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Operators Induced by Radial Measures
Acting on the Dirichlet Space

Petros Galanopoulos, Daniel Girela , Alejandro Mas, and
Noel Merchán

Abstract. Let D be the unit disc in the complex plane. Given a posi-
tive finite Borel measure µ on the radius [0, 1), we let µn denote the
n-th moment of µ and we deal with the action on spaces of analytic
functions in D of the operator of Hibert-type Hµ and the operator of
Cesàro-type Cµ which are defined as follows: If f is holomorphic in D,
f(z) =

∑∞
n=0 anz

n (z ∈ D), then Hµ(f) is formally defined by Hµ(f)(z) =
∑∞

n=0

(∑∞
k=0 µn+kak

)
zn (z ∈ D) and Cµ(f) is defined by Cµ(f)(z) =

∑∞
n=0 µn

(∑n
k=0 ak

)
zn (z ∈ D). These are natural generalizations of the

classical Hilbert and Cesàro operators. A good amount of work has been
devoted recently to study the action of these operators on distinct spaces
of analytic functions in D. In this paper we study the action of the op-
erators Hµ and Cµ on the Dirichlet space D and, more generally, on the
analytic Besov spaces Bp (1 ≤ p < ∞).
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1. Introduction

The open unit disc in the complex plane C will be denoted by D and Hol(D)
will stand for the space of all analytic functions in D. Also, dA will denote
the area measure on D, normalized so that the area of D is 1. Thus dA(z) =
1
π dxdy = 1

π rdrdθ.
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For 0 ≤ r < 1, 0 < p ≤ ∞, and f analytic in D, the integral means
Mp(r, f) of f are defined by

Mp(r, f) =
(

1
2π

∫ 2π

0

∣
∣f(reiθ)

∣
∣p dθ

)1/p

, 0 < p < ∞,

M∞(r, f) = max
|z|=r

|f(z)|.

For 0 < p ≤ ∞ the Hardy space Hp consists of those functions f , analytic in
D, for which

||f ||Hp

def= sup
0<r<1

Mp(r, f) < ∞.

We refer to [20] for the theory of Hardy spaces.
For 0 < p < ∞ and α > −1 the weighted Bergman space Ap

α consists of
those f ∈ Hol(D) such that

‖f‖Ap
α

def=
(

(α + 1)
∫

D

(1 − |z|2)α|f(z)|p dA(z)
)1/p

< ∞.

The unweighted Bergman space Ap
0 is simply denoted by Ap. We refer to

[21,31,48] for the notation and results about Bergman spaces.
The space of Dirichlet type Dp

α (0 < p < ∞, α > −1) is the space of
those f ∈ Hol(D) such that f ′ ∈ Ap

α. Thus, a function f ∈ Hol(D) belongs to
Dp

α if and only if

‖f‖Dp
α

def= |f(0)| +
(

(α + 1)
∫

D

(1 − |z|2)α|f ′(z)|p dA(z)
)1/p

< ∞.

In this paper we shall be mainly concerned with the Dirichlet space D = D2
0

which consists of those f ∈ Hol(D) whose image Riemann surface has a finite
area. We recall that if f ∈ D, f(z) =

∑∞
n=0 anzn (z ∈ D), then

‖f‖D
def
= ‖f‖D2

0
= |f(0)| +

(∫

D

|f ′(z)|2 dA(z)

)1/2

= |a0|+
( ∞∑

k=1

k|ak|2
)1/2

. (1.1)

Throughout the paper μ will be a positive finite Borel measure on the
radius [0, 1) and, for n = 0, 1, 2, . . . , we shall let μn denote the moment of
order n of μ, that is, μn =

∫
[0,1)

tn dμ(t). The matrices Hμ and Cμ are defined
as follows

Hμ =

⎛

⎜
⎜
⎜
⎜
⎝

μ0 μ1 μ2 . .
μ1 μ2 μ3 . .
μ2 μ3 μ4 . .
. . . . .
. . . . .

⎞

⎟
⎟
⎟
⎟
⎠

; Cμ =

⎛

⎜
⎜
⎜
⎜
⎝

μ0 0 0 0 . .
μ1 μ1 0 0 . .
μ2 μ2 μ2 0 . .
. . . . . .
. . . . . .

⎞

⎟
⎟
⎟
⎟
⎠

.
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As we shall see in Sects. 2 and 3, these matrices induce operators acting
on spaces of analytic functions which are natural generalizations of the classi-
cal Hilbert and Cesàro operators. Recently a good amount of work has been
devoted to study the action of these operators of Hilbert type and of Cesàro
type on distinct subspaces of Hol(D). Carleson-type measures play a basic role
in this work.

Let us recall that if μ is a positive finite Borel measure on [0, 1) then:
• If s > 0, then μ is said to be an s-Carleson measure if there exists a

positive constant C such that

μ ([t, 1)) ≤ C(1 − t)s, 0 ≤ t < 1.

• If 0 ≤ α < ∞, and 0 < s < ∞ we say that μ is an α-logarithmic
s-Carleson measure if there exists a positive constant C such that

μ ([t, 1)) ≤ C(1 − t)s

(

log
2

1 − t

)−α

, 0 ≤ t < 1.

Let us close this section by saying that, as usual, we shall be using the
convention that C = C(p, α, q, β, . . . ) will denote a positive constant which de-
pends only upon the displayed parameters p, α, q, β . . . (which sometimes will
be omitted) but not necessarily the same at different occurrences. Further-
more, for two real-valued functions K1,K2 we write K1 � K2, or K1 � K2,
if there exists a positive constant C independent of the arguments such that
K1 ≤ CK2, respectively K1 ≥ CK2. If we have K1 � K2 and K1 � K2 simul-
taneously, then we say that K1 and K2 are equivalent and we write K1 � K2.

