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Abstract
In this paper we study a family of limsup sets that are defined using iterated function
systems.Ourmain result is an analogue ofKhintchine’s theorem for these sets.We then
apply this result to the topic of intrinsic Diophantine Approximation on self-similar
sets. In particular, we define a new height function for an element of Qd contained in
a self-similar set in terms of its eventually periodic representations. For limsup sets
defined with respect to this height function, we obtain a detailed description of their
metric properties. The results of this paper hold in arbitrary dimensions and without
any separation conditions on the underlying iterated function system.

Mathematics Subject Classification 11J83 · 11K55 · 28A80

1 Introduction

Diophantine Approximation is the study of approximations of vectors in Rd by ele-
ments of Qd . Given a set X ⊂ Rd , it is natural to wonder how well elements of X
can be approximated by elements ofQd contained within X . Similarly, it is natural to
wonder how well elements of X can be approximated by elements ofQd lying outside
of X . These two questions are themotivation behind the topics of intrinsic Diophantine
Approximation and extrinsic Diophantine Approximation respectively. Often the set
X is taken to be a smooth manifold or a fractal set. A tremendous amount of work has
been done on these two topics when X is taken to be such a set. For further details we
refer the reader to the papers [7, 9–11, 13, 14, 16–19, 26, 27, 34, 35, 37, 39, 40] and the
references therein. In this paper we study intrinsic Diophantine Approximation when
the set X is a self-similar set. We will provide a more thorough introduction to this
topic in Sect. 2. The main result of this paper is a general theorem on the metric prop-
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erties of a family of limsup sets defined using iterated function systems. As we will
see, this theorem implies a number of results in intrinsic Diophantine Approximation.

Inwhat remains of this introductory sectionwewill provide the relevant background
from Fractal Geometry and state Theorem 1.1, which is our main result. In Sect. 2 we
will show how Theorem 1.1 can be used to obtain a number of results for intrinsic
Diophantine Approximation on self-similar sets. In Sect. 3 wewill prove Theorem 1.1.
In Sect. 4 we will apply the mass transference principle of Beresnevich and Velani
together with Theorem 1.1 to deduce further results on the Hausdorff measure of
certain limsup sets.

1.1 Background from Fractal Geometry

We call a map φ : Rd → Rd a similarity if there exists r ∈ (0, 1) such that ‖φ(x) −
φ(y)‖ = r‖x − y‖ for all x, y ∈ Rd . We call a finite set of similarities an iterated
function system or IFS for short. An important result due to Hutchinson [25] states that
for any IFS � = {φa}a∈A, there exists a unique non-empty compact set X satisfying

X =
⋃

a∈A
φa (X) .

X is called the self-similar set of �. When the elements of � all have the same con-
traction ratio, i.e. ra = ra′ for all a, a′ ∈ A, then we say that an IFS is equicontractive.
Importantly we can view X as the image ofAN under an appropriate projection map:
Let π : AN → X be given by

π
(
(an)

∞
n=1

) = lim
n→∞

(
φa1 ◦ · · · ◦ φan

)
(0) .

Here 0 can be replacedwith any other vector inRd . Importantly themapπ is surjective
and continuous (when AN is equipped with the product topology). Given an IFS
� = {φa}a∈A we define the similarity dimension of � to be the unique solution to the
equation

∑

a∈A
rsa = 1.

We denote the similarity dimension of an IFS � by dimS (�). Notice that if � is
equicontractive then dimS (�) = log #A

− log r where r is the common contraction ratio. It
is well known that the Hausdorff dimension of a self-similar set X always satisfies the
following upper bound:

dimH (X) ≤ min{dimS (�) , d}. (1.1)

For many iterated function systems this inequality is in fact an equality, see [15, 22,
23, 33]. We say that � satisfies the strong separation condition if φa(X)∩φa′(X) = ∅
for all a, a′ ∈ A such that a �= a′. An IFS � is said to satisfy the open set condition
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if there exists a bounded open set O such that φa(O) ⊂ O for all a ∈ A, and
φa(O)∩φa′(O) = ∅whenever a �= a′. It is known that the strong separation condition
implies the open set condition, and that under either of these assumptions we have
equality in (1.1).

To prove equality in (1.1) in the overlapping case one often uses self-similar mea-
sures. These are defined as follows: Given an IFS {φa}a∈A and a probability vector
p = (pa)a∈A , then there exists a unique Borel probability measure μp satisfying

μp =
∑

a∈A
pa · φaμp.

We call μp the self-similar measure corresponding to � and p. Given p, if we let
mp denote the corresponding Bernoulli measure on AN then it is also the case that
μp = πmp. For our purposes we will only need to focus on one particular self-similar

measure, namely the one corresponding to the probability vector
(
rdimS(�)
a

)

a∈A . This

self-similar measure is distinguished amongst the family of self-similar measures.
Studying its properties often allows one to prove equality in (1.1). For an IFS �,

we will denote the self-similar measure corresponding to
(
rdimS(�)
a

)

a∈A by μ�, or

simply μ if the choice of � is implicit. Similarly, we will denote
(
rdimS(�)
a

)

a∈A by

p� or simply p, and the corresponding Bernoulli measure on AN by m� or m. For a
probability vector p we denote the entropy of p by

hp := −
∑

a∈A
pa log pa .

Suppose now that in addition to p we are also given an IFS �, we then define the
Lyapnuov exponent of � and p to be

χ�,p := −
∑

a∈A
pa log ra .

We conclude this overview of the relevant topics from Fractal Geometry by intro-
ducing some notation. In what follows, we denote an element of∪∞

n=1A
n orAN by a or

b. Given an IFS� = {φa}a∈A and aword a = (a1, . . . , an),we letφa := φa1◦· · ·◦φan
and ra := ∏n

l=1 ral . Given a word a we let Xa = φa (X). Given a finite word a and
a finite word or infinite sequence b, we let ab denote the concatenation of a and b.
For a finite word a we let ak denote the k-fold concatenation of a with itself. Simi-
larly a∞ denotes the periodic element of AN obtained by concatenating a with itself
indefinitely. We denote the length of a finite word a by |a|. Finally, given a finite word
a ∈ ∪∞

n=1An we let

[a] :=
{
(bn) ∈ AN : b1 . . . b|a| = a

}
.

We will often refer to [a] as the cylinder set corresponding to a.
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1.2 Statement of Theorem 1.1

The family of limsup sets that will be the main focus of this paper are defined as
follows: Given an IFS � and a function � : ∪∞

n=1An → [0,∞), we let

W�(�) :=
∞⋂

N=1

∞⋃

n=N

⋃

a∈An

n−1⋃

l=0

B
(
π(a1 · · · al(al+1 · · · an)∞),�(a)

)
.

Alternatively, W�(�) is the set of x ∈ Rd such that for infinitely many n, there exists
a ∈ An and 0 ≤ l ≤ n − 1 such that

‖x − π(a1 · · · al(al+1 · · · an)∞)‖ < �(a).

The connection between W�(�) and intrinsic Diophantine Approximation will be
made clear in Sect. 2. Our main result demonstrates that for certain choices of �, the
measure of W�(�) is determined by naturally occurring volume sums. One cannot
expect such a behaviour to occur for all choices of �. Indeed Example 2.1 from
[2] shows that for a related family of limsup sets, if we want the measure of these
limsup sets to be determined by volume sums, then the underlying � should reflect
the different rates of scaling within the IFS. As such we will often restrict ourselves
to � of the form

�(a) = Diam(Xa) · g(|a|) (1.2)

where g : N → [0,∞). A similar restriction was also adopted in [1, 2, 5]. Functions
of the form

�(a) = g(Diam(Xa)) (1.3)

for some g : (0,∞) → (0,∞) were considered in a similar situation in [21] and
later in [8, Section 12.4]. Note that if � is equicontractive, then the set of � of the
form (1.2) coincides with the set of � of the form (1.3). Moreover, both of these sets
coincide with the set of � such that �(a) only depends upon the length of a.

Our main result is the following statement.

Theorem 1.1 Let � = {φa}a∈A be an IFS and � : ∪∞
n=1An → [0,∞). Then the

following statements are true:

1. For any s ≥ 0, suppose that

∞∑

n=1

∑

a∈An

n · �(a)s < ∞.

Then Hs (W�(�)) = 0.
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2. Assume that

hp < −2 log
∑

a∈A
p2a (1.4)

and � is of the form �(a) = Diam(Xa)g(|a|) for some non-increasing g : N →
[0,∞). If

∞∑

n=1

∑

a∈An

n · (Diam(Xa)g(n))dimS(�) = ∞

then μ (W�(�)) = 1.
3. Assume that � is equicontractive and � is of the form �(a) = Diam(Xa)g(|a|)

for some g : N → [0,∞). If

∞∑

n=1

∑

a∈An

n · (Diam(Xa)g(n))dimS(�) = ∞

then μ (W�(�)) = 1.

We conclude this section with some remarks on Theorem 1.1.

Remark 1.2 Statement 3 of Theorem 1.1 was proved for the IFS
{
φ1(x) = x

3 , φ2(x)
= x+2

3

}
by Tan, Wang, and Wu in [37]. Note that this IFS has the middle third Cantor

set as its self-similar set. In a recent talk Wang [38] commented that the methods used
in [37] could be generalised to prove Statement 3 of Theorem 1.1 for equicontractive
IFSs acting on R that satisfy the strong separation condition. During this talk Wang
posed the question as to what happens for IFSs that are not equicontractive. This
paperwas in partmotivated by this question and Statement 2 of Theorem1.1 provides a
partial answer. Importantly, aswell as providing information in the non-equicontractive
case, Theorem 1.1 also applies in arbitrary dimensions and requires no separation
assumptions on the IFS. The techniques of [37] do not apply in this generality. That
being said, our method of proof largely follows the same overall strategy as [37]. The
major differences being that we require additional arguments to control the different
rates of scaling within our potentially non-equicontractive IFS, and we also require a
new argument to address the potential overlaps that may be present within the IFS.
The latter argument uses ideas from [5, Section 7] where the author reinterpreted their
problem in terms of a limsup set on the sequence space AN. This reinterpretation
addresses the problem of potential overlaps.

