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Abstract
In this paper, we characterize those positive Borel measurable symbols μ on C

n that
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α with 0 < p ≤ ∞.
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1 Introduction
Let C

n be the complex n-space and dv be the ordinary volume measure on C
n that is

normalized so that
∫
Cn e–|z|2 dv(z) = 1. For points z = (z1, z2, . . . , zn) and w = (w1, w2, . . . , wn)

in C
n, we write

zw =
n∑

j=1

zjwj, |z| =
√

zz̄.

For every 0 < p < ∞, α ∈R, we denote by Lp
α(Cn) the space of measurable functions f such

that

‖f ‖Lp
α

=
(∫

Cn

∣
∣f (z)e– 1

2 |z|2 ∣∣p dv(z)
(1 + |z|)α

) 1
p

< ∞.

For p = ∞, we denote by L∞
α (Cn) the spaces of the Lebesgue measurable function f on Cn

such that

‖f ‖L∞
α

= esssup
{ |f (z)|e– 1

2 |z|2

(1 + |z|)α : z ∈ C
n
}

< ∞.

Let H(Cn) be the set of entire functions on C
n. Then, for a given 0 < p < ∞, the Fock–

Sobolev-type space Fp
α with the norm ‖ · ‖Fp

α
= ‖ · ‖Lp

α
is defined as

Fp
α = Lp

α

(
C

n)∩ H
(
C

n).
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Obviously, the Fock–Sobolev-type space F2
α equipped with the natural inner product

defined by

〈f , g〉L2
α

=
∫

Cn
f (z)g(z)e–|z|2 dv(z)

(1 + |z|)α

is a reproducing kernel Hilbert space for every real α. As stated in [4], with respect to
the above inner product, it is difficult to compute the reproducing kernel of F2

α explicitly.
Hence, we use the equivalent norm with respect to a new measure |z|–α dv(z). In detail,
for α ≤ 0, we will let

〈f , g〉α =
∫

Cn
f (z)g(z)e–|z|2 dv(z)

|z|α

and for α > 0 we let

〈f , g〉α =
∫

Cn
f –
α
2

(z)g–
α
2

(z)e–|z|2 dv(z) +
∫

Cn
f +
α
2

(z)g+
α
2

(z)e–|z|2 dv(z)
|z|α ,

where f –
α
2

is the Taylor expansion of f up to order α
2 and f +

α
2

= f – f –
α
2

. Now, we can make sure
that the inner product 〈·, ·〉α generates a new Hilbert space norm on Fp

α that is equivalent
to the Fp

α norm ‖ · ‖Fp
α

. In particular, if we define the norm ‖ · ‖F̃p
α

on Fp
α , when α ≤ 0, by

‖f ‖F̃p
α

=
(∫

Cn

∣
∣f (z)

∣
∣pe– p

2 |z|2 dv(z)
|z|α

) 1
p

and when α > 0,

‖f ‖F̃p
α

=
(∫

Cn

∣
∣f –

α
p

(z)
∣
∣pe– p

2 |z|2 dv(z)
) 1

p
+
(∫

Cn

∣
∣f +

α
p

(z)
∣
∣pe– p

2 |z|2 dv(z)
|z|α

) 1
p

,

then we have that both ‖ · ‖F̃p
α

and ‖ · ‖Fp
α

are equivalent norms.
As is well known, F2

α is indeed a reproducing kernel Hilbert space (see [4, Lemma 2.1]
for more details). Therefore, we have

Kα
z (w) =

∑

β

φβ (w)φβ (z),

where {φβ} is any orthonormal basis for F2
α with respect to 〈·, ·〉α . Note that polynomials

form a dense subset of Fp
α (see [3, Proposition 2.3]). Also, note that monomials are mutually

orthogonal, which means that { zβ
√

〈zβ ,zβ 〉α } is an orthonormal basis for F2
α . The arguments

that are identical to those in the proof of [3, Theorem 4.5] then give us that

Kα
z (w) =

⎧
⎨

⎩

I– α
2 Kz(w), if α ≤ 0;

I– α
2 Kz(w) + (Kz)–

α
2

(w), if α > 0.

Here, Kz(w) = ez̄w and I s is the fractional integration operator defined as

I sf (z) =

⎧
⎨

⎩

∑∞
k=0

�(n+k)
�(n+s+k) fk(z), if s ≥ 0;

∑∞
k>|s|

�(n+k)
�(n+s+k) fk(z), if s < 0.
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Now, it is easy to see that if α ≤ 0, (F2
α ,‖ · ‖F̃2

α
) is a closed subspace of L2

α with respect to
〈·, ·〉α . In this case, let Pα denote the orthogonal projection such that

Pαf (z) =
〈
f , Kα

z
〉
α

for any f ∈ L2
α . Unfortunately, the inner product 〈·, ·〉α does not make sense on L2

α when
α > 0. That means we cannot define the Toeplitz operator on F2

α in the usual way in terms
of this inner product. However, according to the ideas of [4], it makes sense to define the
Toeplitz operator with the complex Borel measure on C

n by the formula

Tα
μ f (z) =

∫

Cn
f (w)Kα

z (w)e–|w|2 |w|–α dμ(w)

if α ≤ 0 and

Tα
μ f (z) =

∫

Cn
f –
α
2

(w)
(
Kα

z
)–

α
2

(w)e–|w|2 dμ(w)

+
∫

Cn
f +
α
2

(w)
(
Kα

z
)+

α
2

(w)e–|w|2 dμ(w)
|w|α

if α > 0. Note that if μ satisfies

∫

Cn

∣
∣Kα

z (w)
∣
∣2e–|w|2 d|μ|(w)

(1 + |w|)α < ∞, z ∈C
n,

then the Toeplitz operator Tα
μ is densely defined on F2

α . Seqentially, we let

B(z, r) =
{

w ∈C
n : |w – z| < r

}

for z ∈C
n and r > 0. Given a Borel measure μ on C

n, the average of μ on B(z, r) is μ(B(z,r))
v(B(z,r)) .

Since the Lebesgue volume v(B(z, r)) � r2n, we simply set the average function of μ as

μ̂r(z) = μ
(
B(z, r)

)
.

For Borel measure μ on C
n, 0 < t < ∞, the t-Berezin transform of a Toeplitz operator on

C
n is defined by

μ̃α
t (z) =

1
(1 + |z|)( t

2 –1)α

∫

Cn

∣
∣kα

2,z(w)e– 1
2 |w|2 ∣∣t dμ(w)

|w|α

if α ≤ 0, and

μ̃α
t (z) =

1
(1 + |z|)( t

2 –1)α

∫

Cn

∣
∣(kα

2,z
)–

α
t
(w)e– 1

2 |w|2 ∣∣t dμ(w)

+
1

(1 + |z|)( t
2 –1)α

∫

Cn

∣
∣(kα

2,z
)+

α
t
(w)e– 1

2 |w|2 ∣∣t dμ(w)
|w|α

if α > 0, where kα
2,z(w) is the normalization of the kernel Kα

z (w), and, in general, we denote
by kα

p,z = Kα
z ‖Kα

z ‖–1
Fp
α

, for 0 < p ≤ ∞, z ∈C
n.
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Although there has been much more research on Toeplitz operators on Bergman or
Hardy spaces of various domains than on Fock spaces, Toeplitz operators on Fock spaces
have been studied for many years, see [10] and references therein for examples. In 2014,
Mengestie had characterized the Toeplitz operators with positive measure symbols be-
tween classic Fock spaces Fp

α and F∞
α . In more detail, the Toeplitz operator Tμ : Fp

α → F∞
α

is bounded (compact) if and only if μ is a (vanishing) (1, q) Fock–Carleson measure, where
1 ≤ p ≤ q < ∞, if and only if μ̂δ , μ̃t ∈ L∞ for some or any t, δ > 0. The Toepitz operator
Tμ : F∞

α → Fp
α is bounded or compact if and only μ is a vanishing (∞, q) Fock–Carleson

measure, where 1 ≤ q < ∞, if and only if μ̂δ , μ̃t ∈ L1 for some or any t, δ > 0. Those achieve-
ments would be based on some his own results in [7]. In his other paper [8], he had re-
searched the basic properties of Carleson-type measures of Fock–Sobolev spaces. It is
worth noting that the positive measure μ is a (∞, q) Fock–Carleson measure for 0 < q < ∞
if and only if it is also vanishing, if and only μ̂mq,r , μ̃t,mq ∈ L1 for some or any t, r > 0.

