Mathematical Programming Computation
https://doi.org/10.1007/512532-023-00235-7

FULL LENGTH PAPER

®

Check for
updates

On the generation of metric TSP instances with a large
integrality gap by branch-and-cut

Eleonora Vercesi' - Stefano Gualandi' - Monaldo Mastrolilli? -
Luca Maria Gambardella3

Received: 2 September 2021 / Accepted: 22 January 2023
© The Author(s) 2023

Abstract

This paper introduces a computational method for generating metric Travelling Sales-
man Problem (TSP) instances having a large integrality gap. The method is based on
the solution of an integer programming problem, called IH-OPT, that takes as input a
fractional solution of the Subtour Elimination Problem (SEP) on a TSP instance and
computes a TSP instance having an integrality gap larger than or equal to the integral-
ity gap of the first instance. The decision variables of IH-OPT are the entries of the
TSP cost matrix, and the constraints are defined by the intersection of the metric cone
with an exponential number of inequalities, one for each possible TSP tour. Given the
very large number of constraints, we have implemented a branch-and-cut algorithm
for solving IH-OPT. Then, by sampling cost vectors over the metric polytope and
by solving the corresponding SEP, we can generate random fractional vertices of the
SEP polytope. If we solve the IH-OPT problem for every sampled vertex using our
branch-and-cut algorithm, we can select the generated TSP instance (i.e., cost vec-
tor), yielding the longest runtime for Concorde, the state-of-the-art TSP solver. Our
computational results show that our method is very effective in producing challeng-
ing instances. As a by-product, we release the Hard-TSPLIB, a library of 41 small
metric TSP instances which have a large integrality gap and are challenging in terms
of runtime for Concorde.

B Eleonora Vercesi
eleonora.vercesiOl @universitadipavia.it

Stefano Gualandi
stefano.gualandi @unipv.it

Monaldo Mastrolilli
monaldo.mastrolilli@idsia.ch

Luca Maria Gambardella

luca.gambardella@idsia.ch

Dipartimento di Matematica “F. Casorati”, Universita degli Studi di Pavia, Pavia, Italy
2 IDSIA - USI-SUPSI, Lugano, Switzerland

3 Faculty of Informatics, USI, IDSIA - USI-SUPSI, Lugano, Switzerland

Published online: 27 March 2023 @ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-023-00235-7&domain=pdf

E. Vercesi et al.

Keywords Integer programming - Integrality gap analysis - Branch-and-cut - Metric
traveling salesman problem

Mathematics Subject Classification 90XX - 9002 - 9005 - 9008 - 9010 - 9011

1 Introduction

The Branch-and-Cut (B&C) algorithms are powerful tools to solve NP-hard problems.
A core component of these algorithms is the solution of several Linear Programming
(LP) relaxations that appear while searching for an integral optimal solution. Given
an instance of an ILP model, its integrality gap for one linear relaxation is the ratio
between the optimal solution of the integer problem and the corresponding LP relax-
ation. In practice, this is a measure of how much the relaxation is good to approximate
the original problem. As a rule of thumb, given an Integer Linear Programming (ILP)
model for an NP-hard problem, the larger is the integrality gap of the initial LP relax-
ation, the longer is the runtime for a B&C algorithm to prove that the best solution
found is optimal. In practice, a large integrality gap at the root node very often implies
that a great number of branch-and-bound nodes must be visited before proving the
optimality of an integral solution. For this reason, a significant effort in designing
efficient B&C algorithms is spent looking for tight LP relaxations [26].

Let us consider, for instance, the Travelling Salesman Problem (TSP): Given a set of
nnodes V = {1, ..., n},asquare matrix C € R’}FX" whose entries ¢;; represent the cost
of going from node i to node j, we have to find the cyclic permutation 7 of V such that
the total cost) . cv Ci,x; 1s minimum. If the matrix C is (i) symmetric, thatis, ¢;; = cj;
forall i, j € V, (ii) satisfies the triangle inequalities ¢;j + cjx > cik, Vi, j, k € V,
and (iii) ¢;; = Oif and only if i = j, then the matrix C defines a metric on V and gives
a Metric TSP instance. Indeed, there exist several ILP models to solve the TSP [2, 9,
25, 27]. However, the most successful exact method is the branch-and-cut algorithm
introduced by Padberg and Rinaldi [29], which includes as a core component the
solution of an LP relaxation based on the subtour elimination constraints [28]. This
LP relaxation is known in the literature as the Subtour Elimination Problem (SEP).
Nowadays, the state-of-the-art exact software for the symmetric TSP is Concorde [1],
a solver which implements a sophisticated B&C algorithm and which includes the
separation of several facet-defining inequalities [2]. Concorde has a track record in
solving the instances from the TSPLIB [31], a wide set of TSP benchmark instances.
Note that most of the TSPLIB instances have a small integrality gap for the SEP. The
largest integrality gap is equal to 1.095, achieved by the ts225 instance, which was
specifically designed to foil TSP software. Except for that one instance, Johnson and
McGeoch [20] are not aware of any testbed instance with a percentage integrality gap
exceeding 1.03.

While studying theoretically the performance of the Held-Karp lower bound for the
TSP, which is equivalent to the optimal lower bound of the SEP, Wolsey proved in [36]
that the integrality gap for SEP is at most % Later, in his master thesis, Williamson
conjectured that for metric TSP the integrality gap of subtour elimination relaxation
is equal to % [35]. So far, this conjecture is only proved for a very special class of

@ Springer

On the generation of Metric TSP instances. ..

instances [6]. For cubic graphs, we know that % is an upper bound for the integrality
gap [8]. In [3, 7], Boyd and Benoit have computed the exact integrality gap for every
n < 12, and, thus, they have verified by exhaustive enumeration the conjecture for
all Metric TSP instances with at most 12 nodes. In addition, Benoit and Boyd [3]
have introduced a new class of graphs having an integrality gap that asymptotically
converges to % as n tends to infinity. To the best of our knowledge, nobody has been able
to find, for a given number of nodes, an instance with a higher integrality gap than the
one they proposed. Curiously, we have computationally verified that those instances
are not challenging for Concorde. More recently, new families of instances with an
integrality gap that asymptotically converges to % were introduced in [19] by exploiting
Tetrahedron configurations, and in [18, 38] by exploiting three paths configurations.
All those families of instances are solvable in polynomial time: the instances of [18]
are convex-hull-and-line TSP instances, and they are solvable in polynomial time with
the algorithm proposed by Deineko et al. [10]. The instances of [19] can be solved
using the polynomial time algorithm introduced in [33]. The instances of [38] can be
solved in linear time, as shown by the same author. Nevertheless, the TSP instances
introduced in [38] are remarkable: in practice, they are extremely challenging for
Concorde.

In this paper, we introduce a new challenging integer programming problem, herein
called the Integer Heuristic-OPT (IH-OPT) problem, whose optimal solution provides
a Metric TSP instance with a large integrality gap. Our approach is purely compu-
tational, and we do not restrict to the generation of Euclidean or Rectilinear TSP
instances as in [18, 19, 38], but we still require that the generated instance are metric.
The decision variables of our problem are the entries of the symmetric cost matrix C,
while the constraints are defined by the intersection of the metric cone [21] with an
exponential number of inequalities, one for each possible permutation of V, that is, one
for each possible solution of the TSP. For example, starting from an instance C of the
TSPLIB, taking an optimal solution of the LP relaxation of the corresponding subtour
elimination model, and by solving the IH-OPT problem, we can generate a new TSP
instance C* having an integrality gap larger than or equal to the integrality gap of the
original instance Cy (e.g., see Table 2). In addition, by integrating the solution of the
IH-OPT problem into a sampling procedure, we can generate several TSP instances
that have a large integrality gap and are challenging in terms of runtime for Concorde
(e.g., see Table 5). As a by-product of our work, we introduce the Hard-TSPLIB, a
collection of 41 small TSP instances (i.e., with n < 76) which are very challenging
for Concorde in terms of runtime and number of branch-and-bound nodes.

The outline of this paper is as follows. In Sect.2, we review the background mate-
rial, and we fix the notation. Section 3 formally introduces the /H-OPT problem and
discusses how it is related to previous works. Section4 presents the sampling proce-
dure that we use to generate TSP instances which are hard for Concorde in terms of
runtime. In Sect. 5, we present our extensive computational results and describe how
we generated the instances that we have included in the Hard-TSPLIB. Finally, in
Sect. 6, we conclude with a discussion on future works.

@ Springer

E. Vercesi et al.

2 Background material

In this section, we review the main formulation for the symmetric TSP and we introduce
the Subtour Elimination Problem polytope. We formally define the integrality gap for
the SEP, presenting the work of [3], which is the foundation of our work.