2. Hilbert-Type Operators

The matrix Hμ induces formally an operator, which will be also called Hμ, on
spaces of analytic functions by its action on the Taylor coefficients:

an �→
∞∑

k=0

μn+kak, n = 0, 1, 2, . . . .

To be precise, if f(z) =
∑∞

k=0 akzk ∈ Hol(D) we define

Hμ(f)(z) =
∞∑

n=0

( ∞∑

k=0

μn+kak

)

zn, (2.1)

whenever the right hand side makes sense and defines an analytic function in
D.

If μ is the Lebesgue measure on [0, 1) the matrix Hμ reduces to the
classical Hilbert matrix H =

(
(n + k + 1)−1

)
n,k≥0

, which induces the classical
Hilbert operator H which has extensively studied recently (see [1,16,17,19,32–
34]).
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The finite positive Borel measures μ for which Hμ is a bounded operator
on distinct spaces of analytic functions in D have been characterized in a
number of papers such as [9,14,25,27–29,35,37,38,45]. Obtaining an integral
representation of Hμ plays a basic role in these works. If μ is as above, we
shall write throughout the paper

Iμ(f)(z) =
∫

[0,1)

f(t)
1 − tz

dμ(t), (2.2)

whenever the right hand side makes sense and defines an analytic function in
D. It turns out that the operators Hμ and Iμ are very closely related.

Let us mention the following results.

Theorem A. Let μ be a positive Borel measure on [0, 1). Then
(i) The operator Hμ is bounded from H1 into itself if and only if μ is a 1-

logarithmic 1-Carleson measure. In such a case Hμ and Iμ coincide on
H1.

(ii) If 1 < p < ∞, then Hμ is a bounded operator from Hp into itself if and
only if μ is a 1-Carleson measure. In such a case Hμ and Iμ coincide on
Hp.

(iii) If p > 1 and −1 < α < p − 2 then the operator Hμ is well defined on
Ap

α and it is bounded from Ap
α into itself if and only if μ is a 1-Carleson

measure. In such a case Hμ and Iμ coincide on Ap
α.

(iv) If p > 1 and p − 2 < α ≤ p − 1, then Hμ is well defined on Dp
α and it is

bounded from Dp
α into itself if and only if μ is a 1-Carleson measure. In

such a case Hμ and Iμ coincide on Dp
α.

(v) If 0 < α < 2, Hμ is a bounded operator from D2
α into itself if and only if

μ is a 1-Carleson measure. In such a case Hμ and Iμ coincide on D2
α.

The questions of characterizing those μ for which Hμ is bounded on either
the Dirichlet space D or on the Bergman space A2 are more delicate and remain
open. Regarding the Dirichlet space, the following results are proved in [28].

Theorem B. (i) Let μ be a positive and finite Borel measure on [0, 1). If
γ > 1 and μ is a γ-logarithmic 1-Carleson measure, then Hμ is bounded
from D into itself.

(ii) If 0 < β ≤ 1
2 , then there exists a positive and finite Borel measure μ on

[0, 1) which is a β-logarithmic 1-Carleson measure but such that Hμ(D) 
⊂
D.

We improve this result showing that being a 1-logarithmic 1-Carleson
measure is enough to insure that Hμ is bounded from D into itself and closing
the gap between (i) and (ii). Indeed, we shall prove the following result.

Theorem 1. (i) Let μ be a positive and finite Borel measure on [0, 1). If μ
is a 1-logarithmic 1-Carleson measure, then Hμ is bounded from D into
itself.
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(ii) If 0 < β < 1, then there exists a positive and finite Borel measure μ on
[0, 1) which is a β-logarithmic 1-Carleson measure but such that Hμ(D) 
⊂
D.

As a corollary of part (i) we obtain the following.

Corollary 2. (a) Let μ be a positive and finite Borel measure on [0, 1) and
suppose that μ is a 1-logarithmic 1-Carleson measure. Then there exists
a positive constant C such that

∫

[0,1)

|tf(t)f ′(t)| dμ(t) ≤ C‖f‖2
D, f ∈ D. (2.3)

(b) There exists a positive constant C such that
∫ 1

0

|tf(t)f ′(t)| log
2

1 − t
dt ≤ C‖f‖2

D, f ∈ D. (2.4)

Regarding the Bergman space A2, Theorem 1.5 of [25] asserts the follow-
ing.

Theorem C. Let μ be a positive and finite Borel measure on [0, 1) and let hμ

be defined by hμ(z) =
∑∞

n=0 μnzn (z ∈ D.) If μ satisfies the condition
∫

[0,1)

μ ([t, 1))
(1 − t)2

dμ(t) < ∞, (2.5)

then Hμ is bounded from A2 into itself if and only if the measure |h′
μ(z)|2dA(z)

is a Dirichlet-Carleson measure.

We recall that a finite positive Borel measure ν on D is said to be a
Dirichlet-Carleson messure if D is continuously embedded in L2(dν). Stegenga
[43] gave a characterization of these measures involving the logarithmic ca-
pacity of a finite union of intervals of ∂D. Shields [39] obtained a simpler
characterization when dealing with measures supported on [0, 1). This result
of Shields will be used below.

Using Theorem 1 we shall prove the following result.