Remark 1.3 If � satisfies the open set condition then it is known that μ is equiv-
alent to the restriction of the HdimS(�)-dimensional Hausdorff measure on X . As
such, under the open set condition, Statements 1, 2, and 3 of Theorem 1.1 pro-
vide a nearly complete description of the μ measure of W�(�) for � of the form
�(a) = Diam(Xa)g(|a|). Moreover, if we assume that � is equicontractive and
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satisfies the open set condition, then Statements 1 and 3 do provide a complete descrip-
tion. In the overlapping case, i.e. when the open set condition is not satisfied, then
Statements 2 and 3 can be used to deduce a number of corollaries on the Haus-
dorff dimension of W�(�). For if dimμ = min{dimS (�) , d} and μ(W�(�)) = 1,
then we must have dimH (W�(�)) ≥ min{dimS (�) , d}. Moreover because W�(�)

is a subset of the self similar set X , and X satisfies (1.1), we must then have
dimH (W�(X)) = min{dimS (�) , d}.The important part in this argument is determin-
ingwhenwe have dimμ = min{dimS (�) , d}.Anumber of significant breakthroughs
on this topic have been made in recent years, see [22, 23, 33]. These papers pro-
vide general sufficient conditions which guarantee dimμ = min{dimS (�) , d}. We
won’t state the results of these papers in their full generality here. Instead we will
focus on one particular consequence that is relevant to our purposes. Suppose that
� = {φa(x) = rax + ta} is an IFS acting on R and that each ra is algebraic, then
it follows from the results of [33] that if � does not contain an exact overlap then
dimμ = min{dimS (�) , d}. We recall that an IFS is said to contain an exact overlap
if there exists a,b ∈ ∪∞

n=1An such that φa = φb and a �= b.

Remark 1.4 The inequality (1.4) and the non-increasing assumption on g in Statement
2 are both technical assumptions and are believed to be non-optimal. Note that in
Statement 3 there are no monotonicity conditions imposed on g. We expect that both
of these assumptions can be removed. For the purposes of our exposition, we highlight
that in the case of an IFS consisting of two similarities {φ1(x) = r1x + t1, φ2(x) =
r2x + t2}, then (1.4) is satisfied if rdimS(�)

1 satisfies

0.048 . . . < rdimS(�)
1 < 0.951 . . . .

As suchwe see that (1.4) is satisfied by a significant proportion of those IFSs consisting
of two similarities. The inequalities above can be derived by considering the functions
f : (0, 1) → R and g : (0, 1) → R given by f (x) = −x log x − (1 − x) log(1 − x)
and g(x) = −2 log(x2 + (1 − x)2), and using a computer to determine those x for
which f (x) < g(x). We remark that when � is an equicontractive IFS then we have
hp = − log

∑
a∈A p2a, and so (1.4) is automatically satisfied in this case. It follows

from this observation and the fact that the quantities on each side of (1.4) depend
continuously on p, that if we fix the number of maps within our IFS to be N for some
N ∈ N and identify the space of contraction ratios with (0, 1)N , then for a non-empty
open set of contraction ratios the inequality (1.4) is satisfied. We will see another
explicit example where the inequality (1.4) is satisfied in Fig. 1.

Remark 1.5 It is a simple exercise to show that a function g : N → [0,∞) satisfies

∞∑

n=1

∑

a∈An

n · (Diam(Xa)g(n))dimS(�) = ∞
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Fig. 1 �={φ1(x, y)=
( x2 ,

y
2 ), φ2(x, y)=( x+2

4 ,
y
4 ),

φ3(x, y)=( x5 ,
y+3
5 ), φ4(x, y)=

( x+2
3 ,

y+2
3 )}. The self-similar

set for this IFS is displayed
above. One can check that this
IFS satisfies the strong
separation condition and (1.4).
Therefore Theorem 1.1 and
Theorem 2.7 apply to this IFS

if and only if

∞∑

n=1

n · g(n)dimS(�) = ∞.

It will on occasion be more convenient to use this latter divergence condition.

Notation. In this paper we will adopt the following notational convention. Given a set
S and two functions f , g : S → R we write f � g if there exists C > 0 such that
| f (x)| ≤ C |g(x)| for all x ∈ S. We write f � g if f � g and g � f .

2 Applications to intrinsic Diophantine approximation

2.1 Background

The study of intrinsic Diophantine Approximation for self-similar sets has its origins
in a question of Mahler [30]. He asked how well can elements of the middle third
Cantor set C be approximated by rational numbers lying within C . To the best of the
author’s knowledge, the first significant progress in this direction was the work of
Levesley, Salp, and Velani [29]. They considered rational approximations of the from
p/3n . Or equivalently, rational approximations provided by the end points of the sets
of the form φa(C). They proved a general Khintchine type result for approximations
of this type, see [29, Theorem 1]. Using this theorem, they were able to prove that
there exist well-approximable numbers in the middle third Cantor set that are not
Liouville. This was an unproved assertion attributed to Mahler. Bugeaud also proved
this assertion using a different method in [13]. He in fact provided explicit examples
of elements of the middle third Cantor set with any irrationality exponent. In [14]
Bugeaud and Durand posed a conjecture on the value of the Hausdorff dimension of
the set of points in the middle third Cantor set whose irrationality exponent exceeds a
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given parameter. Interestingly this conjecture suggests that a phase transition should
occur for the value of the Hausdorff dimension of this set. The main result of [14]
shows that a version of this conjecture holds almost surely for a particular random
model of C . The following intrinsic analogue of Dirichlet’s theorem for C was proved
by Broderick, Fishman, and Reich [11].

Theorem 2.1 For any x ∈ C and Q > 1, there exists p/q ∈ C with 1 ≤ q ≤ Q such
that

|x − p/q| <
1

q(log3 Q)log 3/ log 2
.

Theorem 2.1 was shown to be optimal by Fishman and Simmons [19], and Fishman,
Merrill, and Simmons [17].

The study of intrinsic Diophantine approximation for self-similar sets naturally
leads one to study limsup sets that are in a sense built using the underlying iterated
function system. A number of papers have appeared which study such sets, see [1–6,
31, 32]. Despite being a problem that was originally motivated by number theoretic
considerations, the study of these limsup sets is connected to topics from Ergodic
Theory and Fractal Geometry. Interestingly the metric properties of these limsup sets
can be related to the absolute continuity of self-similar measures, see [5].

2.2 Applications

For the rest of this section we restrict our attention to iterated function systems of the
form

� =
{
φa(x) = x + pa

qa

}

a∈A
.

Where for all a ∈ A we have pa ∈ Zd , qa ∈ Z, and qa also satisfies |qa | ≥ 2. For this
IFS, the projection map π takes the following simplified form:

π(a) =
∞∑

n=1

pan∏n
l=1 qal

. (2.1)

For such an IFS, the following lemma connects those x contained in X ∩ Qd with
eventually periodic sequences. It is a particular case of a more general result due to
Schleischitz [34]. For this reason we omit its proof.

Lemma 2.2 Let � be an IFS of the form � =
{
φa(x) = x+pa

qa

}
. Then for any x ∈ X

we have that x ∈ Qd if and only if there exists a ∈ ∪∞
n=1An and 0 ≤ l ≤ |a| − 1 such

that

x = π
(
a1 . . . al

(
al+1 . . . a|a|

)∞)
.
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If x ∈ Qd and therefore by Lemma 2.2 is equal to π
(
a1 . . . al

(
al+1 . . . a|a|

)∞)
for

some a ∈ ∪∞
n=1An and 0 ≤ l ≤ |a|− 1, we can use properties of geometric series and

(2.1) to conclude that there exists px ∈ Zd such that

x = px
∏l

j=1 qa j ·
(∏n

j=l+1 qa j − 1
) .

One of the major difficulties in understanding the properties of the rational numbers
within a self-similar set is not knowing if any cancellation occurs between the entries

in the vector px and the
∏l

j=1 qa j ·
(∏n

j=l+1 qa j − 1
)
term. It is possible that these two

terms contain many common factors and as such x could be written in a significantly
reduced form. This makes studying intrinsic Diophantine Approximation for self-
similar sets challenging. This difficulty is avoided in this paper by considering the
quantity qint defined below. For ease of exposition we split what remains of this section
into two cases, when � is equicontractive and the general case. Our applications are
much simpler to state in the equicontractive case.

2.2.1 The equicontractive case

In this section we assume that � is equicontractive, i.e. there exists q� ∈ Z such that
qa = q� for all a ∈ A. By the above we know that if p/q ∈ X then there exists
p′ ∈ Zd , n ∈ N, and 0 ≤ l ≤ n − 1 such that

p/q = p′

ql�

(
qn−l
� − 1

) .

We define the intrinsic denominator of p/q ∈ X to be

qint(p/q) := inf
{
ql�

(
q |a|−l
� − 1

)
: a ∈ ∪∞

n=1An, 0 ≤ l ≤ |a| − 1 satisfying

p/q = π
(
a1 . . . al

(
al+1 . . . a|a|

)∞) }

This is a generalisation of the notion of intrinsic denominator defined in [19] for �

satisfying the strong separation condition. Given a function � : N → [0,∞) we may
then define a limsup set as follows:

W ∗
�(�) := {x ∈ X : ‖x − p/q‖ < �(qint(p/q)) for i.m. p/q ∈ X} .

Fishman andSimmons in [19] proved a version ofKhintchine’s theorem for limsup sets
of the form W ∗

�(�) when the underlying � is equicontractive, acting on R, and satis-
fies the strong separation condition. Importantly this result did not provide a complete
metric description for the sets W ∗

�(�), even in the restricted case of equicontractive
IFSs acting onRwhich satisfy the strong separation condition. The divergence condi-
tion they needed for a fullmeasure statementwas not optimal. This issuewas addressed
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in a recent paper by Tan, Wang, and Wu [37] who established a complete analogue
of Khintchine’s theorem for the set W ∗

�(�) for the IFS
{
φ1(x) = x

3 , φ2(x) = x+2
3

}
.