An instance of the symmetric TSP can be completely defined by the symmetric
matrix C. Otherwise, we can define a TSP instance using a complete undirected graph
K, = (V, E) along with a cost vector ¢ € R'E! , which is given by the upper triangular
matrix of C (without the diagonal). While in this paper we focus on the general Metric
TSP, and we denote it only with TSP, as defined in Sect. 1, two special cases that are
relevant to compare our work with the literature:

1. The Euclidean TSP, where the input is a collection of n points in RY, whose
reciprocal distances are computed using the Euclidean norm. These are the type of
TSP instances used in [18, 19], with d = 2.

2. The Rectilinear TSP, where the input is again a collection of n points in R?, but
where the Manhattan norm (or city block or L' norm) is used to compute the
distances. These are the type of TSP instances used in [38], with d = 3.

In both cases, using the collection of points given as input, and the corresponding
distance function, it is possible to define a complete graph K, with the set of nodes
V ={1,...,n}and the set of edges £ = V x V, with the corresponding cost vector
ce Rfl. In the following, we use § (S) with S C V, to denote the set of weighted edges
e = {v, w}, v # w witheitherv € S, w ¢ S oreither w € S, v ¢ S. We use later the
two following collection of subsets of vertices: .7 :={S | S C V,3 < |S| <n—3}
and 7 = 1{S| S e L {i, j} € (5}

Given a connected graph G = (V, E) and the cost vector ¢ € lel, the Travelling
Salesman Problem, originally proposed in [9], is formulated as follows:

min Z CeXe (1)
ecE
s.t. Z Xe =2 Vv eV (Degree Constraints) 2)
ees({v})
Z Xe >2 VS €. (Subtour Elimination Constraints) 3)
ees(S)
0<x,<1 VeeE (Bound Constraints) “4)
X, integer Ve € E. %)

The decision variable x, is equal to 1 if the edge ¢ = {v, w} is part of an optimal tour.
The objective function (1) minimizes the overall tour length. Constraints (2) state that
each node v must have two incident edges. The Subtour Elimination Constraints (3)
force the cut set §(S) of every proper subset S of V to contain at least two edges.

If we relax the integrality constraints (5), we can define the Subtour Elimination
Problem (SEP), that, given a cost vector ¢, provides a lower bound of the optimal

@ Springer

On the generation of Metric TSP instances. ..

solution. In the next sections, we will denote as polytope of the SEP the set

Psep = {x e RIF [(2), 3), @)). (6)

If we optimize the objective function (1) over Psgp, we get exactly the Subtour
Elimination Problem.

Let us consider the complete graph K,,. Let us denote by T OU R(c) and SU BT (c),
respectively the optimal value of the TSP and SEP instance defined by the cost vector
c¢. Similarly to [3], we denote by «, the integrality gap of SEP for K,, that is, the
largest possible ratio between T OU R(c¢) and SU BT (¢):

TOUR(c)
o, = max LOURO ™
¢>0is metric SU BT (¢)

For n < 5, we have that o, = 1. The exact value for 6 < n < 12 was computed in
[3, 7]. Williamson’s conjecture states that «;, < % for any n [35]. Let’s call «, (c), the
integrality gap of a specific TSP instance on n nodes with cost vector ¢, that is

TOUR(c)
an(€) = —————
SUBT (c)
We can thus write
o, = max «a,(c)

¢>0 is metric

The families of instances introduced in [18, 19, 38] have all the properties that
ap(c) < % and lim,_ o, (c) = %. However, the largest integrality gap for the
instances in the TSPLIB is equal to 1.095 [31], which is largely less than ‘—3‘ = 1.333.

Following the idea presented in [3], we can divide the cost vector ¢ by the optimum
tour value T OU R(c), obtaining a new cost vector ¢’ that still satisfies the triangle
inequalities, and which leaves «, (¢) unchanged. Hence, we can restrict ourselves to
metric cost vectors ¢ suchthat T OU R(c¢) = 1, and we can transform the maximization
problem into a minimization:

— = min SUBT (c). ()
oy ¢>0 is metric,
TOUR(c)=1

Problem (8) can be formulated as a mixed integer quadratic problem, where the deci-
sion variables are both the cost vector ¢ and the incidence vector x of vertices of Psgp.
Unfortunately, despite the recent improvements in the implementation of commercial
optimization solvers, the quadratic model is intractable even for small values of n. In
[31, the authors propose a clever idea for bypassing the quadratic model using the ver-
tex representation of Pgg p. That is, they represent Psgp as the convex combinations
of its vertices {f(l), o ,;(t)}’ which are finitely many. Then, for each vertex ™ of
Psgp, they define an LP problem, called OPT(x (h)), having an exponential number

@ Springer

E. Vercesi et al.

of variables and constraints. Theoretical results in [3, 7] guarantee that only a subset
of vertices is necessary to compute the integrality gap. By solving the OPT (¥) sub-
problem on each vertex of the previously mentioned subset, they were able to compute
oy, forn < 101in [3], and forn < 12 in [7].

Given the complete graph on n nodes K, = (V, E), we introduce one vector
7 € RIEl for each permutation of nodes, such that

_ 1 ifr@)=jorn(j) =i,
Zii =
Y 0 otherwise.

Let .7, be the collection of the incidence vectors 7 € R!E! of all the possible tours
of K,,. Given a vertex ™ of Psgpp, the OPT(x (h)) problem is defined in [3] as

OPTGE™) =min)" x(h) ©)
{i,jleE
st Y Fjej =1 vz € 7,
{i,jleE
(10)
¢ij < cik +¢jk Vi,j,keV
(11)
ciij V{i,j}GE
(12)
ity —uijj+ Z ds <cjj V{i,jl e E
SE&”,']‘
(13)
ujj =0 V{i,jleE
(14)
dg >0 VS e s
(15)
yi+yj—ujj+ Z ds = cjj Vi, J}eEsuchthatx()>0
SE&”U
(16)
uij =0 V{i, j} € E such thauzi(j.’) <1
(17)
dg =0 VS € S suchthat Y f,-(;l) > 2.
ijes(s)
(18)

Constraints (10) ensure that the optimal solution ¢* of OPT (x M) for every X " is such
that TSP (c*) = 1, as discussed in [3]. Herein, we call the inequalities (10) the TSP
constraints. Constraints (11) and (12) ensure that the cost vectors represent a semi-
metric. Constraints (13)—(15) are the dual constraints associated to the dual problem of

@ Springer

On the generation of Metric TSP instances. ..

(1)—(4). Constraints (16)—(18) ensure that the vertex ™ remains the optimal solution
of the SEP. If we denote by C* the set of the optimal solutions of OPT(x¥), the dual
slackness constraints are introduced to guarantee

arg min SEP(¢*) = x™ v e* e (19)

Note that, in [3, 7], the authors observed that, for 6 <n < 12, |C*| = 1.
Hence, given the list of the vertices (x0, ..., xD} of Psgp, the integrality gap o,
of K, is computed by solving

1
— = min OPTE") = a, = max (20)
= 1 =

1
oy h=lL..t 7 k=l t OPT(x ™M)’

Part of the original contribution presented in [3] is to prove that we need to consider
only a subset of the ¢ vertices of Pgg p, namely, such vertices which support graphs
satisfy certain properties. We refer the reader to [3] for the details.

In the following section, we modify the single problem OPT(¥(") in order to
introduce a new NP-hard problem that we use to generate metric TSP instances with
a large integrality gap.

3 The integer heuristic-OPT problem

The goal of our work is to devise an efficient computational procedure to generate
instances with a large integrality gap for the Metric TSP. We are not interested in
computing the exact value «, for a fixed n as in [3], but we focus on finding a heuristic
solution to problem (20).

Notice that problem (9)—(15) has an exponential number of variables due to the
dual variables ds. Furthermore, the number of constraints (10) is equal to the number
of tours, that is (”%1)!, and the number of triangular inequalities constraints (11) is
0(n3).In practice, the exact solution of OPT(x (M) is intractable even for small values
of n. Note that the computation of ¢, for n = 12 required around 24 days [7]. In order
to solve problem (20) heuristically, we introduce a new problem, called Heuristic-OPT
(H-OPT), which is related to problem OPT(x (h)), but can be solved for larger values
of n. The two key ideas for introducing the new problem are:

(i) To generate a TSP instance with a sufficiently large integrality gap it is unneces-
sary to enumerate all vertices {)E(l), R x)} of Psgp. We can sample a subset
of vertices and take the instance providing the largest integrality gap.

