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Abstract
We introduce a large class of concentrated p-Lévy integrable functions approximating the
unity, which serves as the core tool from which we provide a nonlocal characterization of the
Sobolev spaces and the space of functions of bounded variation via nonlocal energies forms.
It turns out that this nonlocal characterization is a necessary and sufficient criterion to define
Sobolev spaces on domains satisfying the extension property. We also examine the general
case where the extension property does not necessarily hold. In the latter case we establish
weak convergence of the nonlocal Radon measures involved to the local Radon measures
induced by the distributional gradient.

Keywords Nonlocal energy forms · p-Lévy integrability · Sobolev spaces · Bounded
variation spaces · Extension domains

Mathematics Subject Classification 26B30 · 46B45 · 46E27 · 46E30 · 46E35

1 Introduction

Let � be an open subset of Rd , d ≥ 1 and 1 ≤ p < ∞. We aim to provide a nonlocal
characterization of first order Sobolev spaces on � using the following type nonlocal energy
forms

E i�(u) =
¨

R
d
R
d

|u(x) − u(y)|pai�(x, y)ν(x − y) dy dx, i = 1, 2, 3, (1.1)

where, ν : Rd \{0} → [0,∞) is measurable and satisfies the p-Lévy integrability conditionˆ

R
d

(1 ∧ |h|p)ν(h) dh < ∞ , (1.2)

This article is part of the section to “Theory of PDEs” editor by “Eduardo Teixeira”.

B Guy Fabrice Foghem Gounoue
guy.foghem@tu-dresden.de

1 Institut für Wissenschaftliches Rechnen, Fakultät für Mathematik, Technische Universtät Dresden,
Zellescher Weg 23-25, 01217 Dresden, Germany

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42985-023-00232-4&domain=pdf
http://orcid.org/0000-0002-8917-7309


   16 Page 2 of 36 Partial Differential Equations and Applications             (2023) 4:16 

and a1�(x, y) = min(1�(x),1�(y)), a2�(x, y) = max(1�(x),1�(y)) and a3�(x, y) =
1
2 (1�(x) + 1�(y)); where 1� is the indicator function of �. Here and in what follows, the
notation a ∧ b stands for min(a, b), a, b ∈ R. More explicitly, we can write the forms E i�,

as follows

E1
�(u) =

¨

��

|u(x) − u(y)|pν(x − y) dy dx,

E2
�(u) =

¨

G(�)

|u(x) − u(y)|pν(x − y) dy dx, (G(�) = (Rd ×R
d) \ (�c × �c)),

E3
�(u) =

¨

�R
d

|u(x) − u(y)|pν(x − y) dy dx .

Note in passing that E1
� ≤ E i�, E1

R
d = E2

R
d = E3

R
d and 1

2E2
� ≤ E3

� ≤ E2
� since 1

2a
2
� ≤ a3� ≤

a2�. The nonlocal forms E i� are crucial in the study of Integro-Differential Equations (IDEs)
involving nonlocal operators of p-Lévy types; see for instance the recent works [12, 16, 18].
For p = 2, (1.2) is the well-known Lévy integrability condition. Actually, when ν is radial,
the p-Lévy integrability (1.2) condition is consistent and self-generated in the sense that
condition (1.2) holds true if and only if E1

R
d (u) < ∞ for all u ∈ C∞

c (Rd); see Sect. 2.1 for
the details. In addition, the p-Lévy integrability condition (1.2) indicates that ν is allowed to
have a heavy singularity at the origin. For instance, ν(h) = |h|−d−sp satisfies the condition
(1.2) if and only if s ∈ (0, 1).

Next, to reach our goal, we need to introduce a general class of approximation of the unity
by p-Lévy integrable functions. To bemore precise, our standing approximation tool consists
of a family of p-Lévy integrable functions, (νε)ε satisfying, for each ε > 0 and every δ > 0,

νε ≥ 0 is radial,
ˆ

R
d

(1 ∧ |h|p)νε(h) dh = 1 and lim
ε→0

ˆ

|h|>δ

(1 ∧ |h|p)νε(h) dh = 0. (1.3)

For instance, assume ν is radial and
´
R
d (1∧|h|p)ν(h) dh = 1 then (see Proposition 2.2) one

obtains a remarkable family (νε)ε satisfying (1.3) by the following rescaling

νε(h) =

⎧
⎪⎨

⎪⎩

ε−d−pν
(
h/ε

)
if |h| ≤ ε,

ε−d |h|−pν
(
h/ε

)
if ε < |h| ≤ 1,

ε−dν
(
h/ε

)
if |h| > 1.

Another sub-class of (νε)ε satisfying (1.3) is obtained by putting νε(h) = cε|h|−pρε(h),

where (ρε)ε is a family of integrable functions approximating the unity, i.e., for each ε > 0
and every δ > 0,

ρε ≥ 0 is radial,
ˆ

R
d

ρε(h) dh = 1 and lim
ε→0

ˆ

|h|>δ

ρε(h) dh = 0, (1.4)

and cε > 0 is a suitable norming constant for which the integrability condition in (1.3) is
verified. From this perspective, the class of approximation of the unity (ρε)ε satisfying (1.4)
can be viewed as a subclass of (νε)ε satisfying (1.3). However, the converse is not warranted.
In other words the class (νε)ε is more general than the class (ρε)ε . This is because the family
(νε)ε also includes families of the forms (cε|h|−pρε(h))ε for which ρε

′s are not integrable.
For a simple example, consider νε(h) = aε,d,p|h|−d−(1−ε)p (see Example 2.6) then (νε)ε
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satisfies (1.3) but there is no family (ρε)ε satisfying (1.4) such that νε(h) = cε|h|−pρε(h).
Viewed in the sense of the correspondence (ρε)ε 	→ (νε)ε with νε = cε|h|−pρε, the class of
(νε)ε is therefore strictly lager than that of (ρε)ε .

We emphasize that our main goal is to characterize Sobolev spaces on an open set� ⊂ R
d

using a sequence (νε)ε satisfying (1.3). Let us recall that the Sobolev space W 1,p(�) is the
Banach space of functions u ∈ L p(�) whose first order distributional derivatives belong
to L p(�), with the norm ‖u‖W 1,p(�) = (‖u‖p

L p(�) + ‖∇u‖p
L p(�))

1/p. Another space of

particular interest, that emerges naturally as a generalization of W 1,1(�) is the so called
space of bounded variations BV (�). The space BV (�) consists in functions u ∈ L1(�)

with bounded variation, i.e., |u|BV (�) < ∞ where

|u|BV (�) := sup
{ˆ

�

u(x)divφ(x) dx : φ ∈ C∞
c (�,Rd), ‖φ‖L∞(�,Rd ) ≤ 1

}
. (1.5)

The space BV (�) is a Banach space under the norm ‖u‖BV (�) = ‖u‖L1(�) + |u|BV (�).

We denote the distributional derivative of a function u ∈ BV (�) by ∇u. Roughly speaking,
∇u = (�1,�2, · · · ,�d) is a vector valued Radon measure on � such that

ˆ

�

u(x)
∂ϕ

∂xi
(x) dx = −

ˆ

�

ϕ(x) d�i (x), for all ϕ ∈ C∞
c (�), i = 1, · · · , d.

The quantity |∇u| = (�2
1+· · ·+�2

d)
1/2 is a positive Radonmeasure whose value on an open

set U ⊂ � is |∇u|(U ) = |u|BV (U ). Conventionally, we put ‖∇u‖L p(�) = ∞ if |∇u| is not
in L p(�) with 1 < p < ∞ and for p = 1, |u|BV (�) = ∞ if the measure |∇u| does not have
a finite total variation. Note that, if u ∈ W 1,1(�) then u ∈ BV (�), ∂xi u(x) dx = d�i (x)
and |u|BV (�) = ‖∇u‖L1(�). Indeed, since u ∈ W 1,1(�), the integration by part implies

|u|BV (�) = sup
{ˆ

�

∇u(x) · φ(x) dx : φ ∈ C∞
c (�,Rd), ‖φ‖L∞(�,Rd ) ≤ 1

}
≤ ‖∇u‖L1(�).

Conversely, since ∂xi u ∈ L1(�), take a sequence (χn)n ⊂ C∞
c (�,Rd), converging to ∇u

in L1(�,Rd) and a.e. in �. Define χε
n ∈ C∞

c (�,Rd), ε > 0 by χε
n = χn(|χn |2 + ε2)−1/2,

so that ‖χε
n‖L∞(�,Rd ) ≤ 1. The convergence dominated theorem and the integration by parts

imply that
ˆ

�

|∇u(x)|2(|∇u(x)|2 + ε2)−1/2 dx = lim
n→∞

∣
∣
∣

ˆ

�

u(x) ÷ χε
n (x) dx

∣
∣
∣ ≤ |u|BV (�).

Whence Fatou’s lemma implies
ˆ

�

|∇u(x)| dx ≤ lim inf
ε→0

ˆ

�

|∇u(x)|2(|∇u(x)|2 + ε2)−1/2 dx ≤ |u|BV (�).

We are now in position to state our first result.

Theorem 1.1 Let � ⊂ R
d be open and u ∈ L p(�) such that

Ap := lim inf
ε→0

¨

��

|u(x) − u(y)|pνε(x − y) dy dx < ∞ . (1.6)
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Then u ∈ W 1,p(�) for 1 < p < ∞ and u ∈ BV (�) for p = 1. Moreover, there hold the
estimates

‖∇u‖L p(�) ≤ d2
A1/p
p

Kd,1
and |u|BV (�) ≤ d2

A1

Kd,1
. (1.7)

The constant Kd,1 appearing in (1.7) is a universal constant independent of the geometry of
� and is given by the following general mean value formula over the unit sphere

Kd,p = 1

|Sd−1|
ˆ
Sd−1

|w · e|p dσd−1(w) = 

( d
2

)



( p+1
2

)



( d+p

2

)



( 1
2

) , (1.8)

for any unit vector e ∈ S
d−1; see Proposition 3.10 for the computation. The constant Kd,p

also appears in [5]. There is a similar constant in [22, Section 7] when studying nonlocal
approximations of the p-Laplacian. Observe that in general, for every z ∈ R

d , we have

1

|Sd−1|
ˆ
Sd−1

|w · z|p dσd−1(w) = |z|p 1

|Sd−1|
ˆ
Sd−1

|w · e|p dσd−1(w) = |z|pKd,p. (1.9)

Theorem 1.1 yields the following nonlocal characterization of constant functions; see also
[7].

Theorem 1.2 Assume � ⊂ R
d is open and connected. If u ∈ L p(�), 1 ≤ p < ∞, is such

that Ap = 0 then u is almost everywhere constant on �.

Let us now comment about Theorem 1.1. Observing that, E1
�(u) ≤ E i�(u), i = 1, 2, 3,

Theorem 1.1 obviously remains true if the nonlocal forms of type E1
� are replaced with those

of type E2
� or E3

�. It is to be noted that, Theorem 1.1 is governed by two fundamental counter
intuitive remarks. Firstly, the lack of reflexivity of L1(�) implies that, in the case p = 1,
the function belongs to BV (�) and not necessarily in W 1,1(�). In other words, assuming
A1 < ∞ is not enough to conclude that u ∈ W 1,1(�). We give here a mere counterexample
in one dimension; see Counterexample 1 for the general case. For d = 1 and p ≥ 1 we
consider,

� = (−1, 0) ∪ (0, 1), u(x) = 1

2
1[0,1)(x) − 1

2
1(−1,0)(x) and νε(h) = pε(1 − ε)

2|h|1+(1−ε)p
.

(1.10)

For p = 1, it is straightforwards to verify that u ∈ BV (−1, 1)\W 1,1(−1, 1)whereas we find
that A1 = 1. The second remark indicates that, the converse of Theorem 1.1 is not necessarily
true in general. Indeed, by adopting the above example in (1.10), see also the counterexample
1, we find that u ∈ W 1,p(�) while Ap = ∞ for p > 1. A reasonable explanation to the
latter matter is that, � = (−1, 0)∪ (0, 1) is not an extensionW 1,p-domain. To put it another
way, this situation in particular (and in general) occurs due to the lack of the regularity of
the boundary ∂�. Therefore, to investigate the converse of Theorem 1.1, we need some
additional assumption on � such as the extension property. It is noteworthy to recall that
� ⊂ R

d is called to be a W 1,p-extension (resp. a BV -extension) domain if there exists a
linear operator E : W 1,p(�) → W 1,p(Rd) (resp. E : BV (�) → BV (Rd)) and a constant
C := C(d, p,�) depending only on the domain � and the dimension d such that

Eu |� = u and ‖Eu‖W 1,p(Rd ) ≤ C‖u‖W 1,p(�) for all u ∈ W 1,p(�)

(resp. Eu |� = u and ‖Eu‖BV (Rd ) ≤ C‖u‖BV (�) for all u ∈ BV (�)).
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Examples of extension domains include bounded Lipschitz domains which are both W 1,p-
extension and BV -extension domains. In particular euclidean balls and rectangles in Rd are
extension domains. The upper half spaceRd+ = {(x ′, xd) ∈ R

d : xd > 0} is a simple example
of an unbounded extension domain. The geometric characterization of extension domains
has been extensively studied in the last decades. TheW 1,p-extension property of an open set
� infers certain regularity of the boundary ∂�. For instance, according to [21, Theorem 2]
a W 1,p-extension domain � ⊂ R

d is necessarily is a d-set, i.e., satisfies the volume density
condition, viz., there exists a constant c > 0 such that |� ∩ B(x, r)| ≥ crd for all x ∈ ∂�

and 0 < r < 1. In virtue of the Lebesgue differentiation theorem one finds that a d-set � is
a Jordan set [36], i.e., its boundary ∂� has Lebesgue measure zero, |∂�| = 0. Subsequently,
for a W 1,p-extension domain � there holdsˆ

∂�

|∇Eu(x)|p dx = 0 for allu ∈ W 1,p(�). (1.11)

To the best of our knowledge, the question whether the geometric characterization (1.11)
remains true for a BV -extension domain is still unknown. However, thanks to [21, Lemma
2.4] or [17, Theorem 1.3] we know that every W 1,1-extension is a BV -extension domain.
Throughout this article, we require a BV -extension domain � to satisfy the condition

|∇Eu|(∂�) =
ˆ

R
d

1∂�(x) d|∇Eu|(x) = 0 for all u ∈ BV (�). (1.12)

It is to be noted that, in contrast to (1.11), having |∂�| = 0 does not necessarily imply
(1.12). Indeed, it suffices to consider once more the example (1.10) where one gets ∇u = δ0
(the Dirac measure at the origin), so that |∇u|(∂�) = 1. Some authors rather define a
BV -extension domain together with the condition (1.12); see for instance [1, 17]. Extended
discussions on BV -extension domains can be found in [23, 24]. Several references on exten-
sion domains for Sobolev spaces can be found in [35]. Our second main result, which is an
improved converse of Theorem (1.1), reads as follows.

