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Abstract
This paper provides a theoretical and numerical investigation of a penalty decomposi-
tion scheme for the solution of optimization problems with geometric constraints. In
particular, we consider some situations where parts of the constraints are nonconvex
and complicated, like cardinality constraints, disjunctive programs, or matrix prob-
lems involving rank constraints. By a variable duplication and decomposition strategy,
the method presented here explicitly handles these difficult constraints, thus gener-
ating iterates which are feasible with respect to them, while the remaining (standard
and supposingly simple) constraints are tackled by sequential penalization. Inexact
optimization steps are proven sufficient for the resulting algorithm to work, so that it
is employable even with difficult objective functions. The current work is therefore
a significant generalization of existing papers on penalty decomposition methods.
On the other hand, it is related to some recent publications which use an augmented
Lagrangian idea to solve optimization problemswith geometric constraints. Compared
to these methods, the decomposition idea is shown to be numerically superior since
it allows much more freedom in the choice of the subproblem solver, and since the
number of certain (possibly expensive) projection steps is significantly less. Extensive
numerical results on several highly complicated classes of optimization problems in
vector and matrix spaces indicate that the current method is indeed very efficient to
solve these problems.
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1 Introduction

We consider the program

min
x

f (x) s.t. G(x) ∈ C, x ∈ D, (1.1)

where f : X → R and G : X → Y are continuously differentiable mappings, X
and Y are Euclidean spaces, i.e., real and finite-dimensional Hilbert spaces, C ⊆ Y is
nonempty, closed, and convex, whereas D ⊆ X is only assumed to be nonempty and
closed (not necessarily convex), representing a possibly complicated set, for which,
however, a projection operation is accessible.

This very general setting (analyzed for example in [1]) covers, for example, standard
nonlinear programming problemswith convex constraints, but also difficult disjunctive
programming problems [2–5], e.g., complementarity [6], vanishing [7], switching [8]
and cardinality constrained [9, 10] problems. Matrix optimization problems such as
low-rank approximation [11, 12] are also captured by our setting.

In recent years, lots of studies have been published that deal with problems with
this structure, where the feasible set consists of the intersection of a collection of ana-
lytical constraints and a complicated, irregular set, manageable, for example, by easy
projections. In particular, approaches based on decomposition and sequential penalty
or augmented Lagrangian methods have been proposed for the convex case [13], the
cardinality constrained case [10, 14] and the low-rank approximation case [15]; the
recurrent idea in all these works consists of the application of the variable splitting
technique [16, 17], to then define a penalty function associated with the differentiable
constraints and the additional equality constraint linking the two blocks of variables
and finally solve the problem by a sequential penalty method. The optimization of the
penalty function is carried out by a two-block alternating minimization scheme [18],
which can be run in an exact [14, 15] or inexact [10, 13] fashion.

The aim of this work is to extend the inexact Penalty Decomposition approach to the
general setting (1.1) in such a way that it can deal with arbitrary abstract constraints
D (at least theoretically, in practice D needs to be such that projections onto this
set are easy to compute) and that it allows additional (seemingly simple) constraints
given by G(x) ∈ C . This setting is related to some recent work on (safeguarded)
augmentedLagrangianmethods, see, in particular, [1],where the resulting subprobems
are solved by a projected gradient-type method, which might be inefficient especially
for ill-conditioned problems. The decomposition idea used here allows a much wider
choice of subproblem solvers, usually resulting in a more efficient solver of the given
optimization problem (1.1).

The paper is organized as follows: Sect. 2 summarizes some preliminary concepts
and results. In particular, we recall the definitions of an M-stationary point (the coun-
terpart of aKKTpoint for the general setting from (1.1)), of anAM-stationary point (as
a sequential version of M-stationarity) and of an AM-regular point (this being a suit-
able and relatively weak constraint qualification). Section3 then presents the Penalty
Decomposition (PD)method together with a global convergence theory, assuming that
the resulting subproblems can be solved inexactly up to a certain degree. In Sect. 4, we
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then present a class of inexact alternating minimizationmethods [18, 19] which, under
certain assumptions, are guaranteed to find the desired approximate solution of the
subproblems arising in the outer penalty scheme. The remaining part of the paper is
then devoted to the implementation of the overallmethod and corresponding numerical
results. To this end, Sect. 5 first discusses several instances of the general setting (1.1)
with difficult constraints D where our method can be applied to quite efficiently since
projections onto D are simple and/or known analytically (though the latter does not
necessarily imply that these projections are easy to compute numerically). In Sect. 6,
we then present the results of an extensive numerical testing, where we also compare
our method, using different realizations, with the augemented Lagrangian method
from [1]. We conclude with some final remarks in Sect. 7.

2 Preliminaries

The Euclidean projection PC : Y → Y onto the nonempty, closed, and convex set C
is defined by

PC (y) := argmin
z∈C

‖z − y‖.

The corresponding distance function dC : Y → R can then be written as

distC (y) := min
z∈C ‖z − y‖ = ‖PC (y) − y‖.

Note that the distance function is nonsmooth (in general), but the squared distance
function

sC (y) := 1

2
dist2C (y)

is continuously differentiable everywhere with derivative given by

∇sC (y) = y − PC (y), (2.1)

see [20, Cor. 12.30]. Moreover, projections onto the nonempty and closed set D also
exist, but are not necessarily unique. Therefore, we define the (usually set-valued)
projection operator �D : X ⇒ X by

�D(x) := argmin
z∈D

‖z − x‖ �= ∅.

The corresponding distance function distD(·) is, of course, single-valued again. Fur-
thermore, given a set-valued mapping S : X ⇒ X on an arbitrary Euclidean space X,
we define the outer limit of S at a point x̄ by

lim sup
x→x̄

S(x) :=
{
y ∈ X | ∃xk → x̄, ∃yk → y with yk ∈ S(xk) ∀k ∈ N

}
.
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This allows to define the limiting normal cone at a point x ∈ D by

N lim
D (x) := lim sup

v→x

(
cone

(
v − �D(v)

))
,

see [21, Sect. 1.1] for further details. Writing

x →D x̄ ⇐⇒ x → x̄, x ∈ D

for sequences converging to an element x̄ ∈ D such that the whole sequence belongs
to D, the limiting normal cone has the important robustness property

lim sup
x→D x̄

N lim
D (x) = N lim

D (x̄) (2.2)

that will be exploited heavily in our subsequent analysis, see [21, Prop. 1.3].
Note that, for D being convex, this limiting normal cone reduces to the standard

normal cone from convex analysis, i.e., we have

N lim
D (x̄) = ND(x̄) := {λ ∈ X | 〈λ, x − x̄〉 ≤ 0 ∀x ∈ D }

for any given x̄ ∈ D. For points x̄ /∈ D, we set N lim
D (x̄) := ND(x̄) := ∅. For the

convex set C , the standard normal cone and the projection operator are related by

p = PC (y) ⇐⇒ y − p ∈ NC (p), (2.3)

see [20, Prop. 6.46].
We next introduce a stationarity condition which generalizes the concept of a KKT

point to constrained optimization problems with possibly difficult constraints as given
by the set D in our setting (1.1), see [22] for a general discussion and, e.g., [1] for a
realization of the specific setting considered here.

Definition 2.1 A feasible point x̄ ∈ X of the optimization problem (1.1) is called anM-
stationary point (Mordukhovich-stationary point) of (1.1) if there exists a multiplier
λ ∈ Y such that

0 ∈ ∇ f (x̄) + G ′(x̄)∗λ + N lim
D (x̄), λ ∈ NC

(
G(x̄)

)
.

Note that this definition coincides with the one of a KKT point if D is convex. The
following is a sequential version of M-stationarity.

Definition 2.2 A feasible point x̄ ∈ X of the optimization problem (1.1) is called
an AM-stationary point (asymptotically M-stationary point) of (1.1) if there exist
sequences {xk}, {εk} ⊆ X and {λk}, {zk} ⊆ Y such that xk → x̄ , εk → 0, zk → 0, as
well as

εk ∈ ∇ f (xk) + G ′(xk)∗λk + N lim
D (xk), λk ∈ NC

(
G(xk) − zk

)

for all k ∈ N.
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We stress that this definition implicitly includes that the sequences {xk} and {G(xk)−
zk} belong to the sets D andC , respectively, since otherwise the corresponding normal
cones would be empty.We also note that the previous definition generalizes the related
concept of AKKT points introduced for standard nonlinear programs in [23] to our
setting with the more difficult constraints. In a similar way, the subsequent regularity
conditions are also motivated by related ones from [24], where they were presented
for standard nonlinear programs. Their generalizations to our setting can be found in
[1, 22], for example.

Every M-stationary point is obviously also AM-stationary, whereas the opposite
implication will be guaranteed to hold by a regularity condition that will now be
introduced. To this end, let us write

M(x, z) := G ′(x)∗NC
(
G(x) − z

) + N lim
D (x).

Recall that N lim
D (x) is nonempty if and only if x ∈ D, which is therefore an implicit

requirement for the set M(x, z) to be nonempty. Moreover, we consider the set

lim sup
x→x̄,z→0

M(x, z) =
{
v | ∃xk →D x̄, ∃zk → 0 : vk → v and vk ∈ M(xk , zk) ∀k ∈ N

}
.

Note that the auxiliary sequence {zk} needs to be introduced since the elements G(xk)
do not necessarily belong to C , whereas xk is supposed to be an element of D.

Definition 2.3 Let x̄ be feasible for (1.1). Then x̄ is called AM-regular for (1.1) if
lim sup
x→x̄,z→0

M(x, z) ⊆ M(x̄, 0).