In 2019, Lv had, in [6], successfully obtained the boundedness and compactness of
Toeplitz operators with positive measure symbols on doubling the Fock space between Fp

ϕ

and F∞
ϕ for 0 < p ≤ ∞. She pointed out that Toeplitz operator Tμ : Fp

ϕ → F∞
ϕ is bounded

(compact) if and only if μ is a (vanishing) p
p+1 Fock–Carleson measure. Conversely, the

Toeplitz operator Tμ : F∞
ϕ → Fp

ϕ is bounded or compact if and only if μ̂δ , μ̃t ∈ Lp for some
or any t, δ > 0. Something interesting attracts our attention, that is the so-called p

p+1 Fock–
Carleson measure. As stated in [6], μ is a (p, q) Fock–Carleson measure if and only if it is a
(tp, tq) Fock–Carleson measure for any t > 0, because it is also equivalent to both μ̂δρ

2(1– q
p )

and μ̃tρ
2(1– q

p ) that are bounded. That is why we call it a p
p+1 Fock–Carleson measure and

we write it as ‖μ‖ p
q

= ‖i‖Fp/q
ϕ →L1

ϕ (μ). Luckily, these good achievements keep being correct
in the case of large Fock spaces, for which we can refer to our latest paper [1].

Unfortunately, this phenomenon will not occur in the case of Fock–Sobolev-type spaces,
because the definition of the largest Fock–Soboblev–type space F∞

α differs, totally, from
doubling Fock spaces F∞

ϕ . In other cases, including the classic Fock space, doubling Fock
space, and large Fock space, the infinite index would be thought of as the limit of the finite
index. However, This is not the case here. Moreover, F∞

α 
= limp→∞ Fp
α . In this paper, some

terminologies and symbols are still similar to those in [6]. We are going to achieve some
characterizations on those μ ≥ 0 such that Toeplitz operator Tμ is bounded or compact
from Fp

α to F∞
α and the converse case, respectively, for 0 < p ≤ ∞.

We will end this introduction with a comment on some notations.
Firstly, for conciseness, we will denote by I(	) the integral in Line (	). Take, for example,

that I(1) refers to the integral in Line (1).
Secondly, for positive quantities A and B (which may depend on a variety of parameters

or variables), we will use the notation A � B if there exists an unimportant constant C such
that A ≤ CB. The notation A � B will have a similar meaning. We write A � B if A � B
and A � B at the same time.

2 Carleosn measures and related results
In this section, we are going to characterize Fock–Carleson measures. For this purpose,
we need some conclusions about the reproducing kernel Kα

z , which are partly from [3, 4].

Lemma 2.1 The upper pointwise estimate and the properties of the Bergman kernel Kα
z

are as follows:
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(1) Suppose that f belongs to the Fock–Sobolev-type space Fp
α for any real α. Then, for

any z, w ∈C
n, p, a, t > 0, α ∈ R, we have

|f (z)|pe–a|z|2

(1 + |z|)α �
∫

|w–z|<t

∣
∣f (w)

∣
∣pe–a|w|2 dv(w)

(1 + |w|)α .

(2) The Bergman kernel satisfies

∣
∣Kα

z (w)
∣
∣�

⎧
⎨

⎩

(1 + |z||w|) α
2 exp( 1

2 |z|2 + 1
2 |w|2 – 1

8 |z – w|2), if α ≤ 0;

(1 + |wz̄|) α
2 exp( 1

2 |z|2 + 1
2 |w|2 – 1

8 |z – w|2), if α > 0.

More specifically,

∣
∣Kα

z (z)
∣
∣� (

1 + |z|)αe|z|2

for any z ∈C
n, and there is a small enough r0 > 0 such that

∣
∣Kα

z (w)
∣
∣�

(
1 + |z|)α exp

(
1
2
|z|2 +

1
2
|w|2

)

, ∀z ∈ B(w, r0).

(3) Together with the above, the estimate of the norm of the reproducing kernel is

∥
∥Kα

z
∥
∥

Fp
α

�

⎧
⎨

⎩

(1 + |z|)α– α
p e

|z|2
2 , 0 < p < ∞;

e
|z|2

2 , p = ∞.

(4) For 0 < p ≤ ∞, the normalization of the kernel kα
p,z → 0 uniformly on compact

subsets of Cn as |z| → ∞.

Proof We only discuss the statement (4) in the case of p = ∞, as the others are the basic
properties in [3, 4] like [4, Lemmas 2.1, 2.3] and [3, Proposition 4.8]. By the statement (3),
to be continued, we can easily see that

|Kα
z (w)|

‖Kα
z ‖F∞

α

�
∣
∣Kα

z (w)
∣
∣e– |z|2

2 .

Moreover, in terms of the statement (2),

∣
∣Kα

z (w)
∣
∣e– |z|2

2 �

⎧
⎨

⎩

(1 + |z||w|) α
2 exp( 1

2 |w|2 – 1
8 |z – w|2), if α ≤ 0;

(1 + |wz̄|) α
2 exp( 1

2 |w|2 – 1
8 |z – w|2), if α > 0.

This tells us the statement (4) is true when w is fixed and |z| → ∞. �

Sequentially, we will study Carleson measures on Fp
α . If μ ≥ 0 is a Borel measure, then

we define the norm ‖ · ‖Lp
α,μ∩H(Cn) on Lp

α,μ ∩ H(Cn) by

‖f ‖p
Lp
α,μ∩H(Cn)

=
∫

Cn

∣
∣f –

α
p

(z)e– 1
2 |z|2 ∣∣p dμ(z) +

∫

Cn

∣
∣f +

α
p

(z)e– 1
2 |z|2 ∣∣p dμ(z)

|z|α ,
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when α > 0 and

‖f ‖p
Lp
α,μ∩H(Cn)

=
∫

Cn

∣
∣f (z)e– 1

2 |z|2 ∣∣p dμ(z)
|z|α ,

when α ≤ 0. If 0 < p, q < ∞ and μ is a weighted (p, q)-Fock–Carleson measure, then the
inclusion

ιp : Fp
α → Lq

α,μ ∩ H
(
C

n)

is bounded. We call μ a vanishing weighted (p, q)-Fock–Carleson measure for Fp
α if

lim
j→∞

∫

Cn

∣
∣(fj)–

α
q

(z)e– 1
2 |z|2 ∣∣q dμ(z) +

∫

Cn

∣
∣(fj)+

α
q

(z)e– 1
2 |z|2 ∣∣q dμ(z)

|z|α = 0,

when α > 0 and

lim
j→∞

∫

Cn

∣
∣fj(z)e– 1

2 |z|2 ∣∣q dμ(z)
|z|α = 0,

when α ≤ 0, whenever {fj} is bounded in Fp
α and converges to 0 uniformly on a compact

subset of Cn as j → ∞.
The following three theorems characterize (vanishing) (p, q) Fock–Carleson measures

for all possible 0 < p, q < ∞. All of them have been proven in [2].

Theorem 2.2 Let 0 < p ≤ q < ∞ and μ ≥ 0. Then, the following statements are equivalent:
(1) μ is a (p, q)-Fock–Carleson measure;
(2) (1 + |z|)( 1

p – 1
q )qα

μ̃α
t (z) ∈ L∞(dv) for some or any t > 0;

(3) (1 + |z|)( 1
p – 1

q )qα
μ̂δ(z) ∈ L∞(dv) for some or any δ > 0;

(4) The sequence

{(
1 + |ak|

)( 1
p – 1

q )qα
μ̂r(ak)

}∞
k=1 ∈ l∞

for some or any r-lattice {ak}∞k=1.
Furthermore,

‖ιp‖q
Fp
α→Lq

α,μ∩H(Cn)
� ∥
∥(1 + | · |)( 1

p – 1
q )qα

μ̃α
t
∥
∥

L∞(dv)

� ∥
∥(1 + | · |)( 1

p – 1
q )qα

μ̂δ

∥
∥

L∞(dv)

� ∥
∥{(1 + |ak|

)( 1
p – 1

q )qα
μ̂r(ak)

}∞
k

∥
∥

l∞ .

Theorem 2.3 Let 0 < p ≤ q < ∞ and μ ≥ 0. Then, the following statements are equivalent:
(1) μ is a vanishing (p, q)-Fock–Carleson measure;
(2) (1 + |z|)( 1

p – 1
q )qα

μ̃α
t (z) → 0 as |z| → ∞ for some or any t > 0;

(3) (1 + |z|)( 1
p – 1

q )qα
μ̂δ(z) → 0 as |z| → ∞ for some or any δ > 0;

(4) The sequence

lim
k→∞

(
1 + |ak|

)( 1
p – 1

q )qα
μ̂r(ak) = 0

for some or any r-lattice {ak}∞k=1.
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Theorem 2.4 Let 0 < q < p < ∞ and μ ≥ 0. Then, the following statements are equivalent:
(1) μ is a (p, q)-Fock–Carleson measure;
(2) μ is a vanishing (p, q)-Fock–Carleson measure;
(3) (1 + |z|)( 1

p – 1
q )qα

μ̃α
t (z) ∈ L

p
p–q (dv) for some or any t > 0;

(4) (1 + |z|)( 1
p – 1

q )qα
μ̂δ(z) ∈ L

p
p–q (dv) for some or any δ > 0;

(5) The sequence

{(
1 + |ak|

)( 1
p – 1

q )qα
μ̂r(ak)

}∞
k=1 ∈ l

p
p–q

for some or any r-lattice {ak}∞k=1.
Furthermore,

‖ιp‖q
Fp
α→Lq

α,μ∩H(Cn)
� ∥
∥(1 + | · |)( 1

p – 1
q )qα

μ̃α
t
∥
∥

L
p

p–q

� ∥
∥(1 + | · |)( 1

p – 1
q )qα

μ̂δ

∥
∥

L
p

p–q

� ∥
∥
{(

1 + |ak|
)( 1

p – 1
q )qα

μ̂r(ak)
}∞

k

∥
∥

l
p

p–q
.