Theorem 1.3 Assume � ⊂ R
d is a W 1,p-extension domain. If u ∈ L p(�) with 1 < p < ∞

or p = 1 and u ∈ W 1,1(�) then we have

lim
ε→0

¨

��

|u(x) − u(y)|pνε(x − y) dy dx = Kd,p‖∇u‖p
L p(�). (1.13)

Moreover if p = 1 and � is a BV -extension domain then for u ∈ L1(�) we have

lim
ε→0

¨

��

|u(x) − u(y)|νε(x − y) dy dx = Kd,1|u|BV (�). (1.14)

We highlight that the counterexample 1 shows that the conclusion of Theorem 1.3 might be
erroneous if � is not an extension domain. In one way of proving Theorem 1.3, we establish
the following sharp version of the estimates in (1.7) (see Theorem 3.3)

‖∇u‖p
L p(�) ≤ Ap

Kd,p
and |u|BV (�) ≤ A1

Kd,1
. (1.15)

Indeed, Theorem 1.3 shows that the estimates in (1.15) turn into equalities provided that� is
an extension domain. As immediate consequences of Theorem 1.1 and Theorem 1.3 we have
the following characterizations for the spaces W 1,p(�) and BV (�) when � is an extension
domain.

123



   16 Page 6 of 36 Partial Differential Equations and Applications             (2023) 4:16 

Theorem 1.4 Assume � ⊂ R
d is a W 1,p-extension domain, p > 1 and let u ∈ L p(�). Then

u ∈ W 1,p(�) if and only if Ap < ∞. Moreover, we have

lim
ε→0

¨

��

|u(x) − u(y)|pνε(x − y) dy dx = Kd,p‖∇u‖p
L p(�).

Theorem 1.4’ Assume � ⊂ R
d is a BV -extension domain, p = 1, and let u ∈ L1(�). Then

u ∈ BV (�) if and only if A1 < ∞. Moreover, we have

lim
ε→0

¨

��

|u(x) − u(y)|νε(x − y)dydx = Kd,1|u|BV (�).

In contrast to the forms of type E1
�, the collapse phenomenon across ∂� occurs for the forms

of type E2
� or E3

� in Theorem 1.3.

Theorem 1.5 Assume that: (i) � ⊂ R
d is a W 1,p-extension domain or (i i) R

d \� is a
W 1,p-extension domain and ∂� = ∂�. For u ∈ W 1,p(Rd), p ≥ 1, there hold the following
limits:

lim
ε→0

¨

��c

|u(x) − u(y)|pνε(x − y) dy dx = 0,

lim
ε→0

¨

��

|u(x) − u(y)|pνε(x − y) dy dx = Kd,p‖∇u‖p
L p(�),

lim
ε→0

¨

�R
d

|u(x) − u(y)|pνε(x − y) dy dx = Kd,p‖∇u‖p
L p(�),

lim
ε→0

¨

(�c×�c)c

|u(x) − u(y)|pνε(x − y) dy dx = Kd,p‖∇u‖p
L p(�).

Moreover, for u ∈ BV (Rd) and p = 1 the above limits remain true provided that |∇u|(∂�) =
0.

Proof In fact, in both cases (i) and (i i) we have |∂�| = |∂�| = 0. Thus, Theorem 3.5
yields the first limit. For the case (i i), the remaining limits follow from Theorem 1.3 since
� × � = (Rd ×R

d)\[�c × � ∪ � × �c ∪ �c × �c], � × R
d = � × � ∪ � × �c and

(�c × �c)c = (Rd ×R
d)\(�c × �c). The case (i) is obtain by interchanging � and �c.

The situation u ∈ BV (Rd) is analogous. ��
The next result, is an alternative to Theorem 1.3 if � is not an extension domain.

Theorem 1.6 Let � ⊂ R
d be open. Let u ∈ W 1,p(�) and define the Radon measures

dμε(x) =
ˆ

�

|u(x) − u(y)|pνε(x − y)dy dx .

The sequence (με)ε converges weakly on � (in the sense of Radon measures) to the Radon

measure dμ(x) = Kd,p|∇u(x)|p dx, i.e., με(E)
ε→0−−→ μ(E) for every compact set E ⊂ �.

Moreover, if p = 1 and u ∈ BV (�) then dμ(x) = Kd,1 d|∇u|(x).
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Note in particular that, Theorem 1.6 implies that (με)ε vaguely convergence to μ, i.e.

lim
ε→0

ˆ

�

ϕ(x) dμε(x) =
ˆ

�

ϕ(x) dμ(x), for everyϕ ∈ C∞
c (�).

Let us comment on Theorem 1.1 and Theorem 1.3 and related results in the literature.
Bourgain–Brezis–Mironescu [5, Theorem3’&Theorem2] proved the characterizationTheo-
rem 1.1 under the stronger condition that� ⊂ R

d is bounded Lipschitz andwhile considering
the sub-class νε(h) = cε|h|−pρε(h) where (ρε)ε satisfies (1.4). Beside this, with the same
assumptions, Bourgain–Brezis–Mironescu in [5, Theorem 2] also established the relation
(1.13). The case � = R

d is also investigated by Brezis [7] while characterizing constant
functions. The case p = 1, i.e., the relation (1.14), is also a natural subject of discussions
in [5] wherein, the authors succeeded in the one dimensional setting when � = (0, 1), viz.,
they proved that

1ˆ

0

1ˆ

0

|u(x) − u(y)|
|x − y| ρε(x − y) dy dx = K1,1|u|BV (0,1) for all u ∈ BV (0, 1).

The general case d ≥ 2 was completed later in [9] when� is a bounded Lipschitz domain. In
this perspective, [9, Lemma 2] also established a variant of Theorem 1.6 for the case p = 1.
Clearly, our setting of Theorem 1.1 is more general as no restriction on � is required and, in
the sense mentioned above, the class (νε)ε satisfying (1.3) is strictly lager than that of (ρε)ε
satisfying (1.4). In addition, in contrast to [5], � is not necessarily bounded in Theorem
1.3 and that the situation where � has a Lipschitz boundary appears as a particular case
of Theorem 1.3. We point out that Theorem 1.3 is reminiscent of [19, Theorem 3.4] for
p = 2. Ultimately, let us mention that, after the release of the first version of this work, the
authors of [3] brought to our attention that they also established the relation (1.13) when
νε(h) = ε|h|−d−(1−ε)p (fractional kernels) for 1 < p < ∞. The case p = 1 is, however, not
fully covered therein. Our approach in this paper extends the works from [5, 7, 9, 28]. In the
wake of [5], several works regarding the characterization of Sobolev spaces and alike spaces
have emerged in the recent years. For example [27, 29] for characterization of Sobolev spaces
via families of anisotropic interacting kernels, [26, 30] for characterization of BV spaces,
[33] for a study of asymptotic sharp fractional Sobolev inequality, [6] for characterization of
Besov type spaces of higher order and [19] for the study of Mosco convergence of nonlocal
quadratic forms.

This article is organized as follows. In the second section we address some examples of
approximating sequence (νε)ε and some nonlocal spaces in connection with function of type
νε . The third section is devoted to the proofs of Theorem 1.1, Theorem 1.3 and Theorem 1.6.

Throughout this article, ε > 0 is a small quantity tending to 0.We frequently use the convex
inequality (a + b)p ≤ 2p−1(a p + bp) for a > 0, b > 0, the Euclidean scalar product of
x = (x1, x2, · · · , xd) ∈ R

d and y = (y1, y2, · · · , yd) ∈ R
d is x ·y = x1x1+x2y2+· · ·+xd yd

and denote the norm of x by |x | = √
x · x . The conjugate of p ∈ [1,∞) is denoted by p′,

i.e. p + p′ = pp′ with the convention 1′ = ∞. Throughout, |Sd−1| denotes the area of the
d − 1-dimensional unit sphere, where we adopt the convention that |Sd−1| = 2 if d = 1.
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2 Preliminaries

2.1 p-Lévy integrability and approximation of Dirac measure

Definition 2.1 (i) A nonnegative Borel measure ν(dh) on R
d is called a p-Lévy measure

if ν({0}) = 0 and it satisfies the p-Lévy integrability condition; that is to say thatˆ

R
d

(1 ∧ |h|p)ν(dh) < ∞.

(ii) A family (νε)ε satisfying (1.3) is called a Dirac approximation of p-Lévy measures.

Patently, one recovers the usual definition of Lévy measures when p = 2. Such measures
are paramount in the study of stochastic process of Lévy type; see for instance [2, 4, 32] for
further details. We intentionally omit the dependence of ν and νε on p. This dependence will
be always clear from the context. The following result shows that by rescaling appropriately
a radial p-Lévy integrable function ν(h) one obtains a family (νε)ε satisfying (1.3).

Proposition 2.2 Let ν ∈ L1(Rd , 1 ∧ |h|p) with ν ≥ 0. Define the rescaled family (νε)ε, as

νε(h) =

⎧
⎪⎨

⎪⎩

ε−d−pν
(
h/ε

)
if |h| ≤ ε,

ε−d |h|−pν
(
h/ε

)
if ε < |h| ≤ 1,

ε−dν
(
h/ε

)
if |h| > 1.

(2.1)

Then for every δ > 0, ε ∈ (0, 1)ˆ

R
d

(1 ∧ |h|p)νε(h) dh =
ˆ

R
d

(1 ∧ |h|p)ν(h) dh and lim
ε→0

ˆ

|h|>δ

(1 ∧ |h|p)νε(h) dh = 0 .

Proof Since ν ∈ L1(Rd , 1 ∧ |h|p) the dominated convergence theorem yields

lim
ε→0

ˆ

|h|>δ

(1 ∧ |h|p)νε(h) dh = lim
ε→0

ˆ

|h|>δ/ε

(1 ∧ |h|p)ν(h) dh = 0.

We omit the remaining details as it solely involves straightforward computations. ��
The behavior of the rescaled family (νε)ε in (2.1) when p = 2 is governed by two keys
observations. The first is that it gives rise to a family of Lévy measures with a concentration
property at the origin. Secondly, from a probabilistic point of view one obtains a family of
pure jumps Lévy processes (Xε)ε each associated with the measure νε(h)dh from a Lévy
process X associated with ν(h)dh. In fact, the family of stochastic processes (Xε)ε converges
in finite dimensional distributional sense (see [19]) to a Brownian motion provided that one
in addition assumes that ν is radial. Proposition 2.5 (i i) below shows that the generator of the
process Xε denoted Lε (see (2.4)), converges to − 1

2d � which is the generator of a Brownian
motion. In short, rescaling via (2.1) any isotropic pure jumpLévy process leads to a Brownian
motion. This could be one more argument to back up the ubiquity of the Brownian motion.
The convergence highlighted above is involved in a more significant context. For example in
[19], the convergence inMosco sense of the Dirichlet forms associated with process in play is
established. Beside these observations, the works [16, 18] establish that if � is bounded with
a Lipschitz boundary and uε satisfies in the weak sense nonlocal problems of the Lεuε = f
in � augmented with Dirichlet condition uε = 0 on �c (resp. Neumann conditionNuε = 0
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on �c) condition then (uε)ε converges in L2(�) to some u ∈ W 1,2(�), where u is the weak
solution to the local problem − 1

2d �u = f in � augmented with Dirichlet boundary u = 0
on ∂� (resp. Neumann condition ∂u

∂n = 0 on ∂�). Here, Lε is given by (2.4) andNε is defined
by

Nεu(x) :=
ˆ

�

(u(x) − u(y))νε(x − y) dy.

Remark 2.3 Assume the family (νε)ε satisfies (1.3). Let β ∈ R, then for all R > 0 we have

lim
ε→0

ˆ

|h|≤R

(1 ∧ |h|β)νε(h)dh =

⎧
⎪⎨

⎪⎩

0 if β > p

1 if β = p

∞ if β < p

.

Indeed, for fixed δ > 0, (1.3) implies

lim
ε→0

ˆ

δ<|h|≤R

(1 ∧ |h|p)νε(h)dh ≤ lim
ε→0

ˆ

|h|>δ

(1 ∧ |h|p)νε(h)dh = 0,

lim
ε→0

ˆ

|h|≤δ

(1 ∧ |h|p)νε(h)dh = 1 − lim
ε→0

ˆ
|h|>δ

(1 ∧ |h|p)νε(h)dh = 1.

