)
3
2

+ sin θ sin φ
(

1 −
(
Nρ sin φ

2

)2
) 3

2

⎞

⎟
⎟
⎟
⎟
⎠

.

For a fixed ρ > 0, denote �G(φ) = �G(ρ, φ). The critical points correspond to the
roots of ∂φ�G , and are the solutions to

g(ρ, φ) tan φ = tan θ, g(ρ, φ) :=
⎛

⎜
⎝
1 −

(
Nρ sin φ

2

)2

1 −
(
Nρ cosφ

2

)2

⎞

⎟
⎠

1
2

. (5.24)

By direct computation, g(ρ, ·) is a strictly positive π -periodic even function such that
g(ρ, π

4 + kπ
2 ) = 1 for all k ∈ Z. Furthermore, g(ρ, φ) > 1 if φ ∈ [0, π

4 ), g(ρ, φ) < 1
if φ ∈ (π

4 , π
2 ], and

∂φ |φ= π
4

(g(ρ, ·) tan(·)) = 4 − 16

8 − N 2ρ2 > 0.

Therefore, tan φ < g(ρ, φ) tan φ < 1 on (0, π
4 ) and g(ρ, φ) tan φ < tan φ on (π

4 , π
2 ).

By symmetry, suppose xi ≥ 0 for i = 1, 2, and therefore 0 ≤ tan θ ≤ ∞. By graphing
φ 
→ g(ρ, φ) tan φ on [0, 2π), there exist two solutions, φ±(ρ), where φ+ ∈ [0, π

2 ]
and φ− = φ+ +π . A crude estimate |φ± − θ±| ≤ π

4 follows from a further inspection
of the graph where θ+ = θ, θ− = θ + π .

The critical points are non-degenerate. Ifφ satisfies ∂2φ�G = 0, then g(ρ, φ)3 cot φ =
− tan θ . Assuming ∂2φ�G(φ±) = 0 and substituting (5.24), we have g(ρ, φ±)2 +
tan2 φ± = 0, a contradiction. Since φ± and θ± are in the same quadrants, we have
cos θ± cosφ±, sin θ± sin φ± ≥ 0, and therefore

|∂2φ�G(φ±)| � cos(φ± − θ±) � 1, (5.25)

independent of N , ρ.
Construct χ± ∈ C∞

c (Rφ) given by χ+ = 1 on [0, π
2 ], supported in (−π

8 , 5π
8 ),

χ− = 1 on [π, 3π
2 ], supported in ( 7π8 , 13π

8 ), and define χ0 = 1 − (χ+ + χ−). Since
|φ± − θ±| ≤ π

4 , we have χ±(φ±) = 1 for all N ≤ Nα . Let χ̃± := ηJcχ± and
χ̃0 := ηJcχ0. Note that since

|∂kφη|, |∂kφ Jc|, |∂kφχ±| �k 1, (5.26)
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for all k ≥ 0 independent of N , ρ, so are the higher-order partial derivatives (in φ) of
χ̃±. Define

G±(λ) =
∫ 2π

0
eiλ�G (φ)χ̃±(φ)dφ,

and similarly forG0, and henceG = G++G−+G0. By [29, ChapterVIII, Proposition
3], G± has the asymptotics as λ → ∞ given by

G±(λ) =
√

2π

|∂2φ�G(φ±)|e
i(λ�G (φ±)− π

4 )χ̃±(φ±)λ− 1
2 + G̃±(λ). (5.27)

More precisely, for all k ∈ N ∪ {0}, there exists λ0(k), C(k) > 0 such that

|∂kλ G̃±| ≤ Cλ−( 32+k), (5.28)

for all λ ≥ λ0. Since the estimates (5.25), (5.26) are uniform with respect to N , ρ,
the constants λ0,C can be chosen to be independent of N , ρ. Since ρ ≤ 2π , let
r0 ≥ max(λ0(0),λ0(1))

2π .
Away from the critical points, the integral in φ yields a rapid decay in λ. We claim

|∂λG0| �k λ−k, (5.29)

for all λ > 0 and k ≥ 1 uniformly in N , ρ. Since

∂λG0 = i
∫ 2π

0
eiλ�G (φ)�G(φ)χ̃0(φ)dφ = −1

λ

∫ 2π

0
eiλ�G (φ)∂φ

(
�G χ̃0

∂φ�G

)

dφ,

and |∂φ�G | ≥ | sin(φ − θ)| ≥ sin(π
8 ) for all φ ∈ [ 5π8 , 7π

8 ] ∪ [ 13π8 , 15π
8 ] and θ ∈

[0, π
2 ]∪[π, 3π

2 ], (5.29) is shown for k = 1 by the triangle inequality; for k ≥ 2, (5.29)
is shown by repeated use of integration by parts.
For r ≥ r0, consider the integral in (5.23) with G replaced by G0. Since by (5.29),

|∂ρG0| = r |∂λG0| � r

λ
= 1

ρ
,

the integration by parts yields an estimate consistent with (5.22). By replacing G by
G̃± in the same integral, the bound (5.22) follows by (5.28).
It remains to show that I with G replaced by the leading term of G+ in (5.27)

satisfies (5.22); the analysis on G− is similar and therefore is omitted. Consider