Theorem 3. (i) Let μ be a positive and finite Borel measure on [0, 1). If μ
is a 1-logarithmic 1-Carleson measure, then Hμ is bounded from A2 into
itself.

(ii) If 0 < β < 1, then there exists a positive and finite Borel measure
μ on [0, 1) which is a β-logarithmic 1-Carleson measure but such that
Hμ(A2) 
⊂ A2.

In order to prove our results we start using the above mentioned result
of Shields [39] to find a weak condition which insures that Hμ and Iμ are well
defined in D and that Hμ(f) = Iμ(f) for all f ∈ D.
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Proposition 4. Let μ be a positive and finite Borel measure on [0, 1). If there
exists a positive constant C such that

μ ([t, 1)) ≤ C

(

log
2

1 − t

)−1

, 0 < t < 1, (2.6)

then Hμ and Iμ are well defined in D and, furthermore, Hμ(f) = Iμ(f) for
all f ∈ D.

Proof. Suppose that μ satisfies (2.6). Shields proved in [39, Theorem 2] that
this is equivalent to saying that there exists a positive constant A such that

∫

[0,1)

|f(t)|2 dμ(t) ≤ A‖f‖2
D, f ∈ D. (2.7)

We can express (2.7) simply by saying that μ is a radial Carleson-Dirichlet
measure. Also, it is easy to see that (2.6) implies that there exists B > 0 such
that

μn ≤ B

log(n + 2)
, n = 0, 1, 2, . . . . (2.8)

Take f ∈ D, f(z) =
∑∞

n=0 anzn (z ∈ D).
Let us prove that Iμ(f) is well defined.
Using (2.7) and (2.8), we see that
∫

[0,1)

tn|f(t)| dμ(t) ≤
(∫

[0,1)

t2n dμ(t)

)1/2 (∫

[0,1)

|f(t)|2 dμ(t)

)1/2

≤ A1/2μ
1/2
2n ‖f‖D

≤ A1/2B1/2‖f‖D
(log(2n + 2))1/2

,

for all n. Then we have
∞∑

n=0

(∫

[0,1)

tn|f(t)| dμ(t)

)

|z|n �
∞∑

n=0

|z|n
(log(2n + 2))1/2

, z ∈ D.

This implies that, for all z ∈ D, the integral
∫

[0,1)

f(t)
1 − tz

dμ(t) =
∫

[0,1)

f(t)

( ∞∑

n=0

tnzn

)

dμ(t)

converges and that
∫

[0,1)

f(t)
1 − tz

dμ(t) =
∞∑

n=0

(∫

[0,1)

tnf(t) dμ(t)

)

zn, z ∈ D.

So Iμ(f) is a well defined analytic function in D and

Iμ(f)(z) =
∞∑

n=0

(∫

[0,1)

tnf(t) dμ(t)

)

zn, z ∈ D. (2.9)
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Let us see now that Hμ(f) is also well defined and that Hμ(f) = Iμ(f).
Using (2.8), for all n, we have

∞∑

k=0

|μn+kak| � μn|a0| +
∞∑

k=1

k1/2|ak|
k1/2 log(n + k + 2)

� μ0|a0| +

( ∞∑

k=1

k|ak|2
)1/2 ( ∞∑

k=1

1
k (log(k + 1))2

)1/2

� ‖f‖D.

Clearly, this implies that Hμ is a well defined analytic function in D. Also,

∫

[0,1)

tnf(t) dμ(t) =
∫

[0,1)

tn

( ∞∑

k=0

aktk

)

dμ(t) =
∞∑

k=0

μn+kak

for all k. Then (2.9) yields that Hμ(f) = Iμ(f). �

Let us turn now to prove Theorem 1

Proof of Theorem 1 (i). Suppose that μ is a 1-logarithmic 1-Carleson measure.
Take f ∈ D, f(z) =

∑∞
k=0 akzk (z ∈ D). Proposition 4 implies that Hμ(f) and

Iμ(f) are well defined and that Hμ(f) = Iμ(f). The above mentioned result
of Shields yields that

|Hμ(f)(0)| = |Iμ(f)(0)| =

∣
∣
∣
∣
∣

∫

[0,1)

f(t) dμ(t)

∣
∣
∣
∣
∣

�
(∫

[0,1)

|f(t)|2 dμ(t)

)1/2

� ‖f‖D. (2.10)

Since μ is a 1-logarithmic 1-Carleson measure,

μn = O
(

1
n log(n + 1)

)

, (2.11)

(see e. g. [28, pp. 380-381]). Using (2.10) and (2.11), we obtain

‖Hμ(f)‖2
D � |Hμ(f)(0)|2 +

∞∑

n=1

n

( ∞∑

k=0

μn+k|ak|
)2

� ‖f‖2
D +

∞∑

n=1

n

( ∞∑

k=0

|ak|
(n + k) log(n + k + 1)

)2

� ‖f‖2
D + I + II,
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where

I =
∞∑

n=1

n

(
n∑

k=0

|ak|
(n + k) log(n + k + 1)

)2

,

II =
∞∑

n=1

n

( ∞∑

k=n+1

|ak|
(n + k) log(n + k)

)2

.

Now, using a result of Holland and Walsh [30, Theorem 7] and simple estimates
we deduce that

I =
∞∑

n=1

n

(
n∑

k=0

|ak|
(n + k) log(n + k + 1)

)2

≤
∞∑

n=1

1
n (log(n + 1))2

(
n∑

k=0

|ak|
)2

� ‖f‖2
D.