Using this terminology, the following statements hold, cf. [22] for further details.

Theorem 2.4 The following statements hold:

(a) Every local minimum of (1.1) is an AM-stationary point.
(b) If x̄ is an AM-stationary point satisfying AM-regularity, then x̄ is an M-stationary

point of (1.1).
(c) Conversely, if for every continuously differentiable function f , the implication

x̄ is an AM-stationary point �⇒ x̄ is an M-stationary point

holds for the corresponding optimization problem (1.1), then x̄ is AM-regular.

Statement (a) shows that every local minimum of (1.1) is an AM-stationary point even
in the absense of any constraint qualification (CQ for short). Hence AM-stationary
is a (sequential) first-order optimality condition. In order to guarantee that an AM-
stationary point is already an M-stationary point (hence a KKT point in the standard
setting of a nonlinear program, say), we require a CQ, namely the AM-regularity
condition, cf. Theorem 2.4 (b). The final statement (c) of that result shows that, in a
certain sense, AM-regularity is the weakest CQ which implies AM-stationary points
to be M-stationary. In fact, this AM-regularity condition turns out to be a fairly weak
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condition. For example, for standard nonlinear programs, AM-regularity is stronger
than the Abadie CQ, but weaker than most of the other well-known CQs like MFCQ
(Mangasarian-Fromovitz CQ), CRCQ (constant rank CQ), CPLD (constant positive
linear dependence), and RCPLD (relaxed CPLD), to mention at least some of the more
prominent ones. We refer the interested reader to [22, 25] and references therein for
further details.

The algorithm, to bedescribed in the following section, is basedon the reformulation

min
x,y

f (x) s.t. x − y = 0, G(x) ∈ C, y ∈ D, (2.4)

of the given optimization problem (1.1). The previous notions of M- and AM-
stationarity and AM-regularity can be directly translated to this program by observing
that (2.4) can be written in the format of (1.1) as

x̃ := (x, y),

f̃ (x̃) := f̃ (x, y) = f (x),

G̃(x̃) := G̃(x, y) =
(
G(x)
x − y

)
,

C̃ := C × 0X,

D̃ := X × D.

The counterpart of Theorem 2.4 then also holds for the corresponding (asymptotic)
M-stationarity and regularity concepts defined for the formulation (2.4). Note that
regularity conditions and constraint qualifications depend on the explicit formulation
of a constraint system, hence the corresponding concepts are not necessarily equivalent
for the two formulations of our program.We stress, however, that the important notion
of an M-stationary point for (2.4) is equivalent to the notion of an M-stationary point
for (1.1).

For the sake of completeness, and since this condition will be used explicitly in
our convergence analysis, let us write down explicitly the resulting AM-stationarity
condition for the reformulated program (2.4): with the above identifications, a feasible
point x̃∗ of (2.4) is AM-stationary if there exist sequences {x̃ k}, {ε̃k}, and {λ̃k}, {z̃k}
such that x̃ k → x̃∗, z̃k → 0, ε̃k → 0 as well as

ε̃k ∈ ∇ f̃ (x̃ k) + G̃ ′(x̃ k)∗λ̃k + N lim
D̃

(x̃ k) and λ̃k ∈ NC̃

(
G̃(x̃ k) − z̃k

)
(2.5)

for all k. Using the definitions of f̃ , G̃ etc., exploiting standard properties of the
limiting and standard normal cones (in particular, the Cartesian product rule, cf. [26,
Prop. 6.41]), and writing x̃ k =: (xk, yk), λ̃k =: (λk, μk) as well as zk for the first
block of z̃k (the second block component of z̃k turns out to be irrelevant), we see that
the two conditions from (2.5) can be rewritten as

ε̃k ∈
(∇ f (xk) + G ′(xk)∗λk + μk

−μk + N lim
D (yk)

)
and

(
λk

μk

)
∈

(
NC

(
G(xk) − zk

)
X

)
. (2.6)
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3 Algorithm and convergence

The algorithm to be presented here is based on the reformulation (2.4) of the given
program (1.1). The idea is to take advantage of the fact that the constraints G(x) ∈
C and y ∈ D occur in a decomposed way. This formulation allows to develop an
alternating direction-type penalty scheme for the solution of the orginal problem (1.1).
To this end, let τ > 0 be a penalty parameter and define the partial penalty function

qτ (x, y) := f (x) + τ

2

(
‖x − y‖2 + dist2C

(
G(x)

))
. (3.1)

Note that qτ does not include the potentially difficult constraint x ∈ D, which we
therefore have to deal with explicitly. The general algorithmic scheme that we will
investigate here is summarized in Algorithm 1.

Algorithm 1 Inexact penalty decomposition method

(S.0) Choose δ0 ≥ 0 and τ0 > 0, a starting point (x0, y0) ∈ X × X, and set k := 0.
(S.1) If a suitable termination criterion holds: STOP.
(S.2) Compute

(
xk+1, yk+1) such that

∥∥∇x qτk (x
k+1, yk+1)

∥∥ ≤ δk (3.2)

and

yk+1 ∈ argminy∈D qτk (x
k+1, y) (3.3)

hold.
(S.3) Choose δk+1 ≤ δk , τk+1 > τk , k ← k + 1, and go to (S.1).

Note that Algorithm 1 is a very general scheme for the solution of the reformulated
problem (2.4). The main computational burden is in step (S.2). We will see how this
step can be realized by an alternating minimization-type iteration in Sect. 4. Here we
only note that the computation of the exactminimizer yk+1 = argminy∈D qτk (x

k+1, y)
can be carried out very easily if projections onto the set D can be computed efficiently
(we refer the reader to Sects. 5, 6 for some examples). This follows immediately from
the definition of qτk , which implies that yk+1 is characterized by

yk+1 ∈ �D(xk+1). (3.4)

The remaining part of this section is devoted to the global convergence properties
of the general scheme from Algorithm 1. The technique of proof patterns the one used
in [1] for an augmented Lagrangian method.

We begin with a feasibility-type result. To this end, recall that all penalty-type
methods suffer from the fact that accumulation points may not be feasible for the
given optimization problem. The following result shows that such an accumulation
point still has a very nice property.
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Proposition 3.1 Let {(xk, yk)} be a sequence generated by Algorithm 1 with {δk}
being bounded and {τk} → ∞. Then every accumulation point (x̄, ȳ) of the sequence
{(xk, yk)} is an M-stationary point of the feasibility problem

min
x,y

1

2
dist2C

(
G(x)

) + 1

2
‖x − y‖2 s.t. y ∈ D. (3.5)

Proof Let {(xk+1, yk+1)}K be a subsequence converging to (x̄, ȳ). Using the derivative
formula of the distance function from (2.1) together with the chain rule, we have, by
construction,

∥∥∇xqτk (x
k+1, yk+1)

∥∥
=

∥∥∥∇ f (xk+1) + τk

[
G ′(xk+1)∗

[
G(xk+1) − PC

(
G(xk+1)

)] + xk+1 − yk+1
]∥∥∥

≤ δk

and

0 ∈ ∇yqτk

(
xk+1, yk+1) + N lim

D (yk+1) = τk
(
yk+1 − xk+1) + N lim

D (yk+1)

for all k ∈ N. Dividing the first equation by τk and exploiting the cone property in the
second inclusion yields

∥∥∥ 1

τk
∇ f (xk+1) + G ′(xk+1)∗

[
G(xk+1) − PC

(
G(xk+1)

)] + xk+1 − yk+1
∥∥∥ ≤ δk

τk

and
0 ∈ yk+1 − xk+1 + N lim

D (yk+1)

for all k ∈ N, cf. [26, Thm. 6.12]. Taking the limit k →K ∞, using the continuity
of ∇ f ,G,G ′, PC , and the robustness property (2.2) of the limiting normal cone, we
obtain

G ′(x̄)∗
(
G(x̄) − PC

(
G(x̄)

)) + x̄ − ȳ = 0 and 0 ∈ ȳ − x̄ + N lim
D (ȳ).

This shows that (x̄, ȳ) is an M-stationary point of (3.5). ��
Recall that Algorithm 1 automatically generates iterates yk which belong to the set D.
The objective function in (3.5) therefore only measures the violation of the constraints
G(x) ∈ C and x − y = 0, which is included in the penalty term of qτ , i.e., (3.5) is a
feasibility problem of the decomposed problem (2.4). If x̄ = ȳ, then x̄ turns out to be
an M-stationary point of

min
x

1

2
dist2C

(
G(x)

)
s.t. x ∈ D,

which is the feasibility problem of the original problem (1.1). Though Proposition 3.1
obviously does not guarantee that an accumulation point is feasible (either for the
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original or the decomposed formulation), it guarantees at least a stationarity property,
which is the best one can expect in general. Moreover, if the feasible set of (1.1) is
nonempty and the function 1

2dist
2
C

(
G(x)

)
of (3.5) is convex, then every M-stationary

point is a global minimum and, hence, a feasible point of (1.1) or (2.4). Note that
the square of the above distance function is automatically convex if the constraint
G(x) ∈ C satisfies standard conditions which imply that this set is convex by itself.

Moreover, one can also define an extended Robinson-type constraint qualification
(which boils down to the extended MFCQ condition for standard nonlinear programs)
which automatically imply that accumulation points of a sequence generated by Algo-
rithm 1 are feasible, cf. [27, 28] for further details.