(ii) Since we do not perform exhaustive vertex enumeration, it is unnecessary to
impose the complementary slackness constraints (13)-(15) to force that a given
vertex ¥V remains the same vertex of Psrp. Hence, we can remove all the
variables and constraints related to the slackness conditions.

@ Springer

E. Vercesi et al.

For these two reasons, given a vertex M e Pspp, we define the following LP
problem:

H-OPT(x™) :=min)" xl.(]’?)c,-j 1)
{i,jleE

st Y Fje =1 Vi e T, (22)
{i,jleE

Cij < cik + Cjk Vi,j,keV (23)

¢ij >0 V{i, j} € E. (24)

In practice, we have relaxed the problem OPT()E(h)) by removing constraints (13)—
(15). Notice that in H-OPT we have only |E| cost variables, @ TSP constraints
(22) (one for each tour), and O (n?) triangles inequalities (23) that define the metric
cone [21]. We can solve this LP problem by cutting planes, by separating both families
of constraints.

A critical point in the solution of the H-OPT problem by branch-and-cut is the
separation of (maximally violated) TSP constraints (22). The separation problem SP
is defined as follows. Given a cost vector ¢ € Rfl, we look for a tour whose incidence
vector z verify the following:

> zyag < 1. (25)

{i.jleE

Notice that any tour that satisfies the previous relation gives a violated TSP constraint.
However, to prove that no tour violates the TSP constraint, we need to verify the
following:

min Z zijGij ¢ = L. (26)
{i.j}eE

Thus, to add a new TSP constraint, we solve a TSP instance for a specific cost vector c.
In our implementation, we separate TSP constraints by first solving the TSP instance
given by ¢* using the LK-H heuristic [16, 17], and whenever the heuristic fails to
find a violated tour, we solve (26) by embedding Concorde in the code. Section 5.5
describes the details of our implementation. Clearly, the TSP constraints make this
problem challenging, as stated in the following lemma.

Lemma 1 The H-OPT problem is NP-hard.
First of all, we prove the following Lemma.

Lemma2 Let n = |V|. If H-OPT can be solved in n®" time, then the separation
problem SP can be solved in n°®" time.

@ Springer

On the generation of Metric TSP instances. ..

Proof (Sketch) Let P be the polyhedron defined by Eqs. (22)—(24). The proof is
implicit in the proof of a well-known theorem of Grétschel et al. [14] which states that
for well-described polyhedron P the optimization problem can be solved in polynomial
time if and only if the separation problem SP can be solved in polynomial time. Note
that the requirement of well-described polyhedral P is only used for obtaining a time
complexity polynomial in the input size of the problem. For example, if the length L
of the input needed to describe the polyhedral P does not satisfy n < L, then even if
the separation could be resolved in time 7" we could not claim that the separation
problem SP can be resolved in polynomial time.

To see how the proof of this lemma is implicit in [14], it is sufficient to note that in
[14] it is not asked to provide the input size as tight as possible. Actually, it is possible
to make the encoding dimension L of a polyhedron P greater than n by adding, for
example, a string with n zeros. This ensures n < L, and the claim follows. O

Proof (Lemma 1) The claim follows by showing that the Hamiltonian Cycle problem

(HC) can be solved in polynomial time by an oracle machine with an oracle for H-OPT.

More precisely, we reduce in polynomial time HC to the separation problem SP of

H-OPT. Then, by Lemma 2 an oracle machine for H-OPT that takes n?" time implies

that the separation problem SP (and therefore HC) can be solved in n9() time.
Consider the following sets:

M={ceR"|c,>0,Vec [m]cij < cix +cjk Vi, j, k € [n]}, 27
TSP ={ceR"|,¢'x>1Vx e T}, (28)
P=MNTSP. (29)

Let G = (V, E) be an undirected graph on n nodes, that is |V| = n. This graph
defines an instance of the HC problem, namely the decision problem that searches
for a cycle in a graph. We can perform a standard polynomial time reduction to get a
Metric TSP and then normalize costs as follows:

. J=%5)/n ecE,

Ce

= 30
(2 —€)/n otherwise, (30)

where 1 > B(n) > € > 0, and the definition of B(n) will be clarified later in the proof
of this theorem.

Note that this instance of the TSP is metric: identity and symmetry are obvious, and
the triangle inequalities can be verified case-by-case. Note also that, the graph contains
a Hamiltonian cycle if and only of the optimal solution of the TSPis 1 — § < 1, and
thus such cost vector is in M\7 S P. On the opposite side, if the graph does not admit
Hamiltonian cycle, then the TSP solution must contain at least one edge of length

(2 — €)/n. Then, the value of the optimal tour would be at least

(3D

n n n n

2—e+(n—l)(l—§):l 1 6<1 n)

@ Springer

E. Vercesi et al.

2
We observe that if ¢ < T then (31) is greater than 1. Thus, we can set S(n) =
n

D Note that from now on we have proved that a graph G = (V, E) on n nodes
n
admits a Hamiltonian cycle if and only if the solution of the associated TSP with cost

vector ¢ is less than 1. By putting everything together, we see that the Hamiltonian
Cycle problem (HC) can be solved in polynomial time by an oracle machine with an
oracle for H-OPT as follows:

1. Let G = (V, E) be an undirected graph on n nodes.

2. Use Eq. (30) to obtain a TSP instance with cost vector ¢.

3. By Lemma 2, an oracle machine for H-OPT that takes n%W time implies that
we can decide whether ¢ € M in n®M time. If ¢ € M then G does not admit a
Hamiltonian cycle. Otherwise, it admits a Hamiltonian cycle.

O

We remark that our proof only yields to NP-hardness under Turing reductions, as
we have shown that there is an NP-complete decision problem, namely HC, that can
be Turing-reduced to H-OPT. However, this also implies “hardness” for our problem,
as an existence of a polynomial time algorithm for H-OPT would imply P = N P.

Note also that since we have removed from our problem the dual slackness con-
straints, the relation (19) is not necessarily satisfied when ¢* is the optimal solution
of H-OPT (™). However, we can prove the following lemma which states that the
solution of the H-OPT(x ") problem provides a cost vector ¢* corresponding to a TSP
instance with an integrality gap greater than or equal to any instance yielding .

Lemma 3 Let us consider a TSP instance cq such that T OU R(co) = 1, and let© pe
an optimal solution of SE P (cg). We define a second TSP instance by the cost vector

¢| = argmin H-OPT(x (O)).
Then, the following relation holds

TOUR(er) _ TOUR(eo)
SUBT(¢c;) — SUBT(co)

(32)

) i5 a feasible solution of the SEP, we have that

Proof Since x
SUBT(c;) < ¢I'x©
By definition of H-OPT(x (h)), we have ¢ is the cost vector that realizes the minimum
of ¢Tx™ among all the metric vectors such that TOU R(c¢) = 1. By hypothesis,
T OUR(co) = 1 and this implies, coz > 1 for all z 0-1 incidence vector. Thus, ¢y is
feasible for H-OPT (%) and it holds
clTJ?(O) < cgi(o) = SUBT (cp),

@ Springer

On the generation of Metric TSP instances. ..

where the last equation holds by definition. Thus,

TOUR(co) 1 b 1 _ TOUR(e))
SUBT(co) SUBT(cy) — 'x® = SUBT(e1) ~ SUBT(c)) '

O

From large integrality gaps to hard instances. The TSP solver Concorde [2] and
the LK-H heuristic that we use for separating TSP constraints [16] can handle only
integer costs. However, the H-OPT problem generates fractional cost vectors. Hence,
we need to devise a method to transform the fractional costs into integer values, by, for
example, multiplying for a large constant 7 and then rounding to the nearest integer,
that is, ¢;; = round(tc;"j). Using this cost transformation, we cannot guarantee that
the integrality gap for ¢;; remains the same of cZ‘j.

The TSP constraints (22) have a right-hand side equal to 1 because we have divided

the cost vector ¢ by the minimum tour length 7 OU R(c). If we divide the cost vector

by the quantity (%

), where A > 0 is a large positive constant, we have to
change the right hand side of (22) to A, while still getting an equivalent LP problem.
If A is large enough (see Sect. 5.5), we can also add the integrality constraint on the
variable ¢;;. In practice, in order to generate integer cost vectors, we have introduced

the following ILP problem:

IH-OPT(x") :=min) ;zg’)c,» : (33)
{i,jleE
s.t. (23), (24) (34)
Z Zijcij = A vz € I, (35)
{i,jleE
cij integer Y{i, j} € E. (36)

Clearly, IH-OPT is very challenging, as it is an integer program with as many con-
straints as TSP tours plus the number of triangle inequalities. We have computational
evidence that the integrality gap of the integer problem could be smaller than those
obtained by solving H-OPT. Surprisingly, our computational results show that the
TSP instances obtained while solving the IH-OPT problem are very challenging for
Concorde.