Also, since, for every n,

∞∑

k=n+1

|ak|
(n + k) log(n + k)

≤ 1

log(n + 1)

∞∑

k=n+1

k1/2|ak|
k1/2(n + k)

≤ 1

log(n + 1)

( ∞∑

k=n+1

k|ak|2
)1/2 ( ∞∑

k=n+1

1

k(n + k)2

)1/2

≤ ‖f‖D
log(n + 1)

( ∞∑

k=n+1

1

k(n + k)2

)1/2

≤ ‖f‖D
n1/2 log(n + 1)

( ∞∑

k=n+1

1

(n + k)2

)1/2

� ‖f‖D
n log(n + 1)

,

it follows that

II =
∞∑

n=1

n

( ∞∑

k=n+1

|ak|
(n + k) log(n + k)

)2

� ‖f‖2
D

∞∑

n=1

1
n (log(n + 1))2

� ‖f‖2
D.

Putting everything together, we obtain ‖Hμ(f)‖2
D � ‖f‖2

D. �
Proof of Theorem 1 (ii). Suppose that 0 < β < 1. Take α ∈ R with

1
2

< α < min
(

1,
3 − 2β

2

)

.
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Let μ be the Borel measure on [0, 1) defined by dμ(t) =
(
log 2

1−t

)−β

dt. Then
(see [28, p. 392]) μ is a β-logarithmic 1-Carleson measure and

μn � 1

n [log(n + 1)]β
.

Set an = 1
(n+1)[log(n+1)]α (n = 1, 2, . . . ) and g(z) =

∑∞
n=1 anzn (z ∈ D).

The condition α > 1
2 implies that g ∈ D. We are going to see that

Hμ(g) /∈ D, this will finish the proof.
We have

‖Hμ(g)‖2
D �

∞∑

n=2

n

(
n∑

k=2

μn+kak

)2

�
∞∑

n=2

n

(
n∑

k=2

1

(n + k) [log(n + k)]β k [log k]α

)2

�
∞∑

n=2

n

n2 [log n]2β

(
n∑

k=2

1
k [log k]α

)2

=
∞∑

n=2

1

n [log n]2β

(
n∑

k=2

1
k [log k]α

)2

�
∞∑

n=2

1

n [log n]2β+2α−2
.

Since 2α + 2β − 2 < 1,
∑∞

n=2
1

n[log n]2β+2α−2 = ∞ and, hence, Hμ(g) /∈ D as
desired. �

Proof of Corollary 2. The Dirichlet space is a Hilbert space with the inner
product

< f, g >= f(0)g(0) +
∫

D

f ′(z)g′(z) dA(z), f, g ∈ D.

Hence, D is identifiable with its dual with this pairing.
Assume that μ is a finite Borel measure on [0, 1) which is a 1-logarithmic

1-Carleson measure. If f ∈ D, using Theorem 1, we see that Hμ(f) ∈ D and
‖Hμ(f)‖D � ‖f‖D. Then Hμ(f) induces a bounded linear functional on D
with norm controlled by ‖f‖D. Thus

∣
∣
∣
∣

∫

D

Hμ(f)′(z)g′(z) dA(z)
∣
∣
∣
∣ � ‖f‖D‖g‖D, f, g ∈ D. (2.12)
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Now, using the definitions, Fubini’s theorem, and the reproducing formula for
the Bergman space A2, we have

∫

D

Hμ(f)′(z)g′(z) dA(z) =
∫

D

(∫

[0,1)

tf(t)
(1 − tz)2

dμ(t)

)

g′(z) dA(z)

=
∫

[0,1)

tf(t)

(∫

D

g′(z)
(1 − tz)2

dA(z)

)

dμ(t)

=
∫

[0,1)

tf(t)g′(t) dμ(t).

Using (2.12), we obtain
∣
∣
∣
∣
∣

∫

[0,1)

tf(t)g′(t) dμ(t)

∣
∣
∣
∣
∣
� ‖f‖D‖g‖D, f, g ∈ D. (2.13)

Take f, g ∈ D, f(z) =
∑∞

n=0 anzn, g(z) =
∑∞

n=0 bnzn (z ∈ D). Set

f1(z) =
∞∑

n=0

|an|zn, g1(z) =
∞∑

n=0

|bn|zn (z ∈ D).

Then f1, g1 ∈ D, ‖f1‖D = ‖f‖D, and ‖g1‖D = ‖g‖D. Using (2.13) with f1 and
g1 in the places of f and g, we obtain

∫

[0,1)

∣
∣
∣tf(t)g′(t)

∣
∣
∣ dμ(t) ≤

∫

[0,1)

∣
∣
∣tf1(t)g′

1(t)
∣
∣
∣ dμ(t)

�‖f1‖D‖g1‖D
= ‖f‖D‖g‖D.

Taking f = g, (2.3) follows.
Part (b) follows taking dμ(t) = log 2

1−t dt in part (a). �

Proof of Theorem 3. Our proof of Theorem 3 is based on the fact that the
pairing

< f, g >= f(0)g(0) +
∫

D

f ′(z)
(

g(z) − g(0)
z

)

dA(z), f ∈ D, g ∈ A2

is a “duality paring” between the Dirichlet space D and the Bergman space
A2. Notice that if f(z) =

∑∞
n=0 anzn and g(z) =

∑∞
n=0 bnzn (z ∈ D), then

< f, g >=
∞∑

n=0

anbn.