The well-informed reader will note that the descriptions in Theorem 2.2 are a little dif-
ferent from those in [5, Theorem 3.4] and [9, Theorem 25]. The reason why this situation
occurred is mainly the measurement of the unit ball. For example, in the case of Fock-type
spaces,

C1
[
�′(|z|2)]–1[

� ′(|z|2)]–(n–1) ≤ ∣
∣B(z, r)

∣
∣≤ C2

[
�′(|z|2)]–1[

� ′(|z|2)]–(n–1)

for some constants C1 and C2. See [9] for more information.

3 Bounded Toeplitz operators
In this section, we are going to achieve some characterizations on those μ ≥ 0 such that the
Toeplitz operator Tμ is bounded or compact from Fp

α to F∞
α and the converse, respectively,

for 0 < p ≤ ∞. To study the compactness, we need the following lemma, part of which can
been found in [2, Lemma 3.2].

Lemma 3.1 Let 0 < p, q ≤ ∞ and suppose μ is a t-Fock–Carleson measure. The Toeplitz
operator Tα

μ is well defined on Fp
α . Moreover, for R > 0, the Toeplitz operator Tα

μR
is compact

from Fp
α to Fq

α , where μR(V ) =
∫

V∩{z:|z|≤R} dμ for V ⊂C
n measurable.

Proof It suffices to discuss the case of an infinite index, because by [2, Lemmas 3.1, 3.2],
we can conclude that Tα

μ is well defined on Fp
α and Tα

μR
is compact from Fp

α to Fq
α for 0 <

p, q < ∞, respectively.
For any f ∈ F∞

α , by the definition of a Toeplitz operator, it suffices to prove that, for any
z ∈C

n, when α > 0,

∫

Cn

∣
∣f +

α
2

(w)
∣
∣
∣
∣(Kα

z
)+

α
2

(w)
∣
∣e–|w|2 dμ(w)

|w|α

=
∫

|w|≥1

∣
∣f +

α
2

(w)
∣
∣
∣
∣
(
Kα

z
)+

α
2

(w)
∣
∣e–|w|2 dμ(w)

|w|α (1)
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+
∫

|w|<1

∣
∣f +

α
2

(w)
∣
∣
∣
∣(Kα

z
)+

α
2

(w)
∣
∣e–|w|2 dμ(w)

|w|α < ∞. (2)

Note that for a fixed small 0 < δ < R, Theorems 2.2 and 2.3 show us that

(
1 + | · |)(t–1)α

μ̂δ(·) ∈ L∞(dv), (3)

for some t, maybe different from the condition. Now, we divide the integral above into two
cases. When |w| ≥ 1, [2, Lemma 2.3] tells us that

I(1) �
∫

|w|≥1

( |f +
α
2

(w)|
(1 + |w|)α e– 1

2 |w|2
)
∣
∣(Kα

z
)+

α
2

(w)
∣
∣e– 1

2 |w|2μ̂δ(w) dv(w)

� ‖f ‖F∞
α

∥
∥
∥
∥

μ̂δ(·)
(1 + | · |)(1–t)α

∥
∥
∥
∥

L∞

∫

Cn

∣
∣(Kα

z
)+

α
2

(w)
∣
∣e– 1

2 |w|2 dv(w)
|w|(t–1)α

︸ ︷︷ ︸
II

.

According to the proof in [4, Lemma 3.4], for any z ∈C
n,

II �
∑

|m|> α
2

|z||m|�(n + |m|)
m!�(n – α

2 + |m|)
∫

Cn
|w||m|+|t–1|αe– 1

2 |w|2 dv(w)

�
∑

|m|> α
2

|z||m|(|m!|)–1n|m||m| α
2 �

(

n +
|m| + |t – 1|α

2

)

< ∞.

On the other hand, the Cauchy integral formula over the unit polydisk and the maximum
modulus theorem show us that

sup
|w|<1

∣
∣f +

α
2

(w)
∣
∣|w|– α

2 � sup
|w|<1

∑

|γ |> α
2

∣
∣
∣
∣
∂γ f (0)

γ !

∣
∣
∣
∣|w||γ |– α

2

� sup
|w|<2

∣
∣f (w)

∣
∣
∑

k> α
2

|w|k– α
2

2k

� sup
|w|<2

∣
∣f (w)

∣
∣
(
1 + |w|)–α . (4)

Also, when |w| < 1, by Stirling’s formula,

∣
∣
(
Kα

z
)+

α
2

(w)
∣
∣|w|– α

2 � |w|– α
2
∑

k> α
2

k α
2

k!
|zw̄|k �

∑

k> α
2

k α
2

k!
|z|k . (5)

Therefore, we can see that

I(2) �
∫

|w|<1

(

sup
|w|<2

|f (w)|
(1 + |w|)α

)
(∣
∣
(
Kα

z
)+

α
2

(w)
∣
∣|w|– α

2
)
e– 1

2 |w|2 dμ(w)

� ‖f ‖F∞
α

∫

|w|<1

(∣
∣
(
Kα

z
)+

α
2

(w)
∣
∣|w|– α

2
)
e– 1

2 |w|2 dμ(w)

� ‖f ‖F∞
α

∥
∥
∥
∥

μ̂δ(·)
(1 + | · |)(1–t)α

∥
∥
∥
∥

L∞

∑

k> α
2

k α
2

k!
|z|k .
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Sequentially, in order to prove the compactness of Tα
μR

for q = ∞, we suppose that
{fk}k≥1 ⊂ Fp

α(0 < p ≤ ∞) is a bounded sequence and fk uniformly converges to 0 on com-
pact subset of Cn as k → ∞. By Montel’s theorem, we will show that

lim
k→∞

∥
∥Tα

μR
fk
∥
∥

F∞
α

= 0.

By the definition of a Topelitz operator, we will omit the details about the case α ≤ 0 and
the other comes into play:

∣
∣Tα

μR
fk(z)

∣
∣ e– 1

2 |z|2

(1 + |z|)α

� e– 1
2 |z|2

(1 + |z|)α
∫

Cn

∣
∣(fk)–

α
2

(w)
∣
∣
∣
∣(Kα

z
)–

α
2

(w)
∣
∣e–|w|2 dμR(w)

+
e– 1

2 |z|2

(1 + |z|)α
∫

Cn

∣
∣(fk)+

α
2

(w)
∣
∣
∣
∣(Kα

z
)+

α
2

(w)
∣
∣e–|w|2

|w|α dμR(w). (6)

Now, we pay attention to the integral I(6), because the first will be discussed in a similar
way. For some suitable r0 > 0, we divide the integral I(6) into

I(6) =
e– 1

2 |z|2

(1 + |z|)α
∫

|w|≥r0

∣
∣(fk)+

α
2

(w)
∣
∣
∣
∣(Kα

z
)+

α
2

(w)
∣
∣e–|w|2

|w|α dμR(w) (7)

+
e– 1

2 |z|2

(1 + |z|)α
∫

|w|<r0

∣
∣(fk)+

α
2

(w)
∣
∣
∣
∣(Kα

z
)+

α
2

(w)
∣
∣e–|w|2

|w|α dμR(w). (8)

According to the proof in [4, Proposition 3.2],

∫

Cn

∣
∣Kα

w (z)
∣
∣pe– p

2 |z|2 dv(z)
(1 + |z|)α �

(
1 + |w|)pα–αe

p
2 |w|2 , 0 < p < ∞. (9)

Therefore, if we combine [2, Lemma 2.3] and the condition (3), the integral I(7) comes into
play, when k → ∞,

I(7) � e– 1
2 |z|2

(1 + |z|)α
∫

r0≤|w|≤R

∣
∣(fk)+

α
2

(w)
∣
∣

|(Kα
z )+

α
2

(w)|
(1 + |w|)(t–1)α

e–|w|2

|w|α
μ̂δ(w) dv(w)

(1 + |w|)(1–t)α

� e– 1
2 |z|2

(1 + |z|)α
∥
∥
∥
∥

μ̂δ(·)
(1 + | · |)(1–t)α

∥
∥
∥
∥

L∞
sup

r0≤|w|≤R

∣
∣(fk)+

α
2

(w)
∣
∣

|(Kα
z )+

α
2

(w)|
e|w|2 (1 + |w|)tα

� sup
r0≤|w|≤R

|fk(w)|e– 1
2 |w|2

(1 + |w|)tα

∫

Cn

|Kα
w (z)|

e 1
2 |z|2 e 1

2 |w|2
dv(z)

(1 + |z|)α → 0.