Note that this IFS has the middle third Cantor set as its self-similar set.

Theorem 2.3 [37, Theorem 1.4] Let � = {
φ1(x) = x

3 , φ2(x) = x+2
3

}
and � : N →

[0,∞) be a non-increasing function. Then

μ(W ∗
�(�)) =

{
0 if

∑∞
n=1 n · 2n · �(3n)

log 2
log 3 < ∞;

1 if
∑∞

n=1 n · 2n · �(3n)
log 2
log 3 = ∞.

The proof given in [37] can be generalised to prove an analogue of Theorem 2.3 for
any equicontractive IFS acting on R satisfying the strong separation condition. Our
main result in this direction is the following statement. It generalises Theorem 2.3 to
arbitrary dimensions and requires no separation conditions for �.

Theorem 2.4 Let � be an equicontractive IFS of the form � =
{
φa(x) = x+pa

q�

}
.

Let � : N → [0,∞) be a non-increasing function. Then the following statements are
true:

1. For any s ≥ 0, suppose that
∑∞

n=1 n ·#An ·�(qn�)s < ∞. ThenHs(W ∗
�(�)) = 0.

2. If
∑∞

n=1 n · #An · �(qn�)
log #A
log q� = ∞ then μ(W ∗

�(�)) = 1.

Proof We begin by remarking that for any word a and 0 ≤ l ≤ |a| − 1 we have

q |a|−1
� ≤ ql�

(
q |a|−l
� − 1

)
≤ q |a|

� . (2.2)

Proof of the convergence case. To prove the convergence case let � ′ : ∪∞
n=1An →

[0,∞) be given by

� ′(a) = �
(
q |a|−1
�

)
.

Now notice that for any p/q ∈ X , there must exist a and 0 ≤ l ≤ |a| − 1 such that

B (p/q, �(qint(p/q))) = B
(
π
(
a1 . . . al

(
al+1 . . . a|a|

)∞)
, �

(
ql�(q |a|

� − 1
))

.

Therefore, using the fact � is non-increasing together with (2.2) we have

B(p/q, �(qint(p/q))) ⊆ B
(
π
(
a1 . . . al

(
al+1 . . . a|a|

)∞)
, �

(
q |a|−1
�

))

= B
(
π
(
a1 . . . al

(
al+1 . . . a|a|

)∞)
, � ′(a)

)
.

Therefore W ∗
�(�) ⊆ W�(� ′). By Theorem 1.1 it will follow that Hs(W ∗

�(�)) = 0
if
∑∞

n=1
∑

a∈An n · � ′(a)s < ∞. This latter inequality is equivalent to
∑∞

n=1 n ·
#An · �(qn−1

� )s < ∞. However, this inequality is implied by our assumption
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∑∞
n=1 n · #An · �(qn�)s < ∞.

Proof of the divergence case. Let g : N → [0,∞) be given by

g(n) = �(qn�)

Diam(X) · q−n
�

.

Now define � ′ : ∪∞
n=1An → [0,∞) by � ′(a) = Diam(Xa) · g(|a|). For any a ∈ An

and 0 ≤ l ≤ |a| − 1 there exists p/q ∈ X such that

B
(
π
(
a1 . . . al (al+1 . . . an)

∞)
, � ′(a)

) = B
(
p/q, �

(
qn�

))
.

By the non-increasing assumption on �, the definition of intrinsic denominator, and
(2.2), it follows that

B(π(a1 . . . al(al+1 . . . an)
∞),� ′(a)) ⊆ B(p/q, �(qint(p/q))).

Therefore W�(� ′) ⊆ W ∗
�(�). By Theorem 1.1, it will follow that μ(W ∗

�(�)) = 1 if
we can show that

∞∑

n=1

∑

a∈An

n · (Diam(Xa)g(|a|))
log #A
log q� = ∞.

By the definition of g this is equivalent to our assumption
∑∞

n=1 n ·#An ·�(qn�)
log #A
log q� =

∞. Therefore our result follows. ��

If a rational vector p/q ∈ X is in its reduced form then wemust have q ≤ qint(p/q).
This observation together with Theorem 2.4 implies the following statement for tra-
ditional rational approximations, where the neighbourhood is defined in terms of the
denominator of p/q rather than qint(p/q).

Corollary 2.5 Let � be an equicontractive IFS of the form � = {φa(x) = x+pa
q�

}. Let
� : N → [0,∞) be a non-increasing function. If

∑∞
n=1 n · #An · �(qn�)

log #A
log q� = ∞

then

μ ({x ∈ X : ‖x − p/q‖ < �(q) for i.m. p/q ∈ X}) = 1.

See Fig. 2 for an example of two IFSs to which Theorem 2.4 can be applied.
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Fig. 2 We let �1 =
{
φ(x, y) = ( x+i

2 ,
y+ j
2 ) : (i, j) ∈ {(0, 0), (1, 0), (0, 1)}

}
and �2 =

{
φ(x, y) = ( x+i

2 ,
y+ j
2 ) : (i, j) ∈ {(0, 0), (1, 0), (0, 1), (2, 2), (2, 0)}

}
. �1 satisfies the open set condi-

tion and �2 does not. Theorem 1.1 and Theorem 2.4 apply to both of these iterated function systems

2.2.2 The general case

In this section we no longer assume that � is equicontractive. We formulate two
statements, one when � is potentially overlapping, and one when � satisfies the
strong separation condition.

Given g : N → [0,∞) and p/q ∈ X we define

�g(p/q) := sup
{
Diam(Xa) · g(|a|) : a ∈ ∪∞

n=1An, 0 ≤ l ≤ |a| − 1 satisfying

p/q = π
(
a1 . . . al

(
al+1 . . . a|a|

)∞) }
.

To each g : N → [0,∞) we associate the set

W ∗∗
� (g) = {

x ∈ X : ‖x − p/q‖ < �g(p/q) for i.m. p/q ∈ X
}
.

The following statement is essentially Theorem 1.1 rephrased in terms of rational
approximations.

Theorem 2.6 Let� be an IFS of the form� =
{
φa(x) = x+pa

qa

}
and g : N → [0,∞).

Then the following statements are true

1. For any s ≥ 0, suppose that
∑∞

n=1
∑

a∈An n · (Diam(Xa)g(n))s < ∞. Then
Hs(W ∗∗

� (g)) = 0.
2. If g is non-increasing, hp < −2 log

∑
a∈A p2a, and∑∞

n=1
∑

a∈An n · (Diam(Xa)g(n))dimS(�) = ∞ then μ(W ∗∗
� (g)) = 1.

Proof This result follows from Theorem 1.1 together with the observation that if
x /∈ Qd then x ∈ W ∗∗

� (�g) if and only if x ∈ W�(�) for �(a) = Diam(Xa)g(|a|). ��
For what remains of this section we will always assume that � satisfies the strong
separation condition.Because of the strong separation condition, for anyp/q ∈ X there
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exists a unique sequence (an) ∈ AN satisfying π((an)) = p/q. We emphasise that
(an) must be eventually periodic. Given p/q ∈ X we define the intrinsic denominator
of p/q to be

inf

⎧
⎨

⎩

l∏

j=1

qa j ·
⎛

⎝
n∏

j=l+1

qa j − 1

⎞

⎠

: n ∈ N, 0 ≤ l ≤ n − 1, and p/q = π
(
a1 . . . al

(
al+1 . . . an

)∞)}
.

We denote this quantity by qint(p/q). For any p/q ∈ X we define

n(p/q) := inf
{
n ∈ N : p/q = π

(
a1 . . . al (al+1 . . . an)

∞)
for some 0 ≤ l ≤ n − 1

}

Similarly, we let

l(p/q) := inf
{
0 ≤ l ≤ n(p/q) − 1 : p/q = π

(
a1 . . . al

(
al+1 . . . anp/q

)∞)}
.

It can be shown that n(p/q) and l(p/q) are the unique parameters satisfying

qint(p/q) =
l(p/q)∏

j=1

qa j ·
⎛

⎝
n(p/q)∏

j=l(p/q)+1

qa j − 1

⎞

⎠

and

p/q = π
(
a1 . . . al(p/q)

(
al(p/q)+1 . . . an(p/q)

)∞)
.

Given g : N → [0,∞) we define a limsup set as follows, let

W ∗∗∗
� (g) :=

{
x ∈ X : ‖x − p/q‖ <

g(n(p/q))

qint(p/q)
for i.m. p/q ∈ X

}
.

Theorem 2.7 Let � be an IFS of the form � =
{
φa(x) = x+pa

qa

}
satisfying the strong

separation condition and let g : N → [0,∞). Then the following statements are true:

1. For any s ≥ 0, suppose that
∑∞

n=1
∑

a∈An n · (Diam(Xa)g(n))s < ∞. Then
Hs(W ∗∗∗

� (g)) = 0.
2. If g is non-increasing, hp < −2 log

∑
a∈A p2a, and∑∞

n=1
∑

a∈An n · (Diam(Xa)g(n))dimS(�) = ∞, then μ(W ∗∗∗
� (g)) = 1.

Proof We begin our proof by remarking that there exist constants C1,C2 > 0 such
that for any word a ∈ ∪∞

n=1An and 0 ≤ l ≤ |a| − 1 we have

C1
∏l

j=1 qa j ·
(∏|a|

j=l+1 qa j − 1
) < Diam(Xa) <

C2
∏l

j=1 qa j ·
(∏|a|

j=l+1 qa j − 1
) .

(2.3)

123



S. Baker

The convergence case. It follows from (2.3) that for any p/q ∈ X we have

B

(
p

q
,
g(n(p/q))

qint(p/q)

)
⊆ B

(
π
(
a1 . . . al(p/q)

(
al(p/q)+1 . . . an(p/q)

)∞)
,

g(n(p/q))Diam
(
Xa1...an(p/q)

)

C1

)
.

ThereforeW ∗∗∗
� (g) ⊆ W�(�) for�(a) = g(|a|)Diam(Xa)

C1
. Inwhich caseHs(W ∗∗∗

� (g))
= 0 if Hs(W�(�)) = 0. However this last inequality follows from Theorem 1.1 and
our assumption

∑∞
n=1

∑
a∈An n · (Diam(Xa)g(n))s < ∞.