Thus for β > p we have

lim
ε→0

ˆ

|h|≤R

(1 ∧ |h|β)νε(h)dh ≤ lim
ε→0

(
Rβ− p̂

δ<|h|≤R

(1 ∧ |h|p)νε(h)dh

+ δβ− p̂

|h|≤δ

(1 ∧ |h|p)νε(h)dh
)

= δβ−p.

Likewise for β < p we have

lim
ε→0

ˆ

|h|≤R

(1 ∧ |h|β)νε(h)dh ≥ lim
ε→0

(
Rβ− p̂

δ<|h|≤R

(1 ∧ |h|p)νε(h)dh

+ δβ− p̂

|h|≤δ

(1 ∧ |h|p)νε(h)dh
)

= δβ−p.

In either case, letting δ → 0 provides the claim.

Remark 2.4 Assume the family (νε)ε satisfies (1.3). Note that the relation

lim
ε→0

ˆ

|h|>δ

(1 ∧ |h|p)νε(h) dh = 0, (2.2)

is often known as the concentration property and is merely equivalent to

lim
ε→0

ˆ

|h|>δ

νε(h) dh = 0, for all δ > 0.
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Indeed, for all δ > 0 we haveˆ

|h|>δ

(1 ∧ |h|p)νε(h) dh ≤
ˆ

|h|>δ

νε(h) dh ≤ (1 ∧ δ p)−1
ˆ

|h|>δ

(1 ∧ |h|p)νε(h) dh.

Consequently, for all δ > 0 we also have

lim
ε→0

ˆ

|h|≤δ

(1 ∧ |h|p)νε(h) dh = lim
ε→0

ˆ

|h|≤δ

|h|pνε(h) dh = 1. (2.3)

The next result infers certain some convergences of the family (νε)ε for the case p = 1 and
p = 2.

Proposition 2.5 Consider the family (νε)ε satisfying (1.3).

(i) If p = 1 then we have 〈νε, ϕ − ϕ(0)〉 ε→0−−→ 0 for every ϕ ∈ C∞
c (Rd).

(ii) If p = 2 then for a bounded function u : Rd → R which is C2 on a neighborhood of
x,

lim
ε→0

Lεu(x) = − 1

2d
�u(x),

where � is the Laplace operator and Lε is the integrodifferential operator

Lεu(x) := −1

2

ˆ

R
d

(u(x + h) + u(x − h) − 2u(x))νε(h) dh. (2.4)

Proof (i) Let ϕ ∈ C∞
c (Rd) using the fundamental theorem of calculus we can write

〈νε, ϕ − ϕ(0)〉 =
ˆ

R
d

(ϕ(h) − ϕ(0)) νε(h) dh

=
ˆ

|h|≤1

(ϕ(h) − ϕ(0) − ∇ϕ(0) · h) νε(h) dh +
ˆ

|h|≥1

(ϕ(h) − ϕ(0))νε(h) dh

=
ˆ

|h|≤1

ˆ 1

0

1ˆ

0

s((D2ϕ(tsh) · h) · h) νε(h) ds dt dh

+
ˆ

|h|≥1

(ϕ(h) − ϕ(0))νε(h) dh.

The conclusion clearly follows since
∣
∣
∣

ˆ

|h|>1

(ϕ(h) − ϕ(0))νε(h) dh
∣
∣
∣ ≤ 2‖ϕ‖L∞(Rd )

ˆ

|h|>1

νε(h) dh
ε→0−−→ 0

and by Remark 2.3 we have

123



Partial Differential Equations and Applications             (2023) 4:16 Page 11 of 36    16 

∣
∣
∣

ˆ

|h|≤1

1ˆ

0

1ˆ

0

s((D2ϕ(tsh) · h) · h) νε(h) ds dt dh
∣
∣
∣

≤ ‖D2ϕ‖L∞(Rd )

ˆ

|h|≤1

|h|2νε(h) dh
ε→0−−→ 0.

(i i) Note that D2u is bounded in a neighborhood of x . Hence, for 0 < δ < 1 sufficiently
small, for all |h| < δ we have the estimate

|u(x + h) + u(x − h) − 2u(x)| ≤ 4(‖u‖Cb(R
d ) + ‖D2u‖C(B4δ(x))(1 ∧ |h|2).

The boundedness of u implies that

lim
ε→0

ˆ

|h|>δ

|u(x + h) + u(x − h) − 2u(x)| νε(h) dh = 4‖u‖L∞(Rd ) lim
ε→0

ˆ

|h|>δ

νε(h) dh = 0.

Since the Hessian of u is continuous at x , given η > 0 we have |D2(x + z) − D2u(x)|
< η for |z| < 4δ with δ > 0 sufficiently small, Remark 2.3 implies

lim
ε→0

1

2

1ˆ

0

1ˆ

0

2t
ˆ

|h|≤δ

|[((D2u(x − th + 2sth) − D2u(x)) · h] · h| νε(h) dh ds dt

≤ η

2
lim
ε→0

ˆ

|h|≤δ

(1 ∧ |h|2) νε(h) dh = η

2
.

Thus, the leftmost expression vanishes since η > 0 is arbitrarily. Next, by symmetry we
have

´
|h|≤δ

hi h jνε(h) dh = 0 for i �= j . The rotation invariance of the Lebesgue measure
implies

ˆ

|h|≤δ

[D2u(x) · h] · h νε(h) dh =
d∑

i �= j
i, j=1

ˆ

|h|≤δ

∂2i j u(x)hi h jνε(h) dh +
d∑

i=1

∂2i i u(x)
ˆ

|h|≤δ

h2i νε(h) dh

= �u(x)
ˆ

|h|≤δ

h21νε(h) dh = 1

d
�u(x)

ˆ

|h|<δ

|h|2νε(h) dh

= 1

d
�u(x)

ˆ

|h|≤δ

(1 ∧ |h|2) νε(h) dh
ε→0−−→ 1

d
�u(x).

Finally, by the fundamental theorem of calculus we find that

− 1

2

ˆ

|h|≤δ

(u(x + h) + u(x − h) − 2(x)) νε(h) dh

= −1

2

ˆ

|h|≤δ

[D2u(x) · h] · h νε(h) dh

− 1

2

1ˆ

0

1ˆ

0

2
ˆ

|h|≤δ

[D2u(x − th + 2sth) · h − D2u(x) · h] · h νε(h) dh ds dt
ε→0−−→ − 1

2d
�u(x).

��
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Let us give examples of νε satisfying (1.3). The first example is related to fractional Sobolev
spaces.

Example 2.6 The family (νε)ε of kernels defined for h �= 0 by

νε(h) = aε,d,p|h|−d−(1−ε)p with aε,d,p = pε(1 − ε)

|Sd−1| .

The next class of examples is that of Proposition 2.2.

Example 2.7 Assume ν : R
d \ {0} → [0,∞) is radial and consider the family (νε)ε such

that each νε is the rescaling of ν defined as in (2.1) provided thatˆ

R
d

(1 ∧ |h|p)ν(h) dh = 1.

A subclass is obtained if one considers an integrable radial function ρ : R
d → [0,∞) and

defines ν(h) = c|h|−pρ(h) for a suitable normalizing constant c > 0.

Example 2.8 Assume (ρε)ε is an approximation of the unity, i.e., satisfies (1.4). For instance,
define ρε(h) = ε−dρ(h/ε) where ρ ≥ 0 is radial and

´
R
d ρ(h) dh = 1. Define the family

(νε)ε by νε(h) = cε|h|−pρε(h), where cε > 0 is a normalizing constant given by

c−1
ε =

ˆ

|h|≤1

ρε(h) dh +
ˆ

|h|>1

|h|−pρε(h) dh,

for which the p-Lévy integrability condition in (1.3) holds. Note that cε → 1 as ε → 0.

Example 2.9 Let 0 < ε < 1 and β > −d . We define

νε(h) = d + β

|Sd−1|εd+β
|h|β−p1Bε (h).

Some special cases are obtained for β ∈ {0, εp − d, p}. For the limiting case β = −d , we
put

νε(h) = 1

|Sd−1| log(ε0/ε) |h|−d−p1Bε0\Bε (h).

Example 2.10 Let 0 < ε < ε0 < 1 and β > −d . Define

νε(h) = (|h| + ε)β |h|−p

|Sd−1|bε

1Bε0
(h) with bε = εd+β

1ˆ
ε

ε+ε0

t−d−β−1(1 − t)d−1 dt .

For the limiting case β = −d consider

νε(h) = (|h| + ε)−d |h|−p

|Sd−1|| log ε|bε

1Bε0 (h) with bε = | log ε|−1

1ˆ
ε

ε+ε0

t−1(1 − t)d−1 dt .

In either case the constant bε → 1 as ε → 0 and is such that
´
R
d (1 ∧ |h|p)νε(h) dh = 1.

Another example familiar to the case β = −d is

νε(h) = (|h| + ε)−d−p

|Sd−1|| log ε|bε

1Bε(h) with bε = | log ε|−1

1ˆ
ε

ε+ε0

t−1(1 − t)d+p−1 dt .
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2.2 Local and nonlocal spaces

Let ν : Rd \{0} → [0,∞) be p-Lévy integrable and E i�(u), i = 1, 2, 3 be the forms defined
in (1.1). The space W p

ν (�) = {
u ∈ L p(�) : |u|p

W p
ν (�)

< ∞}
is a Banach space endowed

with the norm ‖u‖W p
ν (�) = (‖u‖p

L p(�) + |u|p
W p

ν (�)

)1/p with |u|p
W p

ν (�)
:= E1

�(u). For the

standard example ν(h) = |h|−d−sp , s ∈ (0, 1), one recovers the Sobolev space of fractional
order denotedWs,p(�); see [10, 18] for more. If ν has full support, the spaceW p

ν (�|Rd) ={
u : R

d → R meas. : u ∈ L p(�) and |u|p
W p

ν (�|Rd )
< ∞}

, |u|p
W p

ν (�|Rd )
= E3

�(u), is a

Banach space with the norm ‖u‖W p
ν (�|Rd ) = (‖u‖p

L p(�) + |u|p
W p

ν (�|Rd )

)1/p . See [15, 18, 19]

for recent results involving this types of spaces.
We recall that, 1

2E2
�(u) ≤ E3

�(u) ≤ E2
�(u). It is noteworthy to mention that, the space

(
W p

ν (�|Rd), ‖ · ‖W p
ν (�|Rd )

)
is the core energy space for a large class of nonlocal problems

with Dirichlet, Neumann or Robin boundary conditions. See for instance [11, 12, 14, 16, 31].
If� ⊂ R

d has a sufficiently regular boundary or� = R
d then according to Theorem 1.3 and

Theorem 1.5, it is legitimate to say that the nonlocal spaces
(
W p

νε (�|Rd), ‖·‖W p
νε (�|Rd )

)

ε
and

(
W p

νε (�), ‖·‖W p
νε (�)

)

ε
converge to the Sobolev space

(
W 1,p(�), ‖·‖∗

W 1,p(�)

)
and

(
BV (�), ‖·

‖∗
BV (�)

)
, where

‖u‖∗
W 1,p(�)

= (‖u‖p
L p(�) + Kd,p‖∇u‖p

L p(�)

)1/p and ‖u‖∗
BV (�)

= ‖u‖L1(�) + Kd,1|u|BV (�).

Let us recall the following standard approximation result for the space BV (�); see [13,
p. 172], [25, Theorem 14.9] or [1, Theorem 3.9].

Theorem 2.11 Let� ⊂ R
d be open and u ∈ BV (�). There is a sequence (un)n in BV (�)∩

C∞(�) such that ‖un − u‖L1(�)

n→∞−−−→ 0 and ‖∇un‖L1(�)

n→∞−−−→ |u|BV (�).

Warning: the above approximation theorem does not claim that |un − u|BV (�)
n→∞−−−→ 0 but

rather implies that ‖un‖W 1,1(�)

n→∞−−−→ ‖u‖BV (�). Strictly speaking, BV (�) ∩ C∞(�) is
not necessarily dense in BV (�). Recall that, if a function u ∈ L1(�) is regular enough,
say, u ∈ W 1,1(�) then we have u ∈ BV (�). From this we find that BV (�) ∩ C∞(�) =
W 1,1(�) ∩ C∞(�).
Next, we establish some useful estimates. Note that for h ∈ R

d we haveˆ

R
d

|u(x + h) − u(x)|p dx ≤ 2p‖u‖p
L p(Rd )

.

Furthermore, using the density of C∞
c (Rd) in W 1,p(Rd) we find that

ˆ

R
d

|u(x + h) − u(x)|p dx =
ˆ

R
d

∣
∣
∣

1ˆ

0

∇u(x + th) · h
∣
∣
∣
p
dx ≤ |h|p‖∇u‖p

L p(Rd )
.

Therefore, for every u ∈ W 1,p(Rd) and h ∈ R
d we haveˆ

R
d

|u(x + h) − u(x)|p dx ≤ 2p(1 ∧ |h|p)‖u‖p
W 1,p(Rd )

. (2.5)
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By Theorem 2.11 the BV -norm of an element in BV (Rd) can be approximated by theW 1,1-
norms of elements in W 1,1(Rd). Whence for p = 1, (2.5) implies that, for u ∈ BV (Rd) and
h ∈ R

d

ˆ

R
d

|u(x + h) − u(x)| dx ≤ 2(1 ∧ |h|)‖u‖BV (Rd ). (2.6)

Lemma 2.12 Assume ν : Rd \{0} → [0,∞) is p-Lévy integrable and � ⊂ R
d is a W 1,p-

extension domain (resp. BV -extension domain). There is C = C(�, d, p) > 0 independent
of ν such that

¨

��

|u(x) − u(y)|pν(x − y)dydx ≤ C‖u‖p
W 1,p(�)

‖ν‖L1(Rd ,1∧|h|p), for all u ∈ W 1,p(�)

(resp.
¨

��

|u(x) − u(y)|ν(x − y)dydx ≤ C‖u‖BV (�)‖ν‖L1(Rd ,1∧|h|), for all u ∈ BV (�)).