Hence, under reasonable assumptions, we can guarantee that accumulation points
are automatically feasible for (1.1) or (2.4), whereas, in general, they are at least M-
stationary points for the feasibility problem. The following global convergence result
therefore assumes that we have a feasible accumulation point and shows that this one
is automatically AM-stationary for problem (2.4).

Theorem 3.2 Let {(xk, yk)} be a sequence generated by Algorithm 1 with {δk} → 0
and {τk} → ∞, and let (x̄, ȳ) be an accumulation point of this sequence that is feasible
for (2.4). Then (x̄, ȳ) is an AM-stationary point of the optimization problem (2.4).

Proof Let {(xk+1, yk+1)}K be a subsequence converging to (x̄, ȳ). Recall that (x̄, ȳ)
is feasible for (2.4), henceG(x̄) ∈ C and x̄ = ȳ ∈ D. We further define the sequences

zk+1 := G(xk+1) − PC
(
G(xk+1)

)
,

λk+1 := τk
(
G(xk+1) − PC

(
G(xk+1)

))
,

μk+1 := τk
(
xk+1 − yk+1),

εk+1 := ∇ f (xk+1) + τk
[
G ′(xk+1)∗

(
G(xk+1) − PC (G(xk+1))

) + xk+1 − yk+1].

Then setting

x̃ k+1 :=
(
xk+1

yk+1

)
, ε̃k+1 :=

(
εk+1

0

)
, λ̃k+1 :=

(
λk+1

μk+1

)
, z̃k+1 :=

(
zk+1

0

)
,

we claim that the corresponding four (sub-) sequences {x̃ k+1}K = {(xk+1, yk+1)}K ,
{z̃k+1} = {(zk+1, 0)}K , {ε̃k+1}K = {(εk+1, 0)}K , and {λ̃k+1}K = {(λk+1, μk+1)}K
satisfy the properties of anAM-stationary point for problem (2.4) as stated at the end of
Sect. 2, cf. (2.5) and (2.6). First of all, (x̄, ȳ) is feasible and {(xk+1, yk+1)}K → (x̄, ȳ)
by assumption. Furthermore, by definition of εk+1 and the construction ofAlgorithm1,
we also have

‖εk+1‖ = ‖∇xqτk (x
k+1, yk+1)‖ ≤ δk → 0.

This obviously implies ‖ε̃k+1‖ → 0. Furthermore, the definitions of λk+1 and μk+1

together with 0 ∈ τk
(
yk+1 − xk+1

) + N lim
D (yk+1) yield

εk+1 = ∇ f (xk+1) + G ′(xk+1)∗λk+1 + μk+1 and 0 ∈ −μk+1 + N lim
D (yk+1),
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hence the first inclusion in (2.6) holds. To verify the second inclusion, we only have
to take a closer look at the first block. By definition of λk+1 and the relation (2.3)
between the projection and the normal cone, we get

λk+1 = τk
(
G(xk+1)−PC

(
G(xk+1)

)) ∈ NC
(
PC (G(xk+1))

) = NC
(
G(xk+1)−zk+1),

where the last identity comes from the definition of zk+1. Finally, we also have
z̃k+1 →K 0 since zk+1 satisfies

zk+1 = G(xk+1) − PC
(
G(xk+1)

) →K G(x̄) − PC
(
G(x̄)

) = 0

by the continuity of G and the projection operator PC as well as the feasibility of x̄ .
Altogether, this shows that (x̄, ȳ) is an AM-stationary point of the program (2.4). ��
Using Theorem 3.2 together with the counterpart of Theorem 2.4 for (2.4) and the fact
that the M-stationarity conditions for the two problems (1.1) and (2.4) are equivalent,
we directly obtain the following result.

Theorem 3.3 Let {(xk, yk)} be a sequence generated by Algorithm 1 with {δk} → 0
and {τk} → ∞, and let (x̄, ȳ) be an accumulation point of this sequence that is
feasible and satisfies AM-regularity for (2.4). Then (x̄, ȳ) is an M-stationary point of
the optimization problem (2.4), and x̄ itself is an M-stationary point of the original
problem (1.1).

4 Solution of subproblems by inexact alternatingminimization

The Penalty Decomposition approach basically consists in approximately solving the
sequence of penalty subproblems at step (S.2) by a two-block decomposition method.
The alternating minimization loop can be stopped, at each iteration, as soon as an
approximate stationary point of the penalty function w.r.t. the first block of variables x
is attained. The instructions of the (inexact) Alternating Minimization loop at a fixed
iteration k of the Penalty Decomposition method are detailed in Algorithm 2.

Algorithm 2 Inexact Alternating Minimization

(S.0) Given δk ≥ 0 and τk > 0, a starting point (xk , yk ) ∈ X × D, γ ∈ (0, 1), β ∈ (0, 1), set 	 := 0,
(u0, v0) = (xk , yk ).

(S.1) If
∥∥∇x qτk (u

	, v	)
∥∥ ≤ δk : STOP returning (xk+1, yk+1) = (u	, v	).

(S.2) Choose a positive definite self-adjoint linear map H	, set d
	 = −H	(∇x qτk (u

	, v	)) and compute

α	 = max
j∈N{β j : qτk (u

	 + β j d	, v	) ≤ qτk (u
	, v	) + γβ j 〈∇x qτk (u

	, v	), d	〉} (4.1)

(S.3) Set u	+1 = u	 + α	d	.
(S.4) Compute v	+1 ∈ argmin

v∈D
qτk (u

	+1, v) = �D(u	+1).

(S.5) Set 	 = 	 + 1 and go to (S.1).
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As already pointed out, if we assume that projections onto the set D are easily com-
putable, the update of the second block of variables can be carried out exactly by
(3.4).

On the other hand, an exact x-update step (i.e., finding a global minimizer of
qτk (u, v	)) may be prohibitive in most applications. For this reason, the x-variable is
only updated by a descent step along a descent direction, with a step size selected by
an Armijo-type line search.

Note that the direction d	 = −H	(∇xqτk (u
	, v	)) is certainly a descent direction,

since H	 is positive definite, ∇xqτk (u
	, v	) �= 0 and, thus,

〈∇xqτk (u
	, v	), d	〉 = −〈∇xqτk (u

	, v	), H	(∇xqτk (u
	, v	))〉 < 0. (4.2)

The Armijo line search provides a sufficient decrease granting, under suitable
assumptions on the sequence of maps H	, the convergence of the entire alternate
minimization scheme.

Note that by properly choosing H	 we can retrieve the descent directions employed
in most widely employed nonlinear optimization solvers. This point, which we will
emphasize again later on, is particularly relevant from the computational point of view.

Throughout this section, we make the following assumption.

Assumption 4.1 f (x) has bounded level sets upon X, i.e., L f (η) = {x ∈ X | f (x) ≤
η} is bounded for any η ∈ R.

We then begin by proving that, under Assumption 4.1, the penalty function has
bounded level sets for any nonnegative value of the penalty parameter τ .

Lemma 4.2 The penalty function qτ (x, y) has bounded level sets for any τ ≥ 0.

Proof Consider any η ∈ R. From Assumption 4.1, the level set L f (η) is bounded. Let
us consider Lqτ (η) for any τ ≥ 0.

Assume by contradiction that Lqτ (η) is not bounded, i.e., there exists {(xt , yt )}
such that (xt , yt ) ∈ Lqτ (η) for all t and ‖(xt , yt )‖ → ∞. Then, either ‖xt‖ → ∞ or
‖yt‖ → ∞.

If ‖xt‖ → ∞, we have f (xt ) > η for t sufficiently large, being L f (η) bounded.
But then, from the definition of qτ (x, y), we have for t sufficiently large qτ (xt , yt ) ≥
f (xt ) > η, which contradicts {(xt , yt )} ⊆ Lqτ (η).
Thus, ‖yt‖ → ∞ while ‖xt‖ stays bounded. However,

qτ (x
t , yt ) = f (xt ) + τ

2

(
‖xt − yt‖2 + dist2C

(
G(x)

))
> η

for t sufficiently large, as ‖xt − yt‖2 → ∞, dist2C
(
G(x)

) ≥ 0 and f is bounded
having compact level sets. This again is a contradiction, which completes the proof. ��
It can be seen that step (S.2) of Algorithm 2 is well-defined, i.e., there exists a finite
integer j such that β j satisfies the acceptability condition (4.1). Moreover the fol-
lowing result can be readily obtained by standard results in nonlinear optimization
[29].
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Lemma 4.3 Let {(u	, v	)} be the sequence generated by Algorithm 2. Let T ⊆
{0, 1, 2, . . .} be an infinite subset such that

lim
	→∞
	∈T

(u	, v	) = (ū, v̄).

Let {d	} be a sequence of directions such that 〈∇xqτk (u
	, v	), d	〉 < 0 and assume

that ‖d	‖ ≤ M for some M > 0 and for all 	 ∈ T . If, for any fixed (outer iteration)
k, the following equation holds

lim
	→∞
	∈T

qτk (u
	, v	) − qτk (u

	 + α	d
	, v	) = 0,

then we have
lim

	→∞
	∈T

〈∇xqτk (u
	, v	), d	〉 = 0.

Proof Since, for any 	, α	 is chosen according to (4.1), we have

qτk (u
	+1, v	) ≤ qτk (u

	, v	) + γα	〈∇xqτk (u
	, v	), d	〉.