The divergence case. For any a ∈ ∪∞
n=1An and 0 ≤ l ≤ |a| − 1 there exists p/q ∈ X

such that p/q = π
(
a1 . . . al

(
al+1 . . . a|a|

)∞)
. Therefore

B

(
π
(
a1 . . . al

(
al+1 . . . a|a|

)∞)
,
g(|a|)Diam(Xa)

C2

)
= B

(
p/q,

g(|a|)Diam(Xa)

C2

)
.

It now follows from the fact g is non-increasing together with (2.3) that

B

(
π
(
a1 . . . al

(
al+1 . . . a|a|

)∞)
,
g(|a|)Diam(Xa)

C2

)

⊆ B

(
p/q,

g(n(p/q))Diam
(
Xa1...an(p/q)

)

C2

)

⊆ B

(
p/q,

g(n(p/q))

qint(p/q)

)

Therefore W�(�) ⊂ W ∗∗∗
� (g) for � given by �(a) = g(|a|)Diam(Xa)

C2
, and our result

follows if μ(W�(�)) = 1. However μ(W�(�)) = 1 follows from Theorem 1.1
together with our assumption

∑∞
n=1

∑
a∈An n · (Diam(Xa)g(n))dimS(�) = ∞. ��

As remarked upon in the equicontractive case, if p/q ∈ X is in its reduced from then
we must have q ≤ qint(p/q). This observation together with Theorem 2.7 implies the
following corollary.

Corollary 2.8 Let � be an IFS of the form � =
{
φa(x) = x+pa

qa

}
satisfying the strong

separation condition and hp < −2 log
∑

a∈A p2a. Let g : N → [0,∞) be a non-
increasing function. If

∑∞
n=1

∑
a∈An n · (Diam(Xa)g(n))dimS(�) = ∞ then

μ

({
x ∈ X : ‖x − p/q‖ <

g(n(p/q))

q
for i.m. p/q ∈ X

})
= 1.
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3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. Statement 1 of this theorem is proved by a
standard covering argument and as such is omitted. We will only prove Statement 2
of Theorem 1.1 in full. Statement 3 is proved via an almost identical method. Where
appropriatewewill indicate in the footnoteswhere the proofs differ andwhy Statement
3 does not require the assumption g is non-increasing.

3.1 Technical preliminaries

Given a word a ∈ ∪∞
n=1An we let Ct (a) denote the number of distinct words of length

t appearing within a. Given a probability vector p and n ∈ N we let

kn,p :=
⌊ − log n

log
∑

a∈A p2a

⌋
+ 1.

We also let

Fn,p :=
{
a ∈ An : Ckn,p(a) ≥

⌊ n

10

⌋}
.

When the choice of p is implicit, we simply denote kn,p by kn and Fn,p by Fn .

The following lemma is a suitable adaptation of Lemma 4.1. from [37].

Lemma 3.1 Let p be a probability vector and m be the corresponding Bernoulli mea-
sure on AN. Then for n sufficiently large, we have

m

⎛

⎝
⋃

a∈Fn

[a]
⎞

⎠ ≥ 7

32
.

Proof Given a ∈ An and b ∈ Akn , let

|a|b := #
{
0 ≤ l ≤ n − kn : al+1 . . . al+kn = b

}
.

It is convenient to express our proof using the language of probability theory. As such
let (Zl)

n
l=1 be a sequence of independent and identically distributed random variables

taking values inA such that P(Zl = a) = pa for all a ∈ A. Let �n
kn
be the real valued

random variable given by

�n
kn :=

∑

b∈Akn

|Z1 . . . Zn|2b.
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We start by bounding the expectation of �n
kn
:

E(�n
kn ) =

∑

b∈Akn

E

(
|Z1 . . . Zn|2b

)

=
∑

b∈Akn

E

⎛

⎝
(n−kn∑

l=0

1b(Zl+1 . . . Zl+kn )

)2⎞

⎠

=
∑

b∈Akn

E

⎛

⎝
n−kn∑

l, j=0

1b(Zl+1 . . . Zl+kn ) · 1b(Z j+1 . . . Z j+kn ))

⎞

⎠

=
n−kn∑

l, j=0

E

⎛

⎝
∑

b∈Akn

1b(Zl+1 . . . Zl+kn ) · 1b(Z j+1 . . . Z j+kn ))

⎞

⎠

=
n−kn∑

l, j=0

E
(
1Zl+1...Zl+kn=Z j+1...Z j+kn

)

=
n−kn∑

l, j=0

P
(
Zl+1 . . . Zl+kn = Z j+1 . . . Z j+kn

)
. (3.1)

With (3.1) in mind, we now bound P(Zl+1 . . . Zl+kn = Z j+1 . . . Z j+kn ) from above.
If l = j then clearly P(Zl+1 . . . Zl+kn = Z j+1 . . . Z j+kn ) = 1. We remark that for
any parameters l, j, k ∈ N, if l + k < j + 1 then by independence we have

P(Zl+1 . . . Zl+k = Z j+1 . . . Z j+k)

=
k∏

m=1

P(Zl+m = Z j+m) =
k∏

m=1

(
∑

a∈A
p2a

)
=
(
∑

a∈A
p2a

)k

.

We will use the fact that if l + k < j + 1 then

P(Zl+1 . . . Zl+k = Z j+1 . . . Z j+k) =
(
∑

a∈A
p2a

)k

(3.2)

throughout our proof.
We now proceed via a case analysis. If l + kn < j + 1 then (3.2) immediately

implies

P(Zl+1 . . . Zl+kn = Z j+1 . . . Z j+kn ) =
(
∑

a∈A
p2a

)kn

. (3.3)
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Now suppose that l + kn
4 ≤ j + 1 ≤ l + kn . Observe that Zl+1 . . . Zl+kn =

Z j+1 . . . Z j+kn implies that Z2l− j+kn+1 . . . Zl+kn = Zl+kn+1 . . . Z j+kn . Therefore
by (3.2) we have

P(Zl+1 . . . Zl+kn = Z j+1 . . . Z j+kn ) ≤ P(Z2l− j+kn+1 . . . Zl+kn = Zl+kn+1 . . . Z j+kn )

=
⎛

⎝
∑

a∈A
p2a

⎞

⎠
j−l+1

≤
⎛

⎝
∑

a∈A
p2a

⎞

⎠

kn
4

. (3.4)

Let us now suppose that l+1 < j +1 < l+ kn
4 and Zl+1 . . . Zl+kn = Z j+1 . . . Z j+kn .

Notice that Zl+1 . . . Zl+kn = Z j+1 . . . Z j+kn implies that Zl+i+1 . . . Zl+i+� kn
4 � =

Z j+i+1 . . . Z j+i+� kn
4 � for any 0 ≤ i < kn − � kn

4 �. Repeatedly applying this identity,

it follows that

Zl+1 . . . Zl+� kn
4 � = Z j+1 . . . Z j+� kn

4 � = Zl+2( j−l)+1 . . . Zl+2( j−l)+� kn
4 �

= · · ·
= Zl+d( j−l)+1 . . . Zl+d( j−l)+� kn

4 �

for any d such that l + d( j − l) + 1 < kn − � kn
4 �. Since j − l < kn

4 , it follows that

we can pick d such that l + � kn
4 � < l + d( j − l) + 1 ≤ kn − � kn

4 �. Taking such a d, it
then follows from (3.2) that

P(Zl+1 . . . Zl+kn = Z j+1 . . . Z j+kn )

≤ P

(
Zl+1 . . . Zl+� kn

4 � = Zl+d( j−l)+1 . . . Zl+d( j−l)+� kn
4 �
)

=
(
∑

a∈A
p2a

)� kn
4 �

. (3.5)

Recalling (3.1), we have

E(�n
kn ) =

n−kn∑

l, j=0

P(Zl+1 . . . Zl+kn = Z j+1 . . . Z j+kn )

=
n−kn∑

l=0

1 + 2
n−kn−1∑

l=0

n−kn∑

j=l+1

P(Zl+1 . . . Zl+kn = Z j+1 . . . Z j+kn )

=
n−kn∑

l=0

1 + 2
n−kn−1∑

l=0

⎛

⎜⎝
∑

l+kn< j+1≤n−kn

P(·) +
∑

l+ kn
4 ≤ j+1≤l+kn

P(·) +
∑

l+1< j+1<l+ kn
4

P(·)
⎞

⎟⎠ .
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Applying the bounds provided by (3.3), (3.4), (3.5) we have

E(�n
kn ) ≤ n + 2

n−kn−1∑

l=0

⎛

⎜⎝
∑

l+kn< j+1≤n−kn

(
∑

a∈A
p2a

)kn

+
∑

l+ kn
4 ≤ j+1≤l+kn

(
∑

a∈A
p2a

) kn
4

+
∑

l+1< j+1<l+ kn
4

(
∑

a∈A
p2a

)� kn
4 �
⎞

⎟⎠

≤ n + 2
n−kn−1∑

l=0

⎛

⎝n

(
∑

a∈A
p2a

)kn

+ kn

(
∑

a∈A
p2a

)� kn
4 �⎞

⎠ .

By the definition of kn we know that

n

(
∑

a∈A
p2a

)kn

≤ 1.

Moreover, as kn grows logarithmically in n, and
(∑

a∈A p2a
)� kn

4 �
decays to zero poly-

nomially fast, we know that

kn

(
∑

a∈A
p2a

)� kn
4 �

≤ 1

for all n sufficiently large. Therefore for n sufficiently large we have

E(�n
kn ) ≤ n + 2

n−kn−1∑

l=0

2 ≤ 5n. (3.6)

Let B be the event that

#
{
b ∈ Akn : |Z1 . . . Zn|b ≥ 1

}
<
⌊ n

10

⌋
.

We now bound the probability of B from above. It follows from (3.6) that for n
sufficiently large we have

5n ≥ E(�n
kn )

≥ E

⎛

⎝
∑

b∈Akn

|Z1 . . . Zn|2b
∣∣∣∣B

⎞

⎠P(B)

123



Intrinsic Diophantine approximation for overlapping...

