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Abstract
In this paper, we propose a first second-order scheme based on arbitrary non-Euclidean
norms, incorporated byBregman distances. They are introduced directly in theNewton
iterate with regularization parameter proportional to the square root of the norm of the
current gradient. For the basic scheme, as applied to the composite convex optimization
problem, we establish the global convergence rate of the order O(k−2) both in terms
of the functional residual and in the norm of subgradients. Our main assumption on
the smooth part of the objective is Lipschitz continuity of its Hessian. For uniformly
convex functions of degree three, we justify global linear rate, and for strongly convex
function we prove the local superlinear rate of convergence. Our approach can be seen
as a relaxation of theCubicRegularization of theNewtonmethod (Nesterov andPolyak
in Math Program 108(1):177–205, 2006) for convex minimization problems. This
relaxation preserves the convergence properties and global complexities of the Cubic
Newton in convex case, while the auxiliary subproblem at each iteration is simpler.
We equip our method with adaptive search procedure for choosing the regularization
parameter. We propose also an accelerated scheme with convergence rate O(k−3),
where k is the iteration counter.

Keywords Newton method · Regularization · Convex optimization · Global
complexity bounds · Large-scale optimization

This paper has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation program (grant agreement No 788368). It was also supported by
Multidisciplinary Institute in Artificial intelligence MIAI@Grenoble Alpes (ANR-19-P3IA-0003).

B Nikita Doikov
Nikita.Doikov@uclouvain.be

Yurii Nesterov
Yurii.Nesterov@uclouvain.be

1 Institute of Information and Communication Technologies, Electronics and Applied Mathematics
(ICTEAM), Catholic University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium

2 Center for Operations Research and Econometrics (CORE), Catholic University of Louvain
(UCLouvain), Louvain-la-Neuve, Belgium

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-023-01943-7&domain=pdf
http://orcid.org/0000-0003-1141-1625
http://orcid.org/0000-0002-0542-8757


N. Doikov, Y. Nesterov

Mathematics Subject Classification 49M15 · 49M37 · 58C15 · 90C25 · 90C30

1 Introduction

The classical Newton’s method is a powerful tool for solving various optimization
problems and for dealing with ill-conditioning. The practical implementation of this
method for solving unconstrained minimization problem minx f (x) can be written as
follows:

xk+1 = xk − αk
(∇2 f (xk)

)−1∇ f (xk), k ≥ 0,

where 0 < αk ≤ 1 is a damping parameter. However, this approach has two serious
drawbacks. Firstly, the next point is not well-defined when the Hessian is a degenerate
matrix. And secondly, while the method has a very fast local quadratic convergence, it
is difficult to establish any global properties for this process. Indeed, for αk = 1 (the
classical pure Newton method), there are known examples of problems for which the
method does not converge globally [5]. The pure Newton step might not work even
if the objective is strongly convex (see, e.g., Example 1.4.3 in [6]). For the damped
Newtonmethod with line search, it is possible to prove some global convergence rates.
But, typically, they are worse than the rates of the classical Gradient Method [18].

A breakthrough in the second-order optimization theory wasmade after [19], where
the Cubic Regularization of the Newton method was presented together with its global
convergence properties. The main standard assumption is that the Hessian of the
objective is Lipschitz continuous with some parameter L2 ≥ 0:

‖∇2 f (x) − ∇2 f (y)‖ ≤ L2‖x − y‖, ∀x, y,

ensuring the global upper approximation of our function formed by the second-order
Taylor polynomial augmented by the third power of the norm. The next point is then
defined as the minimum of the upper model:

xk+1 = argmin
y

[
〈∇ f (xk), y − xk〉 + 1

2
〈∇2 f (xk)(y − xk), y − xk〉

+ L2

6
‖y − xk‖3

]
. (1)

Initially, this idea had a full theoretical justification only for the Euclidean norm ‖ · ‖.
In this case, the solution to the auxiliary minimization problem (1) does not have a
closed form expression, but it can be found by solving a one-dimensional nonlinear
equation and by using the standard factorization tools of Linear Algebra. The use of
general and even variable norms with cubic regularization in second-order methods
was considered recently in [11, 15], which can be useful for solving optimization
problems with non-Euclidean geometry.

However, even in the Euclidean case, the presence of the cubic term in the objective
makes it more difficult to use the classical gradient-type methods with their developed
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complexity theory. While it is possible to apply the gradient descent [2], the cubic
subproblem prevents the usage of the standard accelerated and conjugate gradients
methods. This drawback restricts the application ofmethod (1) to large-scale problems.

In this paper, we show how to avoid these restrictions. Namely, we will show that it
is possible to use a quadratic regularization of the Taylor polynomial with a properly
chosen coefficient that depends only on the current iterate. In the simplest form, one
iteration of our method is as follows:

xk+1 = xk − (∇2 f (xk) + Ak I
)−1∇ f (xk), (2)

where

Ak =
√

L2

3
‖∇ f (xk)‖. (3)

We see that it is very easy for implementation, since it requires only onematrix inver-
sion, the very standard operation of Linear Algebra. At the same time, this subproblem
is now suitable for the classical Congugate Gradient method as well.1

For the class of Trust Region methods as applied to unconstrained minimization
problems, the trust region radius proportional to the gradient normwas proposed in [9].
The use of the gradient norm as a regularizer for the Newton method was considered
in the work [20]. Then, the method has a local quadratic convergence. However, to
ensure some global rate for such regularization, one need to use damping steps, which
makes the rate slower.

It appears that for the optimization process (2), (3), we can establish the global
convergence guarantees of the same type as for the Cubic Newtonmethod (1). Namely,
we prove the global rate of the order O(1/k2) in terms of the functional residual and
in terms of the subgradient norm for the general convex functions. This is much faster
than the standard O(1/k)-rate of the Gradient Method. Moreover, for the uniformly
convex functions of degree three, we prove the global linear rate. For the strongly
convex functions we establish a local superlinear convergence.