On the other hand, in view of the estimates (5) and (4),

I(8) � e– 1
2 |z|2

(1 + |z|)α
(

sup
|w|≤2r0

|fk(w)|e– 1
2 |w|2

(1 + |w|)α
)∫

|w|≤r0

∣
∣(Kα

z
)+

α
2

(w)
∣
∣e– 1

2 |w|2 dμ(w)
|w| α

2

�
(

e– 1
2 |z|2

(1 + |z|)α
∑

s> α
2

s α
2

s!
|z|s

)(

sup
|w|≤2r0

|fk(w)|e– 1
2 |w|2

(1 + |w|)α
)∥
∥
∥
∥

μ̂δ(·)
(1 + | · |)(1–t)α

∥
∥
∥
∥

L∞
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� |z|e|z|e– 1
2 |z|2

(1 + |z|)–|α|

(

sup
|w|≤2r0

|fk(w)|e– 1
2 |w|2

(1 + |w|)α
)∥∥
∥
∥

μ̂δ(·)
(1 + | · |)(1–t)α

∥
∥
∥
∥

L∞
.

Thus, when k → ∞, the integral I(8) will tend to zero. Now, the proof is finished. �

In the following, we will characterize the boundedness and compactness of positive
Toeplitz operators from Fp

α to F∞
α and from F∞

α to Fp
α with 0 < p < ∞. Now, we state the

main results as follows.

Theorem 3.2 Let 0 < p < ∞, and μ ≥ 0. Then,
(1) Tα

μ : Fp
α → F∞

α is bounded if and only if μ is a p-Fock–Carleson measure.
Furthermore,

∥
∥Tα

μ

∥
∥

Fp
α→F∞

α
� ‖μ‖p.

(2) Tα
μ : Fp

α → F∞
α is compact if and only if μ is a vanishing p-Fock–Carleson measure.

Proof (1) First, we assume that Tα
μ : Fp

α → F∞
α is bounded. From the proof in [2, Theo-

rem 3.3], it follows that

∣
∣μ̃α

2 (z)
∣
∣ �

(
1 + |z|)α– α

p

∣
∣
∣
∣T

α
μ

( kα
2,z

‖kα
2,z‖Fp

α

)

(z)
∣
∣
∣
∣

e– 1
2 |z|2

(1 + |z|)α

�
(
1 + |z|)α– α

p
∥
∥Tα

μ

∥
∥

Fp
α→F∞

α

∥
∥
∥
∥

kα
2,z

‖kα
2,z‖Fp

α

∥
∥
∥
∥

Fp
α

. (10)

Together with Theorem 2.2, μ is a p-Fock–Carleson measure. Furthermore,

‖μ‖p � sup
z∈Cn

∣
∣μ̃α

2 (z)
∣
∣(1 + |z|) α

p –α �
∥
∥Tα

μ

∥
∥

Fp
α→F∞

α
.

On the other hand, if μ is a p-Fock–Carleson measure, then μ̂δ(z)(1 + |z|) α
p –α is bounded

for δ > 0. Given any f ∈ Fp
α , we only want to obtain that, when α > 0,

sup
z∈Cn

∣
∣Tα

μ f (z)
∣
∣ e– 1

2 |z|2

(1 + |z|)α

� sup
z∈Cn

e– 1
2 |z|2

(1 + |z|)α
∫

Cn

∣
∣f –

α
2

(w)
∣
∣
∣
∣(Kα

z
)–

α
2

(w)
∣
∣e–|w|2 dμ(w)

+ sup
z∈Cn

e– 1
2 |z|2

(1 + |z|)α
∫

Cn

∣
∣f +

α
2

(w)
∣
∣
∣
∣(Kα

z
)+

α
2

(w)
∣
∣e–|w|2

|w|α dμ(w) < ∞. (11)

Now, we pay attention to the integral I(11), because the first will be discussed in a similar
way. For some suitable r0 > 0, we divide the integral I(11) into

I(11) =
e– 1

2 |z|2

(1 + |z|)α
∫

|w|≥r0

∣
∣f +

α
2

(w)
∣
∣
∣
∣
(
Kα

z
)+

α
2

(w)
∣
∣e–|w|2

|w|α dμ(w) (12)

+
e– 1

2 |z|2

(1 + |z|)α
∫

|w|<r0

∣
∣f +

α
2

(w)
∣
∣
∣
∣
(
Kα

z
)+

α
2

(w)
∣
∣e–|w|2

|w|α dμ(w). (13)
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If choosing an r-lattice {ak}k≥1, then we can see that, by [2, Lemma 2.3] and the upper
pointwise estimate in Lemma 2.1,

I(12) � e– 1
2 |z|2

(1 + |z|)α
∫

|w|≥r0

∣
∣(Kα

z
)+

α
2

(w)
∣
∣
|f +

α
2

(w)|e– 1
2 |w|2

(1 + |w|) α
p

e– 1
2 |w|2

(1 + |w|)α
μ̂α

δ (w) dv(w)
(1 + |w|)– α

p

� ‖f ‖Fp
α

∑

k:|ak |≥r+r0

∫

B(ak ,r)

e– 1
2 |z|2

(1 + |z|)α
∣
∣
(
Kα

z
)+

α
2

(w)
∣
∣e– 1

2 |w|2 μ̂α
δ (w) dv(w)

(1 + |w|)α– α
p

� ‖f ‖Fp
α

∥
∥
∥
∥

μ̂δ(·)
(1 + | · |)α– α

p

∥
∥
∥
∥

L∞

∑

k:|ak |≥r+r0

sup
w∈B(ak ,r)

|(Kα
z )+

α
2

(w)|
(1 + |z|)α

e– 1
2 |w|2

e 1
2 |z|2

� ‖f ‖Fp
α

∥
∥
∥
∥

μ̂δ(·)
(1 + | · |)α– α

p

∥
∥
∥
∥

L∞
sup

|w|≥r0

∫

Cn
e– 1

2 |z|2 ∣∣Kα
w (z)

∣
∣e– 1

2 |w|2 dv(z)
(1 + |z|)α .

Next, the integral I(13) comes into play in a similar way as in the estimate I(8),

I(13) � e– 1
2 |z|2

(1 + |z|)α
∫

|w|<r0

|(Kα
z )+

α
2

(w)|
|w| α

2 e 1
2 |w|2

(

sup
|w|<2r0

|f (w)|e– 1
2 |w|2

(1 + |w|) α
p

)
dμ(w)

(1 + |w|)α– α
p

� ‖f ‖Fp
α

∥
∥
∥
∥

μ̂δ(·)
(1 + | · |)α– α

p

∥
∥
∥
∥

L∞

(∑

k> α
2

k α
2

k!
|z|k

)
e– 1

2 |z|2

(1 + |z|)α .

All in all, Tα
μ is bounded from Fp

α to F∞
α and ‖Tα

μ‖Fp
α→F∞

α
� ‖μ‖p.

(2) We suppose μ is a vanishing p-Fock–Carleson measure. By Theorem 2.3,

μ̂δ(z)
(
1 + |z|) α

p –α → 0, as |z| → ∞.

As Tα
μR

is compact from Fp
α to F∞

α by Lemma 3.1, if we note that μ – μR ≥ 0, Tα
μ–μR

is also
bounded from Fp

α to F∞
α . For r > 0,

lim
R→∞ sup

z∈Cn
̂(μ – μR)r(z)

(
1 + |z|) α

p –α = 0.

Therefore, the condition (1) tells us that, when R → ∞,

∥
∥Tα

μ – Tα
μR

∥
∥

Fp
ϕ→F∞

ϕ
=
∥
∥Tα

μ–μR

∥
∥

Fp
ϕ→F∞

ϕ
� ‖μ – μR‖p

� sup
z∈Cn

̂(μ – μR)r(z)
(
1 + |z|) α

p –α → 0.

Hence, we can see that Tα
μ : Fp

α → F∞
α is compact.