≥ P(B) · min
{
m2

1 + · · · + m2
� n
10 � : m1 + · · · + m� n

10 � = n − kn + 1
}

= P(B) ·
(
n − kn + 1

� n
10�

)2

·
⌊ n

10

⌋

= P(B) · (n − kn + 1)2 ·
⌊ n

10

⌋−1

≥ P(B) · 10 · (4n/5)2

n

= P(B) · 32n
5

.

In the penultimate line we used that for n sufficiently large we have n − kn + 1 ≥ 4n
5 .

This is because kn grows logarithmically in n. Therefore

P(B) ≤ 25

32
.

This means that P(Bc) ≥ 7/32. Since

m

⎛

⎝
⋃

a∈Fn

[a]
⎞

⎠ = P(Bc)

this completes our proof. ��
Let us now suppose that we are given a probability vector p and an IFS �. Recall that
the entropy of p and the Lyapunov exponent of p are defined to be

hp = −
∑

a∈A
pa log pa and χ�,p = −

∑

a∈A
pa log ra

respectively. Notice that when p =
(
rdimS(�)
a

)

a∈A then dimS(�) = hp
χ�,p

. When the

choice of p and � is implicit, we simply denote hp by h and χ�,p by χ . Given a word
a ∈ An and ε > 0 we let

Bad(a, ε) :=
{
0 ≤ l ≤ n − kn :

kn∏

i=1

ral+i /∈
[
ekn(−χ−ε), ekn(−χ+ε)

]}

∪
{
0 ≤ l ≤ n − kn :

kn∏

i=1

pal+i /∈
[
ekn(−h−ε), ekn(−h+ε)

]}
.

We then define

Bad(n, ε) :=
{
a ∈ An : #Bad(a, ε) ≥

⌊ n

20

⌋}
.
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Lemma 3.2 Let� be an IFS, p be a probability vector, andm be the Bernoulli measure
corresponding to p. For any ε > 0, there exists γ ∈ (0, 1) such that

m

⎛

⎝
⋃

a∈Bad(n,ε)

[a]
⎞

⎠ � γ kn .

Proof As in the proof of the previous lemma, it is useful to express this proof in
terms of random variables. Let (Zl)

n
l=1 be a sequence of independent and identically

distributed random variables taking values in A such that P(Zl = a) = pa, and let
ε > 0 be arbitrary. We start our proof by bounding from above the expectation

E

(n−kn∑

l=0

1[ekn (−χ−ε),ekn (−χ+ε)]c

( kn∏

i=1

rZl+i

))
.

By the linearity of expectation we have

E

(n−kn∑

l=0

1[ekn (−χ−ε)ekn (−χ+ε)]c

( kn∏

i=1

rZl+i

))

=
n−kn∑

l=0

E

(
1[ekn (−χ−ε),ekn (−χ+ε)]c

( kn∏

i=1

rZl+i

))

=
n−kn∑

l=0

P

( kn∏

i=1

rZl+i /∈
[
ekn(−χ−ε), ekn(−χ+ε)

])
.

By Hoeffding’s inequality for large deviations [24], there exists γ1 := γ1(ε,p,�) ∈
(0, 1) such that

P

( kn∏

i=1

rZl+i /∈
[
ekn(−χ−ε), ekn(−χ+ε)

])
� γ

kn
1 .

Therefore

E

(n−kn∑

l=0

1[ekn (−χ−ε),ekn (−χ+ε)]c

( kn∏

i=1

rZl+i

))
� n · γ

kn
1 .

Now by Markov’s inequality, we have

P

(n−kn∑

l=0

1[ekn (−χ−ε),ekn (−χ+ε)]c

( kn∏

i=1

rZl+i

)
≥ 1

2

⌊ n

20

⌋)
� γ

kn
1 .
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By an analogous argument, it can be shown that there exists γ2 ∈ (0, 1) such that

P

(n−kn∑

l=0

1[ekn (−h−ε),ekn (−h+ε)]c

( kn∏

i=1

pZl+i

)
≥ 1

2

⌊ n

20

⌋)
� γ

kn
2 .

Now let γ = max{γ1, γ2}. Clearly if (Zl)
n
l=1 is such that either

kn∏

i=1

rZl+i /∈
[
ekn(−χ−ε), ekn(−χ+ε)

]
or

kn∏

i=1

pZl+i /∈
[
ekn(−h−ε), ekn(−h+ε)

]

for � n
20� values of l, it must satisfy

kn∏

i=1

ral+i /∈
[
ekn(−χ−ε), ekn(−χ+ε)

]

for at least 1
2� n

20� values of l or
kn∏

i=1

pal+i /∈
[
ekn(−h−ε), ekn(−h+ε)

]

for at least 1
2� n

20� values of l. As such we may conclude that

m

⎛

⎝
⋃

a∈Bad(n,ε)

[a]
⎞

⎠

= P

(
#

{
l :

kn∏

i=1

rZl+i /∈
[
ekn(−χ−ε), ekn(−χ+ε)

]
or

kn∏

i=1

pZl+i /∈
[
ekn(−h−ε), ekn(−h+ε)

]}

≥
⌊ n

20

⌋)

≤ P

(n−kn∑

l=0

1[ekn (−χ−ε),ekn (−χ+ε)]c

( kn∏

i=1

ral+i

)
≥ 1

2

⌊ n

20

⌋)

+ P

(n−kn∑

l=0

1[ekn (−h−ε),ekn (−h+ε)]c

( kn∏

i=1

pal+i

)
≥ 1

2

⌊ n

20

⌋)

� γ kn .

This completes our proof. ��
Combining Lemmas 3.1 and 3.2, we see that the following statement holds.

Lemma 3.3 Let� be an IFS, p be a probability vector, andm be the Bernoulli measure
corresponding to p. For any ε > 0, it is the case that for all n sufficiently large there
exists a set Good(n, ε) ⊂ An satisfying:
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1. m
(⋃

a∈Good(n,ε)[a]
)

≥ 7/64.

2. For each a ∈ Good(n, ε) there exists a set Wa ⊂ {0, . . . , n − kn} satisfying:
(a) #Wa ≥

⌊
n
20

⌋
.

(b) If l, l ′ ∈ Wa and l �= l ′ then al+1 . . . al+kn �= al ′+1 . . . al ′+kn .
(c) For each l ∈ Wa we have

kn∏

i=1

ral+i ∈
[
ekn(−χ−ε), ekn(−χ+ε)

]

and

kn∏

i=1

pal+i ∈
[
ekn(−h−ε), ekn(−h+ε)

]
.

Lemma 3.3 is the main technical result in this section and will play an important part
in our proof of Theorem 1.1.1

3.2 Proof of Statement 2 fromTheorem 1.1

Before moving on to our proof of Statement 2, it is useful to record for later reference
a number of technical results. We start by recalling a well known lemma.

Lemma 3.4 Let (X , A,m) be a finite measure space and En ∈ A be a sequence of
sets such that

∑∞
n=1m(En) = ∞. Then

m

(
lim sup
n→∞

En

)
≥ lim sup

Q→∞

(∑Q
n=1m(En)

)2

∑Q
n,m=1m(En ∩ Em)

.

Lemma 3.4 is due to Kochen and Stone [28]. For a proof of this lemma see either [20,
Lemma 2.3] or [36, Lemma 5]. The following density lemma follows from [8, Lemma
6]. It has been phrased for our purposes.

Lemma 3.5 Let m be a Bernoulli measure on AN and E ⊂ AN. Suppose that there
exists c > 0 such that for each finite word c ∈ ∪∞

n=1An we have

m ([c] ∩ E) ≥ c · m([c]).

Then m(E) = 1.

1 For the proof of Statement 3 from Theorem 1.1 we do not require item (2c) from Lemma 3.3. This
is because our IFS is equicontractive and so the probability vector p is the uniform vector (A−1)a∈A.
Therefore we know exactly how the products in item (2c) of Lemma 3.3 will behave. It is instructive to
think that the proof of Statement 3 follows the proof of Statement 2 without the introduction of the parameter
ε.
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For the rest of this section we fix an IFS � satisfying

hp < −2 log
∑

a∈A
p2a .

We emphasise that throughout this section p will always be the probability vector
corresponding to (rdimS(�)

a ). It follows from this inequality that we can pick ε > 0
sufficiently small such that

−2χ

h
<

−χ − ε

− log
∑

a∈A p2a
(3.7)

and

h + ε < −2 log
∑

a∈A

p2a . (3.8)

For the rest of this section we fix an ε > 0 such that (3.7) and (3.8) are both satisfied.
These are the only conditions ε will need to satisfy. Let � : ∪∞

n=1An → [0,∞) be
an arbitrary function of the form �(a) = Diam(Xa)g(|a|) for some non-increasing
g : N → [0,∞). We also assume that g is such that

∞∑

n=1

∑

a∈An

n · (Diam(Xa)g(n))dimS(�) = ∞.

As previously remarked, this divergence condition is equivalent to

∞∑

n=1

n · g(n)dimS(�) = ∞. (3.9)

The following two lemmas allow us to replace g with a function whose decaying
behaviour we know more about.

Lemma 3.6 Assume that g is a non-increasing function satisfying (3.9). Let g1 : N →
[0,∞) be given by

g1(n) = min

{
g(n),

1

n2/ dimS(�)

}
.

Then

∞∑

n=1

n · g1(n)dimS(�) = ∞.
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Proof Our argument is an adaptation of the proof of Lemma 6.3 from [12]. Since g is
non-increasing, and so is the sequence

(
n−2/ dimS(�)

)
, we see that the function g1 is

also non-increasing. Let us now suppose that

∞∑

n=1

n · g1(n)dimS(�) < ∞. (3.10)

Since g1 is non-increasing, for any m sufficiently large we have

m2g1(m)dimS(�) ≤ 10
m∑

n=�m/2�
n · g1(n)dimS(�).

Equation (3.10) then implies that

lim
m→∞

m∑

n=�m/2�
n · g1(n)dimS(�) = 0.