Proof Let u be a W 1,p-extension of u on Rd . The estimate (2.5) implies¨

��

|u(x) − u(y)|pν(x − y)dydx ≤
¨

R
d
R
d

|u(x + h) − u(x)|pν(h)dhdx

=
ˆ

R
d

ν(h)dh
ˆ

R
d

|u(x + h) − u(x)|pdx ≤ C‖u‖p
W 1,p(�)

‖ν‖L1(Rd ,1∧|h|p).

Likewise, if p = 1 and u ∈ BV (�) one gets the other estimate from the estimate (2.6). ��
An immediate consequence of Lemma 2.12 is the following embedding result.

Theorem 2.13 Assume ν ∈ L1(Rd , 1 ∧ |h|p) with p ≥ 1 and � ⊂ R
d is a W 1,p-extension

domain. There holds that the embedding W 1,p(�) ↪→ W p
ν (�) is continuous. Furthermore,

for p = 1 and if � is a BV -extension domain then the embedding BV (�) ↪→ W 1
ν (�) is

also continuous.

It is worth emphasizing that the above embeddings may fail if � is not an extension domain
(see the counterexample 1). Another straightforward consequence of Lemma 2.12 is the
following.

Theorem 2.14 Let � be a W 1,p-extension domain, p ≥ 1. There is C = (�, d, p) > 0 such
that

lim sup
ε→0

¨

��

|u(x) − u(y)|pνε(x − y) dx dy ≤ C‖u‖p
W 1,p(�)

for allu ∈ W 1,p(�).

If p = 1 and � is a BV -extension domain we also have,

lim sup
ε→0

¨

��

|u(x) − u(y)|νε(x − y) dx dy ≤ C‖u‖BV (�) for all u ∈ BV (�).

The next proposition shows that the p-Lévy integrability condition is consistent and optimal
in the sense that it draws a borderline for which a space of type W p

ν (�) is trivial or not.

Proposition 2.15 Let ν : Rd → [0,∞] be symmetric. The following assertions are true.
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(i) If ν ∈ L1(Rd) then W p
ν (�) = L p(�) and W p

ν (�|Rd) ∩ L p(Rd) = L p(Rd).
(ii) If ν ∈ L1(Rd , 1 ∧ |h|p) then W 1,p(Rd) ⊂ W p

ν (Rd), hence the spaces W p
ν (�) and

W p
ν (�|Rd) contain C∞

c (Rd). Moreover, if � is bounded, then the spaces W p
ν (�) and

W p
ν (�|Rd) also contain bounded Lipschitz functions.

(iii) Assume ν is radial, � is connected and put Cδ = ´
Bδ(0)

|h|pν(h) dh. If Cδ = ∞ for all

δ > 0, then any function u ∈ W 1,p(�)∩W p
ν (�) or u ∈ C1(�)∩W p

ν (�) is a constant
function.

(iv) Assume ν ∈ L1(Rd , 1∧|h|p) and ν is radial. Given u ∈ W 1,p(Rd) there is δ = δ(u) >

0 so that

2−pKd,pCδ‖∇u‖p
L p(Rd )

≤ |u|p
W p

ν (Rd )
≤ 2p‖ν‖L1(Rd ,1∧|h|p dh))‖u‖p

W 1,p(Rd )
. (2.7)

Proof (i) is obvious. (i i) For a bounded Lipschitz function u, we have |u(x) − u(y)|p ≤
C(1∧|x−y|p) for someC > 0.Hence if� is boundedby integrating both sides, it follows that
u ∈ W p

ν (�) and u ∈ W p
ν (�|Rd). The inclusionW 1,p(Rd) ⊂ W p

ν (Rd) follows from Lemma
2.12 or from the estimate (2.5). (i i i) Let u ∈ W 1,p(�) ∩ W p

ν (�) or u ∈ C1(�) ∩ W p
ν (�)

and let K ⊂ � be a compact set. Since |∇u| ∈ L p(K ), for arbitrary η > 0 there is
0 < δ = δ(η, K ) < dist(K , ∂�) such that,

‖∇u(· + h) − ∇u‖L p(K ) < η for all|h| ≤ δ.

Minkowski’s inequality implies

( ˆ

K

ˆ

Bδ(0)

|∇u(x) · h|pν(h) dh dx
)1/p ≤

(ˆ

K

ˆ

Bδ(0)

∣
∣
∣

1ˆ

0

∇u(x + th) · h dt
∣
∣
∣
p
ν(h) dh dx

)1/p

+ ηC1/p
δ .

The choice 0 < δ < dist(K , ∂�) ensures that Bδ(x) ⊂ � for all x ∈ K . From the foregoing,
using the fundamental theorem of calculus, polar coordinates and the formula (1.9) yield

|u|W p
ν (�) ≥

( ˆ

K

ˆ

Bδ(0)

∣
∣
∣

1ˆ

0

∇u(x + th) · h dt
∣
∣
∣
p
ν(h) dh dx

)1/p

≥
( ˆ

K

ˆ

Sd−1

|∇u(x) · w|pdσd−1(w)

δˆ

0

r p+d−1ν(r) dr
)1/p − η

( ˆ

Bδ(0)

|h|pν(h) dh
)1/p

=
(
K 1/p
d,p ‖∇u‖L p(K ) − η

)( ˆ

Bδ(0)

|h|pν(h) dh
)1/p

.

Therefore, for each η > 0 and each compact set K ⊂ � we have

|u|W p
ν (�) ≥ C1/p

δ

(
K 1/p
d,p ‖∇u‖L p(K ) − η

)
. (2.8)

Since ‖u‖W p
ν (�) < ∞ and Cδ = ∞, this is possible only if ‖∇u‖p

L p(K ) = 0. As the compact
set K ⊂ � is arbitrary, we find that ∇u = 0 a.e. on �. Thus u is a constant since �

is connected. (iv) The upper inequality clearly follows from (2.5). Proceeding as for the
estimate (2.8) by taking � = R

d and K = R
d also yields that, for all η > 0 there is

δ = δ(η) > 0 such that

|u|W p
ν (Rd ) ≥ C1/p

δ

(
K 1/p
d,p ‖∇u‖L p(Rd ) − η

)
. (2.9)
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If ‖∇u‖L p(Rd ) �= 0, taking η = 1
2K

1/p
d,p ‖∇u‖L p(Rd ) yields |u|p

W p
ν (Rd )

≥ 2−pKd,pCδ

‖∇u‖p
L p(Rd )

. This estimate remains true for any δ > 0, if ‖∇u‖L p(Rd ) = 0. ��

The next theorem provides a characterization of the p-Lévy integrability condition.

Theorem 2.16 Assume ν : Rd → [0,∞] is radial. The following assertions are equivalent.

(i) The p-Lévy integrability condition in (1.2) holds.
(ii) The embedding W 1,p(Rd) ↪→ W p

ν (Rd) is continuous.
(iii) E1

R
d (u) < ∞ for all u ∈ W 1,p(Rd).

(iv) E1
R
d (u) < ∞ for all u ∈ C∞

c (Rd).

(v) There exists u ∈ C∞
c (B1(0)) \ {0} such that E1

R
d (un) < ∞ for all n ≥ 1, un(x) =

ndu(nx).

This remains true when p = 1 with BV (Rd) in place of W 1,1(Rd).

Proof (i) �⇒ (i i). The right hand side of the estimate (2.7) implies the continuity of
the embedding W 1,p(Rd) ↪→ W p

ν (Rd). The implications (i i) �⇒ (i i i), (i i i) �⇒
(iv) and (iv) �⇒ (v) are straightforward. Let us prove that (v) �⇒ (i). Given that
u ∈ C∞

c (B1(0) \ {0} we have ‖∇u‖L p(Rd ) �= 0. By Proposition 2.15 (iv) there exists

δ = δ(u) > 0 (see the estimate (2.7)) such that E1
R
d (u) ≥ 2−pKd,pCδ‖∇u‖p

L p(Rd )
and hence

Cδ = ´
Bδ(0)

|h|pν(h) dh < ∞. Next, we fix n ≥ 1 such that δ > 2
n so that supp un ⊂ Bδ/2(0).

Since Bδ/2(x) ⊂ Bδ(0) for all x ∈ Bδ/2(0) we have

∞ > E1
R
d (un) ≥ 2

ˆ

Bδ/2(0)

|un(x)|p
ˆ

R
d \Bδ/2(0)

ν(x − y) dy dx ≥ 2‖un‖p
L p(Rd )

ˆ

R
d \Bδ(0)

ν(h) dh.

Thus
´
|h|≥δ

ν(h) dh < ∞. Accordingly ν ∈ L1(Rd , 1 ∧ |h|p). The case p = 1 follows
analogously. ��

3 Main results

First and foremost, the proof of Theorem 1.3 in the case � = R
d is much simpler. Indeed,

by the estimates (2.9) and (3.10) below, for sufficiently small η > 0, there is δ = δ(η) > 0
such that
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¨

R
d
R
d

|u(x) − u(y)|pνε(x − y) dy dx ≥ (
K 1/p
d,p ‖∇u‖L p(Rd ) − η

)p
ˆ

Bδ(0)

|h|pνε(h) dh,

¨

R
d
R
d

|u(x) − u(y)|pνε(x − y)dy dx ≤ Kd,p‖∇u‖p
L p(Rd )

+ 2p‖u‖p
L p(Rd )

ˆ

|h|>δ

νε(h) dh.

Letting ε → 0 and η → 0 successively, using the formulas (2.3) and (2.2), we get

lim
ε→0

¨

R
d
R
d

|u(x) − u(y)|pνε(x − y) dy dx = Kd,p‖∇u‖p
L p(Rd )

. (3.1)

The case p = 1 and u ∈ BV (Rd) can be proved analogously. In fact, it can be shown that
(3.1) holds if and only if up to a multiple factor (νε)ε satisfies (1.3). In other words, the class
(νε)ε is the largest (the sharpest) class for which the BBM formula (3.1) holds. From now
on, we assume � �= R

d . We start with the following lemma which is somewhat a revisited
version of [5, Lemma 1].

Lemma 3.1 Assume ν ∈ L1(Rd , 1 ∧ |h|p) is symmetric, p ≥ 1. Given u ∈ L p(Rd), ϕ ∈
C∞
c (Rd) and a unit vector e ∈ S

d−1 we have
∣
∣
∣

¨

(y−x)·e≥0

u(x)
ϕ(y) − ϕ(x)

|x − y| (1 ∧ |x − y|p)ν(x − y)dydx
∣
∣
∣

+
∣
∣
∣

¨

(y−x)·e≤0

u(x)
ϕ(y) − ϕ(x)

|x − y| (1 ∧ |x − y|p)ν(x − y)dydx
∣
∣
∣

≤
¨

R
d
R
d

|u(x) − u(y)|
|x − y| |ϕ(x)|(1 ∧ |x − y|p)ν(x − y)dydx .

Proof Let us introduce the truncated measure ν̃δ(h) = |h|−1(1 ∧ |h|p)ν(h) 1
R
d \Bδ

(h) for
δ > 0 which enables us to rule out an eventual singularity of ν at the origin. Moreover,
note that ν̃δ ∈ L1(Rd). It turns out that the mappings (x, y) 	→ u(x)ϕ(y)̃νδ(x − y) and
(x, y) 	→ u(x)ϕ(x )̃νδ(x − y) are integrable. Indeed, using Hölder inequality combined with
Fubini’s theorem yield¨

R
d
R
d

|u(x)ϕ(x)|̃νδ(x − y) dy dx

=
¨

|x−y|≥δ

|u(x)ϕ(x)||x − y|−1(1 ∧ |x − y|p)ν(x − y) dx dy

≤ δ−1
(¨

|x−y|≥δ

|u(x)|p(1 ∧ |x − y|p)ν(x − y) dy dx
)1/p

×
(¨

|x−y|≥δ

|ϕ(x)|p′
(1 ∧ |x − y|p)ν(x − y) dy dx

)1/p′

≤ δ−1‖ϕ‖L p′ (Rd )
‖u‖L p(Rd )

ˆ

R
d

(1 ∧ |h|p)ν(h) dh < ∞.
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Analogously, we also get¨

R
d
R
d

|u(x)ϕ(y)|̃νδ(x − y) dy dx ≤ δ−1‖ϕ‖L p′ (Rd )
‖u‖L p(Rd )

ˆ

R
d

(1 ∧ |h|p)ν(h) dh < ∞.

Consequently, by interchanging x and y, using Fubini’s theorem and the symmetry of ν

we obtain ¨

(y−x)·e≥0

u(x)ϕ(x )̃νδ(x − y) dy dx

=
¨

(x−y)·e≥0

u(y)ϕ(y)̃νδ(x − y) dx dy

=
¨

(y−x ′)·e≥0

u(y)ϕ(y)̃νδ(y − x ′) dy dx ′ (x ′ = 2y − x, dx = dx ′).

Therefore we have
∣
∣
∣

ˆ

R
d

u(x) dx
ˆ

(y−x)·e≥0

(ϕ(y) − ϕ(x))̃νδ(x − y) dy
∣
∣
∣

=
∣
∣
∣

¨

(y−x)·e≥0

u(x)ϕ(y)̃νδ(x − y) dy dx −
¨

(y−x)·e≥0

u(x)ϕ(x )̃νδ(x − y) dy dx
∣
∣
∣

=
∣
∣
∣

ˆ

R
d

ϕ(y) dy
ˆ

(y−x)·e≥0

(u(x) − u(y))̃νδ(x − y) dx
∣
∣
∣

≤
ˆ

R
d

|ϕ(y)| dy
ˆ

(y−x)·e≥0

|u(x) − u(y)|
|x − y| (1 ∧ |x − y|p)ν(x − y) dx

=
ˆ

R
d

|ϕ(x)| dx
ˆ

(y−x)·e≤0

|u(y) − u(x)|
|x − y| (1 ∧ |x − y|p)ν(x − y) dy.