In this paper, we consider convex optimization problems in a general composite
form. Recently, globally convergent Newton methods for nonsmooth optimization
were proposed in [13]. They are based on the damping steps and regularization by the
gradient norm, which is different from the rule (3).

We also work with arbitrary (possibly non-Euclidean) norms by employing the
technique of Bregman distances. An alternative approach of using general norms in
the cubically regularized Newton scheme was proposed in [11], that uses the adaptive
regularization framework of [3].

Contents. The rest of the paper is organized as follows. In Sect. 2, we present the main
properties of one iteration of the scheme.

1 When this paper was already finished, we discovered that this idea was recently proposed by K.
Mishchenko [16] for solving unconstrained minimization problem with smooth objective. As compared
to his work, our main advances consist in the usage of Bregman distances, composite form of optimiza-
tion problem, linear rate of convergence for uniformly convex functions, and developments of accelerated
variant of the method.
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We study the convergence rate of the basic process in Sect. 3. In Sect. 4, we establish
convergence for the norm of the gradient. An adaptive search procedure for ourmethod
is discussed in Sect. 5.

In Sect. 6, we consider an accelerated scheme based on the iterations of the basic
method and justify its global complexity of the order Õ(ε−1/3) assuming Lipschitz
continuity of the Hessian of the smooth part of the objective function. Section7
contains numerical experiments. Some concluding remarks are in Sect. 8.

Notation. Let us fix a finite-dimensional real vector space E. Our goal is to solve the
following Composite Minimization Problem

F∗ = min
x∈domψ

[
F(x)

def= f (x) + ψ(x)
]
, (4)

where ψ(·) is a simple closed convex function with domψ ⊆ E, and f (·) is a convex
and two times continuously differentiable function.

We measure distances in E by a general norm ‖ · ‖. Its dual space is denoted by E∗.
It is a space of all linear functions on E, for which we define the norm in the standard
way:

‖g‖∗ = max
x∈E { 〈g, x〉 : ‖x‖ ≤ 1 }, g ∈ E

∗.

Using this norm, we can define an induced norm for a self-adjoint linear operator
B : E → E

∗ as follows:

‖B‖ = max
x∈E {|〈Bx, x〉| : ‖x‖ ≤ 1}.

We can also define the bounds of its spectrum as the best values λmin(B) and λmax(B)

satisfying conditions

λmin(B)‖x‖2 ≤ 〈Bx, x〉 ≤ λmax(B)‖x‖2, ∀x ∈ E.

Our optimization schemes will be based on some scaling function d(·), which we
assume to be a strongly convex function with Lipschitz-continuous gradients:

d(y) ≥ d(x) + 〈∇d(x), y − x〉 + σ

2
‖y − x‖2, (5)

‖∇d(x) − ∇d(y)‖∗ ≤ ‖x − y‖, (6)

where σ ∈ (0, 1] and the points x, y ∈ domψ are arbitrary. For twice-differentiable
scaling functions, this condition can be characterized by the following bounds on the
Hessian:

σ‖h‖2 ≤ 〈∇2d(x)h, h〉 ≤ ‖h‖2, ∀x ∈ domψ, h ∈ E.

Using this function, we define the following Bregman distance:
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ρ(x, y) = βd(x, y)
def= d(y) − d(x) − 〈∇d(x), y − x〉, x, y ∈ domψ.

(7)

We will employ this object to regularize the second-order model of the objective.
The standard condition for the smooth part of the objective function in problem (4)

is Lipschitz continuity of the Hessians:

‖∇2 f (x) − ∇2 f (y)‖ ≤ L2‖x − y‖, ∀x, y ∈ domψ, (8)

that we always assume to be satisfied. This inequality has the following consequences,
which are valid for all x, y ∈ domψ :

‖∇ f (y) − ∇ f (x) − ∇2 f (x)(y − x)‖∗ ≤ 1

2
L2‖y − x‖2, (9)

and

| f (y) − f (x) − 〈∇ f (x), y − x〉 + 1

2
〈∇2 f (x)(y − x), y − x〉|

≤ 1

6
L2‖y − x‖3. (10)

2 Gradient regularization

Our main iteration at some point x̄ ∈ domψ with a step-size A > 0 is defined as
follows:

TA(x̄)
def= argmin

y∈domψ

[
MA(x̄, y)

def= f (x̄) + 〈∇ f (x̄), y − x̄〉

+1

2
〈∇2 f (x̄)(y − x̄), y − x̄〉 + Aρ(x̄, y) + ψ(y)

]
. (11)

This is minimization of a convex quadratic function augmented by Bregman distance
and the composite part. Our main structural assumption is that both ρ(x̄, ·) and ψ(·)
are simple, meaning that problem (11) is efficiently solvable.

The use of the general scaling function d(·) can be beneficial in practice for solving
problems with some specific non-Euclidean geometry.

Example 1 Let ψ(x) ≡ 0 and the scaling function is d(x) := 1
2 〈Bx, x〉 for a fixed

positive definite self-adjoint operator B = B∗ � 0. Then,

ρ(x̄, y) = 1

2
〈B(y − x̄), y − x̄〉,

and one iteration (11) can be written in an explicit form, as follows:

TA(x̄) = x̄ − (∇2 f (x̄) + AB
)−1∇ f (x̄).
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Example 2 Consider the unconstrained minimization problem minx∈Rn f (x), with

f (x) = g(Cx), C ∈ R
m×n,

where g : Rm → R is a convex smooth function. Let us fix the standard Euclidean
norm ‖ · ‖2 in Rm and assume that the Hessian of g is Lipschitz continuous w.r.t. this
norm with constant Lg . Then, if we use the standard Euclidean norm ‖ · ‖2 for our
primal space Rn , the corresponding Lipschitz constant of ∇2 f (·) is

L f = ‖C‖3Lg.