Combining the two equations above, we may conclude that

g1(m) <
1

m2/ dimS(�)

for all m sufficiently large. This means that g1(n) = g(n) for n sufficiently large.
Therefore by (3.10) we must have

∞∑

n=1

n · g(n)dimS(�) < ∞.

This contradicts our initial assumption that g satisfies (3.9). Therefore wemust have.2

∞∑

n=1

n · g1(n)dimS(�) = ∞.

��
Lemma 3.7 Assume that g is a non-increasing function satisfying (3.9) and let g1 be
as in Lemma 3.6. Let g2 : N → [0,∞) be given by

g2(n) =
{
g1(n) if g1(n) ≥ 1

n4/ dimS (�) ;
0 if g1(n) < 1

n4/ dimS (�) .

2 This is the only part in our proof of Statement 2 where the assumption g is non-increasing is used. The
proof of Statement 3 differs here in that we define g1 : N → [0, ∞) by g1(n) = min{g(n), 1

n1/ dimS (�) }.
Then the appropriate analogue of Lemma 3.6 holds for any g satisfying (3.9). This is why Statement 3 holds
for arbitrary g, not just those g that are non-increasing.
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Then

∞∑

n=1

n · g2(n)dimS(�) = ∞.

Proof This follows from Lemma 3.6 and the fact
∑∞

n=1 n ·
(

1
n4/ dimS (�)

)dimS(�)

< ∞.

��
Let g2 be as in Lemma 3.7. We now define �2 : ∪∞

n=1An → [0,∞) by
�2(a) = Diam(Xa)g2(|a|). Since g2(n) ≤ g(n) for all n it follows that W�(�2) ⊂
W�(�). Therefore to prove Statement 2 of Theorem 1.1 it is sufficient to show that
μ(W�(�2)) = 1.

Let c ∈ ∪∞
n=1An be arbitrary and fixed. We will show that

m
(
[c] ∩ π−1 (W�(�2))

)
≥ c · m([c]) (3.11)

for some c independent of c. Lemma 3.5 then implies that m
(
π−1(W�(�2)

) = 1.
Since μ = πm this implies that μ (W�(�2)) = 1. Therefore to complete our proof it
suffices to show that (3.11) holds.

Let us fix an N sufficiently large so that Lemma 3.3 applies for all n ≥ N for our
choice of ε. We may also assume that N is sufficiently large so that

1

n2/ dimS(�)
< ekn(−χ−ε) (3.12)

for n ≥ N , and so that there exists γ ∈ (1, 2) for which

e(h+ε)kn ≤ nγ (3.13)

for n ≥ N . The existence of γ, and the fact that (3.12) and (3.13) are satisfied for n
sufficiently large, follows from (3.7), (3.8) and the fact dimS (�) = h

χ
.

Let n ≥ N , for each a ∈ Good(n, ε) and l ∈ Wa we consider the ball

B
(
π(ca1 . . . al(al+1 . . . an)

∞),Diam(Xca)g2(|c| + n)
)
.

If g2(|c| + n) �= 0 then there exists ha,l ∈ N and l + 1 ≤ ja,l ≤ n such that

Xca1...al (al+1...an)
ha,l al+1...a ja,l

⊆ B
(
π(ca1 . . . al (al+1 . . . an)

∞),Diam(Xca)g2(|c| + n)
)

(3.14)

and

min
a∈A

ra · Diam(Xca)g2(|c| + n) ≤ Diam

(
Xca1...al (al+1...an)

ha,l al+1...a ja,l

)

< Diam(Xca)g2(|c| + n). (3.15)
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It follows from the fact p = (rdimS(�)
a ) and m is the Bernoulli measure on AN corre-

sponding to p, that for any word a ∈ ∪∞
n=1An we have

m([a]) � Diam(Xa)
dimS(�). (3.16)

Combining (3.15) together with (3.16) we can deduce that

m
([

ca1 . . . al(al+1 . . . an)
ha,l al+1 . . . a ja,l

])
� m([ca])g2(|c| + n)dimS(�). (3.17)

We will use the cylinder sets
[
ca1 . . . al(al+1 . . . an)ha,l al+1 . . . a ja,l

]
to prove that

(3.11) holds. Before doing that it is useful to prove some properties of the parameters
ha,l and ja,l .

Lemma 3.8 Let n ≥ N be such that g2(|c| + n) �= 0, and let a ∈ Good(n, ε) and
l ∈ Wa. For ha,l and ja,l as defined above, if ha,l = 1 then ja,l > l + kn .

Proof If ha,l = 1 then

Diam

(
Xca1...al (al+1...an)

ha,l al+1...a ja,l

)
≤ Diam(Xca)g2(|c| + n)

implies

ja,l−l∏

i=1

ral+i ≤ g2(|c| + n).

By Lemma 3.6 and Lemma 3.7 we know that g2(|c| + n) ≤ n−2/ dimS(�). Therefore

ja,l−l∏

i=1

ral+i ≤ 1

n2/ dimS(�)
. (3.18)

Importantly, by (2c) from Lemma 3.3 we know that

kn∏

i=1

ral+i ≥ ekn(−χ−ε). (3.19)

Equation (3.12) states that

1

n2/ dimS(�)
< ekn(−χ−ε)

for n ≥ N . It follows therefore from (3.18) and (3.19) that

ja,l−l∏

i=1

ral+i <

kn∏

i=1

ral+i .
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Therefore we must have ja,l > l + kn . ��
If we combine (2b). from Lemma 3.3 together with Lemma 3.8, we may conclude the
following lemma.

Lemma 3.9 Assume that n ≥ N is such that g2(|c| + n) �= 0 and let a ∈ Good(n, ε).
If l, l ′ ∈ Wa and l �= l ′ then

ca1 . . . al(al+1 . . . an)
ha,l al+1 . . . a ja,l �= ca1 . . . al ′(al ′+1 . . . an)

ha,l′al ′+1 . . . a ja,l′ .

Lemma 3.10 Let n ≥ N be such that g2(|c| + n) �= 0, and let a ∈ Good(n, ε) and
l ∈ Wa. There exists C = C(c) such that for ha,l and ja,l as defined above, we have

(n − l)(ha,l − 1) + ja,l − l < C log n.

Proof If g2(|c|+n) �= 0 then by Lemma 3.7 we know that it must satisfy g2(|c|+n) ≥
1

(|c|+n)4/ dimS (�) . Equation (3.15) then implies that if g2(|c| + n) �= 0 then

mina∈A ra
(|c| + n)4/ dimS(�)

≤
(
n−l∏

i=1

ral+i

)ha,l−1

·
ja,l−l∏

i=1

ral+i .

This in turn implies that

mina∈A ra
(|c| + n)4/ dimS(�)

≤
(
max
a∈A

ra

)(n−l)(ha,l−1)+ ja,l−l

.

Taking logarithms and then manipulating the resulting expression, one can show that
the above implies that there exists C = C(c) such that

(n − l)(ha,l − 1) + ja,l − l < C log n.

��
For each n ≥ N such that g2(|c| + n) �= 0 we let

En :=
⋃

a∈Good(n,ε)

⋃

l∈Wa

[
ca1 . . . al (al+1 . . . an)

ha,l al+1 . . . a ja,l

]
.

Lemma 3.9 tells us that any pair of cylinder sets in this union are disjoint. If n ≥ N is
such that g2(|c| + n) = 0 then set En = ∅. Importantly (3.14) implies that

lim sup
n→∞

En ⊂ [c] ∩ π−1 (W�(�2)) .

Therefore to prove (3.11) it is sufficient to show that

m

(
lim sup
n→∞

En

)
� m([c]). (3.20)
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We will prove that (3.20) holds using Lemma 3.4. Before that it is necessary to check
that the hypothesis of this lemma are satisfied.

Lemma 3.11 For n ≥ N we have m(En) � m([c]) · n · g2(|c| + n)dimS(�).

Proof This lemma is obviously true if n is such that g2(|c| + n) = 0. As such we
restrict our attention to those n ≥ N for which g2(|c| + n) �= 0. Recall that by
Lemma 3.9, for distinct l, l ′ ∈ Wa we have ca1 . . . al(al+1 . . . an)ha,l al+1 . . . a ja,l �=
ca1 . . . al ′(al ′+1 . . . an)

ha,l′al ′+1 . . . a ja,l′ . Therefore we have

m(En) = m

⎛

⎝
⋃

a∈Good(n,ε)

⋃

l∈Wa

[
ca1 . . . al(al+1 . . . an)

ha,l al+1 . . . a ja,l

]
⎞

⎠

=
∑

a∈Good(n,ε)

∑

l∈Wa

m
([

ca1 . . . al(al+1 . . . an)
ha,l al . . . a ja,l

])

(3.16)�
∑

a∈Good(n,ε)

∑

l∈Wa

Diam

(
Xca1...al (al+1...an)

ha,l al+1...a ja,l

)dimS(�)

(3.15)�
∑

a∈Good(n,ε)

∑

l∈Wa

(Diam(Xca) g2(|c| + n))dimS(�)

Lemma 3.3� n · g2(|c| + n)dimS(�)
∑

a∈Good(n,ε)

Diam(Xca)
dimS(�)

(3.16)� n · g2(|c| + n)dimS(�)
∑

a∈Good(n,ε)

m([ca])

= m([c]) · n · g2(|c| + n)dimS(�)
∑

a∈Good(n,ε)

m([a])

Lemma 3.3� m([c]) · n · g2(|c| + n)dimS(�).

��
It follows from Lemma 3.7 and Lemma 3.11 that

∑∞
n=1m(En) = ∞. So our

sequence of sets (En) satisfies the hypothesis of Lemma 3.4. To complete our proof
we need to get good upper bounds for m(En ∩ Em). We restrict our attention to those
n and m satisfying n < m, g2(|c| + n) �= 0, and g2(|c| + m) �= 0. For these n and m
we see that

m(En ∩ Em) =
∑

a∈Good(n,ε)

∑

l∈Wa

m
([

ca1 . . . al(al+1 . . . an)
ha,l al+1 . . . a ja,l

]
∩ Em

)
.