Thus letting δ → 0 implies
∣
∣
∣

¨

(y−x)·e≥0

u(x)(ϕ(y) − ϕ(x))|x − y|−1(1 ∧ |x − y|p)ν(x − y) dy dx
∣
∣
∣

≤
¨

(y−x)·e≤0

|ϕ(x)| |u(y) − u(x)|
|x − y| (1 ∧ |x − y|p)ν(x − y) dy dx .

(3.2)

Likewise one has
∣
∣
∣

¨

(y−x)·e≤0

u(x)(ϕ(y) − ϕ(x))|x − y|−1(1 ∧ |x − y|p)ν(x − y) dy dx
∣
∣
∣

≤
¨

(y−x)·e≥0

|ϕ(x)| |u(y) − u(x)|
|x − y| (1 ∧ |x − y|p)ν(x − y) dy dx .

(3.3)
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Summing the estimates (3.2) and (3.3) gives the desired inequality. ��

Theorem 3.2 Let� ⊂ R
d be an open, u ∈ L p(�), p ≥ 1 and Ap be defined as in(1.6). Then

given a unit vector e ∈ S
d−1 and ϕ ∈ C∞

c (Rd) with support in � the following estimate
holds true

∣
∣
∣
∣
∣
∣

ˆ

�

u(x)∇ϕ(x) · e dx
∣
∣
∣
∣
∣
∣
≤ A1/p

p

Kd,1
‖ϕ‖L p′ (�)

. (3.4)

Proof Throughout, to alleviate the notation we denote πε(x − y) = (1∧ |x − y|p)νε(x − y).
Let u ∈ L p(Rd) be the zero extension of u off �. Since suppϕ ⊂ �, we have the identity

ˆ

R
d

|ϕ(x)| dx
ˆ

R
d

|u(y) − u(x)|
|x − y| πε(x − y) dy

=
¨

��

|u(y) − u(x)|
|x − y| |ϕ(x)|πε(x − y) dy dx

+
ˆ

supp(ϕ)

|ϕ(x)| dx
ˆ

R
d \�

|u(x)|
|x − y|πε(x − y) dy.

First, for δ = dist(supp(ϕ), ∂�) > 0, the Hölder inequality implies
ˆ

supp(ϕ)

|ϕ(x)| dx
ˆ

R
d \�

|u(x)|
|x − y|πε(x − y) dy

≤ δ−1‖u‖L p(�)‖ϕ‖L p′ (�)

ˆ

|h|≥δ

(1 ∧ |h|p)νε(h) dh
ε→0−−→ 0.

Second, using again the Hölder inequality and |h|−p(1 ∧ |h|p) ≤ 1 we find that
¨

��

|u(y) − u(x)|
|x − y| |ϕ(x)|πε(x − y) dy dx

≤
(¨

��

|u(y) − u(x)|p
|x − y|p πε(x − y) dy dx

)1/p

×
(¨

��

|ϕ(x)|p′
πε(x − y) dy dx

)1/p′

≤ ‖ϕ‖L p′ (�)

(¨

��

|u(y) − u(x)|pνε(x − y) dy dx
)1/p

.

Therefore inserting these two estimates in the previous identity and combining the resulting
estimate with that of Lemma 3.1 imply

lim inf
ε→0

∣
∣
∣

ˆ

�

u(x) dx
ˆ

(y−x)·e≥0

(ϕ(y) − ϕ(x))

|x − y| (1 ∧ |x − y|p)νε(x − y) dy
∣
∣
∣ +
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lim inf
ε→0

∣
∣
∣

ˆ

�

u(x) dx
ˆ

(y−x)·e≤0

(ϕ(y) − ϕ(x))

|x − y| (1 ∧ |x − y|p)νε(x − y) dy
∣
∣
∣ ≤ A1/p

p ‖ϕ‖L p′ (�)
.

(3.5)

It remains to compute the limits appearing on the left hand side of (3.5). For all x, h ∈ R
d

we have

ϕ(x + h) − ϕ(x) = ∇ϕ(x) · h +
1ˆ

0

(∇ϕ(x + th) − ∇ϕ(x)
) · h dt

and |∇ϕ(x + h) − ∇ϕ(x)| ≤ C(1 ∧ |h|). So that Remark 2.3 implies

lim
ε→0

ˆ

h·e≥0

1ˆ

0

∣
∣
[∇ϕ(x + th) − ∇ϕ(x)

] · h

|h|
∣
∣dt(1 ∧ |h|p)νε(h)dh

≤ C lim
ε→0

ˆ

R
d

(1 ∧ |h|p+1)νε(h)dh = 0.

Thus, using the above expression and the fact that
´
R
d (1 ∧ |h|p)νε(h) dh = 1 we obtain

lim
ε→0

ˆ

(y−x)·e≥0

(ϕ(y) − ϕ(x))

|x − y| (1 ∧ |x − y|p)νε(x − y) dy

= lim
ε→0

ˆ

Sd−1∩{w·e≥0}
∇ϕ(x) · w dσd−1(w)

∞̂

0

(1 ∧ r p)rd−1νε(r) dr

= |Sd−1|−1
ˆ

Sd−1∩{w·e≥0}
∇ϕ(x) · w dσd−1(w).

Let (e, v2, · · · vd) be an orthonormal basis of Rd in which we write the coordinates w =
(w1, w2, · · · , wd) = (w1, w

′) that is w1 = w · e and wi = w · vi . Similarly, in this basis
one has ∇ϕ(x) = (∇ϕ(x) · e, (∇ϕ(x))′). Observe that ∇ϕ(x) · w = (∇ϕ(x) · e)(w · e) +
[∇φ(x)]′ · w′. We find that

ˆ

Sd−1∩{w·e≥0}
∇ϕ(x) · w dσd−1(w) =

ˆ

Sd−1∩{w·e≥0}
(∇ϕ(x) · e)(w · e) dσd−1(w)

+
ˆ

Sd−1∩{w·e≥0}
(∇ϕ(x))′ · w′ dσd−1(w).

Consider the rotation O(w) = (w1,−w′) = (w · e,−w′) then the rotation invariance of the
Lebesgue measure entails that dσd−1(w) = dσ(O(w)) and we have

ˆ

Sd−1∩{w·e≥0}
(∇ϕ(x))′ · w′ dσd−1(w) = −

ˆ

Sd−1∩{w·e≥0}
(∇ϕ(x))′ · w′ dσd−1(w) = 0.
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Whereas, by symmetry we haveˆ

Sd−1∩{w·e≥0}
w · e dσd−1(w) = −

ˆ

Sd−1∩{w·e≤0}
w · e dσd−1(w) = 1

2

ˆ

Sd−1

|w · e| dσd−1(w) = 1

2
Kd,1.

Altogether, we find that

|Sd−1|−1
ˆ

Sd−1∩{w·e≥0}
∇ϕ(x) · w dσd−1(w) = ∇ϕ(x) · e

2

1

|Sd−1|
ˆ
Sd−1

|w · e| dσd−1(w)

= 1

2
Kd,1∇ϕ(x) · e.

In conclusion,

lim
ε→0

ˆ

(y−x)·e≥0

(ϕ(y) − ϕ(x))

|x − y| (1 ∧ |x − y|p)νε(x − y) dy = 1

2
Kd,1∇ϕ(x) · e. (3.6)

Analogously one is able to show that

lim
ε→0

ˆ

(y−x)·e≤0

(ϕ(y) − ϕ(x))

|x − y| (1 ∧ |x − y|p)νε(x − y) dy = 1

2
Kd,1∇ϕ(x) · e. (3.7)

By substituting the two relations (3.6) and (3.7) in (3.5) and using the dominate convergence
theorem one readily ends up with the desired estimate. ��
Proof of Theorem 1.1 The estimate (3.4) holds true for all ϕ ∈ C∞

c (�), all 1 ≤ p < ∞ and
e = ei , i = 1, · · · , d so that ∇ϕ(x) · ei = ∂xi ϕ(x).
Case 1 < p < ∞: In virtue of the density of C∞

c (�) in L p′
(�), it readily follows from

(3.4) that for each i = 1, · · · , d the mapping ϕ 	→ ´
�
u(x)∂xi ϕ(x) dx uniquely extends as a

continuous linear form on L p′
(�). Since 1 < p′ < ∞, the Riesz representation for Lebesgue

spaces reveals that there exists a unique gi ∈ L p(�) and we set ∂xi u = −gi , such thatˆ

�

u(x)∂xi ϕ(x) dx =
ˆ

�

gi (x)ϕ(x) dx = −
ˆ

�

∂xi u(x)ϕ(x) dx for all ϕ ∈ C∞
c (�).

In order words, u ∈ W 1,p(�). Further, the L p-duality and (3.4) yields the estimate (1.7) as
follows

‖∇u‖L p(�) ≤ √
d

d∑

i=1

‖∂xi u‖L p(�) = √
d

d∑

i=1

sup
ϕ∈C∞

c (Rd )

‖ϕ‖
L p

′
(�)

=1

∣
∣
∣

ˆ

�

u(x)∇ϕ(x) · ei dx
∣
∣
∣

≤ d2
A1/p
p

Kd,1
.

Case p=1: Let χ = (χ1, χ2, · · · , χd) ∈ C∞
c (�,Rd) such that ‖χ‖L∞(�,Rd ) ≤ 1 and

e = ei , i = 1, 2 · · · , d . Since χi ∈ C∞
c (�), the estimate (3.4) implies

∣
∣
∣

ˆ

�

u(x) divχ dx
∣
∣
∣ =

∣
∣
∣

d∑

i=1

ˆ

�

u(x)∇χi (x) · ei dx
∣
∣
∣ ≤ d

A1

Kd,1
.

Hence u ∈ BV (�) and we have |u|BV (�) ≤ d A1
Kd,1

which is the estimate (1.7). ��
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The next result improves the estimate (1.7).

Theorem 3.3 Let � ⊂ R
d be open. If u ∈ L p(�) with 1 < p < ∞ or u ∈ W 1,1(�) for

p = 1 then

Kd,p‖∇u‖p
L p(�) ≤ lim inf

ε→0

¨

��

|u(x) − u(y)|pνε(x − y) dx dy = Ap.

Moreover if p = 1 and u ∈ L1(�) then we have

Kd,1|u|BV (�) ≤ lim inf
ε→0

¨

��

|u(x) − u(y)|νε(x − y) dx dy = A1.

Proof First proof. For δ > 0 small, set �δ = {x ∈ � : dist(x, ∂�) > δ}. Define the
mollifier φδ(x) = 1

δd
φ

( x
δ

)
with support in Bδ(0) where φ ∈ C∞

c (Rd) is supported in B1(0),

φ ≥ 0 and
´

φ = 1. We assume that u is extended by zero off � and let uδ = u ∗ φδ is the
convolution product of u and φδ . If z ∈ �δ and |h| ≤ δ then z − h ∈ �δ − h ⊂ �. A change
of variables implies¨

��

|u(x) − u(y)|pνε(x − y) dy dx ≥
¨

�δ−h�δ−h

|u(x) − u(y)|pνε(x − y) dy dx

=
¨

�δ�δ

|u(x − h) − u(y − h)|pνε(x − y) dx dy.

Thus given that
´

φδ dh = 1, integrating with respect to φδ(h)dh, Jensen’s inequality
yields ¨

��

|u(x) − u(y)|pνε(x − y) dy dx

≥
ˆ

R
d

φδ(h) dh
¨

�δ�δ

|u(x − h) − u(y − h)|pνε(x − y) dy dx

≥
¨

�δ�δ

∣
∣
∣

ˆ

R
d

(
u(x − h) − u(y − h)

)
φδ(h) dh

∣
∣
∣
p
νε(x − y) dx dy

=
¨

�δ�δ

|u ∗ φδ(x) − u ∗ φδ(y)|pνε(x − y) dx dy.

In other words, we have¨

�δ�δ

|uδ(x) − uδ(y)|pνε(x − y) dx dy ≤
¨

��

|u(x) − u(y)|pνε(x − y) dx dy. (3.8)

Note that uδ ∈ C∞(Rd) and �δ, j = �δ ∩ Bj (0) has a compact closure for each j ≥ 1.
Then for each j ≥ 1 the Lemma 3.6 implies

Kd,p

ˆ

�δ, j

|∇uδ(x)|p dx = lim
ε→0

¨

�δ, j�δ, j

|u(x) − u(y)|pνε(x − y) dx dy

123



Partial Differential Equations and Applications             (2023) 4:16 Page 23 of 36    16 

≤ lim inf
ε→0

¨

��

|u(x) − u(y)|pνε(x − y) dx dy = Ap.

Tending j → ∞ in the latter we get

Kd,p

ˆ

�δ

|∇uδ(x)|p dx ≤ Ap. (3.9)

Case 1 < p < ∞: The only interesting scenario occurs if Ap < ∞. In this case, Theorem
1.1 ensures that u ∈ W 1,p(�). Clearly we have∇uδ = ∇(u ∗φδ) = ∇u ∗φδ and ‖φδ ∗∇u−
∇u‖L p(�) → 0 as δ → 0. The desired inequality follows by letting δ → 0 in (3.9) since

∣
∣
∣‖∇u‖L p(�) − ‖∇u ∗ φδ‖L p(�δ)

∣
∣
∣

≤ ‖∇u ∗ φδ − ∇u‖L p(�) +
( ˆ

�\�δ

|∇u(x)|p dx
)1/p δ→0−−→ 0.