At the same time, using the following scaled norm ‖x‖ := 〈Bx, x〉1/2, x ∈ R
n with

matrix B = CTC (assuming B � 0, so the rows of C have a full rank) and the scaling
function from the previous example, we have

L f = Lg,

which is much better.

Example 3 Let ψ(·) be {0,+∞}-indicator of the standard simplex

Δn
def=

{

x ∈ R
n+ :

n∑

i=1

x (i) = 1

}

.

Thus, problem (4) is to minimize a smooth convex function over this set:

min
x∈Δn

f (x).

One of the most suitable choices of the norm for this problem is 
1-norm [1], defined

as ‖x‖1 def= ∑n
i=1 |x (i)| for x ∈ R

n . The Lipschitz constant w.r.t. this norm is smaller
than that one measured in 
2-norm. Let us fix some δ > 0, and use the following
scaling function,

d(x) := δ

n∑

i=1

(x (i) + δ) ln(x (i) + δ).

We have, for any h ∈ R
n and x ∈ Δn :

〈∇2d(x)h, h〉 = δ

n∑

i=1

(h(i))2

x (i) + δ
≤ ‖h‖22 ≤ ‖h‖21.

And, by Cauchy-Schwarz inequality, it holds
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‖h‖1 =
n∑

i=1

|h(i)|√x (i) + δ√
x (i) + δ

≤
( n∑

i=1

(h(i))2

x (i) + δ

)1/2(
1 + nδ

)1/2
.

Hence,

〈∇2d(x)h, h〉 ≥ δ

1 + nδ
‖h‖21.

and conditions (5), (6) are satisfied with σ = δ
1+nδ

= 1
1/δ+n .

In general, the solution to this problem T = TA(x̄) is characterized by the following
variational principle (see, e.g. [18]):

〈∇ f (x̄) + ∇2 f (x̄)(T − x̄) + A(∇d(T ) − ∇d(x̄)), y − T 〉
+ ψ(y) ≥ ψ(T ), ∀y ∈ domψ. (12)

Thus, defining ψ ′(T ) = −∇ f (x̄) − ∇2 f (x̄)(T − x̄) − A(∇d(T ) − ∇d(x̄)), we see
that ψ ′(T ) ∈ ∂ψ(T ). Consequently,

F ′(T ) = ∇ f (T ) + ψ ′(T )

= ∇ f (T ) − ∇ f (x̄) − ∇2 f (x̄)(T − x̄)

−A(∇d(T ) − ∇d(x̄)) ∈ ∂F(T ). (13)

Note that this is a very special way of selecting subgradient of a possibly nonsmooth
function F(·), which allows ‖F ′(T )‖∗ approach zero.

Denote MA(x̄) = MA(x̄, TA(x̄)) ≤ MA(x̄, x̄) = F(x̄). Let us prove the following
important fact, that uses convexity of the original problem (4).

Lemma 1 For all y ∈ domψ and T = TA(x̄), we have

MA(x̄, y) ≥ MA(x̄) + 1

2
〈∇2 f (x̄)(y − T ), y − T 〉 + 1

2
σ A‖y − T ‖2. (14)

Moreover,

‖TA(x̄) − x̄‖ ≤ 1

σ A
‖F ′(x̄)‖∗, (15)

where F ′(x̄) = ∇ f (x̄) + ψ ′(x̄) and ψ ′(x̄) is an arbitrary element of ∂ψ(x̄).

Proof For optimization problem in (11), define the scaling function

ξ(x) = 1

2
〈∇2 f (x̄)x, x〉 + Ad(x).
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Note that the objective function in this problem is strongly convex relatively to ξ(·)
with constant one. Therefore, for any y ∈ domψ ,

MA(x̄, y) − MA(x̄) ≥ βξ (T , y) = 1

2
〈∇2 f (x̄)(y − T ), y − T 〉 + Aβd(T , y)

(5)≥ 1

2
〈∇2 f (x̄)(y − T ), y − T 〉 + 1

2
σ A‖y − T ‖2.

In order to prove (15), note that

MA(x̄) ≥ F(x̄) + min
y∈domψ

[
〈F ′(x̄), y − x̄〉 + 1

2
σ A‖y − x̄‖2

]

≥ F(x̄) + min
y∈E

[
〈F ′(x̄), y − x̄〉 + 1

2
σ A‖y − x̄‖2

]

= F(x̄) − 1

2σ A
‖F ′(x̄)‖2∗.

Since MA(x̄, x̄) = F(x̄), we get (15) from (14) with y = x̄ . ��
In what follows, the parameter A in the optimization problem (11) is chosen as

A = AH (x̄) = 1

σ

√
H

3
‖F ′(x̄)‖∗, (16)

where H > 0 is an estimate of the Lipschitz constant L2 in (8). This choice is explained
by the following result.

Corollary 1 For A = AH (x̄), we have

H‖TA(x̄) − x̄‖ ≤ 3σ A. (17)

Proof Indeed, this is a simple consequence of inequality (15) and definition (11). ��
Let us relate the optimal value of the auxiliary problem (11) with the cubic over-

approximation (10).