Taking the limits for 	 ∈ T , 	 → ∞, we get

lim
	→∞
	∈T

qτk (u
	 + α	d

	, v	) − qτk (u
	, v	) ≤ lim

	→∞
	∈T

γα	〈∇xqτk (u
	, v	), d	〉 ≤ 0,

where the last inequality comes from the fact that γ > 0, α	 ≥ 0 and
〈∇xqτk (u

	, v	), d	〉 < 0 by assumption. From the hypotheses, we also have that the
leftmost limit goes to 0, hence we obtain

lim
	→∞
	∈T

γα	〈∇xqτk (u
	, v	), d	〉 = 0. (4.3)

Assume, by contradiction, that 〈∇xqτk (u
	, v	), d	〉T does not converge to zero. Passing

to a subsequence, if necessary, we may assume that lim	→T ∞〈∇xqτk (u
	, v	), d	〉 =

−ν for some number ν > 0. On the other hand, we have (u	, v	) →T (ū, v̄) by
assumption, and {d	} is bounded, so we may also assume that {d	}T → d̄ for some
limit point d̄ . Altogether, we then have

〈∇xqτk (ū, v̄), d̄〉 = lim
	→∞
	∈T

〈∇xqτk (u
	, v	), d	〉 = −ν < 0.

Exploiting (4.3), we see that α	 →T 0 holds. Consequently, for all 	 ∈ T sufficiently
large, we have α	 < β0 = 1 and thus

qτk

(
u	 + α	

β
d	, v	

)
> qτk (u

	, v	) + γ
α	

β
〈∇xqτk (u

	, v	), d	〉.
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By the mean-value theorem, we can write

qτk

(
u	 + α	

β
d	, v	

)
= qτk (u

	, v	) + α	

β
〈∇xqτk (z

	, v	), d	〉

for some z	 = u	 +θ	
α	

β
d	, θ	 ∈ (0, 1). Subtracting the last two relations and dividing

by α	/β, we get

0 > γ 〈∇xqτk (u
	, v	), d	〉 − 〈∇xqτk (z

	, v	), d	〉.

On the other hand,

lim
	∈T

	→∞
z	 = lim

	∈T
	→∞

u	 + θ	

α	

β
d	 = ū

since α	 →T 0 and d	 → d̄ . Taking the limits in the previous inequality, we finally
get

γ 〈∇xqτk (ū, v̄), d̄〉 ≤ 〈∇xqτk (ū, v̄), d̄〉,

which is absurd since γ ∈ (0, 1) and 〈∇xqτk (ū, v̄), d̄〉 = −ν < 0. ��
In order to ensure that the sequence generated by theAlternatingMinimization scheme
properly converges, we need the sequence of directions {d	} to satisfy suitable prop-
erties. Here, in particular, we assume that the entire sequence of linear mappings {H	}
satisfies the bounded eigenvalues condition [29, Sec. 1.2]:

c1‖z‖2 ≤ 〈z, H	(z)〉 ≤ c2‖z‖2 ∀ z ∈ X. (4.4)

We are finally able to show that the inexact alternating minimization loop stops in a
finite number of iterations providing a point (xk+1, yk+1) satisfying conditions (3.2)-
(3.3).

Proposition 4.4 Assume the sequence of linear maps {H	} in Algorithm 2satisfies the
bounded eigenvalues condition (4.4). Then the algorithm cannot cycle infinitely and
determines in a finite number of iterations a point (xk+1, yk+1) such that

∥∥∇xqτk (x
k+1, yk+1)

∥∥ ≤ δk

and
yk+1 = argmin

y∈D
qτk (x

k+1, y).

Proof Suppose, by contradiction that, for some values of τk and δk , the sequence
{(u	, v	)} is infinite. From the instructions of the algorithm, it is possible to see that
we have

qτk (u
	+1, v	+1) ≤ qτk (u

0, v0),
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cf. (4.5). Hence, for all 	 ≥ 0, the point (u	, v	) belongs to the level set

{(u, v) ∈ X × X | qτk (u, v) ≤ qτk (u
0, v0)}.

Lemma 4.2 implies that this is a bounded set. Therefore, the sequence {(u	, v	)} admits
accumulations points. Let K ⊆ N be an infinite subset such that

lim
	→∞
	∈K

(u	, v	) = (ū, v̄).

Recalling the continuity of the gradient, we have

lim
	→∞
	∈K

∇xqτk (u
	, v	) = ∇xqτk (ū, v̄).

We now show that ∇xqτk (ū, v̄) = 0. Taking into account the instructions of the
algorithm, we have

qτk (u
	+1, v	+1) ≤ qτk (u

	+1, v	) = qτk (u
	 + α	d

	, v	) < qτk (u
	, v	). (4.5)

By (4.4), it is possible to see that

‖d	‖2 ≤ c22‖∇xqτk (u
	, v	)‖2.

Since ∇xqτk (u
	, v	) →K ∇xqτk (ū, v̄), we see that there exists a constant M > 0 such

that ‖d	‖ ≤ M for all 	 ∈ K .
Since the entire sequence {qτk (u

	, v	)} ismonotonically decreasing by (4.5), and the
subsequence {qτk (u, v)}K converges to qτk (ū, v̄), it follows that the whole sequence
of function values converges to this limit, i.e., we have

lim
	→∞ qτk (u

	, v	) = qτk (ū, v̄).

Hence (4.5) yields lim
	→∞ qτk (u

	, v	) − qτk (u
	 + α	d	, v	) = 0. Thus, the hypotheses

of Lemma 4.3 are satisfied. Moreover, from (4.2) and (4.4), we have

〈∇xqτk (u
	, v	), d	〉 ≤ −c1‖∇xqτk (u

	, v	)‖2.

Using Lemma 4.3, we therefore obain

0 = lim
	→∞
	∈K

〈∇xqτk (u
	, v	), d	〉 ≤ lim

	→∞
	∈K

−c1‖∇xqτk (u
	, v	)‖2 ≤ 0,

which implies that, for 	∈K sufficiently large, we have ‖∇xqτk (u
	, v	)‖≤δk, i.e., that

the stopping criterion of step (S.1) is satisfied in a finite number of iterations, and this
contradicts the fact that {(u	, v	)} is an infinite sequence. Condition (3.2) is then
satisfied by the stopping criterion, whereas condition (3.3) follows by construction. ��
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In order for the theoretical analysis to hold, we only need to ensure that H	 satis-
fies condition (4.4). This assumption can be guaranteed a priori by different ways of
defining H	. Among these valid choices, we can find classical setups leading back to
iterations of standard algorithmic schemes such as gradient method (H	 = I ), New-
ton method (H	 = ∇2

xxqτk (u
	, v	), provided f is uniformly convex), quasi-Newton

methods and limited-memory BFGS type methods.
This aspect is crucial in practice: we are allowed to employ the most efficient

solvers for nonlinear optimization to carry out step (S.3) of the AlternateMinimization
algorithm and thus speed up the computation of step (S.2) of Algorithm 1, which is
the most burdensome one. As a comparison, the Augmented Lagrangian algorithm
from [1] has to resort to a gradient-based method to solve the (constrained) sequential
subproblems, possibly resulting in an inefficient method especially for ill-conditioned
problems. We will indeed observe this difference in Sect. 6. Another difference is
pointed out in the following comment.

Remark 4.5 The Augmented Lagrangian algorithm from [1] has to compute projec-
tions onto the set D within the computation of the stepsizes, i.e., it may require many
projections for a single (inner) iteration. This is a notable difference to ourAlgorithm2,
which requires only a single projection after the computation of the new iterate u	+1.
In fact, it would also be possible to apply several iterations of an unconstrained opti-
mization solver to the subproblem of minimizing the penalty function qτk (·, v	) before
updating the v-component, i.e., before using a single projection step.

5 Particular instances

The idea of this section, similar to [1], is to present some difficult optimization prob-
lems where projections onto the complicated set D can be carried out easily. This
section does not contain any proofs since the corresponding results are known from
the literature. However, since these particular instances will be used in Sect. 6, they
have to be discussed in some detail.

5.1 The case of sparsity constraints

Aparticular case of problem (1.1) is that of sparsity constrainedoptimization problems,
i.e., optimization problems of the form

min
x∈Rn

f (x)

s.t. G(x) ∈ C,

x ∈ D = {x | ‖x‖0 ≤ s},
(5.1)

where s < n and ‖x‖0 denotes the zero pseudo-norm of x , i.e., the number of nonzero
components of x . The Penalty Decomposition approach was originally proposed in
[14] for this class of problems, and the inexact version was then proposed for the case
{x | G(x) ∈ C} = R

n [10].
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In fact, from the analysis in Sect. 3, we can deduce that the convergence results
continue to hold for the inexact version of the algorithm even in presence of additional
constraints.

The Penalty Decompositionmethod is particularly appealing, from a computational
perspective, for this class of problems since the Euclidean projection onto the sparse
set D is easily obtainable in closed form, as outlined e.g. in [10, 14]. Let us denote the
index set of the largest s variables at x̄ in absolute value by Gs(x̄); for simplicity, we
furthermore assume that cases of tie are handled unambiguously. Then, the projection
of x̄ onto D is given by

(�D(x̄))i =
{
x̄i if i ∈ Gs(x̄),
0 otherwise.

(5.2)

In other words, the projection can be simply computed by setting to zero the n − s
smallest components of x̄

Note that M-stationarity, as defined in Definition 2.1, coincides with Lu-Zhang
stationarity [9], which is the property guaranteed to hold for cluster points obtained by
the original Penalty Decomposition method [14]. Hence, we can conclude, from the
results shown in Sect. 3, that the inexact Penalty Decomposition method has the same
convergence properties as its exact counterpart, and that the M-stationarity concept
includes a corresponding stationarity condition particularly designed for cardinality
constrained problems. We note, however, that there exist further stationarity concepts
in this setting, see the corresponding discussions in, e.g., [9, 14, 30, 31].