Case p = 1:Againweonly need to assume that A1 < ∞ so that byTheorem1.1,u ∈ BV (�).
The relation (3.9) implies that

Kd,1 lim inf
δ→0

ˆ

�δ

|∇uδ(x)| dx ≤ A1.

Let χ ∈ C∞
c (�,Rd) such that ‖χ‖L∞(�,Rd ) ≤ 1 and suppχ ⊂ �δ for δ > 0 small. We find

that
∣
∣
∣

ˆ

�

u(x) divχ(x) dx −
ˆ

�δ

uδ(x) divχ(x) dx
∣
∣
∣

=
∣
∣
∣

ˆ

�δ

(u(x) − u ∗ φδ(x)) divχ(x) dx
∣
∣
∣

≤ ‖ divχ‖L∞(�,Rd )‖u ∗ φδ − u‖L1(�)

δ→0−−→ 0.

Thus, since u is a distribution on � we get
ˆ

�

u(x) divχ(x) dx = lim
δ→0

ˆ

�δ

uδ(x) divχ(x) dx

= − lim
δ→0

ˆ

�δ

∇uδ(x) · χ(x) dx ≤ lim inf
δ→0

ˆ

�δ

|∇uδ(x)| dx .

This completes the proof since the above holds for arbitrarily chosen χ ∈ C∞
c (�,Rd) such

that ‖χ‖L∞(�,Rd ) ≤ 1, by definition of | · |BV (�) and the previous estimate we get

Kd,1|u|BV (�) ≤ lim inf
δ→0

ˆ

�δ

|∇uδ(x)| dx ≤ A1.
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Second proof. Here is an alternative. Since for all δ > 0,
´
Bδ(0)

|h|pνε(h) dh → 1 as ε → 0
(see the formula (2.3)), for each compact set K ⊂ � and η > 0 inequality (2.8) implies

lim inf
ε→0

¨

��

|u(x) − u(y)|pνε(x − y) dy dx

≥ lim inf
ε→0

(
ˆ

Bδ(0)

|h|pνε(h) dh
)(
K 1/p
d,p ‖∇u‖L p(K ) − η

)p

= (
K 1/p
d,p ‖∇u‖L p(K ) − η

)p
.

Let K j = � j ⊂ � j+1 and (� j ) j be an exhaustion of �. Since the above inequality is true
for every compact set K = K j ⊂ � and every η > 0 we conclude that

lim inf
ε→0

¨

��

|u(x) − u(y)|pνε(x − y) dy dx ≥ Kd,p‖∇u‖p
L p(�).

The case p = 1 and u ∈ BV (�) follows from the approximation Theorem 2.11. ��
It is worth to mention that the convolution technique used in the first proof above was first
used in [7] when � = R

d and also appears in [28]. The next theorem is a the counterpart of
Theorem 3.3 and is a refinement version of Theorem 2.14.

Theorem 3.4 Let� ⊂ R
d be a W 1,p-extension domain and u ∈ L p(�), p > 1 then we have

lim sup
ε→0

¨

��

|u(x) − u(y)|pνε(x − y)dy dx ≤ Kd,p‖∇u‖p
L p(�).

Moreover, for p = 1, if � is a BV -extension domain and u ∈ L1(�) then we have

lim sup
ε→0

¨

��

|u(x) − u(y)|νε(x − y)dy dx ≤ Kd,1|u|BV (�).

Proof The cases ‖∇u‖L p(�) = ∞ and |u|BV (�) = ∞ are trivial. Assume u ∈ W 1,p(�)

and let u ∈ W 1,p(Rd) be its extension to R
d . Consider �(δ) = � + Bδ(0) = {x ∈ R

d :
dist(x,�) < δ} be a neighborhood of � where 0 < δ < 1. We claim that for each ε > 0,
the following estimate holds¨

��

|u(x) − u(y)|pνε(x − y)dy dx ≤ Kd,p

ˆ

�(δ)

|∇u(x)|p dx + 2p‖u‖p
L p(�)

ˆ
|h|>δ

νε(h) dh.

(3.10)

Indeed, let (un)n be a sequence in C∞
c (Rd) converging to u in W 1,p(Rd). For each n ≥ 1,

passing through the polar coordinates and using the identity (1.9) we find that¨

�×�∩{|x−y|≤δ}
|un(x) − un(y)|pνε(x − y) dy dx

≤
1ˆ

0

ˆ

�

ˆ

|h|≤δ

|∇un(x + th) · h|p νε(h) dh dx dt

123



Partial Differential Equations and Applications             (2023) 4:16 Page 25 of 36    16 

≤
ˆ

|h|≤δ

ˆ

�(δ)

|∇un(z) · h|p dz νε(h) dh

=
( ˆ

�(δ)

ˆ
Sd−1

|∇un(z) · w|p dσd−1(w)
)(

δˆ

0

r p+d−1νε(r) dr
)

= Kd,p

( ˆ

�(δ)

|∇un(z)|p dz
)( ˆ

|h|≤δ

(1 ∧ |h|p)νε(h) dh
)

≤ Kd,p

ˆ

�(δ)

|∇un(z)|p dz.

Fatou’s lemma implies
¨

�×�∩{|x−y|≤δ}
|u(x) − u(y)|pνε(x − y) dy dx

≤ lim inf
n→∞

ˆ

�

ˆ

|x−y|≤δ

|un(x) − un(y)|pνε(x − y) dy dx

≤ Kd,p

ˆ

�(δ)

|∇u(x)|p dx .

The estimate (3.10) clearly follows since we have
ˆ

�

ˆ

�∩{|x−y|>δ}
|u(x) − u(y)|pνε(x − y) dy dx ≤ 2p‖u‖p

L p(�)

ˆ

|h|>δ

νε(h) dh.

Letting ε → 0 the relation (3.10) yields

lim sup
ε→0

¨

��

|u(x) − u(y)|pνε(x − y) dy dx ≤ Kd,p

ˆ

�(δ)

|∇u(x)|p dx

Recalling that u ∈ W 1,p(Rd), u = u |� and using (1.11) the desired estimate follows
ˆ

�(δ)

|∇u(x)|p dx δ→0−−→
ˆ

�

|∇u(x)|p dx =
ˆ

�

|∇u(x)|p dx .

If p = 1 and u ∈ BV (�), let u ∈ BV (Rd) be its extension to R
d . By Theorem 2.11

there is (un)n a sequence in C∞(Rd) ∩ W 1,1(Rd) which converges to u in L1(Rd) and

‖∇un‖L1(Rd )

n→∞−−−→ |u|BV (Rd ).

The estimate (3.10) applied to un and the Fatou’s lemma yield

¨

��

|u(x) − u(y)|νε(x − y)dy dx ≤ lim inf
n→∞

¨

��

|un(x) − un(y)|νε(x − y)dy dx

≤ lim
n→∞ Kd,1

ˆ

�(δ)

|∇un(x)| dx + 2‖un‖L1(�)

ˆ

|h|>δ

νε(h) dh.
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= Kd,1|u|BV (�(δ)) + 2‖u‖L1(�)

ˆ

|h|>δ

νε(h) dh.

Correspondingly, we also get the estimate¨

��

|u(x) − u(y)|νε(x − y)dy dx ≤ Kd,1|u|BV (�(δ)) + 2‖u‖L1(�)

ˆ

|h|>δ

νε(h) dh. (3.11)

Therefore, letting ε → 0 implies that

lim sup
ε→0

¨

��

|u(x) − u(y)|pνε(x − y) dy dx ≤ Kd,1|u|BV (�(δ)).

Recalling that u ∈ BV (Rd), u = u |� and ∂� satisfies (1.12), i.e., |∇u|(∂�) = 0 we have

|u|BV (�(δ))
δ→0−−→ |u|BV (�) = |u|BV (�).

��
The following result involves the collapse across the boundary ∂�.

Theorem 3.5 Assume � ⊂ R
d is open then for any u ∈ W 1,p(Rd) we have

lim sup
ε→0

2
¨

��c

|u(x) − u(y)|pνε(x − y) dy dx ≤ Kd,p

ˆ

∂�

|∇u(x)|p dx,

lim inf
ε→0

2
¨

��c

|u(x) − u(y)|pνε(x − y) dy dx ≥ Kd,p

ˆ

∂�

|∇u(x)|p dx .

The same holds for p = 1by replacing W 1,1(Rd) with BV (Rd).

Proof We only prove for u ∈ W 1,p(Rd), the case u ∈ BV (Rd) is analogous. The sets � and
Uδ = {x ∈ R

d : dist(x,�) > δ}, δ > 0 are open. By Theorem 3.3, we get

Kd,p

ˆ

�

|∇u(x)|p dx ≤ lim inf
ε→0

¨

��

|u(x) − u(y)|pνε(x − y) dy dx,

Kd,p

ˆ

Uδ

|∇u(x)|p dx ≤ lim inf
ε→0

¨

Uδ Uδ

|u(x) − u(y)|pνε(x − y) dy dx .

Since Uδ ⊂ �c and 1Uδ (x) → 1
R
d \�(x), for all x ∈ R

d as δ → 0, it follows that

Kd,p

ˆ

R
d \�

|∇u(x)|p dx ≤ lim inf
ε→0

¨

�c�c

|u(x) − u(y)|pνε(x − y) dy dx .

Accordingly, together with (3.1), we deduce the desired result as follows

lim sup
ε→0

2
¨

��c

|u(x) − u(y)|pνε(x − y) dy dx

= lim sup
ε→0

( ¨

R
d
R
d

−
¨

��

−
¨

�c�c

)
|u(x) − u(y)|pνε(x − y) dy dx
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≤ Kd,p

(
‖∇u‖p

L p(Rd )
− ‖∇u‖p

L p(�) − ‖∇u‖p
L p(Rd \�)

)

= Kd,p

ˆ

∂�

|∇u(x)|p dx .

The reverse inequality follows analogously, since by exploiting (3.10) (or (3.11)) one easily
gets

Kd,p

ˆ

�

|∇u(x)|p dx ≥ lim sup
ε→0

¨

��

|u(x) − u(y)|pνε(x − y) dy dx,

Kd,p

ˆ

�c

|∇u(x)|p dx ≥ lim sup
ε→0

¨

�c�c

|u(x) − u(y)|pνε(x − y) dy dx .

��

Next we establish a pointwise and L1(�) convergence when u is a sufficiently smooth
function.

Lemma 3.6 Let � ⊂ R
d be open and u ∈ C1

c (R
d). The following convergence occurs in

both pointwise and L1(�) sense:

lim
ε→0

ˆ

�

|u(x) − u(y)|pνε(x − y)dy = Kd,p|∇u(x)|p.

Proof First proof of Lemma 3.6. Let σ > 0 be sufficiently small. By assumption ∇u is
uniformly continuous and hence one can find 0 < η = η(σ ) < 1 such that if |x − y| < η

then

|∇u(y) − ∇u(x)| ≤ σ. (3.12)

Let ηx = min(η, δx ) with δx = dist(x, ∂�) so that B(x, ηx ) ⊂ � for all x ∈ �. Consider
the mapping F : � × (0, 1) → R with

F(x, ε) :=
ˆ

�∩{|x−y|≤ηx }
|u(x) − u(y)|pνε(x − y)dy =

ˆ

|h|≤ηx

|u(x) − u(x + h)|pνε(h) dh.

In virtue of the fundamental theorem of calculus, we have

F(x, ε) =
ˆ

|h|≤ηx

∣
∣
∣

1ˆ

0

∇u(x + th) · hdt
∣
∣
∣
p
νε(h) dh

=
ˆ

|h|≤ηx

|∇u(x) · h|p νε(h) dh + R(x, ε),with theremainder

R(x, ε) =
ˆ

|h|≤ηx

⎛

⎝
∣
∣
∣

1ˆ

0

∇u(x + th) · hdt
∣
∣
∣
p −

∣
∣
∣

1ˆ

0

∇u(x) · hdt
∣
∣
∣
p

⎞

⎠ νε(h) dh.
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The mapping s 	→ Gp(s) = |s|p belongs to C1(Rd \{0}) and G ′
p(s) = pG p(s)s−1.

Thus, we have

Gp(b) − Gp(a) = (b − a)

1ˆ

0

G ′
p(a + s(b − a)) ds.

Set a = ∇u(x) · h and b = ´ 1
0 ∇u(x + th) · h dt so that the relation (3.12) yields

|Gp(b) − Gp(a)| ≤ p|b − a|
1ˆ

0

|(1 − s)a + sb|p−1 ds

≤ p‖∇u‖p−1
L∞(Rd )

|h|p−1

1ˆ

0

|∇u(x + th) − ∇u(x)||h| dt

≤ pσ‖∇u‖p−1
L∞(Rd )

|h|p.
Integrating both sides with respect to νε(h) dh, implies that

|R(x, ε)| ≤ pσ‖∇u‖p−1
L∞(Rd )

ˆ

|h|≤ηx

|h|pνε(h) dh.

Since
´
|h|≤ηx

|h|pνε(h) dh → 1 as ε → 0, by the formula (2.3), letting ε → 0 and σ → 0
successively yields R(x, ε) → 0. Whereas, using polar coordinates, the relation (1.9) and
the Remark 2.3 gives

ˆ

|h|≤ηx

|∇u(x) · h|p νε(h) dh =
ηxˆ

0

rd+p−1dr
ˆ

Sd−1

|∇u(x) · w|pdσd−1(w)

= Kd,p|∇u(x)|p
ˆ

|h|≤ηx

|h|pνε(h) dh
ε→0−−→ Kd,p|∇u(x)|p.