Lemma 2 Let A = AH (x̄) and T = TA(x̄). Assume that for some H > 0 the following
condition is satisfied:

f (T ) ≤ f (x̄) + 〈∇ f (x̄), T − x̄〉
+1

2
〈∇2 f (x̄)(T − x̄), T − x̄〉 + H‖T − x̄‖3

6
(18)

(clearly, it holds for H ≥ L2, where L2 is the Lipschitz constant of the Hessian). Then

F(x̄) − F(T ) ≥ 1

2
〈∇2 f (x̄)(T − x̄), T − x̄〉 + 1

2
σ A‖T − x̄‖2. (19)
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Proof Indeed,

f (T )
(18)≤ MA(x̄) − Aρ(x̄, T ) − ψ(T ) + H

6
‖T − x̄‖3

(5)≤ MA(x̄) − ψ(T ) + H

6
‖T − x̄‖3 − 1

2
σ A‖T − x̄‖2

(17)≤ MA(x̄) − ψ(T ).

Thus, F(T ) ≤ MA(x̄) and (19) follows from (14) with y = x̄ . ��
Finally, we need to estimate the norm of subgradient at the new point.

Lemma 3 Let the Hessian be Lipschitz continuous with constant L2. Fix arbitrary
H > 0. Let A = AH (x̄) and T = TA(x̄). Then

‖F ′(T )‖∗ ≤ σ A

(
σ−1 + 3L2

2H

)
‖T − x̄‖ ≤ c‖F ′(x̄)‖∗, (20)

where

c
def= σ−1 + 3L2

2H
.

Proof Indeed,

‖F ′(T )‖∗
(13)= ‖∇ f (T ) − ∇ f (x̄)−∇2 f (x̄)(T−x̄)−A(∇d(T )−∇d(x̄))‖∗
(9)≤ 1

2
L2‖T−x̄‖2+A‖∇d(T )−∇d(x̄)‖∗

(6)≤ 1

2
L2‖T−x̄‖2+A‖T−x̄‖∗

(17)≤ A

(
1+3σ L2

2H

)
‖T−x̄‖.

This is the first inequality in (20). For the second one, we can continue as follows:

‖F ′(T )‖∗
(17)≤

(
1 + 3σ L2

2H

)
· 3σ A2

H
(17)= c‖F ′(x̄)‖∗.

��
Now we can prove the main theorem of this section.

Theorem 1 Let the Hessian be Lipschitz continuous with constant L2. Fix arbitrary
H > 0. Let A = AH (x̄) and T = TA(x̄). If for this point relation (18) is valid, then

F(x̄) − F(T ) ≥ 1

2c2

√
3

H
· ‖F ′(T )‖2∗
‖F ′(x̄)‖1/2∗

. (21)

Proof We only need to insert in (19) the first inequality of (20) and definition (16). ��
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3 Properties of theminimization process

In this section, we propose an iterative scheme based on the gradient regularization of
the Newton steps. Note that the choice of the regularization parameter (16) depends
solely on the current gradient norm and it can be easily computed at each iteration.
Then, we do one regularized Newton step defined by (11). According to Theorem 1,
repeating this process would result in monotone decrease of the objective.

First, we prove global convergence for the function value. In the next section, we
also prove the convergence in terms of the gradient norm. Thus, small gradient norm
can serve as a stopping criteria for our scheme.

Let us analyze the following algorithm with a fixed value of parameter H .

Initialization. Choose H ≥ L2, x0 ∈ domψ , and F ′
0 ∈ ∂F(x0).

kth iteration (k ≥ 0). 1). Set gk = ‖F ′
k‖∗ and Ak = 1

σ

√
H
3 gk .

2). Compute xk+1 = TAk (xk) and define

F ′
k+1 = ∇ f (xk+1) − ∇ f (xk) − ∇2 f (xk)(xk+1 − xk)

− Ak(∇d(xk+1) − ∇d(xk)).

(22)

Let us introduce the distance to the initial level set:

D = sup
x∈domψ

{‖x − x∗‖ : F(x) ≤ F(x0)},

which we assume to be bounded: D < +∞. We can prove the following convergence
rate for method (22).

Theorem 2 Let the Hessian be Lipschitz continuous with constant L2. Let H ≥ L2
and F(xk) − F∗ ≥ ε for some k ≥ 0. Then,

1

[F(xk) − F∗]1/2 ≥ 1

[F(x0) − F∗]1/2

+ 1

4c2

√
3

HD3

(

k − ln
(F(x0) − F∗)‖F ′(x0)‖1/2∗ D1/2

ε3/2

)

.

(23)

Proof Denote Fk = F(xk)− F(x∗) and gk = ‖F ′(xk)‖∗. Thus, Fk ≤ Dgk . Note that

1

F1/2
k+1

− 1

F1/2
k

= F1/2
k − F1/2

k+1

F1/2
k F1/2

k+1

= Fk − Fk+1

F1/2
k F1/2

k+1(F
1/2
k + F1/2

k+1)
≥ Fk − Fk+1

2Fk F
1/2
k+1

.

123



Gradient regularization of Newton method with Bregman…

Since for all k ≥ 1, the subgradients of ψ(·) are defined by the rule (13), we can use
the results of Sect. 2. We can continue as follows:

1

F1/2
k+1

− 1

F1/2
k

(21)≥
√
3g2k+1

4
√
Hc2g1/2k Fk F

1/2
k+1

≥
√
3g1/2k+1Fk+1

4
√
Hc2g1/2k Fk D3/2

= g1/2k+1Fk+1

4c2g1/2k Fk

√
3

HD3 .