It is a simple exercise to show that < Hμ(P ), Q >=< P,Hμ(Q) > if P and Q
are polynomials. Then it follows that if Hμ is a bounded operator from D into
itself then its adjoint (via this pairing) is Hμ, and then we see that Hμ is a
bounded operator from A2 into itself. Using this and Theorem 1 (i) we obtain
part (a) of Theorem 3.
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Similarly, if Hμ is a bounded operator from A2 into itself, then Hμ is also
a bounded operator from D into itself and then part (b) of Theorem 3 follows
using Theorem 1 (ii). �

3. Cesàro-Type Operators

For μ a finite positive Borel measure on [0, 1) as above, the matrix Cμ induces a
linear operator, also called Cμ, from Hol(D) into itself as follows: If f ∈ Hol(D),
f(z) =

∑∞
n=0 anzn (z ∈ D),

Cμ(f)(z) =
∞∑

n=0

(

μn

n∑

k=0

ak

)

zn, z ∈ D.

Let us remark that the operator Cμ has the following integral representation:
If f ∈ Hol(D) then

Cμ(f)(z) =
∫

[0,1)

f(tz)
1 − tz

dμ(t), z ∈ D. (3.1)

When μ is the Lebesgue measure on [0, 1), the operator Cμ reduces to the
classical Cesàro operator C.

The Cesàro operator C acting on distinct subspaces of Hol(D) has been
extensively studied in a good number of articles such as [2,10,12,15,23,36,40–
42,44]. Let us recall that it is bounded on Hp (0 < p < ∞) and on Ap

α

(0 < p < ∞, α > −1).
The operators Cμ were introduced in [23] where, among other results, it

was proved that the following conditions are equivalent:

(i) μ is a Carleson measure, that is, μ([t, 1)) ≤ C(1 − t) (0 < t < 1).
(ii) μn = O

(
1
n

)
.

(iii) 1 ≤ p < ∞ and Cμ is bounded from Hp into itself.
(iv) 1 < p < ∞, α > −1, and Cμ is bounded from Ap

α into itself.

Blasco [12] has generalized the definition of the operators Cμ by dealing
with complex Borel measures on [0, 1) and he has extended results of [23] to
this more general setting.

A further generalization has been given in [24] by working with the op-
erators Cμ associated to arbitrary complex Borel measures on D, not neces-
sarily supported on a radius. The complex Borel measures on D for which the
operator Cμ is bounded or Hilbert-Schmidt on H2 or on A2

α (α > −1) are
characterized in the mentioned paper [24].

We devote this section to study the operators Cμ on the Dirichlet space,
a question which has not been considered in the just mentioned papers. Our
main results are contained in the following two theorems.
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Theorem 5. Let μ be a finite positive Borel measure on [0, 1).

(i) If μ is a 1-logarithmic 1-Carleson measure, then Cμ is a bounded operator
from the Dirichlet space D into itself.

(ii) If Cμ is a bounded operator from D into itself then μ is a 1/2-logarithmic
1-Carleson measure.

Theorem 6. Suppose that 1
2 < β < 1. Then there exists a finite positive

Borel measure μ on [0, 1) which is β-logarithmic 1-Carleson measure for which
Cμ(D) 
⊂ D.

Proof of Theorem 5 (i). Since μ is a 1-logarithmic 1-Carleson measure, we
have that

μn = O
(

1
(n + 1) log(n + 2)

)

. (3.2)

Take f ∈ D, f(z) =
∑∞

n=0 anzn (z ∈ D). Using (3.2) and Theorem 7 of [30],
we obtain

‖Cμ(f)‖2
D ≤

∞∑

n=0

(n + 1)μ2
n

(
n∑

k=0

|ak|
)2

�
∞∑

n=0

(
∑n

k=0 |ak|)2
(n + 1)[log(n + 2)]2

� ‖f‖2
D.

�

Proof of Theorem 5 (ii). Suppose that Cμ is a bounded operator from D into
itself. For N ∈ N, set

fN (z) =
N∑

n=1

zn

n
, z ∈ D.

Then,

‖fN‖2
D =

N∑

n=1

1
n

� log(N + 1).

Since Cμ is bounded on D, bearing in mind that the sequence of moments {μn}
is decreasing, we have

log(N + 1) � ‖fN‖2
D �

∞∑

n=1

nμ2
n

(
n∑

k=1

1
k

)2

� μ2
N

N∑

n=1

n[log(n + 1)]2 � μ2
NN2[log(N + 1)]2.
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Then it follows that μN = O
(

1
N [log(N+1)]1/2

)
. This implies that μ is a 1/2-

logarithmic 1-Carleson measure. �

Proof of Theorem 6. Assume that 1/2 < β < 1. Let μ be the Borel measure

on [0, 1) defined by dμ(t) =
(
log 2

1−t

)−β

dt. Then, as mentioned before, μ is

a β-logarithmic 1-Carleson measure and μn � 1
n[log(n+1)]β

.

Set α = β − 1
2 . Then 0 < α < 1

2 . Define

g(z) =
(

log
2

1 − z

)α

=
∞∑

n=0

Anzn, z ∈ D.

We have that

An � 1
(n + 1)[log(n + 2)]1−α

.

Since α < 1
2 , we have that g ∈ D. Also

‖Cμ(g)‖2
D ≥

∞∑

n=2

nμ2
n

(
n∑

k=2

Ak

)2

�
∞∑

n=2

n

n2[log n]2β [log n]−2α

=
∞∑

n=2

1
n[log n]2(β−α)

=
∞∑

n=2

1
n[log n]

= ∞.