5.2 Low-rank approximation problems

Here we consider the space X = R
m×n with given n,m ∈ N, n,m ≥ 2; equipped

with the standard Frobenius inner product, this is a Euclidean space.
In applications like computer vision, machine learning, computer algebra or signal

processing, there is a strong interest in low-rank matrix optimization problems, see,
e.g., [12, 32–35]. Specifically, letting q = min(m, n) and given κ ≤ q − 1, we are
interested in problems of the form

min
X∈Rm×n

f (X)

s.t. G(X) ∈ C,

X ∈ D = {X | rank(X) ≤ κ}.
(5.3)

The set D has been thoroughly analyzed from a geometrical point of view, see
e.g. [36] for a formula for N lim

D (X). Interestingly, elements of �D(X) can be easily
constructed exploiting the singular value decomposition of X [12, 15].

Proposition 5.1 Let X ∈ X = R
m×n and let X = U�V T its singular value decom-

position, with orthogonal matrices U ∈ R
m×m, V ∈ R

n×n and � ∈ R
m×n diagonal
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with entries in non-increasing order, i.e.,

�i j =
{

σi if i = j,

0 otherwise,
σi ≥ σ j ∀ i ≥ j,

being σ1, . . . , σq the singular values of X. Moreover, let �̂ the matrix obtained setting
to zero the q − κ bottom-right elements of �, i.e.,

�̂i j =
{

σi if i = j ≤ κ,

0 otherwise.

Then, X̂ = U �̂V T ∈ �D(X).

Of course, the computation of the SVD for a matrix X is not a costless operation,
so obtaining an element of �D(X), even though conceptually simple, requires a non-
negligible amount of computing resources.

If we restrict the discussion to the case of symmetric positive semi-definitematrices,
i.e., D = {X ∈ R

n×n | X � 0, rank(X) ≤ κ}, we can resort to the eigenvalue
decomposition instead of the SVD [1, 15].

Proposition 5.2 Let X ∈ R
n×n be a symmetric matrix. Let us denote by X =∑n

i=1 λiviv
T
i its eigenvalue decomposition, where λ1 ≥ . . . ≥ λn are the non-

increasingly ordered eigenvalues with corresponding eigenvectors v1, . . . , vn. Then,
we have X̂ = ∑κ

i=1 max{0, λi }vivTi ∈ �D(X).

We can thus observe that, in this particular case, in order to compute the projection
onto the set D we only need to find the κ largest eigenvalues with the corresponding
eigenvectors; this can be done efficiently, especially when κ is small, as in most
applications.

A (exact) Penalty Decomposition scheme was developed in [15] to tackle low-rank
optimization problems, exploiting the above closed form rules for projection onto D
both in the general and the positive semi-definite cases. The analysis in Sect. 3 shows
that the algorithmic framework maintains the same convergence properties even when
the X -update step is carried out in an inexact fashion.

5.3 Box-switching constrained problems

A wide class of relevant optimization problems with difficult geometric constraints
is constituted by the so called box-switching constrained problems [1] that can be
formalized as follows:

min
x,y∈Rn

f (x, y)

s.t. G(x, y) ∈ C,

(x, y) ∈ D = {(x, y) | xi yi = 0 ∀ i, lx ≤ x ≤ ux , ly ≤ y ≤ uy},
(5.4)
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where, for simplicity, we assume that lx ≤ 0 ≤ ux and ly ≤ 0 ≤ uy .
This setting covers various disjunctive programming problems such as problems

with

• switching constraints [8]: lx = ly = −∞, ux = uy = ∞,
• complementarity constraints [6]: lx = ly = 0, ux = uy = ∞,
• relaxed sparsity constraints [37]: lx = −∞, ux = ∞, ly = 0, ly = 1.

It is easy to realize that projection onto the set D in this case is simple. Indeed, let us
first consider the projection onto classical bound constraints [l, u] of a vectorw. Since
the constraints are separable, we can immediately obtain the projection by computing,
for each component i , the value

(P[l,u](w))i =

⎧
⎪⎨
⎪⎩

wi if li ≤ wi ≤ ui ,

li if wi < li ,

ui if wi > ui .

With this in mind, noting that the set D is also (pairwise) separable, we can obtain an
element (x̂, ŷ) ∈ �D[(x̄, ȳ)] by first computing

x̃ = P[lx ,ux ](x̄), ỹ = P[ly ,uy ](ȳ)

and then setting

(x̂i , ŷi ) =
{

(x̃i , 0) if x̄2i + (ỹi − ȳi )2 ≥ (x̃i − x̄i )2 + ȳ2i ,

(0, ỹi ) otherwise.

Computing the projection onto D thus amounts to computing 2n projections onto real
intervals, which can be done with low computational effort. For this reason, a Penalty
Decomposition type scheme again appears particularly appealing for this class of
problems.

5.4 General disjunctive programs

A broad class of optimization problems with geometric constraints is represented by
programs where variables are required to satisfy at least one among several sets of
constraints:

min
x∈Rn

f (x)

s.t. G(x) ∈ C,

x ∈ D =
N⋃
i=1

Di ,

(5.5)

where Di , i = 1, . . . , N are closed convex sets. The resulting overall feasible set of
these disjunctive programming problems [4] typically takes the structure of a noncon-
vex, disconnected set. Projections onto D in this case can be computed by finding the
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closest among the N projections onto D1, . . . , DN :

�D(x) = argmin
z

{‖z − x‖ | z = PDi (x), i = 1, . . . , N }.

Since, in general, the projection onto a convex set is already an expensive operation,
the projection onto D is consequently a costly task. We shall observe that, in fact, the
settings analyzed in the previous subsections are particular instances of this setting
where the peculiar structure of sets Di allows to efficiently compute the projection in
smart ways.

The Penalty Decomposition approach might be appealing for problems of this form
when the constraints G(x) ∈ C are numerous and/or nontrivial and N is also large.
In these cases, the brute force strategy of solving N problems with convex constraints
may become computationally unsustainable and PD might represent an appealing
alternative.

6 Computational experiments

In this section, we report the results of an extensive experimentation aimed at demon-
strating the potential and the benefits of using the Penalty Decomposition algorithm
on various classes of problems. The experiments have two main goals:

• Analyze the behavior of penalty decomposition in different settings and understand
how to make it as efficient as possible;

• Compare the penalty decomposition approach with the augmented Lagrangian
method proposed in [1], which is, to the best of our knowledge, the only available
algorithm from the literature designed to handle the general setting (1.1).

The code for the experiments has entirely been implemented in Python 3.9 and is
publicly available at https://github.com/MatteoLapucci/GeoIPD. All the experiments
have been run on a machine with the following specifications: Intel Xeon Processor
E5-2430 v2, 6 physical cores (12 threads), 2.50 GHz, 16 GB RAM. We considered
benchmarks of problems from the classes discussed in Sect. 5, i.e., cardinality con-
strained problems, low-rank approximation problems and disjunctive programming
problems.

For the Penalty Decomposition approach (Algorithm 1), we set an upper bound
to the value of τk equal to 108. We employed for the inner loop (Algorithm 2) the
stopping criterion

qτk (u
	, v	) − qτk (u

	+1, v	+1) ≤ εin, (6.1)

whereas for the outer loop we employ

‖xk+1 − yk+1‖ + distC (G(xk+1)) ≤ εout.

Both the above stopping conditions are the ones suggested in [14] and we set εin =
10−5 and εout = 10−5.
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As unconstrained optimization solvers for the x-update step, we implemented the
gradient descent algorithm with Armijo line search. We also ran experiments using
the implementations of the conjugate gradient (CG, [29]), BFGS [29] and L-BFGS
[38] methods available in the scipy library. For all of these algorithms, we used
the stopping criterion ‖∇xqτk (u

	+1, v	)‖ ≤ εsolv, with εsolv = 10−5 if not specified
otherwise.

As for the augmented Lagrangian method (ALM) from [1], it employs as inner
solver of subproblems the spectral gradient method (SGM) proposed in the same
work. With reference to [1, Algorithm 3.1], we set σ = 10−5, γ0 = 1, γmax =
1012, m = 10, τ = 2 (note that here it does not denote the penalty parameter). As
for the ALM ( [1, Algorithm 4.1]), we set η = 0.8. We employed the multipliers
safeguarding technique, projecting the values obtained using the standard Hestenes-
Powell-Rockafellar updates onto the box [−108, 108]. For the spectral gradient loop,
we used the stopping condition

max
j=0,...,m−1

qτk (x
	−m) − min

j=0,...,m
qτk (x

	+1−m) ≤ 10−5,

where here we have used the notation of the present paper. We used the same stopping
condition (6.1) as the PD method with εin = 10−5 for the inner loop of the ALM,
whereas for the outer loop we require distC (G(xk+1)) ≤ εout, with εout = 10−5. The
stopping conditions have been chosen as similar as possible for the two algorithms, in
order to have a fair comparison.

We also did experiments with a variant of our proposed approach, employing safe-
guarded Lagrange multipliers in an augmented Lagrangian fashion, i.e., we take the
ALM approach from [1] and combine it with the decomposition idea to solve the
resulting subproblems. In other terms, the penalty function in this case becomes:

qτ (x, y; λG , λE ) = f (x) + τ

2
dist2C

(
G(x) + λG

τ

)
+ λT

E (x − y) + τ

2
‖x − y‖2.