I I := N 2r− 1
2

∫ ∞

0
eiτ�(ρ)a(ρ)dρ

where

a(ρ) := η(ρ, φ+)Jc(ρ, φ+)χ+(φ+)|∂2φ�G(φ+)|− 1
2 ρ− 1

2

�(ρ) = −Nαρα + �G(φ+)
rρ

τ
.
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The region of integration

{ρ ∈ [π
4

, 2π ] : αNαρα−1 <
1

2
|∂ρ(�G(φ+)ρ)| r

τ
or αNαρα−1 > 2|∂ρ(�G(φ+)ρ)| r

τ
}

is included in the case

r

τ
� N |∇w(Nξ)| or r

τ
� N |∇w(Nξ)| (5.30)

since |∂ρ(�G(φ+)ρ)| � 1 uniformly in N , ρ as can be observed in (5.31). For r, ξ
satisfying (5.30), the lower bound of the phase function on supp(η) ⊆ R

2
ξ is

|∇ξ (
x

τ
· ξ − w(Nξ))| ≥ N

2
|∇w(Nξ)| �α Nα.

Let Ei = supp(η)∩{|∂ξi (
x
τ
·ξ −w(Nξ))| � Nα} for i = 1, 2. By direct computation,

|∂2ξi (
x

τ
· ξ − w(Nξ))| � Nα,

and thus by integration by parts,

N 2
∣
∣
∣
∣

∫

R2
ei(x ·ξ−τw(Nξ))η(ξ)dξ

∣
∣
∣
∣

≤ N 2
(∣
∣
∣
∣

∫

E1

ei(x ·ξ−τw(Nξ))η(ξ)dξ

∣
∣
∣
∣+
∣
∣
∣
∣

∫

E2

ei(x ·ξ−τw(Nξ))η(ξ)dξ

∣
∣
∣
∣

)

� N 2−ατ−1.

It suffices to assume r
τ

� N |∇w(Nξ)| � Nα(ξ21 + ξ22 )
α−1
2 � Nα . By direct compu-

tation,

∂ρ(�G(φ+)ρ) = cos θ cosφ+
(

1 −
(
Nρ cosφ+

2

)2
) 1

2

+ sin θ sin φ+
(

1 −
(
Nρ sin φ+

2

)2
) 1

2

∂2ρ(�G(φ+)ρ) = N 2ρ

4

⎛

⎜
⎜
⎜
⎝

cos θ cos3 φ+
(

1 −
(
Nρ cosφ+

2

)2
) 3

2

+ sin θ sin3 φ+
(

1 −
(
Nρ sin φ+

2

)2
) 3

2

⎞

⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎝

cos θ sin φ+
(

1 −
(
Nρ cosφ+

2

)2
) 3

2

− sin θ cosφ+
(

1 −
(
Nρ sin φ+

2

)2
) 3

2

⎞

⎟
⎟
⎟
⎠

∂ρφ+ =: I I I + I V .

(5.31)

We claim |∂2ρ(�G(φ+)ρ)| � N 2. Since Nρ ≤ π
4 and θ, φ+ ∈ [0, π

2 ],

sup
ρ∈[ π

4 ,2π ]
|I I I | � N 2.
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Since |I V | � |∂ρφ+|, it suffices to show
sup

ρ∈[ π
4 ,2π ]

|∂ρφ+| � N 2, (5.32)

which follows from implicitly differentiating (5.24), thereby obtaining

∂ρφ+(ρ) = − ∂ρg(ρ, φ+) · tan φ+
∂φg(ρ, φ+) · tan φ+ + g sec2 φ+

= N 2ρ sin(4φ+)

(1 − (
Nρ
2 )2)(16 − N 2ρ2(1 − cos(4φ)))

.