In the next section, we show how we use the IH-OPT problem to search for very
challenging instances for Concorde.

4 A sampling procedure for generating hard instances

A standard procedure for searching heuristically for (suboptimal) solutions of an opti-
mization problem is based on uniformly sampling points (i.e., solutions) of the feasible
region [5]. In our context, to find a heuristic solution for problem (20), we could sam-
ple a fixed number of vertices of Psgp and retain the vertex yielding the minimum

@ Springer

E. Vercesi et al.

value for [H-OPT, that is, yielding the largest integrality gap. However, directly sam-
pling the vertices of the Psg p is impractical, due to its exponential number of subtour
constraints. We could instead easily sample random cost vectors and generate vertices
of Psgp by solving directly problem (1)—(4).

A possibility for generating random cost vectors consists of generating n random
points in a Euclidean space, and then computing all the pairwise distances using
a given distance (e.g., a distance induced by the Minkowski norm). As observed
from our preliminary tests, this procedure leads very often to an integral, and hence
useless, vertex of Psg p. In practice, this procedure takes a long time before returning
a fractional vertex of Psg p. Furthermore, it only samples instances of the Euclidean
TSP, implicitly excluding some remarkable metric TSP instances, such as the ones
provided in [3].

To generate a random cost vector, we have designed a different approach. First,
we sample a random point within the metric polytope [21] using the hit-and-run
algorithm [34], which generates a random metric TSP instances ¢ € R‘fl. Second,
we get a (random) vertex ™ by solving SEP(¢) via the simplex algorithm. Since the
cost vector is a uniformly random point of the metric polytope, we expect that M is
arandom vertex of Psgp. We also expect a good variety among the sampled vertices:
for instance, with n = 15, after the sampling of 999 vertices, it took only less than
three seconds to find one vertex both non-integer and not yet sampled. In the next
paragraphs, we briefly review the hit-and-run algorithm, and we detail how we use the
sampling procedure to generate hard metric TSP instances.

The hit-and-run algorithm The hit-and-run algorithm [34] is designed to sample
from a bounded set P uniformly. The basic steps of the algorithm are:

1. Pick a point x; € P C R™.

2. Generate arandom direction d; uniformly distributed over the unitary hyper-sphere
centered in x.

3. Generate a random point x;41 = X + Adj uniformly distributed over the line set
{(x e P|x=x;+ M, A eR}.

4. If astopping criterion is met, stop (e.g., terminate after a fixed number of iterations).
Otherwise, x; < x4+ and repeat from Step 2.

The points sampled with this procedure converge in total variation to a uniform
distribution, as proven in [34]. The time required to have a sample that effectively
approximates the uniform distribution is polynomial in the dimension, as proven in
[24]. Later, a modification of this algorithm to sample a set of points that converges to
an arbitrary target distribution was introduced in [32]. The interested reader can find
an in-depth review of hit-and-run algorithms in [37].

The random sampling algorithm Asnoted in Sect. 2, the constraints (11)—(12) define
the metric cone:

Cuer ={c e R | cij — ci — cju <0.Vi, j.k e V). (37)

@ Springer

On the generation of Metric TSP instances. ..

Algorithm 1: Sampling vertices of the Psgp by using the metric polytope.

Input: m = |E|, the size of the TSP instance
Input: r, the required number of vertices
Output: R, a collection of vertices of Psg p
R«
while |R| < r do

¢ < HitAndRun(PyET)

x < argmin{SEP(c)}

if x is fractional and x ¢ R then

| R« RU({x}

end
end
return R

R S I 7 T N I S

If we add the perimeter inequality (also known as the homogeneous triangle inequality)
we get the metric polytope

Pyer = Cyer N{cij +cik +cjk <2,Vi, j, ke V} (33)

Note that for every metric ¢ € Cy g7, there exist an y such that yc € Pygr [21].
For this reason, without loss of generality, we can sample from Py g7 instead of
Cuyer- Sampling from Py g7 instead of Cys g guarantees to remain in the framework
described in [24], since Py/g7 is a convex compact set and, hence, a convex body.

Algorithm 1 presents our procedure for sampling metric TSP instances from the
set Py g7. Given the size of the metric space m = |E| and the number of required
sampled points r, the algorithm initialized in Step 1 the empty set R. Then, until the
number of sampled points is equal to r, steps 3—7 are iterated. Step 3 generates a
uniformly distributed random cost vector ¢ from the open set Py/pr using the hit-
and-run algorithm. Step 4 generates an optimal vertex x for SEP(¢), x € Psgp. If the
vertex x is fractional and does not belong to R, it is added to R. Finally, the procedure
returns the set R of r vertices of Pggp of dimension m.

5 Generating the Hard-TSPLIB

The objective of our computational experiments is to generate the Hard-TSPLIB, a
collection of small metric TSP instances having a large integrality gap and are chal-
lenging for the Concorde solver. The instances of the Hard-TSPLIB are generated
by using a branch-and-cut solver for problem IH-OPT (x "y,

In the following paragraphs, first, we present the hard instances generated starting
from the TSPLIB. Second, we present the hard instances generated using the random
sampling procedure presented in Sect. 4. Third, we compare the runtime of Concorde
for solving our hard instances with the runtime required for solving the Rectilin-
ear 3-Dimensional instances [38]. In this work, the author compares the introduced
instances with other works, namely [3, 18, 19, 30], showing that author’s instances
are computatinoally harder. Thus, we compare ourselves with [38] and deduce other
comparisons from the context. Then, we visually analyze the structure of the hard

@ Springer

E. Vercesi et al.

instances we have generated. Finally, we discuss the implementation details of our
algorithms.

Note that all the computations described in the following paragraphs are executed
on a single node of an HPC cluster running CentOS, having an Intel CPU with 32
physical cores working at 2.1 GHz, and 64 GB of RAM. We compiled our code with
the GNU C++ compiler v8.3, with the following flags -02 -D_REENTRANT -m64
-ffast-math -DNDEBUG -Wall -march=native.

5.1 Implementation details

Our computational procedure for generating hard metric TSP instances has two core
algorithms:

1. The branch-and-cut algorithm for solving problem IH-OPT(JE(h)) (see Sect. 3).
2. The sampling procedure from the metric polytope (see Sect. 4).

In the following paragraphs, we first describe our implementation of the two algo-
rithms.

Solving IH-OPT by branch-and-cut The problem IH-OPT(x ™) is solved by
branch-and-cut by using the Gurobi commercial solver and using the C++ pro-
gramming language. In our implementation, we dynamically add both the triangle
inequalities and the TSP constraints, in order to keep the core LP problem as small as
possible. Note that a complete enumeration of triangle inequalities could exhaust the
memory of a standard computer for medium values of n.

For the separation of triangular inequalities, we follow the strategies used in [15]:
at each iteration, we add a fixed number & of the most violated triangular inequalities,
until no more violated triangle inequalities exist. The separation of triangle inequalities
is carried over both during the solution of the LP relaxation and when encountering a
new incumbent integer solution.

The separation of TSP constraints is more challenging since it corresponds to the
solution of a TSP instance, as shown in (26). As we only need a violated cut, we
first separate the TSP constraints heuristically by solving the TSP instance using the
Lin-Kernigan local search procedure [22], as implemented in Concorde.! Note that the
LK-H heuristic only handles integer costs. Hence, we use the support of Gurobi for lazy
constraints, which allows running our separation procedure only on incumbent integer
solutions. Whenever the LK-H heuristic returns a TSP solution whose incidence vector
z satisfies Z{i’j}eE zijcij = A, with A as described in Sect. 3, we run a second exact
TSP algorithm. For the exact separation of TSP constraints we use Concorde compiled
using CPLEX 12.8 as LP solver, by using the default parameter settings.

The optimal solution of the LK-H heuristic is given as warm start to the TSP
branch-and-cut implementation.

Notice that before starting the solution of the integer problem IH-OPT(x My we
solve its LP relaxation H-OPT(x ") via cutting planes by only separating the TSP
constraints with the LK-H heuristic (see, for instance, the computational results in
Table 3). Once the LK-H heuristic does not find any TSP violated constraint, we

1 http://www.math.uwaterloo.ca/tsp/concorde/downloads/codes/src/co031219.tgz.

@ Springer

http://www.math.uwaterloo.ca/tsp/concorde/downloads/codes/src/co031219.tgz

On the generation of Metric TSP instances. ..