Summing up these bounds and using the inequality of arithmetic and geometricmeans,
we get

1

F1/2
k

− 1

F1/2
0

≥ 1

4c2

√
3

HD3

k−1∑

i=0

Fi+1g
1/2
i+1

Fi g
1/2
i

≥ k

4c2

√
3

HD3

(
Fkg

1/2
k

F0g
1/2
0

)1/k

≥ k

4c2

√
3

HD3

(
ε3/2

F0g
1/2
0 D1/2

)1/k

. (24)

Since

(
ε3/2

F0g
1/2
0 D1/2

)1/k

= exp
(

− 1

k
ln

F0g
1/2
0 D1/2

ε3/2

)
≥ 1 − 1

k
ln

F0g
1/2
0 D1/2

ε3/2
,

we obtain inequality (23). ��
Corollary 2 The second condition of Theorem 2 can be valid only for

k ≤ 4c2

√
HD3

3ε
+ ln

(F(x0) − F∗)‖F ′(x0)‖1/2∗ D1/2

ε3/2
. (25)

Remark 1 Note that up to the additive logarithmic term, the iteration complexity (25)
corresponds to that one of the Cubically regularized Newton method as applied to
convex functions [19] in the Euclidean case. However, iterations of our method (22)
are easier to implement, and it is also possible to use an arbitrary scaling function d(·).
Remark 2 The right-hand side of inequality (25) can be used for defining the opti-
mal value of parameter H . Indeed, it can be chosen as a minimizer of the following
function:

2 ln(2Hσ−1 + 3L2) − 3

2
ln H .

This gives us

H∗ = 9

2
L2σ. (26)

In this case,

123



N. Doikov, Y. Nesterov

4c2

√
H∗D3

3ε
= 64

9σ

√
3L2D3

2εσ
< 8.71

√
L2D3

εσ 3 . (27)

Let us estimate now the performance ofmethod (22) on uniformly convex functions.
Consider the case when function F(·) is uniformly convex of degree three:

F(y) ≥ F(x) + 〈F ′(x), y − x〉 + σ3

3
‖y − x‖3, x, y ∈ domψ. (28)

For the composite F(·), this property can be ensured either by its smooth component
f (·), or by the general component ψ(·). In the latter case, it is not necessary to
coordinate this assumption with the smoothness condition (8).

In our analysis, we need the following straightforward consequence of definition
(28):

F(x) − F∗ ≤ 2

3
√

σ3
‖F ′(x)‖3/2∗ , x ∈ domψ. (29)

Theorem 3 Let theHessian beLipschitz continuouswith constant L2. Let F(·) satisfies
condition (28). If H ≥ L2, then for all k ≥ 0 we have

F(xk) − F∗ ≤ D‖F ′(x0)‖∗ · exp
(

− k ln(1 + S)

c1/2 + 1
2 ln(1 + S)

)

, (30)

where S = 3
√
3

4c3/2

√
σ3
H .

Proof As in the proof of Theorem 2, denote Fk = F(xk) − F∗ and gk = ‖F ′(xk)‖∗.
Then, we have

ln
1

Fk+1
− ln

1

Fk
= ln

(
1 + Fk − Fk+1

Fk+1

)
(21)≥ ln

(

1 +
√
3g2k+1

2
√
Hc2g1/2k Fk+1

)

(29)≥ ln

(

1 + 3

4c2

√
3σ3
H

· g
1/2
k+1

g1/2k

)

= ln

(
1 + S ·

√
gk+1

cgk

)
,

where S = 3
4c3/2

√
3σ3
H . Denote τk =

√
gk+1
cgk

(20)≤ 1. Since ln(·) is a concave function,
we have ln(1 + Sτk) ≥ τk ln(1 + S). Hence,

ξk
def= ln

g0D

Fk
≥ ln

F0
Fk

≥ ln(1 + S)

k−1∑

i=0

τi ≥ k

c1/2
ln(1 + S)

(
k−1∏

i=0

g1/2i+1

g1/2i

)1/k

= k

c1/2
ln(1 + S)

(
gk
g0

)1/(2k)

.
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Note that
(
gk
g0

)1/(2k) = exp
(
− 1

2k ln
g0
gk

)
≥ 1+ 1

2k ln
gk
g0

≥ 1+ 1
2k ln

Fk
g0D

= 1− 1
2k ξk .

Thus,

ξk ≥ k ln(1 + S)

c1/2 + 1
2 ln(1 + S)

,

and this is inequality (30). ��
Remark 3 in accordance to the estimate (30), the highest rate of convergence corre-
sponds to the maximal value of S. This means that we need to minimize the factor
c3/2H1/2 in H . The optimal value is given by H# = 3σ L2. In this case,

S = σ

√
σ3

6L2
> 0.4σ

√
σ3

L2
. (31)

Note that this condition number also corresponds to the global convergence of the
Cubically regularized Newton method [8].

Finally, let us prove a superlinear rate of local convergence for scheme (22).

Theorem 4 Let the Hessian be Lipschitz continuous with constant L2. Let function
f (·) be strongly convex on domψ with parameter μ > 0. If H ≥ L2, then for all
k ≥ 0 we have

‖F ′(xk+1)‖∗ ≤ 2c

μ

√
H

3
‖F ′(xk)‖3/2∗ . (32)

Proof Indeed, for any k ≥ 0 we have

μ

2
‖xk+1 − xk‖2 ≤ 1

2
〈∇2 f (xk)(xk+1 − xk), xk+1 − xk〉

(19)≤ F(xk) − F(xk+1) ≤ ‖F ′(xk)‖∗‖xk − xk+1‖.

Therefore,

‖F ′(xk+1)‖∗
(20)≤ σcAk‖xk+1 − xk‖ ≤ 2σc

μ
Ak‖F ′(xk)‖∗

(16)= 2c

μ

√
H

3
‖F ′(xk)‖3/2∗ .