Therefore, we have F(x, ε)
ε→0−−→ Kd,p|∇u(x)|p. Furthermore, a close look to our rea-

soning reveals that we have subsequently shown that

lim
ε→0

ˆ

�∩{|x−y|≤δ}
|u(x) − u(y)|pνε(x − y) dy = Kd,p|∇u(x)|p, for all δ > 0. (3.13)

This is due to the fact that, for all δ > 0 we have
ˆ

�∩{|x−y|>δ}
|u(x) − u(y)|pνε(x − y) dy ≤ 2p‖u‖p

L∞(Rd )

ˆ

|h|>δ

νε(h)dh
ε→0−−→ 0. (3.14)

Hence we have the pointwise convergence as claimed, i.e., for all x ∈ � we have

lim
ε→0

ˆ

�

|u(x) − u(y)|pνε(x − y) dy dx = Kd,p|∇u(x)|p. (3.15)
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To proceed with the convergence in L1(�), according to the Schéffé lemma [34, p. 55], it
suffices to show the convergence of L1(�)-norm. Choosing R ≥ 1 such that supp u ⊂ BR(0),
we write¨

��

|u(x) − u(y)|pνε(x − y) dy dx =
¨

�×�∩{|x−y|≤R}
|u(x) − u(y)|pνε(x − y) dy dx

+
¨

�×�∩{|x−y|>R}
|u(x) − u(y)|pνε(x − y) dy dx .

Since |u(x) − u(x + h)|p ≤ 2p(1 ∧ |h|p)‖u‖p
W 1,∞(Rd )

and
´
R
d (1 ∧ |h|p)νε(h) dh = 1

one gets

Hε(x) =
ˆ

�∩{|x−y|≤R}
|u(x) − u(y)|pνε(x − y) dy ≤

ˆ

|h|≤R

|u(x) − u(x + h)|pνε(h) dh

≤ 2p‖u‖p
W 1,∞(Rd )

.

Noting that supp Hε ⊂ B2R(0), one finds that Hε(x) ≤ 2p‖u‖p
W 1,∞(Rd )

1B2R(0) with

1B2R(0) ∈ L1(�), the pointwise limit in (3.13) and the dominated convergence theorem
imply that

lim
ε→0

¨

�×�∩{|x−y|≤R}
|u(x) − u(y)|pνε(x − y) dy dx = Kd,p

ˆ

�

|∇u(x)|p dx .

We thus obtain the following convergence of L1(�)-norm as expected

lim
ε→0

¨

��

|u(x) − u(y)|pνε(x − y) dy dx = Kd,p

ˆ

�

|∇u(x)|p dx,

since, by assumption on νε , one has¨

�×�∩{|x−y|>R}
|u(x) − u(y)|pνε(x − y) dy dx ≤ 2p‖u‖p

L p(�)

ˆ

|h|>R

νε(h)dh
ε→0−−→ 0.

Second proof of Lemma 3.6 when u ∈ C2
c (R

d). Note that if we put Gp(s) = |s|p then
Gp ∈ C2(Rd \{0}). The Taylor formula implies

u(y) − u(x) = ∇u(x) · (y − x) + O(|x − y|2), x, y ∈ R
d ,

Gp(b) − Gp(a) = G ′
p(a)(b − a) + O(b − a)2, a, b ∈ R \{0}.

Hence for almost all x, y ∈ R
d , we have

|u(y) − u(x)|p = Gp(∇u(x) · (y − x) + O(|y − x |2))
= |∇u(x) · (y − x)|p + O(|y − x |p+1).

Set δx = dist(x, ∂�). Passing through polar coordinates and using the relation (1.9) yields
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ˆ

B(x,δx )

|u(x) − u(y)|pνε(x − y) dy

=
ˆ

|h|≤δx

∣
∣
∣∇u(x) · h

∣
∣
∣
p
νε(h) dh + O

( ˆ

|h|≤δx

|h|p+1νε(h) dh
)

=
ˆ

Sd−1

∣
∣
∣∇u(x) · w

∣
∣
∣
p
dσd−1(w)

δxˆ

0

rd−1νε(r)dr + O
( ˆ

|h|≤δx

|h|p+1νε(h)dh
)

= Kd,p |∇u(x)|p
ˆ

|h|≤δx

νε(h)dh + O
( ˆ

|h|≤δx

|h|p+1νε(h)dh
)
.

Therefore, letting ε → 0 in the latter expression and taking into account Remark 2.3 gives

lim
ε→0

ˆ

B(x,δx )

|u(x) − u(y)|pνε(x − y)dy = Kd,p|∇u(x)|p.

The pointwise convergence (3.15) readily follows. Since on the other side, we haveˆ

�\B(x,δx )

|u(x) − u(y)|pνε(x − y)dy ≤ 2p‖u‖p
L∞(�)

ˆ

|h|≥δx

νε(h) dh
ε→0−−→ 0.

Thus the remaining details follow by proceeding as in the previous proof. ��
We are now in position to prove Theorem 1.3.

Proof of Theorem 1.3 Assume Ap = ∞ then by Theorem 1.1 we have ‖∇u‖L p(�) = ∞ for
1 < p < ∞ and |u|BV (�) = ∞ for p = 1. In either case the relation (1.13) or (1.14) is
verified. The interesting situation is when Ap < ∞, i.e., by Theorem 1.1, u ∈ W 1,p(�)

if 1 < p < ∞ and u ∈ BV (�) if p = 1. We provide two alternative proofs. As first
alternative, the result immediately follows by combining Theorem 3.3 and Theorem 3.4. For
the second alternative, consider 1 < p < ∞ or u ∈ W 1,1(�). By Lemma 2.12 there isC > 0
independent of ε such that for u, v ∈ W 1,p(�),

∣
∣‖Uε‖L p(�×�) − ‖Vε‖L p(�×�)

∣
∣ ≤ ‖Uε − Vε‖L p(�×�) ≤ C‖u − v‖W 1,p(�),

where we deifineUε(x, y) = |u(x) − u(y)|ν1/pε (x − y) and

Vε(x, y) = |v(x) − v(y)|ν1/pε (x − y) .

Therefore, it suffices to establish the result for u in a dense subset of W 1,p(�). Note that
C∞
c (Rd) is dense in W 1,p(�) since � is a W 1,p-extension domain. We conclude by using

Lemma 3.6. ��
As consequence of Theorem 1.3 we have the following concrete examples.

Corollary 3.7 Assume � ⊂ R
d is an extension domain and u ∈ L p(�). If we abuse the

notation ‖∇u‖L1(�) = |u|BV (�) for p = 1, then there holds
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lim
s→1

(1 − s)
¨

��

|u(x) − u(y)|p
|x − y|d+sp

dydx = |Sd−1|
p

Kd,p‖∇u‖p
L p(�),

lim
ε→0

ε−d−p
¨

�×�∩{|x−y|<ε}
|u(x) − u(y)|p dy dx = |Sd−1|

d + p
Kd,p‖∇u‖p

L p(�),

lim
ε→0

ε−d
¨

�×�∩{|x−y|<ε}

|u(x) − u(y)|p
|x − y|p dy dx = |Sd−1|

d
Kd,p‖∇u‖p

L p(�),

lim
ε→0

1

| log ε|
¨

�×�∩{|x−y|>ε}

|u(x) − u(y)|p
|x − y|d+p

dydx = |Sd−1|Kd,p‖∇u‖p
L p(�).

Proof For the first relation, take νε(h) = aε,d,p|h|−d−p(1−ε) with aε,d,p = pε(1−ε)

|Sd−1| . For the

second and third take νε(h) = d+β

|Sd−1|ε
−d−β1Bε (h) β ∈ {0, p}. For the last one, fixed ε0 ≥ 1,

take νε(h) = bε

|Sd−1|| log ε|1Bε0\Bε (h), bε = p| log ε|
(1−ε

−p
0 )+p| log ε| , where one notes that bε → 1 as

ε → 0. ��
Proof of Theorem 1.6 Let E ⊂ � be compact with a nonempty interior. Consider the open
set E(δ) = E + Bδ(0) ⊂ � where 0 < δ < 1 ∧ dist(∂�, E) so that

´
|h|>δ

νε(h) dh ≤ 1.

Denote d|∇u|p(x) = |∇u(x)|p dx , u ∈ W 1,p(�). Using (3.10) and (3.11) with � replaced
by E imply ˆ

E

με(x) dx ≤ Kd,p

ˆ

E(δ)

d|∇u|p(x) + 2p‖u‖p
L p(�)

ˆ

|h|>δ

νε(h) dh. (3.16)

Hence, since
´
|h|>δ

νε(h) dh ≤ 1, the family of functions (με)ε is bounded in L1(E). In virtue

of theweak compactness of L1(E) (see [8, p. 116])wemay assume that (με)ε converges in the

weak-* sense to a Radon measureμE , i.e., 〈με −μE , ϕ〉 ε→0−−→ 0 for all ϕ ∈ C(E) otherwise,
one may pick a converging subsequence. For a suitable (� j ) j∈N exhaustion of �, i.e., �′

j s

are open, each K j = � j is compact, K j = � j ⊂ � j+1 and � = ⋃
j∈N � j , it is sufficient

to let μ = μK j = Kd,p|∇u|p on K j . We aim to show that μ = Kd,p|∇u|p . Noticing μ

and Kd,p|∇u|p are Radon measures it sufficient to show that both measures coincide on
compact sets, i.e., we have to show that μE (E) = Kd,p

´
E d|∇u|p(x). On the one hand,

since με(E) → μ(E) and
´
|h|>δ

νε(h) dh → 0 as ε → 0, the fact that u ∈ W 1,p(�) or
u ∈ BV (�) enables us to successively let ε → 0 and δ → 0 in (3.16) which amounts to the
following ˆ

E

dμE (x) ≤ Kd,p

ˆ

E

d|∇u|p(x).

On other hand, since E has a nonempty interior, Theorem 3.3 implies

Kd,p

ˆ

E

d|∇u|p(x) ≤ lim inf
ε→0

¨

EE

|u(x) − u(y)|pνε(x − y) dy dx

≤ lim
ε→0

ˆ

E

με(x) dx =
ˆ

E

dμE (x).
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Finally μ(E) = μE (E) = Kd,p
´
E d|∇u|p(x). Whence we get dμ = Kd,p d|∇u|p as

claimed. ��
A consequence of Theorem 1.6 is given by the following analog result.

Corollary 3.8 Let � ⊂ R
d be open. Let u ∈ W 1,p(Rd) and define the Radon measures

dμ̃ε(x) =
ˆ

R
d

|u(x) − u(y)|pνε(x − y)dy dx .

The sequence (μ̃ε)ε convergesweakly on� to theRadonmeasure dμ(x) = Kd,p|∇u(x)|p dx,
i.e. μ̃ε(E)

ε→0−−→ μ(E) for every compact set E ⊂ �. If u ∈ BV (�), p = 1, then
dμ(x) = Kd,1 d|∇u|(x).
Proof Let E ⊂ � be a compact set so that δ > 0 with δ = dist(E,�c) > 0. Thus, we have

μ̂ε(E) :=
¨

E�c

|u(x) − u(y)|pνε(x − y) dy dx ≤ 2p−1‖u‖p
L p(Rd )

ˆ

|h|>δ

νε(h) dh
ε→0−−→ 0.

Form this and Theorem 1.6 we get μ̃ε(E) = με(E) + μ̂ε(E)
ε→0−−→ μ(E). ��

Next, we sate without proof the asymptotically compactness involving the case where the
function u also varies. The full proof can be found in [18, Theorem 5.40] and [28].

Theorem 3.9 Assume� ⊂ R
d is open, bounded and Lipschitz. Let the family (uε)ε such that

sup
ε>0

(
‖uε‖p

L p(�) +
¨

��

|uε(x) − uε(y)|pνε(x − y) dy dx
)

< ∞.

There exists a subsequence (εn)n with εn → 0+ as n → ∞ such that (uεn )n converges in
L p(�) to a function u ∈ L p(�). Moreover, u ∈ W 1,p(�) if 1 < p < ∞ or u ∈ BV (�) if
p = 1.

Counterexample 1 We consider the fractional kernel νε(h) = aε,d,p|h|−d−(1−ε)p , p ≥ 1,

where aε,d,p = pε(1−ε)

|Sd−1| . We put s = 1 − ε > 0 and consider the nonlocal seminorm

|u|pWs,p(�) = |u|p
W p

νε (�)
=

¨

��

|u(x) − u(y)|pνε(x − y) dy dx

= ps(1 − s)

|Sd−1|
¨

��

|u(x) − u(y)|p
|x − y|d+sp

dy dx .

Case d = 1. For an illustrative purpose we start with the case d = 1. Consider � =
(−1, 0) ∪ (0, 1) and put u(x) = − 1

2 if x ∈ (−1, 0) and u(x) = 1
2 if x ∈ [0, 1). If we put

s = 1 − ε then we have

|u|pWs,p(�) = ps(1 − s)

1ˆ

0

1ˆ

0

dy dx

(x + y)1+sp
=

⎧
⎨

⎩

∞ if sp ≥ 1,

(1−s)
1−sp (2 − 21−sp) if sp < 1.

(i) Clearly, u ∈ W 1,p(�) for all 1 ≤ p < ∞ with ∇u = 0 on �. Note however that,
the weak derivative of u on (−1, 1) is δ0; the Dirac mass at the origin. It follows that
u /∈ W 1,p(−1, 1) for all 1 ≤ p < ∞ and u ∈ BV (−1, 1) with |u|BV (−1,1) = 1.
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(ii) Moreover,� is not aW 1,p-extension domain. Indeed, assume u ∈ W 1,p(R) is an exten-
sion of u defined. In particular, u ∈ W 1,p(−1, 1) and u = u on �. The distributional
derivative of u on (−1, 1) is ∇u = δ0, This contradicts the fact that u ∈ W 1,p(R).