Conversely, we assume that Tα
μ : Fp

α → F∞
α is compact. Then, μ̂δ(z)(1+ |z|) α

p –α is bounded

for δ > 0. Obviously, { kα
2,z

‖kα
2,z‖Fp

α

: z ∈ C
n} is bounded in Fp

α . Therefore, {Tα
μ( kα

2,z
‖kα

2,z‖Fp
α

) : z ∈ C
n}

is relatively compact in F∞
α . For any sequence {zj}j≥1 with |zj| → ∞, there exists a sub-

sequence of {Tα
μ(

kα
2,zj

‖kα
2,zj

‖Fp
α

)}j≥1 converging to some h in F∞
α . Without loss of generality, we

may assume that

lim|zj|→∞

∥
∥
∥
∥Tα

μ

( kα
2,zj

‖kα
2,zj

‖Fp
α

)

– h
∥
∥
∥
∥

F∞
α

= 0.
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Our goal is to show h = 0. We will only prove the case α > 0. For any w ∈C
n, the definition

of a Toeplitz operator implies that

e– 1
2 |w|2

(1 + |w|)α
∣
∣
∣
∣T

α
μ

( kα
2,zj

‖kα
2,zj

‖Fp
α

)

(w)
∣
∣
∣
∣

� e– 1
2 |w|2

(1 + |w|)α
∫

Cn

∣
∣(Kα

w
)–

α
2

(ξ )
∣
∣
|(kα

2,zj
)–

α
2

(ξ )|
‖kα

2,zj
‖Fp

α

e–|ξ |2 dμ(ξ )

+
e– 1

2 |w|2

(1 + |w|)α
∫

Cn

∣
∣(Kα

w
)+

α
2

(ξ )
∣
∣
|(kα

2,zj
)+

α
2

(ξ )|
‖kα

2,zj
‖Fp

α

e–|ξ |2

|ξ |α dμ(ξ ). (14)

Now, we pay attention to the integral I(14) and we divide it into two integrals for some
suitable R > 0

I(14) � e– 1
2 |w|2

(1 + |w|)α
∫

|ξ |>R

∣
∣
(
Kα

w
)+

α
2

(ξ )
∣
∣
|(kα

2,zj
)+

α
2

(ξ )|
‖kα

2,zj
‖Fp

α

e–|ξ |2

|ξ |α dμ(ξ ) (15)

+
e– 1

2 |w|2

(1 + |w|)α
∫

|ξ |≤R

∣
∣
(
Kα

w
)+

α
2

(ξ )
∣
∣
|(kα

2,zj
)+

α
2

(ξ )|
‖kα

2,zj
‖Fp

α

e–|ξ |2

|ξ |α dμ(ξ ). (16)

First, the integral I(15) is estimated by, after denoting by {ak}k≥1 an r-lattice and combing
with [4, Proposition 3.2],

I(15) � e– 1
2 |w|2

(1 + |w|)α
∫

|ξ |>R

∣
∣
(
Kα

w
)+

α
2

(ξ )
∣
∣
|(kα

2,zj
)+

α
2

(ξ )|
‖kα

2,zj
‖Fp

α

e–|ξ |2

(1 + |ξ |) α
p

μ̂δ(ξ ) dv(ξ )
(1 + |ξ |)α– α

p

�
∥
∥
∥
∥

μ̂δ(·)
(1 + | · |)α– α

p

∥
∥
∥
∥

L∞

∑

k:|ak |>R+r

[(

sup
ξ∈B(ak ,r)

∣
∣
(
Kα

w
)+

α
2

(ξ )
∣
∣e– 1

2 |ξ |2 e– 1
2 |w|2

(1 + |w|)α
)

×
∫

B(ak ,r)

(1 + |ξ |)( 1
2 – 1

p )α

(1 + |zj|)( 1
2 – 1

p )α

∣
∣kα

2,zj
(ξ )

∣
∣e– 1

2 |ξ |2

|ξ | α
2

dv(ξ )
]

�
∥
∥
∥
∥

μ̂δ(·)
(1 + | · |)α– α

p

∥
∥
∥
∥

L∞

(

sup
|ξ |>R

∫

Cn
e– 1

2 |w|2 ∣∣(Kα
ξ

)+
α
2

(w)
∣
∣e– 1

2 |ξ |2 dv(w)
(1 + |w|)α

)

×
∑

k:|ak |>R+r

∫

B(ak ,r)

(1 + |ξ |)( 1
2 – 1

p )α

(1 + |zj|)( 1
2 – 1

p )α

∣
∣kα

2,zj
(ξ )

∣
∣e– 1

2 |ξ |2

|ξ | α
2

dv(ξ )

�
∥
∥
∥
∥

μ̂δ(·)
(1 + | · |)α– α

p

∥
∥
∥
∥

L∞

∫

|ξ |>R

(
1 + |zj – ξ |)| 1

2 – 1
p ||α|e– 1

8 |zj–ξ |2 dv(ξ ).

This implies the integral I(15) will tend to zero as R → ∞. Next, the integral I(16) will be
divided into two subcases.

I(16) � e– 1
2 |w|2

(1 + |w|)α
∫

|ξ |<r0

∣
∣
(
Kα

w
)+

α
2

(ξ )
∣
∣
|(kα

2,zj
)+

α
2

(ξ )|
‖kα

2,zj
‖Fp

α

e–|ξ |2

|ξ |α dμ(ξ )

+
e– 1

2 |w|2

(1 + |w|)α
∫

r0≤|ξ |≤R

∣
∣
(
Kα

w
)+

α
2

(ξ )
∣
∣
|(kα

2,zj
)+

α
2

(ξ )|
‖kα

2,zj
‖Fp

α

e–|ξ |2

|ξ |α dμ(ξ ), (17)
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for a small enough 0 < r0 < R. Since kα
2,z

‖kα
2,z‖Fp

α

→ 0 uniformly on a compact subset of Cn when

|z| → ∞, it is easy to see that

lim|zj|→∞

∫

r0≤|ξ |≤R

∣
∣
(
Kα

w
)+

α
2

(ξ )
∣
∣
|(kα

2,zj
)+

α
2

(ξ )|
‖kα

2,zj
‖Fp

α

e–|ξ |2

|ξ |α dμ(ξ )

�
∥
∥
∥
∥

μ̂δ(·)
(1 + | · |)α– α

p

∥
∥
∥
∥

L∞
lim|zj|→∞

∫

r0≤|ξ |≤R

∣
∣
(
Kα

z
)+

α
2

(ξ )
∣
∣
|(kα

2,zj
)+

α
2

(ξ )|
‖kα

2,zj
‖Fp

α

e–|ξ |2 dv(ξ )
(1 + |ξ |) α

p
= 0.

The other is, as follows, if we use a similar way as in the estimate I(8),

I(17) � e– 1
2 |w|2

(1 + |w|)α
∫

|ξ |<r0

|(Kα
w )+

α
2

(ξ )|
|w| 1

2 α‖kα
2,zj

‖Fp
α

(

sup
|ξ |≤2r0

|(kα
2,zj

)+
α
2

(ξ )|
(1 + |ξ |) α

p

)
e–|ξ |2 dμ(ξ )
(1 + |ξ |)α– α

p

� e– 1
2 |w|2

(1 + |w|)α
∫

|ξ |<r0

(∣∣(Kα
w
)+

α
2

(ξ )
∣
∣|ξ |– α

2
) e– 1

2 |ξ |2

(1 + |ξ |)α– α
p

dμ(ξ )

�
∥
∥
∥
∥

μ̂δ(·)
(1 + | · |)α– α

p

∥
∥
∥
∥

L∞

(∑

k> α
2

k α
2

k!
|w|k

)
e– 1

2 |w|2

(1 + |w|)α

�
∥
∥
∥
∥

μ̂δ(·)
(1 + | · |)α– α

p

∥
∥
∥
∥

L∞

|w|e|w|e– 1
2 |w|2

(1 + |w|)–|α| .

This implies that the integral I(17) tends to zero if we let r0 go to zero simultaneously.

All in all, we know that lim|zj|→∞ Tα
μ(

kα
2,zj

‖kα
2,zj

‖Fp
α

)(w) = 0 for any w ∈ C
n. Do not forget that

lim|zj|→∞ Tα
μ(

kα
2,zj

‖kα
2,zj

‖Fp
α

)(w) = h(w) for any w ∈ C
n under the assumption. Hence, h = 0, that

is

lim|zj|→∞

∥
∥
∥
∥Tα

μ

( kα
2,zj

‖kα
2,zj

‖Fp
α

)∥∥
∥
∥

F∞
ϕ

= 0.

This, together with the estimate (10), yields that, when |zj| → ∞,

∣
∣μ̃α

2 (z)
∣
∣�

(
1 + |z|)α– α

p

∥
∥
∥
∥Tα

μ

( kα
2,zj

‖kα
2,zj

‖Fp
α

)∥∥
∥
∥

F∞
ϕ

→ 0.

Hence, we can conclude that μ is a vanishing p-Fock–Carleson measure. �

Theorem 3.3 Let 0 < p < ∞ and μ ≥ 0. Then, the following statements are equivalent:
(1) Tα

μ : F∞
α → Fp

α is bounded;
(2) Tα

μ : F∞
α → Fp

α is compact;
(3) (1 + |z|)α– α

p μ̃α
t (z) ∈ Lp for some or any t > 0;

(4) (1 + |z|)α– α
p μ̂δ(z) ∈ Lp for some or any δ > 0;

(5) The sequence {(1 + |ak|)α– α
p μ̂r(ak)}∞k=1 ∈ lp for some or any r-lattice {ak}∞k=1.

Furthermore,

∥
∥Tα

μ

∥
∥

Fp
α→Fq

α
� ∥
∥
(
1 + | · |)α– α

p μ̃α
t
∥
∥

Lp � ∥
∥
(
1 + | · |)α– α

p μ̂δ

∥
∥

Lp

� ∥
∥{(1 + |ak|

)α– α
p μ̂r(ak)

}∞
k

∥
∥

lp .