��
Thus, the region of superlinear convergence of method (22) is as follows:

RQ
def=

{
x ∈ domψ : ‖F ′(x)‖∗ ≤ 3μ2

4Hc2

}
. (33)
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Note that outside this region, the constant of strong convexity of the objective function
in problem (11) with A = AH (x) satisfies the following lower bound:

σ AH (x) ≥ μ

2c
, x /∈ RQ . (34)

4 Estimating the norm of the gradient

Let us estimate the efficiency of method (22) in decreasing the norm of gradients. For
that, we are going to derive an upper bound for the number of steps N of method (22),
for which we still have

‖F ′(xk)‖∗ ≥ δ > 0, 0 ≤ k ≤ N . (35)

We will see that global complexities of our method for minimizing the gradient norm
in convex case are the same as that one of the basic Cubic Newton [10].

In this section, we use notation of Sect. 3:

Fk = F(xk) − F∗, gk = ‖F ′(xk)‖∗.

Firstly, consider the case when the smooth component f (·) in the objective function
of problem (4) satisfies condition (8). Then

Fk − Fk+1
(21)≥ κ

g2k+1

g1/2k

, κ
def= 1

2c2

√
3

H
. (36)

It is convenient to assume that the number of iteration N of the method is a multiple
of three:

N = 3m, m ≥ 1. (37)

Then for the last m iterations of the scheme we have

F2m ≥ F2m − F3m ≥ κ

m−1∑

i=0

g22m+i+1

g1/22m+i

(35)≥ κδ3/2
m−1∑

i=0

g1/22m+i+1

g1/22m+i

≥ κmδ3/2

(
g1/23m

g1/22m

)1/m
(35)≥ κmδ3/2

(
δ1/2

g1/22m

)1/m

. (38)

At the same time, for the first 2m iterations we obtain
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1

F1/2
2m

− 1

F1/2
0

(24)≥ 2m

4c2

√
3

HD3

(
F2mg

1/2
2m

F0g
1/2
0

)1/(2m)

= κmD−3/2

(
F2mg

1/2
2m

F0g
1/2
0

)1/(2m)

. (39)

Therefore,

(
1

F1/2
2m

− 1

F1/2
0

)2
(39)≥ (km)2D−3

(
F2mg

1/2
2m

F0g
1/2
0

)1/m

. (40)

Note that the power of g2m in the last term is equal to that one of 1
g2m

in (38). This
explains our choice 2m for the length of the first stage.

Hence, using both inequalities (38) and (40), we obtain the following:

1 ≥
(

1 −
√

F2m
F0

)2

=
(

1

F1/2
2m

− 1

F1/2
0

)2

· F2m ≥
(

κmδ1/2

D

)3
(
F2mδ1/2

F0g
1/2
0

)1/m

Note that g2m
(20)≤ c2mg0. Therefore,

F2m
(38)≥ κmδ3/2

(
δ1/2

cmg1/20

)1/m

,

and we obtain

1 ≥
(

κmδ1/2

D

)3
⎛

⎝ κmδ2

cF0g
1/2
0

·
(

δ1/2

g1/20

)1/m
⎞

⎠

1/m

≥
(

κmδ1/2

D

)3+ 1
m
(

δ1/2

g1/20

)(3+ 1
m ) 1

m (
c
)− 1

m
.

Thus, we can prove the following theorem.

Theorem 5 Let the Hessian be Lipschitz continuous with constant L2. Fix H ≥ L2
and some δ > 0. Then, the number of iterations of method (22) to reach small norm
of the gradient ‖F ′(xN )‖∗ ≤ δ satisfies the following bound:

N ≤ 2c2

√
3HD2

δ
+ 3

2
ln

g0
δ

+ ln c. (41)
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Proof Indeed,

1 ≥ κmδ1/2

D

( δ

g0

) 1
2m
(
c
)− 1

3m+1 = κmδ1/2

D
exp

(
− 1

2m
ln

[
g0
δ

(
c
) 2m

3m+1
])

≥ κδ1/2

D

(
m − 1

2
ln

g0
δ

− m

3m + 1
ln c

)
≥ κδ1/2

D

(
m − 1

2
ln

g0
δ

− 1

3
ln c

)
,

and this is inequality (41). ��
Finally, let us estimate the efficiency of method (22) under additional assumption

of uniform convexity (28). From the proof of Theorem 3, we know that

ln
F0
F2m

≥ 2m

c1/2
ln(1 + S)

(
g2m
g0

)1/(2m)

≥ 2m

c1/2
ln(1 + S) exp

(
− 1

2m
ln

g0
g2m

)

≥ 1

c1/2
ln(1 + S)

(
2m − ln

g0
g2m

)
(35)≥ 1

c1/2
ln(1 + S)

(
2m − ln

g0
δ

)
.

On the other hand,

ln F2m
(38)≥ ln(κmδ3/2) + 1

2m
ln

δ

g2m

(20)≥ ln(κmδ3/2) + 1

2m
ln

δ

g0
− ln c.

Thus,

ln(cF0) ≥ 2m

c1/2
ln(1 + S) − 1

c1/2
ln(1 + S) ln

g0
δ

+ ln(κmδ3/2) + 1

2m
ln

δ

g0
.

In other words,

ln
cF0

κg3/20

≥ 2m

c1/2
ln(1 + S) − 1

c1/2
ln(1 + S) ln

g0
δ

+ 3

2
ln

δ

g0
− ln

1

m
+ 1

2m
ln

δ

g0

= 2m

c1/2
ln(1 + S) −

[
1

2m
+ 1

c1/2
ln(1 + S) + 3

2

]
ln

g0
δ

− ln
1

m
.

Thus, we have proved the following theorem.