Table 1 Impact of the parameter A on the instances generated by IH-OPT

A =100 A =1000 A =10,000
gr24, hard
Integrality gap 1.146 1.220 1.220
Avg. Concorde mean time 3.263 16.3 10.77
Std. dev Concorde time 0.977 2.0 1.924
bayg29, hard
Integrality gap 1.159 1.186 1.187
Avg. Concorde mean time 4.157 82.5 32.85
Std. dev Concorde time 1.271 17.6 9.200
bays29, hard
Integrality gap 1.197 1.229 1.228
Avg. Concorde mean time 11.108 64.2 47.392
Std. dev Concorde time 1.790 18.2 16.137

stop, and we collect all the triangle inequalities violated by no more than a threshold
T = 0.05, and all the generated TSP constraints, to initialize the first pool of cut for
our branch-and-cut algorithm.

Sampling the metric polytope by hit-and-run The sampling procedure described
in Algorithm 1 is implemented in Python 3.8.2. For the hit-and-run algorithm
at Step 3, we have used the implementation provided by [13], which is based on the
original algorithm introduced in [34]. The solution of the SEP problem in Step 4 is
implemented using the python wrapper of Gurobi. Since the sampling procedure is
very fast, we did not port this procedure to C++.

Parameters tuning In our implementation, we had only to decide a value for the
parameter A in (35). If we only consider the H-OPT formulation, namely the for-
mulation without the integer costs, we can imagine to multiply each cost for a fixed
quantity w and obtain a tour that costs wA. However, once we move to integer costs,
the parameter A becomes more important because it is strongly related to the number
of values that can be taken as cost coefficients. For instance, if A = n, the solution
having all ¢;; equal to 1 is optimal. This does not lead to an hard-to-solve instance. On
the contrary, if A is too big, we miss such “degeneracy” of the costs on some edges.
In practice, we have observed that for different values of A we get TSP instances
of different (runtime) difficulty. Table 1 shows the computational results for solving
IH-OPT over sampled TSP instances using different values of A. Since the hardest
instances were generated while using A = 1000, we fix this value in all of the tests
reported in this paper. In future work, we plan to investigate further the impact of the
parameter A.

5.2 Generating hard instances from the TSPLIB

The TSPLIB contains 20 instances with less than 76 nodes. Only 13 of them have
a fractional solution for the SEP (i.e., the integrality gap is greater than 1). For 12

@ Springer

E. Vercesi et al.

of these 13 instances, we have generated a corresponding hard instance by solving
H-OPT(x "), where ¥ is the fractional solution of SEP solved via the simplex
algorithm.

If we denote by ¢g the cost vector of the TSPLIB instance, and by ¢* the optimal
solution of H-OPT(x (h)), by Lemma 3, we have

TOUR(") _ TOUR(eo)
SUBT(c¢*) ~— SUBT(co)’

that is, the TSP instance ¢* has an integrality gap larger than or equal to ¢. If instead,
we solve the problem IH-OPT (x (M), we cannot guarantee the previous relation, but in
practice, we get more challenging instances with almost the same integrality gap. For
this reason, all the following results are obtained by solving the IH-OPT problem. Table
2 reports the detailed results for the generation of hard instances from the TSPLIB.
The table first reports the name and the dimension n = | V| of the original instance. The
third and fourth columns report the integrality gap of ¢g (easy instance) and ¢* (hard
instance). In the remaining six columns, the table shows the average runtime in seconds
(with the standard deviations), and the average number of branch and bound nodes
for solving with Concorde first the TSPLIB instance, and later the corresponding
Hard-TSPLIB instance. The averages are computed over 10 independent runs of
Concorde, using 10 different seeds. Finally, the last column reports whether the optimal
SEP solution of ¢y is the same optimal solution of ¢*.

The results of Table 2 show that the small TSPLIB instances have a very small
integrality gap and are extremely easy for Concorde. They are solved within a frac-
tion of seconds at the root node of the branch-and-cut tree. On the contrary, the
Hard-TSPLIB have a significantly larger integrality gap, and they require, on aver-
age, several seconds (or up to several hours) to be solved to optimality by Concorde.
As expected, a larger integrality gap at the root node implies a larger branch-and-cut
tree, that is, a larger number of nodes (column ‘BC n.”). However, this is not always
true, because among the three instances with 48 nodes (att48, gr48, and hk48), the
instance with the smaller integrality gap requires the largest number of branch-and-cut
nodes. Indeed, visiting a larger search tree implies a longer runtime. We remark that
the instance brazi158_hard is not solved by Concorde within a timeout of 24 h.

Tables 3 and 4 report the computational results for generating the Hard-TSPLIB
instances while solving H-OPT(x ™) and IH-OPT(x™), respectively. For each
instance, the table reports the number of cuts generated and the runtime for the triangle
inequalities separation (trian.), the TSP constraints separated by the LKH heuristic
(LKH-cuts), and the TSP constraints separated by Concorde (7'SP-cuts). For the solu-
tion of IH-OPT (x ()), the table gives also the total number of branch-and-bound nodes,
the lower bounds (LLB), and the upper bounds (UB): when the LB and UB are equal
the instance is solved to optimality. Concerning the separation algorithms, the violated
triangle inequalities are identified in a very short time, and they have almost no impact
on the overall runtime. The heuristic separation of TSP constraints using the LKH
heuristic is very effective, but the runtime begins to be important. The exact separa-
tion of TSP constraints is one of the two runtime bottlenecks for the generation of hard
instances. For example, for the instance swiss42, most of the time is spent on the

@ Springer

On the generation of Metric TSP instances. ..

Y+ JO 10w & PaYdeal G T TZ I 2OUEB)SUI AU, "dwn) Suruuni 95Ie[ay) 0) anp a0UO A[UO PIA[OS IE ()
I PIYIRW SIOUB)SUT 93IY} IS[Y, “SP[oY (1) by J1 s1rodar uwnjoo jsef oYL, ‘871 XA IdD Wim porrdwod ‘op1oouo)) Jo suni juapuadapur ¢ I9A0 SIpou ¢ JO Jaquinu pue
(uoneIASp pIepue)s pue) swnunl a3eIoAe ¢ .2 g TdS.LPIEH 9y pue 02 soueisul TSI oy 10J ded KfeiSoyur oy ‘| A | S9pouU Jo JoquInu ‘OWERU ddUBISUI) AIF SUWIN[OD Y],

, 6SYLE () 9'181€9 I L000 S€0°0 8T 620°1 9L 9.1
X LTT8T () T'6SLLE I S00°0 €€0°0 08T'1 900'T 0L oL
X 6€1SS () 0°00+98 1 S00°0 €€0°0 11 2001 8¢ 8glrzeiq
X 85Tl S'8P1 0EPL I 9000 €00 S8T'1 800'1 IS IgIe
X 8'69C 6'SS 0681 I S00°0 1€0°0 SITT 100°T 8% 8
X 9TEl €81 ¥'L6 I S00°0 1€0°0 wel 8101 81 8113
X T9L8C 9t 0TI I S00°0 1£0°0 SEI'T 2001 81 gpyne
X 8'69¢ gzell €991 I S00°0 1£0°0 ovl'l 1001 w Thssims
, 0Tl LTS ¥'99 I S00°0 1€0°0 0ST'1 €00°1 w TpSurzyuep
X 7901 T8l T I #00°0 0£0°0 62T’1 €001 6T 6cskeq
X 9861 9'LI cz8 I #00°0 0£0°0 981'1 100°T 6T 6¢34eq
X 0'€e 0C €91 I #00°0 8200 0zTl 000'1 ¥T ¥7I18
LPIoy ung AJPPIS ununy ung AJPPIS umuny *u 0o
(61) 'ba seoq 2 - dI'TdSLA¥VH 02 - gr1dSL (2) 40 [Al sweN

dITdSL ay) woljy UB&H@EOM SAJUBISUl STTdSL-PICH g9|gel

pringer

As

E. Vercesi et al.

Table 3 Computational results for the heuristic solution of the LP problem H-OPT(x () by cutting planes

Name 4 CUTS RUNTIME

Trian. LK-H Trian. LK-H Total
ar24 24 1500 61 0.00 1.1 2.2
bayg29 29 2394 66 0.00 3.1 6.5
bays29 29 2318 70 0.00 2.5 52
dantzig42 42 6515 88 0.00 7.2 38.7
swiss42 42 5083 87 0.00 15.0 46.5
ard8 48 10011 182 0.00 20.7 93.6
hk48 48 7494 177 0.00 422 78.7
eil51 51 7358 123 0.00 25.8 69.1
brazil58 58 9271 136 0.00 85.9 287.5
st70 70 21914 411 0.00 116.7 1593.4
eil76 76 27885 418 0.00 206.3 2684.5
pr76 76 26233 473 0.00 141.7 4716.2
rat99 99 61300 757 0.00 848.0 190715.4
kroB100 100 60300 883 0.00 841.5 162504.0
kroC100 100 62501 1084 0.01 757.4 131369.2

At this stage, we only separate the TSP cuts with the LK-H heuristic. Columns 3 and 4 report the number of
triangular inequality and TSP constraints added. Columns 5 and 6 report the runtime for separating those
inequalities. The last column reports the overall runtime in seconds

exact separation of a TSP cut. Finally, notice that for the instances pr76, eil76,
rat99, kroBl100, kroC100, the solution by branch-and-cut of IH—OPT()E(h))
hits the time limit of 24 h (86400s). Among those instances, only for pr76, we do
generate a hard TSP instances; in all other cases, we were not able to find an inte-
ger cost vector satisfying all triangle inequalities and all TSP constraints, that is, an
optimal integer solution for problem IH-OPT(x ™).