The following proposition gives good upper bounds for the terms in this sum. The
parameter C in the statement of this proposition is the same C as in Lemma 3.10.

Proposition 3.12 Let n,m ≥ N be such that n < m, g2(|c|+n) �= 0,and g2(|c|+m) �=
0. Then for a ∈ Good(n, ε) and l ∈ Wa the following holds:
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I. If n < m ≤ n + C log n then

m
([

ca1 . . . al(al+1 . . . an)
ha,l al+1 . . . a ja,l

]
∩ Em

)

� m([ca])e(h+ε)km g2(|c| + n)dimS(�)g2(|c| + m)dimS(�)

+ m([ca])
(
max
a∈A

pa

)m−n

g2(|c| + m)dimS(�)

+ m · m([ca])g2(|c| + m)dimS(�)g2(|c| + n)dimS(�).

II. If m > n + C log n then

m
([

ca1 . . . al(al+1 . . . an)
ha,l al+1 . . . a ja,l

]
∩ Em

)

� m · m([ca])g2(|c| + m)dimS(�)g2(|c| + n)dimS(�).

Proof We prove each statement separately.
Proof of Statement I. Assume that n < m ≤ n + C log n. Let a ∈ Good(n, ε) and
l ∈ Wa. Ifm ≤ l+ha,l(n−l)+( ja,l −l) then at most one b ∈ Good(m, ε) is such that
[cb] has a non-empty intersection with

[
ca1 . . . al(al+1 . . . an)ha,l al+1 . . . a ja,l

]
. Let

us assume that such a b exists. Otherwisem([ca1 . . . al(al+1 . . . an)ha,l al+1 . . . a ja,l ]∩
Em) = 0 and our upper bound holds trivially. In this case we see that

m
([

ca1 . . . al(al+1 . . . an)
ha,l al+1 . . . a ja,l

]
∩ Em

)

=
∑

l ′∈Wb

m
([

ca1 . . . al(al+1 . . . an)
ha,l al+1 . . . a ja,l

]

∩
[
cb1 . . . bl ′(bl ′+1 . . . bm)hb,l′bl ′+1 . . . b jb,l′

])
.

Lemma 3.8 implies that if

m
([

ca1 . . . al(al+1 . . . an)
ha,l al+1 . . . a ja,l

]

∩
[
cb1 . . . bl ′(bl ′+1 . . . bm)hb,l′bl ′+1 . . . b jb,l′

])
�= 0

then we must have

[
ca1 . . . al(al+1 . . . an)

ha,l al+1 . . . a ja,l

]
∩ [

cb1 . . . bmbl ′+1 . . . bl ′+km

] �= ∅.

By Lemma 3.3 we know that for each l ′ ∈ Wb the cylinder set[
cb1 . . . bmbl ′+1 . . . bl ′+km

]
satisfies

m
([
cb1 . . . bmbl ′+1 . . . bl ′+km

]) ≥ m([cb]) · ekm (−h−ε).
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Therefore, by (3.17) and a measure argument we have

#
{
l ′ ∈ Wb :

[
ca1 . . . al (al+1 . . . an)

ha,l al+1 . . . a ja,l

]
∩ [

cb1 . . . bmbl ′+1 . . . bl ′+km

] �= ∅
}

� m([ca])g2(|c| + n)dimS(�)

m([cb])ekm (−h−ε)
+ 1. (3.21)

Applying the above observations we see that

∑

l ′∈Wb

m
([

ca1 . . . al (al+1 . . . an)
ha,l al+1 . . . a ja,l

]
∩
[
cb1 . . . bl ′ (bl ′+1 . . . bm)hb,l′ bl ′+1 . . . b jb,l′

])

≤
∑

l′∈Wb[
ca1 ...al (al+1 ...an )

ha,l al+1 ...a ja,l

]
∩[cb1 ...bmbl′+1 ...bl′+km

] �=∅

m
([

cb1 . . . bl ′ (bl ′+1 . . . bm)hb,l′ bl ′+1 . . . b jb,l′
])

(3.17)�
∑

l′∈Wb[
ca1 ...al (al+1 ...an )

ha,l al+1 ...a ja,l

]
∩[cb1 ...bmbl′+1 ...bl′+km

] �=∅

m([cb])g2(|c| + m)dimS (�)

(3.21)� m([ca])e(h+ε)km g2(|c| + n)dimS (�)g2(|c| + m)dimS (�) + m([cb])g2(|c| + m)dimS (�).

Because b must have a as a prefix we see that

m([cb]) ≤ m([ca])
(
max
a∈A

pa

)m−n

. (3.22)

Substituting (3.22) into the last line in the above, we have shown that if m ≤ l +
ha,l(n − l) + ( ja,l − l) then3

m([ca1 . . . al(al+1 . . . an)
ha,l al+1 . . . a ja,l ] ∩ Em)

� m([ca])e(h+ε)km g2(|c| + n)dimS(�)g2(|c| + m)dimS(�)

+ m([ca])
(
max
a∈A

pa

)m−n

g2(|c| + m)dimS(�). (3.23)

3 For the proof of Statement 3 from Theorem 1.1 we know that p =
(
A−1

)

a∈A , and as such

we can make more precise statements about the measure of cylinders. Indeed in the above we
do not need to introduce the parameter ε and (3.21) holds with ε = 0. This means that we

can strengthen (3.23) to m
([

ca1 . . . al (al+1 . . . an)ha,l al+1 . . . a ja,l

]
∩ Em

)
� m([ca])ehkm g2(|c| +

n)dimS (�)g2(|c|+m)dimS (�) +m([ca])(maxa∈A pa)m−ng2(|c|+m)dimS (�).Which by the definition of

km impliesm
([

ca1 . . . al (al+1 . . . an)ha,l al+1 . . . a ja,l

]
∩ Em

)
� m([ca])mg2(|c| + n)dimS (�)g2(|c| +

m)dimS (�) + m([ca])(maxa∈A pa)m−ng2(|c| + m)dimS (�). The rest of the proof follows identically.
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Now suppose that m > l + ha,l(n − l) + ( ja,l − l). In this case

m
([

ca1 . . . al (al+1 . . . an)ha,l al+1 . . . a ja,l

]
∩ Em

)

=
∑

b∈Good(m,ε)

b begins with a1...al (al+1...an )
ha,l al+1...a ja,l

∑

l′∈Wb

m
([

cb1 . . . bl′ (bl′+1 . . . bm )
hb,l′ bl′+1 . . . b jb,l′

])

(3.17)�
∑

b∈Good(m,ε)

b begins with a1...al (al+1...an )
ha,l al+1...a ja,l

∑

l′∈Wb

m([cb])g2(|c| + m)dimS (�)

≤ m · g2(|c| + m)dimS (�)
∑

b∈Good(m,ε)

b begins with a1...al (al+1...an )
ha,l al+1...a ja,l

m([cb])

≤ m · g2(|c| + m)dimS (�)
∑

b∈Am

b begins with a1...al (al+1...an )
ha,l al+1...a ja,l

m([cb])

= m · g2(|c| + m)dimS (�) · m
([

ca1 . . . al (al+1 . . . an)ha,l al+1 . . . a ja,l

])

(3.17)� m · m([ca])g2(|c| + m)dimS (�)g2(|c| + n)dimS (�). (3.24)

Adding together the upper bounds obtained in (3.23) and (3.24) we obtain the desired
upper bound which holds for all m satisfying n < m ≤ n + C log n.

Proof of Statement II. Assume m > n +C log n. Let a ∈ Good(n, ε) and l ∈ Wa. If
m > n+C log n then by Lemma 3.10 wemust havem > l+ha,l(n− l)+( ja,l − l). In
which case the same argument as is used in the proof of the second part of Statement
I applies and we have the desired bound

m
([

ca1 . . . al(al+1 . . . an)
ha,l al+1 . . . a ja,l

]
∩ Em

)

≤ m · m([ca])g2(|c| + m)dimS(�)g2(|c| + n)dimS(�).

��
Equipped with Proposition 3.12 we will now prove the following statement.

Proposition 3.13 There exists a constant C1 = C1(c) such that

Q∑

n,m=N

m(En ∩ Em) � m([c])
⎛

⎝
Q∑

n=N

n · g2(|c| + n)dimS(�)

+
⎛

⎝
Q∑

n=N

n · g2(|c| + n)dimS(�)

⎞

⎠
2
⎞

⎟⎠+ C1.
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Proof We start our proof by rewriting
∑Q

n,m=N m(En ∩ Em) :

Q∑

n,m=N

m(En ∩ Em) =
Q∑

n=N

m(En) + 2
Q−1∑

n=N

Q∑

m=n+1

m(En ∩ Em)

=
Q∑

n=N

m(En)

︸ ︷︷ ︸
A

+ 2
Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

m(En ∩ Em)

︸ ︷︷ ︸
B

+ 2
Q−1∑

n=N

∑

n+C log n<m≤Q

m(En ∩ Em)

︸ ︷︷ ︸
C

.

We will focus on the three terms A, B, and C individually. By Lemma 3.11 we have
the following bound for term A:

Q∑

n=N

m(En) � m([c])
Q∑

n=N

n · g2(|c| + n)dimS(�). (3.25)

Now focusing on the term B, if we apply Statement I from Proposition 3.12 we have

Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

m(En ∩ Em )

=
Q−1∑

n=N
g2(n) �=0

min{Q,n+C log n}∑

m=n+1
g2(m) �=0

∑

a∈Good(n,ε)

∑

l∈Wa

m
([

ca1 . . . al (al+1 . . . an)ha,l al+1 . . . a ja,l

]
∩ Em

)

�
Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

∑

a∈Good(n,ε)

∑

l∈Wa

m([ca])e(h+ε)km g2(|c| + n)dimS (�)g2(|c| + m)dimS (�)

︸ ︷︷ ︸
B1

+
Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

∑

a∈Good(n,ε)

∑

l∈Wa

m([ca])
(
max
a∈A pa

)m−n
g2(|c| + m)dimS (�)

︸ ︷︷ ︸
B2

+
Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

∑

a∈Good(n,ε)

∑

l∈Wa

m · m([ca])g2(|c| + m)dimS (�)g2(|c| + n)dimS (�)

︸ ︷︷ ︸
B3

.