(iii) Since integrals disregard null sets, we have ‖u‖Ws,p(�) = ‖u‖Ws,p(−1,1) for all 1 ≤
p < ∞. If 1 < p < ∞ and s ≥ 1/p then ‖u‖Ws,p(�) = ‖u‖Ws,p(−1,1) = ∞ and hence
u /∈ Ws,p(�). Thus the embedding W 1,p(�) ↪→ Ws,p(�) fails. However, if p = 1
we get u ∈ Ws,1(−1, 1). Since s = 1 − ε this also implies that

Ap = lim inf
ε→0

|u|p
W p

νε (�)
=

{
∞ if p > 1,

1 if p = 1.

Case d ≥ 2. The above example persists in higher dimension. Consider � be the unit
ball B1(0) deprived with the hyperplane {xd = 0} that is, � = B+

1 (0) ∪ B−
1 (0) where

B±
1 (0) = B1(0) ∩ {(x ′, xd) ∈ R

d : ±xd > 0} and u(x) = 1
21B+

1 (0)(x) − 1
21B−

1 (0)(x).

Denoting balls in Rd−1 as B ′
r (x

′), we have
{
(x, y) ∈ R

d ×R
d : xd , yd ∈ (0, 1/2), x ′, y′ −

x ′ ∈ B ′
1/4(0)

} ⊂ B+
1 (0) × B+

1 (0). Enforcing the change of variables y′ = x ′ + (xd + yd)h′

so that dy′ = (xd + yd)d−1 dh′ yields

|u|pWs,p(�) = 2aε,d,p

ˆ

B+
1 (0)

ˆ

B+
1 (0)

(|x ′ − y′|2 + (xd + yd)
2)− d+sp

2 dy dx

≥ 2aε,d,p

1/2ˆ

0

1/2ˆ

0

ˆ

B′
1/4(0)

ˆ

B′
1/4(x

′)

(|x ′ − y′|2 + (xd + yd)
2)− d+sp

2 dy′ dx ′ dyd dxd

= 2aε,d,p|B ′
1/4(0)|

1/2ˆ

0

1/2ˆ

0

ˆ

|h′|≤ 1
4(xd+yd )

dh′

(1 + |h′|2) d+sp
2

dxd dyd
(xd + yd)1+sp

1
xd+yd

≥1

≥ ps(1 − s)κ1
d,p,s

1/2ˆ

0

1/2ˆ

0

dxd dyd
(xd + yd)1+sp

,

κ1
d,p,s = 2

|B ′
1/4(0)|

|Sd−1|
ˆ

B′
1/4(0)

dh′

(1 + |h′|2) d+sp
2

.

Analogously, since B+
1 (0) × B+

1 (0) ⊂ {
(x, y) ∈ R

d ×R
d : xd , yd ∈ (0, 1), x ′ ∈ B ′

1(0)
}

we have

|u|pWs,p(�) = 2aε,d,p

ˆ

B+
1 (0)

ˆ

B+
1 (0)

(|x ′ − y′|2 + (xd + yd)
2)− d+sp

2 dy dx

≤ 2aε,d,p

1ˆ

0

1ˆ

0

ˆ

B′
1(0)

ˆ

R
d−1

(|x ′ − y′|2 + (xd + yd)
2)− d+sp

2 dy′ dx ′ dyd dxd

= ps(1 − s)κ2
d,p,s

1ˆ

0

1ˆ

0

dxd dyd
(xd + yd)1+sp

,
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κ2
d,p,s = 2

|B ′
1(0)|

|Sd−1|
ˆ

R
d−1

dh′

(1 + |h′|2) d+sp
2

.

Note that κ i
d,p,1 ≤ κ i

d,p,s ≤ κ i
d,p,0. Using the case d = 1 we draw the following conclusion,

|u|p
W p

νε (�)
= |u|pWs,p(�) �

{
∞ if sp ≥ 1,
(1−s)
1−sp (2 − 21−sp) if sp < 1.

(i) Clearly, u ∈ W 1,p(�) and u /∈ W 1,p(B1(0)) for all 1 ≤ p < ∞. However u ∈
BV (B1(0)).

(ii) Moreover, (i) implies that � is not a W 1,p-extension domain for 1 ≤ p < ∞.
(iii) As integrals disregardnull sets,wehave‖u‖Ws,p(�) = ‖u‖Ws,p(B1(0)) = ∞ for 1 < p <

∞ and s ≥ 1/p and hence u /∈ Ws,p(�). Thus the embedding W 1,p(�) ↪→ Ws,p(�)

fails. However, if p = 1 we get u ∈ Ws,1(B1(0)). Furthermore, we have

Ap = lim inf
ε→0

|u|p
W p

νε (�)
�

{
∞ if p > 1,

1 if p = 1.

Proposition 3.10 For any e ∈ S
d−1 we have

Kd,p = 1

|Sd−1|
ˆ
Sd−1

|w · e|p dσd−1(w) = 

( d
2

)



( p+1
2

)



( d+p

2

)



( 1
2

) .

Proof The case d = 1 is obvious and we only prove for d ≥ 2. Since Kd,p is independent
of e ∈ S

d−1, it is sufficient to take e = (0, · · · , 0, 1). Let w = (w′, t) ∈ S
d−1 with t ∈

(−1, 1) so thatw′ ∈ √
1 − t2Sd−2. The Jacobian for spherical coordinates gives dσd−1(w) =

dσd−2(w
′)dt√

1−t2
(see [20, Appendix D.2]). Therefore, noting |Sd−1| = ωd−1, we have

Kd,p = 1

|Sd−1|
ˆ
Sd−1

|wd |pdσd−1(w) = 1

ωd−1

1ˆ

−1

ˆ
√
1−t2Sd−2

|t |p dσd−2(w
′) dt√

1 − t2

= 2

ωd−1

1ˆ

0

t p
∣
∣
∣
√
1 − t2Sd−2

∣
∣
∣ dt√

1−t2
= 2ωd−2

ωd−1

1ˆ

0

(1 − t2)
d−3
2 t pdt

= ωd−2

ωd−1

1ˆ

0

(1 − t)
d−1
2 −1t

p+1
2 −1dt = ωd−2

ωd−1
B

(d − 1

2
,
p + 1

2

)
= ωd−2

ωd−1



( d−1

2

)



(
p+1
2

)



(
d+p
2

) .

Here B(x, y) := ´ 1
0 (1 − t)x−1t y−1 dt, x > 0, y > 0 is the beta function which links to the

Gamma function by the relation B(x, y)
(x + y) = 
(x)
(y). The claim follows by using

the formula ωd−1 = 2πd/2



(
d/2

) along with 
( 12 ) = π1/2. ��

Acknowledgements Financial support by the DFG via IRTG 2235: “Searching for the regular in the irregular:
Analysis of singular and random systems” is gratefully acknowledged. Financial support by the DFG via the
Research Group 3013: “Vector-and Tensor-Valued Surface PDEs” is gratefully acknowledged.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability Data sharing not applicable, no datasets were generated or analyzed during the current study.

123



Partial Differential Equations and Applications             (2023) 4:16 Page 35 of 36    16 

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of bounded variation and free discontinuity problems. In:
Oxford Mathematical Monographs, vol. 254. The Clarendon Press, Oxford University Press, New York
(2000)

2. Applebaum, D.: Lévy Processes and Stochastic Calculus, vol. 116, 2nd edn. Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge (2009)

3. Bal, K., Mohanta, K., Roy, P.: Bourgain-Brezis-Mironescu domains. Nonlinear Anal. 199, 111928 (2020)
4. Bertoin, J.: Lévy processes. In: Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press,

Cambridge (1996)
5. Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Optimal Control and Partial

Differential Equations, pp. 439–455. IOS, Amsterdam (2001)
6. Brasseur, J.: A Bourgain–Brezis–Mironescu characterization of higher order Besov–Nikol’skii spaces.

Ann. Inst. Fourier (Grenoble) 68(4), 1671–1714 (2018)
7. Brezis, H.: How to recognize constant functions. A connection with Sobolev spaces. Uspekhi Mat. Nauk

57(346), 59–74 (2002)
8. Brezis,H.: FunctionalAnalysis. Sobolev Spaces andPartialDifferential Equations.Universitext, Springer,

New York (2011)
9. Dávila, J.: On an open question about functions of bounded variation. Calc. Var. Part. Differ. Equ. 15(4),

519–527 (2002)
10. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci.

Math. 136(5), 521–573 (2012)
11. Dipierro, S., Ros-Oton, X., Valdinoci, E.: Nonlocal problems with Neumann boundary conditions. Rev.

Mat. Iberoam. 33(2), 377–416 (2017)
12. Djida, J.-D., Gounoue, G.F.F., Tchaptchié, Y.K.: Nonlocal complement value problem for a global in time

parabolic equation. J. Elliptic Parabol. Equ. 8(2), 767–789 (2022)
13. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks inMathematics,

revised edn. Chapman and Hall/CRC Press, Boca Raton, FL (2015)
14. Felsinger, M., Kassmann, M., Voigt, P.: The Dirichlet problem for nonlocal operators. Math. Z. 279(3–4),

779–809 (2015)
15. Foghem, G.: Nonlocal Gagliardo–Nirenberg–Sobolev type inequality. Preprint. http://arxiv.org/abs/2105.

07989 (2021)
16. Foghem,G., Kassmann,M.:A general framework for nonlocalNeumann problems. arXiv e-prints: https://

arxiv.org/abs/2204.06793 (2022)
17. García-Bravo Miguel, R.: Tapio: strong BV -extension and W 1,1-extension domains. J. Funct. Anal.

283(10), 39 (2022)
18. Foghem,G.G.F.: L2-Theory forNonlocal Operators onDomains. PhD thesis, BielefeldUniversity (2020).

https://doi.org/10.4119/unibi/2946033
19. Foghem, G.G.F., Kassmann, M., Voigt, P.: Mosco convergence of nonlocal to local quadratic forms.

Nonlinear Anal. 193, 111504 (2020)
20. Grafakos, L.: Classical Fourier Analysis, vol. 249, 3rd edn. Graduate Texts in Mathematics. Springer,

New York (2014)
21. Hajłasz, P., Koskela, P., Tuominen, H.: Sobolev embeddings, extensions and measure density condition.

J. Funct. Anal. 254(5), 1217–1234 (2008)
22. Ishii, H., Nakamura, G.: A class of integral equations and approximation of p-Laplace equations. Calc.

Var. Part. Differ. Equ. 37(3–4), 485–522 (2010)
23. Koskela, P.,Miranda Jr.,M., Shanmugalingam,N.:Geometric properties of planar BV -extension domains.

In: Around the Research of Vladimir Maz’ya I, vol. 11. Int. Math. Ser. (N. Y.), pp. 255–272. Springer,
New York (2010)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2105.07989
http://arxiv.org/abs/2105.07989
https://arxiv.org/abs/2204.06793
https://arxiv.org/abs/2204.06793
https://doi.org/10.4119/unibi/2946033


   16 Page 36 of 36 Partial Differential Equations and Applications             (2023) 4:16 

24. Lahti, P.: Extensions and traces of functions of bounded variation on metric spaces. J. Math. Anal. Appl.
423(1), 521–537 (2015)

25. Leoni, G.: A First Course in Sobolev Spaces, vol. 181, 2nd edn. Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI (2017)

26. Leoni, G., Spector, D.: Characterization of Sobolev and BV spaces. J. Funct. Anal. 261(10), 2926–2958
(2011)

27. Ludwig, M.: Anisotropic fractional Sobolev norms. Adv. Math. 252, 150–157 (2014)
28. Ponce, A.C.: An estimate in the spirit of Poincaré’s inequality. J. Eur. Math. Soc. (JEMS) 6(1), 1–15

(2004)
29. Ponce, A.C.: A new approach to Sobolev spaces and connections to
-convergence. Calc. Var. Part. Differ.

Equ. 19(3), 229–255 (2004)
30. Ponce, A.C., Spector, D.: On formulae decoupling the total variation of BV functions. Nonlinear Anal.

154, 241–257 (2017)
31. Ros-Oton, X.: Nonlocal elliptic equations in bounded domains: a survey. Publ. Mat. 60(1), 3–26 (2016)
32. Sato, K-I: Lévy Processes and Infinitely Divisible Distributions, vol. 68. Cambridge Studies in Advanced

Mathematics. CambridgeUniversity Press, Cambridge (2013) (translated from the 1990 Japanese original,
revised edition of the 1999 English translation)

33. Vladimir, M., Shaposhnikova, T.: On the Bourgain, Brezis, and Mironescu theorem concerning limiting
embeddings of fractional Sobolev spaces. J. Funct. Anal. 195(2), 230–238 (2002)

34. Williams, D.: Probability with Martingales. Cambridge Mathematical Textbooks, Cambridge University
Press, Cambridge (1991)

35. Zhou, Y.: Fractional Sobolev extension and imbedding. Trans. Am. Math. Soc. 367(2), 959–979 (2015)
36. Zorich, V.A.: Mathematical Analysis. II. Universitext, 2nd edn. Springer, Heidelberg (2016) (translated

from the fourth and the sixth corrected (2012) Russian editions by Roger Cooke and Octavio Paniagua
T)

123


	A remake of Bourgain–Brezis–Mironescu characterization of Sobolev spaces
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 p-Lévy integrability and approximation of Dirac measure
	2.2 Local and nonlocal spaces

	3 Main results
	Acknowledgements
	References