By the triangle inequality,

|∂2ρ�| ≥ α(α − 1)Nαρα−2 − |∂2ρ(�G(φ+)ρ)| r
τ

� (α − 1)Nα − N 2 r

τ
� (α − 1 − N 2)Nα

� (α − 1)Nα,

where the last inequality follows from N ≤ Nα . By the Van der Corput lemma [29,
Chapter VIII],

|I I | � (α − 1)−
1
2 N 2−ατ−1

(
‖a‖L∞([ π

4 ,2π ]) + ‖∂ρa‖L1([ π
4 ,2π ])

)
, (5.33)

since r
τ

� Nα . By (5.25), a ∈ L∞([π
4 , 2π ]) uniformly in N . To estimate ∂ρa,

the term that needs most care is ∂ρ |∂2φ�G(φ+)|− 1
2 . Since φ+, θ ∈ [0, π

2 ], we have

∂2φ�G(φ+) ≤ 0. By (5.25), (5.32), the chain rule

∂ρ

(
∂2φ�G(φ+)

)
= ∂ρφφ�G(φ+) + ∂3φ�G(φ+) · ∂ρφ+,

and the uniform bound

sup
N≤Nα

|∂k1ρ ∂
k2
φ �G | �k1,k2 1,

we have ∂ρa ∈ L∞([π
4 , 2π ]) uniformly in N .

Lastly, we show (3.11). Let C3(α) > 0 satisfy

C3(α) = inf

{

C > 0 : sup
v∈R2

|J�v,η( ·
N )| ≤ CN 2− 3

4ατ− 3
4 , ∀τ > 0, N ∈ S3

}

,

and define Ci (α) similarly for i = 1, 2. By (5.33), (5.20), we have max
1≤i≤3

Ci (α) < ∞.

For σ0 ∈ { 34 , 5
6 , 1} and ξ ∈ supp(η( ·

N )), we have

lim
τ→∞ |J�vξ

,η( ·
N )|τσ0 ≤ Ci (α). (5.34)
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The limit above is a constant multiple of the nonzero leading terms given by (3.16)
due to the set of critical points of �vξ whose cardinality is uniformly bounded above
for all α ∈ (1, 2) by observing (3.15).
For i = 3, σ0 = 3

4 , the nonzero contributions to the limit are due to the cusps in
K3. Let N ∈ S3. By Lemma 5.7,

c · α− 3
4 (2 − α)−

1
4 ≤ C3(α), (5.35)

where c > 0 depends only on η.
For i = 2, σ0 = 5

6 , let N ∈ S2. For α sufficiently close to 2, we have N = 2−2.

Since η(
ξ(α)

2−2 ) −−−−→
α→2− 0 for ξ = (0, rα), we may replace η( ·

2−2 ) by another smooth

bump function η̃ supported in {|ξ | ∈ [π
8 , π

2 + ε0]} where ε0 > 0 is sufficiently small
so that supp(η̃) ∩ K3 = ∅. Arguing as (5.35) by using (5.17), one obtains

(α − 1)
2
3− 5α

12 �η̃ C2(α).

On the contrary, suppose α > 1 is not close to 2 such that N ∈ S2 satisfies N < 2−2.
Then, there exists N (α) ∈ S2 such that 2

3π rα ≤ N (α) ≤ 4
3π rα . Then, |η( rα

N (α) )| ≥ c > 0
where c is independent of α. Using the same example (5.17), one obtains

(α − 1)
2
3− 5α

12 �η C2(α).

Lastly, let N ∈ S1 and σ0 = 1. Pick ξ ∈ T
2 such that |ξ | = Nπ . Arguing as (5.34)

and invoking Lemma 5.2, we have

C1(α) ≥ √
2π |η(

ξ

N
)| · |H(ξ, α)|− 1

2 Nα−2 � (α − 1)−
1
2 ,

where the last inequality follows from using the small angle approximation (see (5.13),
(5.12)) to obtain

|H(ξ, α)| � (α − 1)N−4+2α.

6. Conclusion and future work

We have shown, with a convergence rate, the continuum limit of DNLSE on hZ2

to the FNLSE on R
2 as h → 0 in the energy subcritical regime for finite time. Our

proof employs sharp dispersive estimates that are obtained by studying appropriate
degenerate oscillatory integrals. It is of interest to compare the sharp decay rate of
σ0 = 3

4 to that in the discrete classical Schrödinger equation (σ0 = 2
3 ) and the discrete

wave equation (σ0 = 2
3 ) at the cost of the best constants blowing up as α → 1+, 2−.

As for future work, it is of interest to extend to the case of mixed fractional derivatives
[4] where (3.2), in dimension two, is replaced by an appropriate discrete analog of

(

− ∂2

∂x21

) α1
2

+
(

− ∂2

∂x22

) α2
2

.
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By numerical and asymptotic techniques, we will explore the conditions of highly
localized states in the discrete models that may relate to finite-time blow-up solutions
in the continuum limit. �
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