�

Danikas and Siskakis [15] proved that C(H∞) 
⊂ H∞ and that C(H∞) ⊂
BMOA. This was improved by Essén and Xiao who proved in [22] that
C(H∞) ⊂ Qp for 0 < p < ∞. This result has been sharpened in [10].

We recall that BMOA is the space of those functions f ∈ H1 whose
boundary values have bounded mean oscillation. Alternatively, a function f ∈
Hol(D) belongs to BMOA if and only if

sup
T∈Aut(D)

‖f ◦ T − f(T (0))‖H2 < ∞,

where Aut(D) denotes the set of all Möbius transformations from D onto itself.
We refer to [26] for the theory of BMOA-functions.

For 0 < s < ∞ the space Qs consists of those f ∈ Hol(D) such that

sup
T∈Aut(D)

∫

D

|f ′(z)|2(1 − |T (z)|2)s dA(z) < ∞.

The spaces Qs were introduced in [6] and [7]. We refer to [46] for the theory
of Qs spaces. Let us recall that

D � Qs1 � Qs2 � Q1 = BMOA, 0 < s1 < s2 < 1.
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For s > 1 the space Qs coincides with the Bloch space B of those functions
f ∈ Hol(D) for which

‖f‖B
def= |f(0)| + sup

z∈D

(1 − |z|2)|f ′(z)| < ∞.

The paper [3] is an excellent reference for the theory of Bloch functions. Let
us recall that BMOA � B.

Blasco [12] has proved that

C(H∞) ⊂
⋂

1<p<∞
Λp

1/p. (3.3)

Here, for p ≥ 1, Λp
1/p is the space of those functions f ∈ Hol(D) having a non-

tangential limit at almost every point of ∂D and so that ωp(·, f), the integral
modulus of continuity of order p of the boundary values f(eiθ) of f , satisfies
ωp(δ, f) = O(δ1/p), as δ → 0. Classical results of Hardy and Littlewood (see
[13] and [20, Chapter 5]) show that Λp

1/p ⊂ Hp and that

Λp
1/p =

{

f analytic in D : Mp(r, f ′) = O

(
1

(1 − r)1− 1
p

)

, as r → 1

}

.

In particular, Λ1
1 is the space of those f ∈ Hol(D) such that f ′ ∈ H1. The

spaces Λp
1/p increase with p and they are all contained in BMOA [13]. Since

Λ2
1/2 ⊂ Qs for all s > 0 (see [5, p. 427]), (3.3) improves the mentioned result

in [22].
Bao, Sun and Wulan [8, Theorem 3.1] have proved that for any given

s > 0, Cμ(H∞) ⊂ Qs if and only if μ is a Carleson measure.
It is natural to look for a result like (3.3) with D in the place of H∞. It

is easy to see that

C(D) 
⊂ B. (3.4)

Indeed, set an = 1
(n+1) log(n+1) (n ≥ 1) and f(z) =

∑∞
n=1 anzn (z ∈ D). Then

f ∈ D and, setting An =
∑n

k=1 ak, we have, for 0 < r < 1,

(1 − r)C(f)′(r) = (1 − r)
∞∑

n=1

n

n + 1
Anrn−1 ≥ 1

2
(1 − r)

∞∑

n=1

Anrn−1

=
1
2

[

A1 +
∞∑

n=2

(An − An−1)rn−1

]

=
1
2

[

A1 +
∞∑

n=2

anrn−1

]

� log log
2

1 − r
.

Hence, C(f) 
∈ B.
The next natural step is trying to characterize the measures μ such that

Cμ(D) ⊂ B. We have the following result.
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Theorem 7. Let X be a Banach space of analytic functions in D with Λ2
1/2 ⊂

X ⊂ B and let μ be a positive finite Borel measure on [0, 1).
(i) If μ is a 1

2 -logarithmic 1-Carleson measure, then Cμ is a bounded operator
from D into X.

(ii) If Cμ is a bounded operator from D into X and 0 < β < 1
2 , then μ is a

β-logarithmic 1-Carleson measure.

Proof. Suppose that μ is a 1
2 -logarithmic 1-Carleson measure. Then

μn � 1
n[log(n + 1)]1/2

. (3.5)

Take f ∈ D, f(z) =
∑∞

n=0 anzn (z ∈ D). We have

Cμ(f)(z) =
∞∑

n=0

μn

(
n∑

k=0

ak

)

zn =
∞∑

n=0

Anzn,

where An = μn (
∑n

k=0 ak). We have,
∣
∣
∣
∣
∣

n∑

k=0

ak

∣
∣
∣
∣
∣
≤ |a0| +

n∑

k=1

k1/2|ak|
k1/2

≤ |a0| +

(
n∑

k=1

k|ak|2
)1/2 (

n∑

k=1

1
k

)1/2

� ‖f‖D[log(n + 1)]1/2.

This and (3.5) imply that |An| � ‖f‖D
n a fact which easily yields that Cμ(f) ∈

Λ2
1/2. This finishes the proof of (i).

Let us turn to prove (ii). Assume that 0 < β < 1
2 and that Cμ is a bounded

operator from D into X.
Since X ⊂ B, Cμ is a bounded operator from D into B.
Set α = 1 − β, and f(z) =

∑∞
n=0

zn

(n+1)[log(n+2)]α (z ∈ D).
Notice that 1

2 < α < 1. This implies that f ∈ D and, hence, Cμ(f) ∈ B.
Then, bearing in mind that the sequence {μn} is decreasing, we see that, for
0 < r < 1 and N ∈ N,

1
1 − r

�
∞∑

n=1

nμn

(
n∑

k=1

1
(k + 1)[log(k + 2)]α

)

rn−1

≥
N∑

n=1

nμn

(
n∑

k=1

1
(k + 1)[log(k + 2)]α

)

rn

� μN

N∑

n=1

n[log(n + 2)]1−αrn.