Theorem 6 Let theHessian beLipschitz continuouswith constant L2. Let F(·) satisfies
condition (28). Fix H ≥ L2 and some δ > 0. Then, the number of iterations of method
(22) to reach small norm of the gradient ‖F ′(xN )‖∗ ≤ δ satisfies the following bound:

N ≤ 3c1/2

2 ln(1 + S)

{

ln
cF0

κg3/20

+
[

1

2m
+ 1

c1/2
ln(1 + S) + 3

2

]
ln

g0
δ

}

(29)≤ 3c1/2

2 ln(1 + S)
ln

2c

3κ
√

σ3
+ 3

[
1

2
+ c1/2

ln(1 + S)

]
ln

g0
δ

. (42)
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5 Adaptive search procedure

The main advantage of the method (22) consists in its easy implementation. Indeed,
in the case ψ(·) ≡ 0 with domψ = E, the iteration (11) is reduced mainly to matrix
inversion, the very standard operation of Linear Algebra, which is available in the
majority of software packages. However, for the better performance of this scheme, it
is necessary to apply a dynamic strategy for updating the step-size coefficient H . Let
us show how this can be done.

Gradient Regularizaion of Newton Method

with Adaptive Search

Initialization. Choose H0 ≤ L2, x0 ∈ domψ , and F ′
0 ∈ ∂F(x0).

kth iteration (k ≥ 0). 1). Set gk = ‖F ′
k‖∗.

2). For ik = 0, 1, . . . do:

Set H = 2ik Hk and T = TAH (xk )(xk)

Until f (T ) ≤ f (xk) + 〈∇ f (xk), T − xk〉 + 1
2∇2 f (xk)[T − xk]2

+ H
6 ‖T − xk‖3.

3). Set xk+1 = T , Hk+1 = max{H0, 2ik−1Hk}, and
F ′
k+1 = ∇ f (xk+1) − ∇ f (xk) − ∇2 f (xk)(xk+1 − xk)

− Ak(∇d(xk+1) − ∇d(xk))

(43)

For the initialization, we need an initial guess H0 for the regularization parameter,
which can be an arbitrary sufficiently small number.

Note that this scheme does not depend on any particular value of the Lipschitz
constant. By definitions of the updates and from inequality (10), we conclude that
inequalities H0 ≤ Hk ≤ L2 and 2ik Hk ≤ 2L2 imply Hk+1 ≤ L2. Thus,

H0 ≤ Hk ≤ L2, 2ik Hk ≤ 2L2, k ≥ 0. (44)

Hence, from Theorem 1, we have the following progress established for each iteration
k ≥ 0:

F(xk) − F(xk+1) ≥ 1

2c20

√
3

2L2
· ‖F ′(xk+1‖2∗
‖F ′(xk)‖1/2∗

,

where

c0
def= σ−1 + 3L2

2H0
.
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Repeating the reasoning of Theorem 2, we obtain the following complexity result.

Theorem 7 Let the Hessian be Lipschitz continuous with constant L2. Let F(xk) −
F∗ ≥ ε for some iteration k ≥ 0 of method (43). Then,

k ≤ 4c20

√
2L2D3

3ε
+ ln

(F(x0) − F∗)‖F ′(x0)‖1/2∗ D1/2

ε3/2
.

Note that some scaling of the domain or the target objective may affect the fixed
choice of regularization parameter in the basic scheme (22). At the same time, we
expect the adaptive method (43) to be robust with respect to these changes.

6 Acceleration

Let us present a conceptual acceleration of our method, that is based on the contracting
proximal iterations [7].

First, we fix an auxiliary prox-function φ(·) that we assume to be uniformly convex
of degree three with respect to the initial norm:

βφ(x, y) = φ(y)−φ(x)−〈∇φ(x), y−x〉 ≥ 1

3
‖y−x‖3, ∀x, y ∈ domψ.

(45)

At each iteration k ≥ 0 of the accelerated scheme, we form the following functions:

gk+1(x)
def= Bk+1 f

(bk+1x + Bkxk
Bk+1

)
,

hk+1(x)
def= gk+1(x) + bk+1ψ(x) + βφ(vk; x),

where {bk}k≥1 is a sequence of positive numbers, Bk
def= ∑k

i=1 bi , B0
def= 0, and

{xk}k≥0, {vk}k≥0, x0 = v0,

are sequences of trial points that belong to domψ .
Note that the derivatives of gk+1(·) and f (·) are related as follows:

D3gk+1(x) ≡ b3k+1

B2
k+1

D3 f
(bk+1x + Bkxk

Bk+1

)
.

For simplicity of the presentation, we assume that f is three times differentiable on
the open set containing domψ . Let us choose
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bk := k2

9L2( f )
.

Then, Bk = 1
9L2( f )

k∑

i=1
i2 ≥ k3

27L2( f )
. Therefore, for any h ∈ E:

|D3gk+1(x)[h]3| ≤ 1

L2( f )

∣∣∣∣D
3 f

(bk+1x + Bkxk
Bk+1

)∣∣∣∣ ≤ ‖h‖3,

thus L2(gk+1) = 1, and we can minimize objective hk+1 very efficiently by using our
method (22). Namely, in order to find a point v with a small norm of a subgradient:

‖g‖∗ ≤ δ, g ∈ ∂hk+1(v),

the method needs to do no more than

N
(41)≤ Õ

(
ln

1

δ

)

steps, where Õ(·) hides absolute constants and logarithmic factors that depends on
the initial residual and subgradient norm.

Let us write down the accelerated algorithm.

Acceleration of Newton Method with Grad. Regularization

Initialization. Choose x0 ∈ domψ and δ > 0. Set v0 = x0, B0 = 0.

kth iteration (k ≥ 0). 1). Set bk+1 = (k+1)2

9L2( f )
and Bk+1 = Bk + bk+1.

2). Form the auxiliary objective hk+1(·). Find a point vk+1

by method (22) such that ‖g‖∗ ≤ δ for some g ∈ ∂hk+1(vk+1).

3). Set xk+1 = bk+1vk+1+Bk xk
Bk+1

.