5.3 Generating hard instances by sampling

We have also generated a collection of instances for the Hard-TSPLIB by using the
random sampling procedure discussed in Sect. 4. First, we run Algorithm 1 to generate
arandom set R of vertices of Psg p, for a fixed size n of the TSP. When generating a
random vertex ¥ in Algorithm 1, we also store the cost vector c(()h) sampled from the
metric cone which yields the vertex ™ Hence, we can compute the integrality gap
of the initial easy TSP instances. Later, for each random vertex ™ in R, we solve
the IH-OPT(x ™) problem to get an instance with a larger integrality gap.

Table 5 reports the three hardest instances we are able to provide for each n €
{10, 15, 20, 25, 30, 35, 40}, generating 10 random vertices for each value of n. The
table reports first the integrality gap of the sampled cost vector ¢, of the optimal
cost vector ¢* obtained after solving IH-OPT(¥"), and the gap oy conjectured in

@ Springer

On the generation of Metric TSP instances. ..

(dn) spunoq 1oddn pue (gT) JoMo[2} SIAIS SUWN[0d 0M] Ise] Y, “paimbar sopou punoq-pue-youelq Jo I9qunu) ()] UWN[OI puL WU Ay s1odar g uwnjo)) syno
S 19ex2 pue {YT ‘Te[n3ueln 10J swyjtode uoneredas o) Jo swmnuni oy 31odax § pue ¢/ ‘9 suwnjo)) "adA) yoes 10 pappe sinod jo rquunu oY) 1odaI ¢ pue 4 ‘¢ suwnjo)

- SSLL vioy 000098 - €T 0T 0 9T 0LEE6 001 001005y
- 0692 8878¢ 000098 - LTL 18°C 0 79 6TS9 001 00TdOony

- SHIS THS8T 000098 - v'LE LO'E 0 0¢ 69€€€ 66 66ver

- 008, 6CLSST 0°00098 - L'1SE 81°0 0 1€9 629L01 9L 9LI
008 S8LL €ESTLT 0°00098 8°LTS6 9TES 90 I 696 86SLS 9L 9L1d
S'6LL S6LL €99011 8'86LYY 6'0vLTT 6'8C1 100 ¢ 98¢ €0879 0L 0L
0'858 0858 I 9vTe8 6118 8l 000 I 4 I8 8¢ 8G[IZeIq
S'8LL S'8LL 108 8 1S8Y1 Togeyl 00t 000 14 €91 60LL IS IS
0°€c8 0°€c8 69tP1 9'8L9 611 768 000 € 6C¢ 01€01 8% gAY
G818 G818 881011 #'6800C $'69¢€01 6'L6 000 ¥ ey 01€€S 8% 8113
0'LL8 0'LL8 €v91 TETL6 0°€896 6L 000 I ST L66T T THSSIms
$'698 $'698 108¢C 098¢ 6'TrS 811 000 € 8 0SLI T THSizIuep
0vI8 0vI8 ovL 1Tt 6'8€C €1 000 I €€ 0£6 6C 6Tskeq
0P8 0P8 8¢ 0°'80S $'50S 'l 000 I Sl 168 6C 6¢3keq
0028 0028 9¢6 89 909 S0 000 I ¥4 998 ¥T Y18

[eI0L, dsL H-NT ueL, dsiL H-YT “uem,
qan a1 ‘u)dg HNLLNNY SLND Al QuieN

mo-pue-goueiq £q ((,¥)IdO-HI wo[qoid 105a)ur ot} jo uonnjos ot 10§ s)nsal [euoneindwo) 4 ajqey

pringer

As

E. Vercesi et al.

Table 5 Results for the Hard-TSP instances generated by sampling

V] Integrality Gap - ay(c) Initial instance - ¢g Hard instance - ¢*

) c* o [3] Runtime stdevn BCn Runtime std.devn BCn
10 1.007 1.153 1.176 0.00 0 1 0.29 0.06 5.2
10 1.002 1.153 1.176 0.00 0 1 0.23 0.06 38
10 1.001 1.157 1.176 0.00 0 1 0.20 0.07 34
15 1.005 1.172 1.222 0.00 0 1 4.45 1.17 12.8
15 1.018 1.171 1.222 0.00 0 1 1.68 0.48 1.2
15 1.007 1.170 1.222 0.00 0 1 3.45 1.29 3.0
20 1.007 1.179 1.246 0.01 0 1 30.76 7.14 66.0
20 1.009 1.212 1.246 0.01 0 1 8.86 2.15 9.2
20 1.011 1217 1.246 0.00 0 1 18.91 7.51 51.2
25 1.022 1.244 1.262 0.01 0 1 140.43 32.58 383.2
25 1.020 1.256 1.262 0.01 0 1 138.66 13.31 385.2
25 1.011 1.244 1.262 0.01 0 1 137.42 24.74 390.8
30 1.002 1.002 1.273 0.01 0 1 195.12 195.13 578.00
30 1.012 1.245 1.273 0.01 0 1 483.10 96.62 1426.8
30 1.000 1.263 1.273 0.01 0 1 156.55 21.13 4544
35 1.013 1.263 1.281 0.01 0 1 2498.79 639.69 6565.0
35 1.018 1.276 1.281 0.02 0 1 1804.68 391.62 51935
35 1.012 1.244 1.281 0.01 0 1 1466.32 26540 3962.1
40 1.002 1210 1.287 0.01 0 1 224.85 102.18 514.0
40 1.005 1.280 1.287 0.01 0 1 5889.35 82320 132124
40 1.o11r 1278 1.287 0.02 0 1 6279.78 874.02 14261.0

[3], that is, to the best of our knowledge, the highest integrality gap available in the
literature. Then, in the remaining columns, the table reports the average runtime (with
the standard deviation) and the average number of BC nodes for solving the instances
to optimality using Concorde, first for the instance ¢ (random cost vector) and then for
¢* (the optimal solution of IH-OPT). Similarly to the results of the Hard-TSPLIB,
Table 5 shows that we are able to generate very hard instances by solving the IH-OPT

problem.
We run a second experiment to study the effect of generating 1000 random instances
for n = 20. For each random instance c(()h) ,with h = 1, ..., 1000, we measure the

average solution runtime of Concorde. Then, using the corresponding vertex *™ and
solving IH-OPT(¥ "), we generate the harder instance, and we measure the runtime
again. Figure 1a shows the runtime distribution for the random instances c(()h), while
Fig. 1b shows the runtime distribution for ¢*. In the top plot, we have a runtime close
to zero: we barely get close to 0.030 s. On the other hand, for the bottom plot, we have
mean runtime of 10s, with a maximum of around 50s. In practice, if we sample a

large number of vertices we are able to get very challenging small instances.

@ Springer

On the generation of Metric TSP instances. ..

700

600

500

400

Frequency

300 1

200 A

100

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Computational time (s)

Frequency

0 10 20 30 40
Computational time (s)

Fig. 1 Top: distribution of the computational times for n = 20 of 1000 sampled TSP instances. Bottom:
distribution of the computational times for n = 20 of 1000 instances obtained by the IH-OPT procedure

Table 6 reports the average runtime (in seconds) to solve the IH-OPT problem on
1000 different vertices sampled for each n from 10 to 20. The solution to this problem
exhibits a very large runtime variability. For instance, with n = 20, the minimum
runtime is of 2s, while the maximum is of 3445s, that is, three orders of magnitude
larger. In addition, we have fitted a linear regression on the log; of the runtime, getting
the following equation

¢ — 100146186

@ Springer

E. Vercesi et al.

Table 6 Average computational
time and standard deviation of
1000 IH-OPT on different x at a 10 0.63 0.39 0.29 6.86
fixed n number of nodes

Avg. time Std. dev Min runtime Max runtime

11 0.51 0.22 0.21 1.98

12 0.74 0.33 0.31 2.84

13 1.19 0.64 0.45 9.08

15 2.40 1.84 0.63 26.97
16 3.38 2.40 1.00 27.03
17 5.82 6.41 1.29 100.14
18 9.37 22.13 1.81 622.00
19 15.63 107.89 2.15 3396.61
20 15.63 109.43 2.24 3445.62

Using this regression, we try to predict the runtime for each n. For example, with
n = 40, we would expect a runtime of around 3 h. However, we have not observed
any significant correlation between the runtime for solving the IH-OPT problem and
the average runtime for solving the hard instance with Concorde.