The setting of multipliers and penalty parameter updates is the same as the one we
employed for the ALM itself. In the following, we will show that this modification
(denoted PDLM), which does not have any major impact in the convergence analysis,
leads to significant benefits in practice. It is interesting to note that this finding is in
contrast with the remarks that can be found in the conclusions of [14].

Finally,wepoint out thatwedid not report the values for the initial penalty parameter
τ0 and its growing rate ατ (we always set τk+1 = ατ τk). Indeed, these parameter are
quite crucial for the overall performance of both PD and ALM algorithms and have
been suitably selected for each class of problems. Thus, we will report each time the
specific values of these two parameters.

6.1 Sparsity constrained optimization problems

We begin our numerical analysis with sparsity constrained problems. The reason
we start with this class of problems is twofold: a) the original PD approach was
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Table 1 Results of experiments
on three random instances of
cardinality constrained quadratic
problems (6.2). Problems were
generated according to (6.3),
(6.4) with ncond = 10, s = 3,
ν = 5

n Algorithm f_val Runtime (s)

10 PD_gd −9.70 3.68

PD_bfgs-scipy −9.70 0.53

PD_lbsfgs-scipy −9.70 0.31

PDLM_lbsfgs-scipy −9.63 0.26

SGM −9.63 0.05

25 PD_gd −15.12 5.96

PD_bfgs-scipy −15.12 0.91

PD_lbsfgs-scipy −15.12 0.54

PDLM_lbsfgs-scipy −16.19 0.24

SGM −15.58 0.01

50 PD_gd −23.92 9.17

PD_bfgs-scipy −23.92 1.69

PD_lbsfgs-scipy −23.92 0.89

PDLM_lbsfgs-scipy −23.92 0.31

SGM −23.92 0.01

designed for these problems and b) results are more easily and intuitively inter-
pretable.

We considered various experimental settings with problems of this class. Firstly,
we begin with the simplest possible problems, i.e., convex quadratic problems with
only sparsity constraints:

min
x

1

2
xT Qx + νcT x s.t. ‖x‖0 ≤ s. (6.2)

We randomly generated instances of problem (6.2), according to the following proce-
dure:

Q = Y DY , Y = I − 2

‖y‖2 yy
T , y ∈ R

n : yi ∼ U(−1, 1), (6.3)

D = diag(d1, . . . , dn), di = exp

(
i − 1

n − 1
ncond

)
, c ∈ R

n : c ∼ U(−1, 1) (6.4)

where ncond denotes the desired condition number of the matrix Q. We generated three
instances with ncond = 10, n ∈ {10, 25, 50}, s = 3, ν = 5 to evaluate the impact of
different solvers for the x-update step on the alternating minimization scheme and, in
turn, on the overall PD approach.

We report in Table 1 the results obtained by running PD equipped with different
inner solvers starting from the origin.We also ran the variant with Lagrangemultipliers
of our approach only with L-BFGS as inner solver; here we set τ0 = 1 and ατ = 1.1.
Moreover, we considered the spectral gradientmethod for comparison. Note that, since
there are no additional constraints, there is no need to resort to the ALM.
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Table 2 Convergence of penalty decomposition methods on [30, Example 2.2] for different values of τ0.
We report the number of times an objective value has been obtained out of 1000 runs from different starting
points chosen randomly in [−10, 10]n

τ0 Algorithm f = −41.33 f = −39 f = −36.33 Others

0.1 PD 1000 0 0 0

PDLM 1000 0 0 0

1 PD 661 339 0 0

PDLM 1000 0 0 0

10 PD 683 275 42 0

PDLM 620 326 54 0

100 PD 549 250 40 161

PDLM 527 295 57 121

As expected, the use of quasi-Newton type solvers is highly beneficial: BFGS leads
to much faster convergence than the simple gradient method; the L-BFGS provides an
additional, substantial speed up. The presence of Lagrange multipliers also seems to
be beneficial, both in terms of efficiency and of quality of the obtained solution. Based
on these result, in the following we will always be using L-BFGS for the x-update
step in Algorithm 2.

Note that the spectral gradient method clearly outperforms the PD approach in this
case. This is indeed not surprising: being there no additional constraint, there is no
need with the SGM to adopt a sequential penalty strategy, which is costly.

Next, we turn to a simple verification of the convergence properties of the
PD approach. In particular, we consider the artificial example [30, Example 2.2],
which is an instance of (6.2) with Q = E + I , being E the matrix of all ones,
c = −(3, 2, 3, 12, 5)T , ν = 1 and s = 2. We ran both PD and PDLM, with ατ = 1.1
from 1000 different starting points randomly generated in the hyper-box [−10, 10]5.
We observed that the result strongly depends on the choice of τ0, as we report in
Table 2. Interestingly, both algorithms always converged to the global minimum
f (x�) = −41.33 when we set τ0 = 0.1; in fact, we observed the same result for
smaller values of τ0. On the other hand, as τ0 grows worse local minimizers become
increasingly probable; the presence of Lagrange multipliers seems to alleviate, but not
to suppress, this inconvenience. We argue that large values of τ0 make PD schemes
more dependent on the starting point: since usually x0 = y0, the penalty term is at the
first iteration equal to τ0‖x − x0‖2, which binds variable x close to the start.

At this point, we have devised a setting that apparently makes the PD approach
efficient and effective. We therefore expect the algorithm to indeed be a good choice
to resort to when: a) additional constraints are present and/or b) the projection operator
is costly. In the former case, SGM needs to be employed within another sequential
scheme, namely, the ALM, which is the only alternative to the PD available from the
literature; in the latter case, the advantage of PD over the ALM may not be straight-
forward. In fact, the two algorithms share a similar structure, sequentially solving
penalized subproblems; in order to do so, unconstrained continuous optimization steps
and projections onto D are repeatedly carried out; however, in PD many descent steps
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can be carried out before turning to the projection step; on the contrary, in the ALM
we need to do the projection after every gradient step (in fact, we do it many times
per iteration of the SGM to satisfy the acceptance criterion), cf. the discussion in
Remark 4.5.

We now turn to sparsity constrained problems with additional constraints. In par-
ticular, we keep considering convex quadratic problems, but with simplex constraints,
i.e., problems of the form

min
x

1

2
xT Qx + νcT x, s.t. eT x = 1, x ≥ 0, ‖x‖0 ≤ s,

where e ∈ R
n denotes the vector of all ones. This is a classical sparse portfolio

optimization problem [39], where Q and c denote the covariance matrix and the mean
of n possible assets.

Portfolio optimization problems are particularly useful to test the proposed algo-
rithm since we can easily obtain the global optimum to be used as a reference. Indeed,
we can do so exploiting the mixed-integer reformulation of the problem with binary
indicator variables zi ∈ {0, 1}, i = 1, . . . , n, and linear constraints 0 ≤ xi ≤ zi ,
eT z ≤ s, and employing efficient software solvers such as Gurobi [40].

We first consider synthetic problems. Using (6.3), (6.4), we generated 10 problems
for each combination of n ∈ {20, 40, 60} and ncond ∈ {10, 100, 500}, for a total of
90 problems. We set s = 4 when n = 20, s = 7 for n = 40 and s = 9 for n = 60.
We set ν = 1 and use as starting point of the experiments x̃ = (1/n, . . . , 1/n)T ;
we ran PD, PDLM, ALM all with τ0 = 1 and ατ = 1.1. We also ran Gurobi on
all instances to obtain the global optimizer to be used as reference; note that Gurobi
indeed finds the certified global minimum in tens of seconds. The overall results of
the experiments are reported in Fig. 1. The results concerning efficiency (runtime) are
presented in the form of performance profiles [41] in Fig. 1a. We can observe that
Penalty Decomposition with Lagrange multipliers is generally faster than the other
two considered algorithms. As for the quality of the retrieved solutions, we plot in
Fig. 1b the cumulative distribution of the relative gap between the solution found by
a solver and the certified global optimum found with Gurobi; the result of PDLM is
surprisingly remarkable, as it almost always reached a value very close, and often
equal to, the global optimum; on the contrary, both PD and the ALM end up with
substantially suboptimal solutions in almost a half of the cases.

We conclude the analysis on sparsity constrained problems looking at the results
on 6 instances of real world portfolio selection problems. In particular, the data used
in the experiments consists of daily data for securities from the FTSE 100 index, from
01/2003 to 12/2007. The three datasets are referred to as DTS1, DTS2, and DTS3,
and are formed by n = 12, 24, and 48 securities, respectively. We also included three
datasets from the Fama/French benchmark collection (FF10, FF17, and FF48, with
n equal to 10, 17, and 48), using the monthly returns from 07/1971 to 06/2011. The
datasets are generated as in [42]. For each dataset, we define an instance of problem
(6.1): the values of s and ν are set as reported inTable 3, and are such that the cardinality
constraint is active at the optimal solution. We used again x̃ = (1/n, . . . , 1/n)T as
starting point. As for the penalty parameter, we set τ0 = 0.01 and for the Penalty
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Fig. 1 Results of experiments on 90 randomly generated sparse portfolio selection problems, running PD,
PDLM and the ALM

Decomposition methods, whereas we found that a larger value τ0 = 1 was beneficial
for theALM. The parameterατ was set to 1.01 for all methods. The results are reported
in Table 3 and we can observe that the trends outlined by the previous experiments
are substantially confirmed.