Chen and Xu Journal of Inequalities and Applications         (2023) 2023:44 Page 14 of 21

Proof In view of [2, Lemma 2.4], the statements (3), (4), and (5) are equivalent.
(1) ⇒ (5): Suppose that Tα

μ is bounded from F∞
α to Fp

α . Let {ak}∞k=1 be an r-lattice and
{λk}k≥1 ∈ l∞, and set

f (z) =
∞∑

k=1

λk
kα

2,ak
(z)

‖kα
2,ak

‖F∞
α

=
∞∑

k=1

λk
kα

2,ak
(z)

(1 + |ak|)– α
2

, z ∈ C
n.

We can claim that

f ∈ F∞
α and ‖f ‖F∞

α
� sup

k
{λk}.

To that end, by the estimate (3) in Lemma 2.1, we can follow the norm ‖kα
2,ak

‖F∞
α

from that

|kα
2,ak

(z)|e– 1
2 |z|2

(1 + |z|)α =
|Kα

ak
(z)|

√
Kα

ak
(ak)

e– 1
2 |z|2

(1 + |z|)α �
‖Kα

ak
‖F∞

α
e– 1

2 |ak |2

(1 + |ak|) α
2

.

Hence, we have Tα
μ f ∈ Fp

α by the condition. Khinchine’s inequality and Fubini’s Theorem
show that

∫

Cn

( ∞∑

k=1

∣
∣
∣
∣λk

Tα
μ(kα

2,ak
)(z)

(1 + |ak|)– α
2

∣
∣
∣
∣

2
) p

2 e– p
2 |z|2

(1 + |z|)α dv(z)

�
∫

Cn

∫ 1

0

∣
∣
∣
∣
∣

∞∑

k=1

�k(t)λj
Tα

μ(kα
2,ak

)(z)

(1 + |ak|)– α
2

∣
∣
∣
∣
∣

p

dt
e– p

2 |z|2

(1 + |z|)α dv(z)

�
∫ 1

0

∥
∥
∥
∥
∥

Tα
μ

( ∞∑

k=1

�k(t)λj
kα

2,ak
(z)

(1 + |ak|)– α
2

)∥∥
∥
∥
∥

p

Fp
α

dt,

where �k is the kth Rademacher function on [0, 1]. By the bounedness of Tα
μ ,

∫ 1

0

∥
∥
∥
∥
∥

Tα
μ

( ∞∑

k=1

�k(t)λj
kα

2,ak
(z)

(1 + |ak|)– α
2

)∥
∥
∥
∥
∥

p

Fp
α

dt �
∥
∥Tα

μ

∥
∥p

F∞
α →Fp

α
sup
k≥1

|λk|p.

Using the property of an r-lattice, we will have the estimate in other directions,

∫

Cn

( ∞∑

k=1

∣
∣
∣
∣λk

Tα
μ(kα

2,ak
)(z)

(1 + |ak|)– α
2

∣
∣
∣
∣

2
) p

2 e– p
2 |z|2

(1 + |z|)α dv(z)

�
∞∑

j=1

∫

B(aj ,r)

( ∞∑

k=1

∣
∣
∣
∣λk

Tα
μ(kα

2,ak
)(z)

(1 + |ak|)– α
2

∣
∣
∣
∣

2
) p

2 e– p
2 |z|2

(1 + |z|)α dv(z)

�
∞∑

j=1

∫

B(aj ,r)

∣
∣
∣
∣λj

Tα
μ(kα

2,aj
)(z)

(1 + |aj|)– α
2

∣
∣
∣
∣

p e– p
2 |z|2

(1 + |z|)α dv(z).

By the upper pointwise estimate in Lemma 2.1, it is easy to see that

∣
∣
∣
∣
Tα

μ(kα
2,aj

)(aj)

(1 + |aj|)– α
2

∣
∣
∣
∣

p e– p
2 |aj|2

(1 + |aj|)α �
∫

B(aj ,r)

∣
∣
∣
∣λj

Tα
μ(kα

2,aj
)(z)

(1 + |aj|)– α
2

∣
∣
∣
∣

p e– p
2 |z|2

(1 + |z|)α dv(z).
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The above analysis implies that

∫

Cn

( ∞∑

k=1

∣
∣
∣
∣λk

Tα
μ(kα

2,ak
)(z)

(1 + |ak|)– α
2

∣
∣
∣
∣

2
) p

2 e– p
2 |z|2 dv(z)

(1 + |z|)α �
∞∑

j=1

∣
∣
∣
∣λj

Tα
μ(kα

2,aj
)(aj)

(1 + |aj|)– α
2

∣
∣
∣
∣

p e– p
2 |aj|2

(1 + |aj|)α .

Using the definition of the Toeplitz operator Tα
μ , and similar calculations as in [2, Page 42],

we can have the details as follows, when α ≤ 0,

∞∑

j=1

∣
∣
∣
∣λj

Tα
μ(kα

2,aj
)(aj)

(1 + |aj|)– α
2

∣
∣
∣
∣

p e– p
2 |aj|2

(1 + |aj|)α

�
∞∑

j=1

|λj|p
(1 + |aj|)α–pα

(∫

B(aj ,r)

∣
∣kα

2,aj
(w)

∣
∣2e–|w|2 dμ(w)

|w|α
)p

�
∞∑

j=1

|λj|p
(1 + |aj|)α–pα

(∫

B(aj ,r)

|w|–α

(1 + |aj|)–α
dμ(w)

)p

�
∞∑

j=1

|λj|p μ(B(aj, r))p

(1 + |aj|)α–pα
.

In the case α > 0, because maxz∈Cn{1, |z|α} � (1 + |z|)α for any z ∈Cn,

∞∑

j=1

∣
∣
∣
∣λj

Tα
μ(kα

2,aj
)(aj)

(1 + |aj|)– α
2

∣
∣
∣
∣

p e– p
2 |aj|2

(1 + |aj|)α

�
∞∑

j=1

|λj|p
(1 + |aj|)α–pα

(∫

B(aj ,r)

∣
∣(kα

2,aj

)–
α
2

(w)
∣
∣2e–|w|2 dμ(w)

+
∫

B(aj ,r)

∣
∣(kα

2,aj

)+
α
2

(w)
∣
∣2e–|w|2 dμ(w)

|w|α
)p

�
∞∑

j=1

|λj|p
(1 + |aj|)α–pα

(∫

B(aj ,r)

∣
∣kα

2,aj
(w)

∣
∣2e–|w|2 dμ(w)

(1 + |w|)α
)p

�
∞∑

j=1

|λj|p
(1 + |aj|)α–pα

(∫

B(aj ,r)

(1 + |aj|)α
(1 + |w|)α dμ(w)

)p

�
∞∑

j=1

|λj|p μ(B(aj, r))p

(1 + |aj|)α–pα
.

If we set βj = |λj|p, we then know that {βj}∞j=1 ∈ l∞. Thus, we further have

∞∑

j=1

βj
μ(B(aj, r))p

(1 + |aj|)α–pα
�
∥
∥Tα

μ

∥
∥p

F∞
α →Fp

α
sup
k≥1

|λk|p.

This implies that

∥
∥
∥
∥

{
μ(B(aj, r))

(1 + |aj|)
α
p –α

}

j≥1

∥
∥
∥
∥

lp
�
∥
∥Tα

μ

∥
∥

F∞
α →Fp

α
.
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In order to finish the proof, we only need to prove (4) ⇒ (2) when α > 0. The basic
inequality (a+b)p ≤ 2p–1(ap +bp) when p > 1, (a+b)p ≤ ap +bp when 0 < p ≤ 1 for arbitrary
positive numbers a, b tells us that, for any f ∈ F∞

α ,

∫

Cn

∣
∣Tα

μ f (z)
∣
∣pe– p

2 |z|2 dv(z)
(1 + |z|)α

�
∫

Cn

(∫

Cn

∣
∣f –

α
2

(w)
∣
∣
∣
∣
(
Kα

z
)–

α
2

(w)
∣
∣e–|w|2 e– 1

2 |z|2 dμ(w)
)p dv(z)

(1 + |z|)α

+
∫

Cn

(∫

Cn

∣
∣f +

α
2

(w)
∣
∣
∣
∣(Kα

z
)+

α
2

(w)
∣
∣e–|w|2 e– 1

2 |z|2 dμ(w)
|w|α

)p

︸ ︷︷ ︸
III

dv(z)
(1 + |z|)α . (18)

Now, we pay attention to the integral I(18), because the first will be discussed in a similar
way. For some suitable r0 > 0, we use that basic inequality again to divide the integral III
into

III �
(∫

|w|≥r0

∣
∣
(
Kα

z
)+

α
2

(w)
∣
∣
∣
∣f +

α
2

(w)
∣
∣e–|w|2 e– 1

2 |z|2 dμ(w)
|w|α

)p

(19)

+
(∫

|w|<r0

∣
∣
(
Kα

z
)+

α
2

(w)
∣
∣
∣
∣f +

α
2

(w)
∣
∣e–|w|2 e– 1

2 |z|2 dμ(w)
|w|α

)p

. (20)