5.4 A comparison with the 3D-rectilinear instances

To the best of our knowledge, the current hardest instances of the literature are the
Rectilinear 3D instances provided by Zhong [38]. In this work, the author proposes a
family of 3-paths instances with a different configuration of nodes on the three paths
and suggests the node configuration that makes them hard to solve for Concorde.
For this reason, we tried to generate, using our computational procedure, metric TSP
instances as hard as those 3D Rectilinear instances. We have tried the following two
strategies.

(a) Wemassively sampled the metric polytope for small #n with the algorithm described
in Sect.4 and then apply IH-OPT to the correspondent vertices, until we find an
instance with an average runtime competitive with the 3D-Rectilinear instances.
We call this found instance ¢ .

(b) We tried to use our computational procedure to generate hard instances starting
from the optimal solution of the instances provided by Zhong [38]. Let cff the cost
vector of a 3D rectilinear instance with n nodes [38], and let x ,If the correspond-
ing optimal solution of SEP(cX). Similarly, let ¢! = arg min TH-OPT(xX) and
x,11H = arg min SEP(c,’lH).

We compared the average runtime of solving TSP(¢X), TSP(c/#), and TSP(c3). We

have observed from our preliminary tests that Concorde has great runtime variance in

solving the same instance: See, for example, the standard deviation values in Table 2

and Table 5, where we performed 10 independent runs on each instance, using every

time a different seed. This variability is typical of Mixed Integer Programming and
branch and cut algorithm (see e.g [12], [23]). For this reason, the runtime comparison
instance by instance is meaningless unless the difference is of at least one order of

@ Springer

On the generation of Metric TSP instances. ..

log(t)

T
10 15 20 25 30 35 40
Number of nodes

Fig.2 Linear regression for the runtime t,f s t;f ,and t,{ H corresponding to 3D rectilinear instances, sampled
instances, and instances which are solution of IH-OPT (x ,’f), respectively

magnitude. Thus, we present the runtime comparison using linear regression on the
logarithm (log;() of the runtime measured in seconds (again, using 10 independent
runs for each instance).

Figure2 shows the three regression lines for comparing the runtime for solving
(i) the 3D rectilinear instances, marked with R, (ii) the instances produced using the
sampling procedure mentioned above in point (a), marked with S, and (iii) the instances
used with the procedure described in the point (b), marked with IH. The three runtimes
are denoted by 1R, 15, 11 respectively. The fitted regression lines are the following:

tr{(’ — 100.168n—24209’ S _ 100.171n—2.157,

s ITH _ 100.13711—1.794.

t)'l

By looking at the regression, the instances that we have found by massively sampling
the space are a bit harder than the Rectilinear 3-D instance. On the contrary, the
instances directly obtained from vertices are easier. Interestingly, in the logarithm
scale, the three instances have all the same order of magnitude: by looking at Fig.2
it is possible to observe that the three families are competitive to each other, with the
differences mostly related to the variability of Concorde. Noteworthy, by observing
the structure of costs of the instances created by hand as [38] with respect to the
one obtained by the two heuristic procedures, we note less regularity. This fact will
be discussed wider in the next subsection. In terms of the integrality gap, we do not
notice any significant evidence. For n = 12, the instance we sample has an integrality
gap of 1.164 while the Rectilinear 3-D instance has 1.193 and the two runtimes are
competitive. On the contrary, for n = 20, we sample an instance with an integrality
gap of 1.242, while the Rectilinear 3-D instance has 1.240 and yet the two instances
are competitive. Lastly, we run the computation as reported by Zhong, namely by

@ Springer

E. Vercesi et al.

Fig.3 Easy (top) and hard 103 264 28 ® 312 o
(bottom) support graph . o ® RO
associated to one of the sampled -"1.55 314"' 337
vertex with n = 15. The cost 474," .ﬂ’
value on the edge of the support 175 .. 197

graph is also provided

O O0—O0—0—0—C0—0—0
178 53 213 370 54 308 457
36 36
K S S S 3

T s 184
. 147.,*
) 168 .. Tl 168 _
(ELP PP NS — — =
21 21 21 21 21 21 21

57 57

multiplying the instances by 1000 and rounding to the nearest integer. We verified that
this procedure might lead to non-metric instances as, due to rounding errors, triangular
inequalities might not be satisfied.

5.5 Structure of small hard instances

The hard instances recently introduced in [19] and [38] are characterized, by con-
struction, by half-integer solutions for SEP solution, and by support graphs having
two triangles where each edge has a weight equal to % Hence, we have looked at
the structure of the support graph of our hard instances. For some instances, such as
bays29 and ei151, the optimal vertex moves from a complicated structure to a 3-
path configuration with two triangles having %-Vertices. For the instance gr48, in the
original version, the vertices have entries of values in the set {0.0, 0.25, 0.5, 0.75, 1.0},
while in the corresponding hard version, they have entries in the set {0.0, 0.5, 1.0}.

In addition, for three small instances, namely gr24 and two sampled instances
with n = 15 (s15) and n = 20 (sp9), we studied “by hand” the cost structure of
the support graph of the optimal solution of SEP. We selected these 3 instances since
they are challenging for Concorde. The motivation of this study is to investigate if
the hard instances share some common cost patterns and/or structures of the support
graph. Figures 3, 4, and 5 show the support graph of the easy and hard version of the
two instances, where the easy refer to the original cost vector ¢o with its SEP vertex
solution, and the hard to the optimal solution ¢* of IH-OPT. In the support graphs, the
dotted edges correspond to the solution of SEP having value x, = %, while the solid
edges correspond to x, = 1. The missing edges have x, = 0. The label of each edge
gives its cost in the TSP instance.

We observe that the main difference between the easy and hard instances is in
the pattern of the edge length. In the easy instances, the edge costs look randomly
distributed, while in the hard instances obtained after solving IH-OPT there is a clear
cost pattern. The edges lying along the same path have nearly the same cost, while the
dashed edges connecting two distinct paths generally have a cost nearly equal to the
sum of the costs of a single edge on a path. In addition, the overall length of the 3-paths

@ Springer

On the generation of Metric TSP instances. ..

36 61 197 310 194 367 495 448
290 °
267 .7
86 62 50 160 259 252
25 25 26 26 25 26
170 e e——en 171

Fig. 4 Easy (top) and hard (bottom) support graph associated to one of the sampled vertex with n = 20.
The cost value on the edge of the support graph is also provided

68 50 43 69 97 29 71 108 27 70 54

R 29 o i 5
".:_37_.L.:jf:_. 47 " 25 84
6. 327l 30 o ;m :
. 39 *————O . 36
" 40 _ 98 9 S
o o o ®
17 17 16 16 17 16 17 17 16 14 17
1 1 e
*r——e
78 60 .4 : :
61 60 RO P 76
. ———eo @ : : :
77" ’ e) : :
121 61 e———o.. 121
8 59 . 60 : 60

Fig.5 Easy (top) and hard (bottom) support graph associated to the instance gr24 of the TSPLIB. The cost
value on the edge of the support graph is also provided

are almost equal: for instance, in s15 (Fig.3), in the easy version, we have on each
path a sum of, respectively, 707, 48, 1633, while in the hard one, we find 144, 147,
147. Finally, notice that since in IH-OPT we have removed the slackness constraints
introduced in OPT},, we do not have any guarantee that the optimal solution for the
SEP associated to ¢? and ¢* is the same. However, in s15 we have the x0 = x*, while
for so9 and gr24 we get x* # x9, as shown in Figs.4 and 5.

6 Conclusions

In this work, we have introduced a computational procedure to generate metric TSP
instances which have large integrality gaps and are challenging for Concorde, the
state-of-the-art TSP solver. As a by-product, we have introduced the Hard-TSPLIB,
a collection of small but challenging metric TSP instances, which are not generated

@ Springer

E. Vercesi et al.

explicitly exploiting specific cost structures, as in [19, 38]. Notice that, to the best of
our knowledge, all the hard instances from the literature have half-integer optimal SEP
solutions. On the contrary, the instances of the Hard-TSPLIB have a larger variety
of fractional optimal vertices (i.e., they are not only half integers). We expect our new
instances will serve as a benchmark for designing new exact and heuristic methods
for solving the TSP problem.