6.2 Low-rank optimization problems

In this section, we study problems as discussed in Sect. 5.2 where X = R
m×n and D

consists of a low-rank matrices space.
To begin with, we consider the class of nearest low-rank correlation matrix prob-

lems, which was already used as a benchmark in [15]. In detail, the problem can be
formulated as

min
X∈Rn×n

1

2
‖X − A‖2F s.t. XT = X , X � 0, diag(X) = e, rank(X) ≤ κ,

where A is a given symmetric correlation matrix. The test problems we consider are
the same as in [15], and their corresponding matrix A is defined as follows:

• (P1) Ai j = 0.5 + 0.5 exp(−0.05|i − j |) for all i, j ;
• (P2) Ai j = exp(−|i − j |) for all i, j ;
• (P3) Ai j = 0.6 + 0.4 exp(−0.1|i − j |) for all i, j .

For each of the above problems, we considered the instances with n = 200 and
n = 500 and a value of κ = 5, 10 and 20.

We experimentally compared the ALM and some implementations of the Penalty
Decomposition approach; for all these algorithms, we set τ0 = 1 and ατ = 1.2. We
also needed for these experiments to set the upper bound on the value of τk to 1012.

Note that solving the X -update subproblem with an iterative solver has a signif-
icant cost, as we are considering problems with up to n × n = 250000 variables;
moreover, we are dealing with ill-conditioned quadratic problems, thus we found con-
venient switching from L-BFGS to the CG method. We tested two settings for the
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Table 3 Results of experiments on 6 real world sparse portfolio selection problems, solved using different
algorithmic approaches

Problem (s,ν) Algorithm f_val Runtime (s)

DTS1 (2, 0.001) Gurobi 4.10e−05 0.02

PD 4.27e−05 2.01

PDLM 4.25e−05 2.07

ALM 4.69e−05 8.72

DTS2 (4, 0.001) Gurobi 2.52e−05 0.04

PD 2.75e−05 2.49

PDLM 2.75e−05 1.55

ALM 2.75e−05 5.36

DTS3 (6, 0.001) Gurobi 2.19e−05 0.19

PD 2.43e−05 4.30

PDLM 2.42e−05 1.72

ALM 2.48e−05 5.98

FF10 (2, 0.05) Gurobi 2.87e−05 0.01

PD 3.07e−05 2.43

PDLM 2.96e−05 3.38

ALM 2.87e−05 7.21

FF17 (2, 0.05) Gurobi 2.08e−05 0.01

PD 3.34e−05 3.26

PDLM 3.11e−05 3.98

ALM 3.46e−05 47.89

FF48 (5, 0.05) Gurobi −1.10e−05 0.06

PD 1.59e−05 11.09

PDLM −9.30e−06 5.49

ALM 9.66e−05 0.47

X -update step with CG: a strongly inexact setting, where the CG method is stopped
after at most 5 steps (PD-cg-inaccurate), or when the norm of the gradient is
smaller than εsolv = 0.1, and a more accurate setting, where up to 20 CG steps are
carried out and the tolerance for the gradient norm stopping condition is set to 0.001
(PD-cg-accurate).

In addition, we note that, in fact, the X -update subproblem

min
X∈Rn×n

X=XT

1

2

∥∥∥X − A
∥∥∥
2

F
+ τ

2

(∥∥∥X − Y
∥∥∥
2

F
+

∥∥∥diag(X) − e
∥∥∥
2
)

can be solved to global optimality in closed form; we thus also carried out experiments
with this option (PD-exact);moreover, we also consider the strategy adopted in [15],
where the constraint diag(X) = e is kept as a lower-level constraint and the X -update
subproblem is still solved in closed form (PD-exact-lower-level).
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Table 4 Results of experiments on nearest low-rank correlation matrix problem (P1); for each instance we
report the runtime, objective value and number of (inner) iterations for each considered solver

Problem (n, κ) Algorithm f_val Runtime (s) iter

P1(200, 5) PD-cg-inaccurate 183.8 19.6 1539

PD-cg-accurate 183.7 104.3 8470

PD-exact 183.7 37.8 9179

PD-exact-lower-level 183.7 20.2 6494

ALM 183.7 124.8 23583

P1(200, 10) PD-cg-inaccurate 27.7 9.5 597

PD-cg-accurate 27.6 22.11 3277

PD-exact 27.6 22.7 3587

PD-exact-lower-level 27.6 12.4 2606

ALM 27.6 25.8 3705

P1(200, 20) PD-cg-inaccurate 3.7 8.7 273

PD-cg-accurate 3.5 37.1 1194

PD-exact 3.5 13.7 1332

PD-exact-lower-level 3.5 7.5 1006

ALM 3.5 31.1 2261

P1(500, 5) PD-cg-inaccurate 3108.0 466.7 5602

PD-cg-accurate 3107.0 2396.3 29689

PD-exact 3107.0 619.4 33654

PD-exact-lower-level 3107.0 339.4 23053

ALM 3107.0 1710.1 47539

P1(500, 10) PD-cg-inaccurate 748.2 543.5 2132

PD-cg-accurate 748.2 3410.9 12673

PD-exact 748.2 356.2 14299

PD-exact-lower-level 748.2 207.6 9846

ALM 748.2 1351.5 17322

P1(500, 20) PD-cg-inaccurate 123.7 200.2 811

PD-cg-accurate 123.4 1425.6 5078

PD-exact 123.4 216.0 5787

PD-exact-lower-level 123.4 127.5 4077

ALM 123.4 1201.9 13568

We finally report that we found the introduction of Lagrange multipliers associated
with constraints G(x) ∈ C useful. We instead noticed that multipliers associated with
the constraint X = Y are not helpful. This observation is in line with the work in [15],
where only the constraint X = Y was in practice handled by the penalty approach
and multipliers were reported not to be beneficial. In the experiments described in the
following, only multipliers associated with the original problem constraints have been
employed. The results of the experiment are reported in Tables 4, 5 and 6.

We can observe that the exact versions of the PD approach are the best performing
ones from all perspectives, with the PD-exact-lower-level originally used in
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Table 5 Results of experiments on nearest low-rank correlation matrix problem (P2); for each instance we
report the runtime, objective value and number of (inner) iterations for each considered solver

Problem (n, κ) Algorithm f_val Runtime (s) iter

P2(200, 5) PD-cg-inaccurate 3701.2 51.3 4312

PD-cg-accurate 3700.8 181.7 15415

PD-exact 3700.8 63.4 16360

PD-exact-lower-level 3700.8 32.6 10724

ALM 3700.8 156.4 22519

P2(200, 10) PD-cg-inaccurate 1703.7 29.8 2162

PD-cg-accurate 1703.1 100.85 7678

PD-exact 1703.1 45.0 8171

PD-exact-lower-level 1703.1 24.1 5384

ALM 1703.1 136.7 14017

P2(200, 20) PD-cg-inaccurate 712.2 30.9 1065

PD-cg-accurate 712.0 118.2 3738

PD-exact 712.0 35.0 3969

PD-exact-lower-level 712.0 19.2 2629

ALM 712.0 117.1 6519

P2(500, 5) PD-cg-inaccurate 24249.5 950.8 11449

PD-cg-accurate 24248.2 3463.7 42892

PD-exact 24248.2 836.4 46711

PD-exact-lower-level 24248.2 447.9 30240

ALM 24248.2 627.6 15633

P2(500, 10) PD-cg-inaccurate 11752.9 501.5 5754

PD-cg-accurate 11749.1 1845 21508

PD-exact 11749.1 560.9 23576

PD-exact-lower-level 11749.1 308.4 15317

ALM 11749.1 2289.7 44857

P2(500, 20) PD-cg-inaccurate 5505.0 283.1 2878

PD-cg-accurate 5502.9 1049.6 12854

PD-exact 5502.9 420.1 11932

PD-exact-lower-level 5502.9 238.6 7834

ALM 5502.9 2642.8 360565

[15] standing out. This is in fact not surprising: in this case the exact method solves
subproblems not only with higher accuracy, but also employing much less time than
using an iterative solver.

Interestingly, however, we observe that the “inaccurate” version of the inexact
PD attains runtimes that are comparable with the exact approaches, with only small
drops in the quality of the retrieved solution. On the other hand, with a slightly more
accurate inexact minimization we are always able to retrieve the best solution as the
exact methods, with a computational effort generally comparable to that of the ALM.
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Table 6 Results of experiments on nearest low-rank correlation matrix problem (P3); for each instance we
report the runtime, objective value and number of (inner) iterations for each considered solver

Problem (n, κ) Algorithm f_val Runtime (s) iter

P3(200, 5) PD-cg-inaccurate 265.1 22.2 1746

PD-cg-accurate 265.0 108.7 9224

PD-exact 265.0 40.3 9934

PD-exact-lower-level 265.0 21.5 6937

ALM 265.0 131.6 21078

P3(200, 10) PD-cg-inaccurate 56.1 24.2 704

PD-cg-accurate 56.1 103.7 3277

PD-exact 56.1 24.8 3587

PD-exact-lower-level 56.1 13.5 2606

ALM 56.1 82.6 3705

P3(200, 20) PD-cg-inaccurate 9.1 9.29 305

PD-cg-accurate 8.5 45.4 1474

PD-exact 8.5 16.1 1625

PD-exact-lower-level 8.5 8.9 1196

ALM 8.5 109.9 7875

P3(500, 5) PD-cg-inaccurate 2871.4 1451.3 5607

PD-cg-accurate 2869.3 7902.8 29897

PD-exact 2869.3 615.6 34110

PD-exact-lower-level 2869.3 360.8 23229

ALM 2869.3 300.57 4128

P3(500, 10) PD-cg-inaccurate 982.1 219.9 2460

PD-cg-accurate 981.8 1182.7 13657

PD-exact 981.8 371.1 16322

PD-exact-lower-level 981.8 209.9 10463

ALM 981.8 444.7 9343

P3(500, 20) PD-cg-inaccurate 243.8 102.2 964

PD-cg-accurate 243.7 1049.6 10757

PD-exact 243.7 420.1 11932

PD-exact-lower-level 243.7 238.6 7834

ALM 243.7 2642.8 36056

We can thus deduce that a suitable configuration exists for the inexact PD approach
that provides a good trade-off between solution quality and runtime.