Taking r = 1 − 1
N , we obtain

N � μNN2[log(N + 2)]1−α = μNN2[log(N + 2)]β
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and, hence, μN � 1
N [log(N+2)]β

. This implies that μ is a β-logarithmic 1-
Carleson measure. �

4. Extensions to Besov Spaces

The Dirichlet space is one among the analytic Besov spaces Bp. For 1 < p < ∞,
the analytic Besov space Bp is the space Dp

p−2. Thus B2 = D.
The minimal Besov space B1 requires a special definition. It is the space

of all f ∈ Hol(D) such that f ′′ ∈ A1. It is a Banach space with the norm ‖·‖B1

defined by ‖f‖B1 = |f(0)| + |f ′(0)| + ‖f ′′‖A1 .
The Besov spaces Bp form a nested scale of conformally invariant spaces

and they are all contained in BMOA:

Bp
� Bq

� BMOA � B, 1 ≤ p < q < ∞.

Also Bp
� Λp

1/p for all p ∈ [1,∞). We mention [4,11,18,30,47,48] for informa-
tion on Besov spaces. Let us remark that, letting dλ be the Möbius invariant
measure on D defined by dλ(z) = dA(z)

(1−|z|2)2 , we have:

(a) The Bergman projection P is a continuous linear operator from L∞(D)
onto the Bloch space B,

(b) For 1 < p < ∞, the Bergman projection P is a continuous linear operator
from Lp(dλ) onto Bp

(see [48, Chapter 5]).
Our aim in this section is trying to extend to the spaces Bp some of the

results obtained in the preceding ones for the Dirichlet space.
For the space B1 we have the following result.

Theorem 8. Let μ be positive finite Borel measure on [0, 1). Then the following
conditions are equivalent.

(i)
∫
[0,1)

dμ(t)
1−t < ∞.

(ii)
∑∞

n=0 μn < ∞.
(iii) The operator Hμ is a bounded operator from B1 into itself.
(iv) The operator Cμ is a bounded operator from B1 into itself.

Proof. The equivalence (i) ⇔ (ii) is clear.
Suppose that (iii) holds. Let f be the constant function f(z) = 1, for all

z ∈ D. Then Hμ(f) = Iμ(f) ∈ B1 ⊂ H∞ and then
∫

[0,1)

dμ(t)
1 − t

= lim
r→1−

Iμ(f)(r) ≤ ‖Iμ(f)‖H∞ < ∞.

Thus (i) holds.
Conversely, suppose that (i) holds. Take f ∈ B1. We have

Hμ(f)′′(z) =
∫

[0,1)

2t2f(t)
(1 − tz)3

dμ(t), z ∈ D.
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Then using Fubini’s theorem, [48, Lemma 3.10], and the fact that B1 ⊂ H∞,
we obtain

∫

D

|Hμ(f)′′(z)| dA(z) �
∫

D

∫

[0,1)

|f(t)|
|1 − tz|3 dμ(t) dA(z)

=
∫

[0,1)

|f(t)|
∫

D

dA(z)
|1 − tz|3 dμ(t)

� ‖f‖H∞

∫

[0,1)

dμ(t)
1 − t

� ‖f‖B1

∫

[0,1)

dμ(t)
1 − t

.

Thus, (iii) follows.
Let us prove next the equivalence (i) ⇔ (iv).
Suppose (i). Take f ∈ B1. Bearing in mind (3.1) and using Fubini’s

theorem, we see that
∫

D

|Cμ(f)′′(z)| dA(z)

�
∫

[0,1)

∫

D

|f ′′(tz)|dA(z)
|1 − tz| dμ(t) +

∫

[0,1)

∫

D

|f ′(tz)|dA(z)
|1 − tz|2 dμ(t)

+
∫

[0,1)

∫

D

|f(tz)|dA(z)
|1 − tz|3 dμ(t).

We now estimate each of the three terms in the last formula separately. For
the first one we have

∫

[0,1)

∫

D

|f ′′(tz)|
|1 − tz| dA(z) dμ(t) ≤

∫

[0,1)

1
1 − t

∫

D

|f ′′(tz)| dA(z) dμ(t)

� ‖f‖B1

∫

[0,1)

dμ(t)
1 − t

.

For the second one, we use the fact that B1 ⊂ Λ1
1 to obtain

∫

[0,1)

∫

D

|f ′(tz)|
|1 − tz|2 dA(z) dμ(t) �

∫

[0,1)

∫ 1

0

M1(tr, f ′)
(1 − tr)2

dr dμ(t)

≤ ‖f‖Λ1
1

∫

[0,1)

dμ(t)
1 − t

� ‖f‖B1

∫

[0,1)

dμ(t)
1 − t

.

For the last integral, we use that B1 ⊂ H∞ and Lemma 3.10 of [48] to
see that

∫

[0,1)

∫

D

|f(tz)|
|1 − tz|3 dA(z) dμ(t) ≤ ‖f‖H∞

∫

[0,1)

∫

D

dA(z)
|1 − tz|3 dμ(t)

� ‖f‖B1

∫

[0,1)

dμ(t)
1 − t

.
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Putting everything together we obtain (iv).
Suppose now that (iv) holds. Let f be the constant function given by

f(z) = 1, for all z ∈ D. Then Cμ(f) ∈ B1 ⊂ H∞. Using the integral represen-
tation of Cμ we see that

∫

[0,1)

dμ(t)
1 − t

= lim
r→1−

Cμ(f)(r) ≤ ‖Cμ(f)‖H∞ .