(46)

Applying directly Theorem 3.2 and the corresponding Corollary 3.3 from [7], we
get the following complexity bound.

Theorem 8 Let the Hessian be Lipschitz continuous with constant L2( f ). Let us set
δ = 1

2·37/3 · ( ε
L2( f )

)2/3
in method (46), and let
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k =
⌈(
2 · 33)1/2 ·

( L2( f )βψ(x0; x∗)
ε

)1/3⌉
.

Then, F(xk) − F∗ ≤ ε. ��

7 Experiments

In this section, let us present computational results for solving the unconstrained
minimization problem,

min
x∈Rn

f (x),

with objective that is a smooth convex approximation of pointwise maximum:

f (x) := μ log

( m∑

i=1

exp
( 〈ai , x〉 − bi

μ

))
≈ m

max
i=1

[〈ai , x〉 − bi
]
.

The problems of this type are important in applications with minimax strategies for
matrix games and 
∞-regression [17].

The vectors {ai ∈ R
n}mi=1 and numbers {bi ∈ R}mi=1 are given data, while μ > 0 is

a fixed parameter of smoothing.
Let us fix matrix B := ∑m

i=1 aia
T
i , which we assume to be positive definite (oth-

erwise, it is possible to reduce the dimensionality of the initial problem), and we use
the following Euclidean norms:

‖x‖ := 〈Bx, x〉1/2, ‖g‖∗ := 〈g, B−1g〉1/2,

respectively for the variables and for the gradients. We also know the corresponding
Lipschitz constant for the Hessian, that is (see, e.g. Example 1.3.6 in [6])

L2 := 2

μ2 . (47)

To generate the data, we sample random elements {āi ∈ R
n, bi ∈ R}mi=1 from the

uniform distribution on [−1, 1], and form an auxiliary function

f̄ (x) := μ log

(
m∑

i=1

exp

( 〈āi , x〉 − bi
μ

))

.

Then, we set

ai := āi − ∇ f̄ (0), 1 ≤ i ≤ m.

Thus we ensure to have the optimum at the origin, since ∇ f (0) = 0. We start the
methods from x0 := (1, 1, . . . , 1).
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Fig. 1 Newtonmethods with Cubic and with Gradient regularization, and the accelerated scheme. Lipschitz
constant is fixed

We study the performance of the Newton method with Gradient regularization and
with Cubic regularization [19] on this problem. Also, we compare our accelerated
scheme (46) with the basic methods.

We use the following scaling function for this problem, as in Example 1:

d(x) = 1

2
‖x‖2 = 1

2
〈Bx, x〉.

The subproblem in our methods is solved exactly by using the standard matrix inver-
sion. For the Cubic Newton, one need to find a root of a one-dimensional nonlinear
equation at each step (see Section 5 in [19]). To solve it, we apply the classical uni-
variate Newton method and use the value ε = 10−8 as a target tolerance in terms of
the function value.

Regularization parameter is fixed according to the theory (47). The results are shown
in Fig. 1. We see that both algorithms show reasonably good performance, which is
better than the theoretical prediction of the global behaviour. The Newtonmethodwith
Gradient regularization possesses the best convergence rate. Accelerated scheme has
an improvement in the rate in the beginning, but the basic methods are better for the
higher level of the accuracy due to their superlinear local convergence.

In the following experiment, we compare the uses of the fixed Lipschitz constant
with the adaptive search procedure for our method. The results are shown in Fig. 2. We
see that the adaptive methods show the best performance. At the same time, iterations
of the Gradient regularization are much cheaper which results in better computational
time.

Finally, we compare our approach with iterations of the damped Newton method
with line search. For this problem, the Hessian is often degenerate, thus we use a small
perturbation to correct the matrix. Namely, we consider the following iterations:

xk+1 = xk − αk

(
∇2 f (xk) + τ B

)−1∇ f (xk), k ≥ 0,
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Fig. 2 The effect of using adaptive line search in the regularized Newton methods
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Fig. 3 Comparison of the regularized Newton methods with the damped Newton algorithm

where τ is a fixed small parameter (we set τ = 10−6 which was tuned to have the best
performance), and αk is chosen by the standard backtracking line search to satisfy the
following condition:

f (xk) − f (xk+1) ≥ αk

2
‖∇ f (xk)‖2∗.

The results are presented in Fig. 3 . We see that the damped Newton method is
sensitive to the choice of perturbation parameter τ , while the method with Gradi-
ent regularization shows the most robust and efficient performance for all problem
instances.

8 Discussion

In this paper, we have analyzed the global behaviour of the Newtonmethodwith a gen-
eral Bregman regularizer, whose regularization parameter is chosen to be proportional
to the square root of the current gradient norm.

Wedemonstrated that our schemeworkswith the composite formof the convex opti-
mization problem. For the Euclidean norms, this approach can be seen as a relaxation
of the Cubically regularized Newton method, achieving the same global convergence
rates.

A significant advantage of the gradient regularization scheme is a simpler structure
of the subproblem, which does not need auxiliary one-dimensional minimizations that
are required in the cubic regularization. As a consequence, the subproblem becomes
suitable for the large-scale case as for employing the Conjugate Gradient methods.

It is a favorable feature of ourmethods that regularization parameter always depends
on the current iterate only. Therefore, it seems to be convenient for the use in stochastic
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optimization. We believe that this property could fit well with the broad family of
stochastic second-order methods based on the Cubic regularization (see [4, 12, 14]).
We keep the development of such schemes for further investigation.

Another important direction is an extension of our results to nonconvex optimization
problems. It seems to be a challenging question since our current analysis heavily relies
on positive semidefiniteness of the Hessian. It is needed to ensure a bound for the step
length (see Lemma 1). Therefore, to tackle nonconvex problems, some modifications
of our analysis have to be made.
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