After we put the integrals I(19) and I(20) into the integral I(18), we find that

I(18) �
∫

Cn

(∫

|w|≥r0

∣
∣f +

α
2

(w)
∣
∣
|(Kα

z )+
α
2

(w)|
e|w|2 e 1

2 |z|2
dμ(w)
|w|α

)p dv(z)
(1 + |z|)α (21)

+
∫

Cn

(∫

|w|<r0

∣
∣f +

α
2

(w)
∣
∣
|(Kα

z )+
α
2

(w)|
e|w|2 e 1

2 |z|2
dμ(w)
|w|α

)p dv(z)
(1 + |z|)α . (22)

If choosing an r-lattice {ak}k≥1, we can see that, when 0 < p ≤ 1,

I(19) �
[ ∑

k:|ak |≥r0+r

∫

B(ak ,r)

∣
∣
(
Kα

z
)+

α
2

(w)
∣
∣
∣
∣f +

α
2

(w)
∣
∣e– 1

2 |z|2 e–|w|2μ̂δ(w)
(1 + |w|)α dv(w)

]p

�
∑

k:|ak |≥r0+r

sup
w∈B(ak ,r)

∣
∣(Kα

z
)+

α
2

(w)
∣
∣p
∣
∣f +

α
2

(w)
∣
∣pe– p

2 |z|2 e–p|w|2 μ̂
p
δ (w)

(1 + |w|)pα

� ‖f ‖p
F∞
α

∑

k:|ak |≥r0+r

μ̂
p
δ (ak)

(1 + |ak|)–α
sup

w∈B(ak ,r)

∣
∣(Kα

z
)+

α
2

(w)
∣
∣p e– p

2 |z|2 e– p
2 |w|2

(1 + |w|)α

� ‖f ‖p
F∞
α

∑

k:|ak |≥r0+r

μ̂
p
δ (ak)

(1 + |ak|)–α

∫

B(ak ,r)

|(Kα
z )+

α
2

(w)|p
e

p
2 |z|2 e

p
2 |w|2

dv(w)
(1 + |w|)α

� ‖f ‖p
F∞
α

∫

Cn
e– p

2 |z|2 ∣∣(Kα
z
)+

α
2

(w)
∣
∣pe– p

2 |w|2μ̂p
δ (w) dv(w).
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Next, Fubini’s theorem and the estimate (9) show us, in detail, that

I(21) � ‖f ‖p
F∞
α

∫

Cn

(∫

Cn
e– p

2 |z|2 ∣∣(Kα
z
)+

α
2

(w)
∣
∣pe– p

2 |w|2μ̂p
δ (w) dv(w)

)
dv(z)

(1 + |z|)α

� ‖f ‖p
F∞
α

∫

Cn

(∫

Cn
e– p

2 |z|2 ∣∣(Kα
w
)+

α
2

(z)
∣
∣pe– p

2 |w|2 dv(z)
(1 + |z|)α

)

μ̂
p
δ (w) dv(w)

� ‖f ‖p
F∞
α

∫

Cn

μ̂
p
δ (w)

(1 + |w|)α–pα
dv(w).

Combining [2, Lemma 2.3], the estimate (9), and Hölder’s inequality, we continue to esti-
mate the case p > 1 as follows,

I(19) �
(∫

|w|≥r0

∣
∣f +

α
2

(w)
∣
∣p
∣
∣
(
Kα

z
)+

α
2

(w)
∣
∣e– p+1

2 |w|2 e– 1
2 |z|2μ̂p

δ (w)
dv(w)

(1 + |w|)α
)

×
(∫

Cn

∣
∣
(
Kα

z
)+

α
2

(w)
∣
∣e– 1

2 |w|2 e– 1
2 |z|2 dv(w)

(1 + |w|)α
)p–1

�
∫

|w|≥r0

|f +
α
2

(w)|pe– p
2 |w|2

(1 + |w|)pα

∣
∣(Kα

z
)+

α
2

(w)
∣
∣e– 1

2 |w|2 e– 1
2 |z|2 μ̂

p
δ (w) dv(w)

(1 + |w|)α–pα

� ‖f ‖p
F∞
α

∫

Cn
e– 1

2 |z|2 ∣∣(Kα
z
)+

α
2

(w)
∣
∣e– 1

2 |w|2 μ̂
p
δ (w)

(1 + |w|)α–pα
dv(w).

Again, Fubini’s theorem and the estimate (9) show us, in detail, that

I(21) � ‖f ‖p
F∞
α

∫

Cn

(∫

Cn

|(Kα
z )+

α
2

(w)|
e 1

2 |z|2 e 1
2 |w|2

μ̂
p
δ (w) dv(w)

(1 + |w|)α–pα

)
dv(z)

(1 + |z|)α

� ‖f ‖p
F∞
α

∫

Cn

(∫

Cn

|(Kα
z )+

α
2

(w)|
e 1

2 |z|2 e 1
2 |w|2

dv(z)
(1 + |z|)α

)
μ̂

p
δ (w)

(1 + |w|)α–pα
dv(w)

� ‖f ‖p
F∞
α

∫

Cn

μ̂
p
δ (w)

(1 + |w|)α–pα
dv(w).

Then, the integral I(20) comes into that, after we use the estimate (4) twice,

I(20) �
[∫

|w|<r0

|(Kα
z )+

α
2

(w)|
e 1

2 |z|2 e 1
2 |w|2

(

sup
|w|<2r0

|f (w)|e– 1
2 |w|2

(1 + |w|)α
)

dμ(w)
|w| α

2

]p

� ‖f ‖p
F∞
α

μp(B(0, r0)
)

sup
|w|<2r0

∣
∣Kα

z (w)
∣
∣p e– p

2 |z|2 e– p
2 |w|2

(1 + |w|)pα

� ‖f ‖p
F∞
α

μp(B(0, r0))
(1 + |w|)–α

sup
|w|<2r0

∣
∣(Kα

z
)+

α
2

(w)
∣
∣p e– p

2 |z|2 e– p
2 |w|2

(1 + |w|)α

� ‖f ‖p
F∞
α

∫

Cn
e– p

2 |z|2 ∣∣(Kα
z
)+

α
2

(w)
∣
∣pe– p

2 |w|2μ̂p
δ (w) dv(w).

We can estimate the integral I(22) successfully using Fubini’s theorem like the integral I(21).
All in all, the analysis above tells us that ‖Tα

μ‖F∞
α →Fp

α
� ‖(1 + | · |)α– α

p μ̂δ‖Lp . Finally, taking
μR as in Lemma 3.1, then we have μ – μR ≥ 0 and, moreover,

∥
∥Tα

μ – Tα
μR

∥
∥

F∞
α →Fp

α
�
∥
∥(1 + | · |)α– α

p ̂(μ – μR)δ
∥
∥

Lp → 0,
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when R → ∞. Lemma 3.1 shows us that TμR is compact from F∞
α to Fp

α , and so is Tμ. The
condition (2) holds. �

The following theorem about the infinity case is not merged into Theorem 3.2, and the
reasons for this can be found in the Introduction section. However, its proof is similar to
that in Theorem 3.2. We can, however, give the details for completeness.

Theorem 3.4 Let μ ≥ 0. Then,
(1) Tα

μ : F∞
α → F∞

α is bounded if and only if μ is a 1-Fock–Carleson measure.
Furthermore,

∥
∥Tα

μ

∥
∥

F∞
α →F∞

α
� ‖μ‖1.

(2) Tα
μ : F∞

α → F∞
α is compact if and only if μ is a vanishing 1-Fock–Carleson measure.

Proof (1) Suppose μ is a 1-Fock–Carleson measure. It suffices to discuss

sup
z∈Cn

e– 1
2 |z|2

(1 + |z|)α
∫

Cn

∣
∣
(
Kα

z
)+

α
2

(w)
∣
∣
∣
∣f +

α
2

(w)
∣
∣e–|w|2

|w|α dμ(w)
︸ ︷︷ ︸

IV

� ‖f ‖F∞
α

‖μ̂δ‖L∞ ,

when α > 0, for any f ∈ F∞
α . Therefore, fix a small enough r0 > 0, and we will divide the

integral IV into two cases.

IV =
e– 1

2 |z|2

(1 + |z|)α
∫

|w|≥r0

∣
∣(Kα

z
)+

α
2

(w)
∣
∣
∣
∣f +

α
2

(w)
∣
∣e–|w|2

|w|α dμ(w) (23)

+
e– 1

2 |z|2

(1 + |z|)α
∫

|w|<r0

∣
∣(Kα

z
)+

α
2

(w)
∣
∣
∣
∣f +

α
2

(w)
∣
∣e–|w|2

|w|α dμ(w). (24)

First, by [2, Lemma 2.3] and the estimate (9), the integral I(23) is estimated by

I(23) � e– 1
2 |z|2

(1 + |z|)α
∫

|w|≥r0

∣
∣(Kα

z
)+

α
2

(w)
∣
∣
|f +

α
2

(w)|e– 1
2 |w|2

(1 + |w|)α e– 1
2 |w|2μ̂δ(w) dv(w)

� ‖f ‖F∞
α

‖μ̂δ‖L∞
∑

k:|ak |>r+r0

sup
w∈B(ak ,r)

∣
∣(Kα

z
)+

α
2

(w)
∣
∣e– 1

2 |w|2 e– 1
2 |z|2

(1 + |z|)α

� ‖f ‖F∞
α

‖μ̂δ‖L∞ sup
w∈Cn

∫

Cn
e– 1

2 |z|2 ∣∣Kα
w (z)

∣
∣e– 1

2 |w|2 dv(z)
(1 + |z|)α .