These results are encouraging for all those settings where the exact version of the
Penalty Decomposition approach is not employable by construction.

We then turn to a new class of problems, where matrices are not symmetric positive
semi-definite and the X -update step requires a solver to be carried out. Specifically, we
consider the low-rank based multi-task training [43] of logistic models [44]. Given a
collection of somewhat related binary classification tasks T1, . . . , Tm , Ti = {(Xi ,Yi ) |
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Xi ∈ R
Ni×n, Yi ∈ {0, 1}Ni }, where Xi represents the data matrix for each task and Yi

the corresponding labels, we can formalize the multitask logistic regression training
problem as

min
W ,U ,V∈Rm×n

m∑
t=1

L(Wt ; Xt ,Yt ) + η‖U‖2F s.t. rank(V ) ≤ κ, W = U + V , (6.5)

where the t-th row Wt of W denotes the weights of the logistic model for the t-th
task; each model is defined as the sum of a component independently characterizing
the particular task, which is regularized, and a second component that lies in a linear
subspace shared by all tasks. The stronger is the regularization parameter η, the higher
will be the similarity of the obtained models. By L(Wt ; Xt ,Yt ) we denote the binary
cross entropy loss function of the logistic model for task t , which is a convex function
that, however, cannot be minimized in closed form.

We can observe that the problem can be solved by Penalty Decomposition, dupli-
cating variable V . The constraint W = U + V can also be tackled by the penalty
approach. The update step of the original variables W ,U , V cannot be carried out in
closed form, thus we need to resort to the inexact version of the PD method.

For the experiments, we used the landmine dataset [45], consisting of 9-
dimensional data points representing radar images from 29 landmine fields/tasks.
Each task aims to classify points as landmine or clutter. There are 14,820 data points
in total. Tasks can approximately be clustered into two classes of ground surface con-
ditions, so we expect r = 2 to be a reasonable bound for the low-rank component of
the solution. We defined four instances of problem (6.5), corresponding to values of η

in {0.01, 0.1, 0.5, 2}. We examined the behavior of the inexact PD and ALMmethods
under different parameters configurations. In particular, we considered the following
settings:

• Penalty decomposition

– Lagrange multipliers associated with all constraints;
– τ0 = 10−3, ατ = 1.3;
– conjugate gradient (CG) for x-update steps;
– three options for CG termination criteria:

• εsolv = 0.1, max_itersCG = 5 (pd_inaccurate);
• εsolv = 0.05, max_itersCG = 8 (pd_mid);
• εsolv = 0.001, max_itersCG = 20 (pd_accurate);

• ALM

– τ0 = 1, ατ = 1.3;
– two options for spectral gradient parameters:

• εin = 10−1, m = 1, γmax = 106, σ = 0.05 (alm_fast);
• εin = 10−3, m = 4, γmax = 109, σ = 5 · 10−4 (alm_accurate).

We also report the results obtained by optimizing each task independently. For all PD
and ALM configurations, we used as starting solution the one retrieved by single task
optimization. Note that both configurations for ALM have lower precision than the
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Fig. 2 Runtime/quality trade-off for different set-ups of PD and ALM on low-rank multitask logistic
regression problems. The four problems are obtained from the landmine dataset for different values
of the regularization parameter η and setting κ = 2

default one reported at the beginning of Sect. 6; with this particular problem, we found
the default configuration to be remarkably inefficient; however we shall underline that,
in other test cases considered in this paper, these alternative configurations had led
to convergence issues concerning numerical errors. The results of the experiment are
reported in Fig. 2. Note that here we are interested in the optimization process metrics,
not in the out-of-sample prediction performance of the obtained models.

We can observe that different setups for the algorithms allow to obtain different
trade-offs between speed and solution quality. In particular, for the PD method we see
that the trend observed with the correlation matrix problems are confirmed: solving
the x-update subproblem up to lower accuracy allows to save computing time but at
the cost of small yet not negligible sacrifice on the solution quality. A similar and even
stronger trend can be observed for the ALM. Finally, we can observe that PD appears
to be superior to the ALM both in terms of efficiency and effectiveness.

6.3 Disjunctive programming problems

In this section, we computationally analyze the performance of the Penalty Decom-
position approach on problems of the form (5.5). The main goal of this section is to
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compare the performance of inexact PD with that of the ALM algorithm in a setting
where the projection operation is costly and is in fact responsible for the largest part
of the computational burden: as highlighted in Sect. 5.4, it amounts to compute the
projection onto each of the convex sets Di .

For the experiments, we defined the following test problem:

min
x∈Rn

L(x)

s.t. x ∈
N⋃

q=1

{x | Aqx ≤ bq}

n∑
i=1

ci j (xi − pi j )
4 ≤ t j , j = 1, . . . ,m,

where L denotes the (convex) logistic loss on a randomly generated dataset of 200
examples. We assume Aq ∈ R

s×n and bq ∈ R
s have the same dimensions for q =

1, . . . , N and their coefficients are uniformly drawn from [−1, 1]; the coefficients c
are randomly picked from [0, 1], whereas values for p are from [−0.5, 0.5]. We set
t j = 0.1 for all j .

First, we consider the problem with n = 10, s = 12 and m = 1, for values of N
varying in {2, 5, 10, 20, 50, 100}. In Table 7 we report the results obtained running
PD (parameters: τ0 = 0.1, ατ = 1.2, εin = 0.01, Lagrange multipliers employed) and
the ALM (parameters τ0 = 1, ατ = 1.2 m = 4, σ = 0.01, εin = 0.01), together with
reference values obtained with the enumeration approach (subproblems are solved
using the SLSQP method available in scipy), which allows to retrieve the certified
global optimizer. For the projection steps onto sets Di we used gurobi solver.

We can observe that PDwas always much faster than the ALM;moreover, it always
ended up finding the actual global optimizer; this does not hold true for the ALM.
We remark that we verified that, as expected, the computing time is indeed entirely
dominated by projection steps. Indeed, as can be observed from Table 7, runtime and
number of projection steps appear to be somewhat correlated.

Then, we turn to the experiments on an instance where the number of nonlinear
constraints shared by all components of the feasible set are numerous and dominate
the complexity of solving each subproblem in the enumeration approach. In particular,
we consider the previous problem with N = 50, n = 5, m = 80, s = 7. Here we
set τ0 = 0.1, ατ = 1.5, εin = 0.02 for PD and τ0 = 1, ατ = 1.5 m = 4, σ = 0.05,
εin = 0.1 for the ALM. The experiment is repeated 20 times for different random
seeds. The results are reported in the form of performance profiles in Fig. 3.

We deduce that Penalty Decomposition can indeed be a good choice in particularly
complicated settings: the global optimizer was always reached, and this result was
obtained in a consistently more efficient way than the brute force approach; the ALM
does not have a comparable appeal in this context, the reason arguably being the much
higher frequency of it resorting to the projection operation.
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Table 7 Results of experiments on disjoint programming problems, for increasing number of feasible set
components N

N Algorithm f_val Runtime (s) n_proj

2 Enumeration + SLSQP 140.58 0.61 –

PD 140.58 2.10 65

ALM 140.64 12.02 961

5 Enumeration + SLSQP 139.40 2.37 –

PD 139.40 6.92 93

ALM 139.59 67.22 713

10 Enumeration + SLSQP 135.82 1.87 –

PD 135.82 5.87 99

ALM 135.83 48.13 579

20 Enumeration + SLSQP 134.94 9.96 –

PD 134.94 19.41 110

ALM 134.95 170.31 1138

50 Enumeration + SLSQP 135.08 18.44 –

PD 135.08 41.66 74

ALM 135.08 267.95 560

Enumeration + SLSQP 135.69 30.03 –

PD 135.69 61.26 124

ALM 135.69 465.91 1039

Fig. 3 Performance profiles of runtime attained by PD,ALMand the enumeration strategy (with SLSQP) on
20 disjoint programming problems. When a solver does not attain the global minimum, the corresponding
runtime is considered infinite when building the profile
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7 Conclusions

The current paper considers a penalty decomposition scheme for optimization
problems with geometric constraints. It generalizes existing penalty decomposition
schemes both by taking advantage of a general abstract (and usually complicated)
constraint (as opposed to having only particular instances like cardinality constraints)
and by including further (though supposingly simple) constraints. The idea and the
convergence theory of thismethod is also related to recent augmentedLagrangian tech-
niques, but the decomposition idea turns out to be numerically superior by allowing
more efficient subproblem solvers and using many less projection steps.

In principle, it should be possible to extend the decomposition idea to the class
of (safeguarded) augmented Lagrangian methods. Another, and related, question is
whether one can exploit additional properties of augmented Lagrangian methods in
order to improve the existing convergence theory. For example, augmented Lagrangian
techniques have very strong convergence properties in the convex case. The particular
classes of problems discussed in this paper are nonconvex, but the nonconvexitymainly
arises from the fact that the abstract set D is nonconvex. Since we deal with the
complicated set D explicitly, so that all iterates are feasible with respect to this set, a
natural question is therefore whether one can prove stronger convergence properties
in those situations where the remaining functions and constraints are convex. This will
be part of our future research.
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