Curiously, we have observed that the most challenging instances generated using
our computational procedure have regular cost patterns, with several edges sharing the
same costs, and several paths on the support graphs having the same length. These types
of cost patterns are in common with the manually-generated hard instances recently
introduced in [19] and [38]. Hence, we believe that our Hard-TSPLIB instances
could help further studies in the cost structures of TSP instances.

We emphasize that our framework is really general and can be applied to any
combinatorial optimization problem. There are several combinatorial optimization
problems that have metric costs, such as, for instance, the metric Steiner tree [4]
or the shortest Euclidean minimum spanning tree [11]. The main difference would
be to change the TSP constraints into different inequalities for the corresponding
combinatorial objects.

Acknowledgements We are deeply indebted to William J. Cook for his support on the usage of Concorde.
We thank Yuri Faenza for precious insights on the proof of Lemma 2. We thank all the Referees for their
detailed comments, which we gratefully used to improve our work.

Funding The research was partially supported by the Italian Ministry of Education, University, and Research
(MIUR): Dipartimenti di Eccellenza Program (2018-2022) - Dept. of Mathematics “’Felice Casorati®, Uni-
versity of Pavia. S. Gualandi and E. Vercesi are part of the GNAMPA group of INdAAM (National Institute
of High Mathematics). S.Gualandi acknowledges the contribution of the National Recovery and Resilience
Plan, Mission 4 Component 2 - Investment 1.4 - NATIONAL CENTER FOR HPC, BIG DATA AND
QUANTUM COMPUTING (project code: CN_00000013) - funded by the European Union - NextGenera-
tionEU. Supported by the Swiss National Science Foundation project n. 200021_212929/ 1 “Computational
methods for integrality gaps analysis”.

Availability of data and material The dataset generated during the current study is available in the HardT-
SPLIB repository, https://doi.org/10.5281/zenodo.7620067.

Code Availability The full code was made available to the reviewers.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

@ Springer

https://doi.org/10.5281/zenodo.7620067
http://creativecommons.org/licenses/by/4.0/

On the generation of Metric TSP instances. ..

References

10.

11.

13.
14.

15.

17.

18.

19.

20.

21.
22.

23.

24.
25.

26.

27.

28.

29.

. Applegate, D., Bixby, R., Cook, W., Chvétal, V.: On the solution of traveling salesman problems (1998)
. Applegate, D.L., Bixby, R.E., Chvatal, V., Cook, W.J.: The traveling salesman problem: a computational

study. Princeton university press (2006)

. Benoit, G., Boyd, S.: Finding the exact integrality gap for small traveling salesman problems. Math.

Oper. Res. 33(4), 921-931 (2008)

. Bern, M., Plassmann, P.: The Steiner problem with edge lengths 1 and 2. Inf. Process. Lett. 32(4),

171-176 (1989)

. Bertsimas, D., Vempala, S.: Solving convex programs by random walks. J. ACM (JACM) 51(4), 540—

556 (2004)

. Boyd, S., Carr, R.: Finding low cost TSP and 2-matching solutions using certain half-integer subtour

vertices. Discret. Optim. 8(4), 525-539 (2011)

. Boyd, S., Elliott-Magwood, P.: Structure of the extreme points of the subtour elimination polytope of

the STSP (combinatorial optimization and discrete algorithms). RIMS Kokyuroku Bessatsu 23, 33-47
(2010)

. Boyd, S., Sitters, R., van der Ster, S., Stougie, L.: TSP on cubic and subcubic graphs. In: International

Conference on Integer Programming and Combinatorial Optimization, pp. 65-77. Springer (2011)

. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling-salesman problem. J. Oper.

Res. Soc. Am. 2(4), 393-410 (1954)

Deineko, V.G., Van Dal, R., Rote, G.: The convex-hull-and-line traveling salesman problem: a solvable
case. Inf. Process. Lett. 51(3), 141-148 (1994)

Fischetti, M., Hamacher, H.W., Jgrnsten, K., Maffioli, F.: Weighted k-cardinality trees: complexity and
polyhedral structure. Networks 24(1), 11-21 (1994)

. Fischetti, M., Lodi, A., Monaci, M., Salvagnin, D., Tramontani, A.: Improving branch-and-cut perfor-

mance by random sampling. Math. Program. Comput. 8(1), 113-132 (2016)

Font-Clos, F.: Fontclos/hitandrun: initial release (2021). https://doi.org/10.5281/zenodo.4906246
Grotschel, M., Lovasz, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial
optimization. Combinatorica 1(2), 169-197 (1981)

Grotschel, M., Wakabayashi, Y.: A cutting plane algorithm for a clustering problem. Math. Program.
45(1), 59-96 (1989)

. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J.

Oper. Res. 126(1), 106-130 (2000)

Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math. Program. Comput.
1(2), 119-163 (2009)

Hougardy, S.: On the integrality ratio of the subtour LP for Euclidean TSP. Oper. Res. Lett. 42(8),
495-499 (2014). https://doi.org/10.1016/j.0r1.2014.08.009

Hougardy, S., Zhong, X.: Hard to solve instances of the Euclidean traveling salesman problem. Math.
Program. Comput. 13, 51-74 (2020)

Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: The Traveling
Salesman Problem and Its Variations, pp. 369—443. Springer (2007)

Laurent, M.: Graphic vertices of the metric polytope. Discret. Math. 151(1-3), 131-153 (1996)

Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper.
Res. 21(2), 498-516 (1973)

Lodi, A., Tramontani, A.: Performance variability in mixed-integer programming. In: Theory Driven
by Influential Applications, pp. 1-12. INFORMS (2013)

Lovdsz, L.: Math. Program. 86(3), 443-461 (1999)

Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling salesman
problems. J. ACM (JACM) 7(4), 326-329 (1960)

Mitchell, J.E.: Branch-and-cut algorithms for combinatorial optimization problems. Handb. Appl.
Optim. 1, 65-77 (2002)

Orman, A., Williams, H.P.: A survey of different integer programming formulations of the travelling
salesman problem. In: Optimisation, Econometric and Financial Analysis, pp. 91-104. Springer (2007)
Padberg, M., Rinaldi, G.: Facet identification for the symmetric traveling salesman polytope. Math.
Program. 47(1), 219-257 (1990)

Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-scale symmetric
traveling salesman problems. SIAM Rev. 33(1), 60-100 (1991)

@ Springer

https://doi.org/10.5281/zenodo.4906246
https://doi.org/10.1016/j.orl.2014.08.009

E. Vercesi et al.

30.

31.
32.

33.

34.

35.

36.

37.

38.

Reinelt, G.: TSPLIB - A Traveling Salesman Problem Library. INFORMS J. Comput. 3(4), 376-384
(1991). https://doi.org/10.1287/ijoc.3.4.376

Reinelt, G.: TSPLIB-A traveling salesman problem library. ORSA J. Comput. 3(4), 376-384 (1991)
Romeijn, H.E., Smith, R.L.: Simulated annealing for constrained global optimization. J. Glob. Optim.
5(2), 101-126 (1994)

Rubinstein, J.H., Thomas, D.A., Wormald, N.C.: A polynomial algorithm for a constrained traveling
salesman problem. Netw. Int. J. 38(2), 68-75 (2001)

Smith, R.L.: Efficient Monte Carlo procedures for generating points uniformly distributed over bounded
regions. Oper. Res. 32(6), 1296-1308 (1984)

Williamson, D.P.: Analysis of the Held-Karp heuristic for the traveling salesman problem. Master’s
thesis, Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science
(1990)

Wolsey, L.A.: Heuristic analysis, linear programming and branch and bound. In: Combinatorial Opti-
mization II, pp. 121-134. Springer (1980)

Zabinsky, Z.B., Smith, R.L., Gass, S., Fu, M.: Hit-and-run methods. Encycl. Oper. Res. Manage. Sci.
721-729 (2013)

Zhong, X.: Lower bounds on the integraliy ratio of the subtour LP for the traveling salesman problem.
(2021) arXiv preprint arXiv:2102.04765

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1287/ijoc.3.4.376
http://arxiv.org/abs/2102.04765

	On the generation of metric TSP instances with a large integrality gap by branch-and-cut
	Abstract
	1 Introduction
	2 Background material
	3 The integer heuristic-OPT problem
	4 A sampling procedure for generating hard instances
	5 Generating the Hard-TSPLIB
	5.1 Implementation details
	5.2 Generating hard instances from the TSPLIB
	5.3 Generating hard instances by sampling
	5.4 A comparison with the 3D-rectilinear instances
	5.5 Structure of small hard instances

	6 Conclusions
	Acknowledgements
	References