Using a similar way as in the estimate I(8), the integral I(24) is estimated by

I(24) � ‖μ̂δ‖L∞
(

e– 1
2 |z|2

(1 + |z|)α
∑

k> α
2

k α
2

k!
|z|k

)(

sup
|w|≤2r0

|f (w)|e– 1
2 |w|2

(1 + |w|)α
)

� ‖μ̂δ‖L∞
|z|e|z|e– 1

2 |z|2

(1 + |z|)–|α|

(

sup
|w|≤2r0

|fk(w)|e– 1
2 |w|2

(1 + |w|)α
)

.

Therefore, our desired goal is obtained.
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On the other hand, we assume that Tα
μ : F∞

α → F∞
α is bounded. Similar to the proof in

[2, Theorem 3.3], we can calculate that, by the definitions of a Toeplitz operator and the
Berezin transform, that

∣
∣μ̃α

2 (z)
∣
∣ �

(
1 + |z|)–α

∣
∣
∣
∣T

α
μ

( kα
2,z

(1 + |z|)– α
2

)

(z)
∣
∣
∣
∣e

– 1
2 |z|2

�
∥
∥Tα

μ

∥
∥

F∞
α →F∞

α

∥
∥
∥
∥

kα
2,z

(1 + |z|)– α
2

∥
∥
∥
∥

F∞
α

. (25)

Together with Theorem 2.2, μ is a 1-Fock–Carleson measure. Furthermore,

‖μ‖1 � sup
z∈Cn

∣
∣μ̃2(z)

∣
∣�

∥
∥Tα

μ

∥
∥

F∞
α →F∞

α
.

(2) Suppose that μ is a vanishing 1-Fock–Carleson measure. By Theorem 2.3,

μ̂δ(z) → 0, as |z| → ∞.

As Tα
μR

is compact from F∞
α to F∞

α by Lemma 3.1, if we note that μ – μR ≥ 0, Tα
μ–μR

is also
bounded from F∞

α to F∞
α . For r > 0,

lim
R→∞ sup

z∈Cn
̂(μ – μR)r(z) = 0.

Therefore, the condition (1) tells us that, when R → ∞,

∥
∥Tα

μ – Tα
μR

∥
∥

F∞
ϕ →F∞

ϕ
=
∥
∥Tα

μ–μR

∥
∥

F∞
ϕ →F∞

ϕ
� sup

z∈Cn
̂(μ – μR)r(z) → 0.

Hence, we can see that Tα
μ : F∞

α → F∞
α is compact.

On the other hand, we know that μ̂δ(z) is bounded for δ > 0. Obviously, { kα
2,z

(1+|z|)– α
2

: z ∈C
n}

is bounded in F∞
α . Therefore, {Tα

μ( kα
2,z

(1+|z|)– α
2

) : z ∈C
n} is relatively compact in F∞

α . Next, our
goal will be to obtain that, as in Theorem 3.2,

lim
j→∞ Tα

μ

( kα
2,zj

(1 + |zj|)– α
2

)

(w) = 0,

for any w ∈ C
n. By the definition of a Topelitz operator, we will omit the details about the

case α ≤ 0 and the other comes into play,

Tα
μ

( kα
2,zj

(1 + |zj|)– α
2

)

(w)
e– 1

2 |w|2

(1 + |w|)α

� e– 1
2 |w|2

(1 + |w|)α
∫

Cn

∣
∣
(
Kα

w
)–

α
2

(ξ )
∣
∣
|(kα

2,zj
)–

α
2

(ξ )|
(1 + |zj|)– α

2
e–|ξ |2 dμ(ξ )

+
e– 1

2 |w|2

(1 + |w|)α
∫

Cn

∣
∣(Kα

w
)+

α
2

(ξ )
∣
∣
|(kα

2,zj
)+

α
2

(ξ )|
(1 + |zj|)– α

2

e–|ξ |2

|ξ |α dμ(ξ ). (26)
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Now, we pay attention to the integral I(26) and we divide it into two integrals for suitable
0 < r0 < R < ∞,

I(26) =
e– 1

2 |w|2

(1 + |w|)α
∫

|ξ |>R

∣
∣(Kα

w
)+

α
2

(ξ )
∣
∣
|(kα

2,zj
)+

α
2

(ξ )|
(1 + |zj|)– α

2

e–|ξ |2

|ξ |α dμ(ξ ) (27)

+
e– 1

2 |w|2

(1 + |w|)α
∫

r0|≤ξ |≤R

∣
∣
(
Kα

w
)+

α
2

(ξ )
∣
∣
|(kα

2,zj
)+

α
2

(ξ )|
(1 + |zj|)– α

2

e–|ξ |2

|ξ |α dμ(ξ )

+
e– 1

2 |w|2

(1 + |w|)α
∫

|ξ |<r0

∣
∣(Kα

w
)+

α
2

(ξ )
∣
∣
|(kα

2,zj
)+

α
2

(ξ )|
(1 + |zj|)– α

2

e–|ξ |2

|ξ |α dμ(ξ ). (28)

In view of [4, Proposition 3.2], the integral I(27) is estimated by

I(27) � e– 1
2 |w|2

(1 + |w|)α
∫

|ξ |>R

∣
∣(Kα

w
)+

α
2

(ξ )
∣
∣
|(kα

2,zj
)+

α
2

(ξ )|
(1 + |zj|)– α

2

e–|ξ |2μ̂δ(ξ )
(1 + |ξ |)α dv(ξ )

� ‖μ̂δ‖L∞
e– 1

2 |w|2

(1 + |w|)α
∫

|ξ |>R

∣
∣(Kα

w
)+

α
2

(ξ )
∣
∣
∣
∣(Kα

zj

)+
α
2

(ξ )
∣
∣e–|ξ |2 e– 1

2 |zj|2 dv(ξ )
(1 + |ξ |)α

� ‖μ̂δ‖L∞
(

sup
|ξ |>R

∫

Cn
e– 1

2 |w|2 ∣∣(Kα
ξ

)+
α
2

(w)
∣
∣e– 1

2 |ξ |2 dv(w)
(1 + |w|)α

)

×
∑

k:|ak |>R+r

∫

B(ak ,r)
e– 1

2 |zj|2 ∣∣(Kα
zj

)+
α
2

(ξ )
∣
∣e– 1

2 |ξ |2 dv(ξ )
(1 + |ξ |)α

� ‖μ̂δ‖L∞
∫

|ξ |>R
e– 1

2 |zj|2 ∣∣(Kα
zj

)+
α
2

(ξ )
∣
∣e– 1

2 |ξ |2 dv(ξ )
(1 + |ξ |)α .

This implies the integral I(27) will tend to zero as R → ∞. Since
|(kα

2,zj
)+
α
2

(ξ )|

(1+|zj|)– α
2

→ 0 uniformly

on a compact subset of Cn when |zj| → ∞, it is easy to see that

lim|zj|→∞

∫

r0≤|ξ |≤R

∣
∣(Kα

w
)+

α
2

(ξ )
∣
∣
|(kα

2,zj
)+

α
2

(ξ )|
(1 + |zj|)– α

2

e–|ξ |2

|ξ |α dμ(ξ ) = 0.

Next, the integral I(28) will be estimated by, in view of estimate (5),

I(28) � e– 1
2 |w|2

(1 + |w|)α
∫

|ξ |<r0

|(Kα
w )+

α
2

(ξ )|
|ξ | α

2 e 1
2 |ξ |2

‖kα
2,zj

‖F∞
α

(1 + |zj|)– α
2

dμ(ξ )

� e– 1
2 |w|2

(1 + |w|)α
∫

|ξ |<r0

(∣∣(Kα
w
)+

α
2

(ξ )
∣
∣|ξ |– α

2
)
e– 1

2 |ξ |2 dμ(ξ )

� ‖μ̂δ‖L∞
∑

k> α
2

k α
2

k!
|w|k e– 1

2 |w|2

(1 + |w|)α .

This implies the integral I(28) tends to zero if r0 goes to zero simultaneously. Thus, our
aims have been achieved. This, together with the estimate (25), yields that

∣
∣μ̃α

2 (z)
∣
∣�

∥
∥Tα

μ

∥
∥

F∞
α →F∞

α

∥
∥
∥
∥

kα
2,zj

(1 + |z|)– α
2

∥
∥
∥
∥

F∞
α

→ 0, |zj| → ∞.

Hence, we can conclude that μ is a vanishing 1-Fock–Carleson measure. �
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