Focusing on the term B1 in the above, we know by (3.13) that

e(h+ε)km ≤ mγ
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for some γ ∈ (1, 2). Using this inequality we have

Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

∑

a∈Good(n,ε)

∑

l∈Wa

m([ca])e(h+ε)km g2(|c| + n)dimS (�)g2(|c| + m)dimS (�)

≤
Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

∑

a∈Good(n,ε)

∑

l∈Wa

mγm([ca])g2(|c| + n)dimS (�)g2(|c| + m)dimS (�)

≤
Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

∑

a∈Good(n,ε)

n · mγm([ca])g2(|c| + n)dimS (�)g2(|c| + m)dimS (�)

≤ m([c])
Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

n · mγ g2(|c| + n)dimS(�)g2(|c| + m)dimS(�)

≤ m([c])
Q−1∑

n=N

n · g2(|c| + n)dimS (�)

min{Q,n+C log n}∑

m=n+1

mγ · g2(|c| + m)dimS (�)

It follows from Lemma 3.6 and Lemma 3.7 that g2(|c| + m)dimS(�) ≤ m−2 for all
m ∈ N. Therefore we have

m([c])
Q−1∑

n=N

n · g2(|c| + n)dimS(�)

min{Q,n+C log n}∑

m=n+1

mγ · g2(|c| + m)dimS(�)

≤ m([c])
Q−1∑

n=N

n · g2(|c| + n)dimS(�)

min{Q,n+C log n}∑

m=n+1

mγ−2

� m([c])
Q−1∑

n=N

n · g2(|c| + n)dimS(�)

∫ n+C log n

n+1
xγ−2 dx

� m([c])
Q−1∑

n=N

n · g2(|c| + n)dimS(�)
(
(n + C log n)γ−1 − (n + 1)γ−1

)

M .V .T .� m([c])
Q−1∑

n=N

n · g2(|c| + n)dimS(�) ·
(
C log n · 1

n2−γ

)

� m([c])
Q−1∑

n=N

C log n

n3−γ

� m([c])
∞∑

n=1

C log n

n3−γ
.

In the line marked M .V .T . we use the mean value theorem. In the penultimate line in
the above we used that g2(|c| + n)dimS(�) ≤ n−2. Because γ ∈ (1, 2) we know that∑∞

n=1
C log n
n3−γ < ∞. Therefore we can assert that there exists a constant C1 = C1(c)
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so that the term B1 satisfies

Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

∑

a∈Good(n,ε)

∑

l∈Wa

m([ca])e(h+ε)km

g2(|c| + n)dimS(�)g2(|c| + m)dimS(�) ≤ C1. (3.26)

Turning our attention to the term B2 we see that

Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

∑

a∈Good(n,ε)

∑

l∈Wa

m([ca])
(
max
a∈A

pa

)m−n

g2(|c| + m)dimS(�)

�
Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

∑

a∈Good(n,ε)

n · m([ca])
(
max
a∈A

pa

)m−n

g2(|c| + m)dimS(�)

� m([c])
Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

n ·
(
max
a∈A

pa

)m−n

g2(|c| + m)dimS(�)

� m([c])
Q∑

m=N+1

m−1∑

n=1

n ·
(
max
a∈A

pa

)m−n

g2(|c| + m)dimS(�)

= m([c])
Q∑

m=N+1

g2(|c| + m)dimS(�)

m−1∑

n=1

n ·
(
max
a∈A

pa

)m−n

.

Now using the fact that
∑m−1

n=1 n · (maxa∈A pa)m−n � m we see that

m([c])
Q∑

m=N+1

g2(|c| + m)dimS(�)

m−1∑

n=1

n ·
(
max
a∈A

pa

)m−n

� m([c])
Q∑

m=N+1

m · g2(|c| + m)dimS(�).

So our term B2 must satisfy

Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

∑

a∈Good(n,ε)

∑

l∈Wa

m([ca])
(
max
a∈A

pa

)m−n

g2(|c| + m)dimS(�)

� m([c])
Q∑

n=N

n · g2(|c| + n)dimS(�). (3.27)
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Now focusing on the term B3, we have

Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

∑

a∈Good(n,ε)

∑

l∈Wa

m · m([ca])g2(|c| + m)dimS(�)g2(|c| + n)dimS(�)

≤
Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

∑

a∈Good(n,ε)

n · m · m([ca])g2(|c| + m)dimS(�)g2(|c| + n)dimS(�)

≤ m([c])
Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

n · m · g2(|c| + m)dimS(�)g2(|c| + n)dimS(�)

≤ m([c])
Q−1∑

n=N

n · g2(|c| + n)dimS(�)
min{Q,n+C log n}∑

m=n+1

m · g2(|c| + m)dimS(�)

≤ m([c])
⎛

⎝
Q∑

n=N

n · g2(|c| + n)dimS(�)

⎞

⎠
2

. (3.28)

Combining (3.26), (3.27), and (3.28) we have the following bound for the term B

2
Q−1∑

n=N

min{Q,n+C log n}∑

m=n+1

m(En ∩ Em)

� m([c])
⎛

⎝
Q∑

n=N

n · g2(|c| + n)dimS(�) +
Q∑

n=N

n · g2(|c| + n)dimS(�)

⎞

⎠
2

+ C1.

(3.29)

By an analogous argument to that used to bound B3, by applying Statement II from
Proposition 3.12 it can also be shown that the term C satisfies

2
Q−1∑

n=N

∑

n+C log n<m≤Q

m(En ∩ Em) � m([c])
⎛

⎝
Q∑

n=N

n · g2(|c| + n)dimS(�)

⎞

⎠
2

.(3.30)

Combining (3.25), (3.29), and (3.30) we may conclude our desired bound

Q∑

n,m=N

m(En ∩ Em) � m([c])
⎛

⎝
Q∑

n=N

n · g2(|c| + n)dimS(�)

+
⎛

⎝
Q∑

n=N

n · g2(|c| + n)dimS(�)

⎞

⎠
2
⎞

⎟⎠+ C1.

��

123



S. Baker

Combining Proposition 3.13 together with Lemma 3.4 and Lemma 3.11 we may
conclude that

m

(
lim sup
n→∞

En

)

≥ lim sup
Q→∞

(∑Q
n=N m(En)

)2

∑Q
n,m=N m(En ∩ Em)

� lim sup
Q→∞

m([c])2
(∑Q

n=N n · g2(|c| + n)dimS (�)
)2

m([c])
(∑Q

n=N n · g2(|c| + n)dimS (�) +
(∑Q

n=N n · g2(|c| + n)dimS (�)
)2)+ C1

= lim sup
Q→∞

m([c])2
(∑Q

n=N n · g2(|c| + n)dimS (�)
)2

m([c])
(∑Q

n=N n · g2(|c| + n)dimS (�) +
(∑Q

n=N n · g2(|c| + n)dimS (�)
)2)

� m([c]).

Thus (3.20) holds and our proof of Statement 2 from Theorem 1.1 is complete. We
emphasise that in the penultimate line in the above we used the fact that the constant
C1 does not affect the limit. This is important because the implicit constant in (3.20)
needs to be independent of c if we want to apply Lemma 3.5.

4 An application of themass transference principle

The mass transference principle of Beresnevich and Velani [10] is a powerful tool that
allows one to derive information on the Hausdorff measure of a limsup set. We do not
state it in its full generality, but instead content ourselves with the following which is
better suited for our purposes.

Let X ⊂ Rd . Then X is said to be Ahlfors regular if there exists C1,C2 > 0 such
that

C1r
dimH (X) ≤ HdimH (X)(B(x, r) ∩ X) ≤ C2r

dimH (X)

for all x ∈ X and r sufficiently small. Given an Ahlfors regular set X , a ball B(x, r) in
X , and s > 0, we let Bs = B

(
x, rs/ dimH (X)

)
. The following theorem is a simplified

version of Theorem 3 from [10].

Theorem 4.1 Let X be Ahlfors regular and (Bl) be a sequence of balls in X with radii
tending to zero. Let s > 0 and suppose that for any ball B in X we have

HdimH (X)

(
B ∩ lim sup

l→∞
Bs
l

)
= HdimH (X)(B).
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Then, for any ball B in X

Hs
(
B ∩ lim sup

l→∞
Bl

)
= Hs(B).

It is a well known fact that if an IFS � satisfies the open set condition then the corre-
sponding self-similar set is Ahlfors regular. It is also well known that if � satisfies the
open set condition thenμ is equivalent to the restriction ofHdimS(�) on X . Combining
these facts together with Theorem 1.1 and Theorem 4.1, we may deduce the following
statement.

Theorem 4.2 Let � = {φa}a∈A be an IFS which satisfies the open set condition. Let
� : ∪∞

n=1An → [0,∞) be given by �(a) = Diam(Xa)g(|a|) for some function
g : N → [0,∞) satisfying

∞∑

n=1

∑

a∈An

n · (Diam(Xa)g(n))dimS(�) = ∞.

For t ≥ 1 let� t : ∪∞
n=1An → [0,∞) be given by� t (a) = �(a)t . Then the following

statements are true:

1. Assume that

hp < −2 log
∑

a∈A
p2a

and that g is non-increasing. Then for any t ≥ 1 we haveHdimH (X)/t (W�(� t )) =
HdimH /t (X).

2. If � is equicontractive then for any t ≥ 1 we have HdimH (X)/t (W�(� t )) =
HdimH /t (X).

We emphasise that if � is not equicontractive and � is of the form �(a) =
Diam(Xa)g(|a|), then for t > 1 there exists no gt : N → [0,∞) such that � t

satisfies � t (a) = Diam(Xa)gt (|a|) for all a ∈ A. As such Theorem 4.2 allows us to
make positive measure statements about a new class of functions.

We conclude this section by mentioning that by following the arguments used in
Sect. 2, one can use Theorem 4.2 to prove a number of statements on the Hausdorff
measure of certain limsup sets arising from the study of intrinsic Diophantine Approx-
imation on self-similar sets. We leave the details to the interested reader.
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