Thus,
∫
[0,1)

dμ(t)
1−t < ∞. This is (i). �

Let us turn now to deal with the possible extensions in the range 1 <
p < ∞. The following result comes from [28, Theorem 2.4] and [23, Theorem
7].

Theorem D. Let μ be a positive finite Borel measure on [0, 1). If μ is a 1-
logarithmic 1-Carleson measure then the operators Hμ and Cμ are bounded
from the Bloch space B into itself.

Using this result and those obtained in Sects. 2 and 3 we will prove the
following.

Theorem 9. Suppose that 2 < p < ∞ and let μ be a positive finite Borel
measure on [0, 1). If μ is a 1-logarithmic 1-Carleson measure then the operators
Hμ and Cμ are bounded from the Besov space Bp into itself.

Proof. We shall use complex interpolation in the proof. Let us refer to [48, Cha-
pter 2] for the terminology and basic results concerning complex interpolation.

If X0 and X1 are two compatible Banach spaces then, for 0 < θ < 1,
[X0,X1]θ stands for the space obtained by the complex method of interpolation
of Calderón. As a consequence of the above mentioned results characterizing
the spaces Bp as the image of Lp(dλ) under the Bergman projection and the
Bloch space as the image of L∞(dλ) under the Bergman projection, Zhu proves
in [48, Theorem 5.25] that if 1 < p0 < ∞, 0 < θ < 1, and 1/p = (1 − θ)/p0,
then

[Bp0 ,B]θ = Bp. (4.1)

In particular,

Bp = [D,B]θ, if 2 < p < ∞ and θ = 1 − 2
p
. (4.2)

Theorem 9 follows using (4.2), Theorem 1 (i), Theorem 5 (i), and the
interpolation theorem of operators [48, Theorem 2.4]. �

Regarding the sharpness of Theorem 9, we have the following result.

Theorem 10. Suppose that 0 < β < 1.
(i) If 1 < p < ∞ then there exists a positive Borel measure μ on [0, 1) which

is a β-logarithmic 1-Carleson measure with the property that Hμ(Bp) 
⊂
Bp.
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(ii) If 1 < p ≤ 2 then there exists a positive Borel measure μ on [0, 1) which is
a β-logarithmic 1-Carleson measure with the property that Cμ(Bp) 
⊂ Bp.

Proof. Assume that 1 < p < ∞ and 0 < β < 1. Take α ∈ R with

1
p

< α < min
(

1, 1 +
1
p

− β

)

.

Let μ be the Borel measure on [0, 1) defined by dμ(t) =
(
log 2

1−t

)−β

dt. We
know that μ is a β-logarithmic 1-Carleson measure and that μn �

1
(n+1)[log(n+2)]β

.

For n ≥ 1, set an = 1
n[log(n+1)]α and g(z) =

∑∞
n=1 anzn (z ∈ D).

Since the sequence {an} is decreasing and
∑∞

n=1 np−1|an|p < ∞, using
[28, Theorem 3.10] we see that g ∈ Bp.

We have that Hμ(g)(z) =
∑∞

n=0 (
∑∞

k=0 μn+kak) zn (z ∈ D). Since the
ak’s are positive and the sequence of moments {μn} is decreasing, it follows
that the sequence {∑∞

k=0 μn+kak} is also decreasing. Then using again [28,
Theorem 3.10] we see that

Hμ(g) ∈ Bp ⇔
∞∑

n=1

np−1

( ∞∑

k=0

μn+kak

)p

< ∞. (4.3)

Now,
∞∑

n=1

np−1

( ∞∑

k=0

μn+kak

)p

�
∞∑

n=2

np−1

( ∞∑

k=2

1
(n + k)[log(n + k)]βk(log k)α

)p

≥
∞∑

n=2

np−1

(
n∑

k=2

1
(n + k)[log(n + k)]βk(log k)α

)p

�
∞∑

n=2

np−1

np(log n)pβ

(
n∑

k=2

1
k(log k)α

)p

�
∞∑

n=2

1
n(log n)pβ(log n)p(α−1)

=
∞∑

n=2

1
n(log n)p(β+α−1)

.

Since p(β + α − 1) < 1, it follows that
∑∞

n=1 np−1 (
∑∞

k=0 μn+kak)p = ∞ and
then (4.3) gives that Hμ(g) 
∈ Bp.

Assume now that 1 < p ≤ 2. We have

Cμ(g)(z) =
∞∑

n=0

μn

(
n∑

k=0

ak

)

zn.
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Using the fact that 1 < p ≤ 2 and [20, Theorem 6.s2] it readily follows that

Cμ(g) ∈ Bp ⇒
∞∑

n=1

np−1μp
n

(
n∑

k=1

ak

)p

< ∞. (4.4)

But,

∞∑

n=1

np−1μp
n

(
n∑

k=1

ak

)p

�
∞∑

n=1

1
n[log(n + 1)]βp

(
n∑

k=2

1
k(log k)α

)p

�
∞∑

n=1

1
n[log(n + 1)]p(β+α−1)

= ∞.

Using (4.4) we obtain that Cμ(g) 
∈ Bp. �
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