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Abstract
Unit square visibility graphs (USV) are described by axis-parallel visibility between
unit squares placed in the plane. If the squares are required to be placed on integer
grid coordinates, then USV become unit square grid visibility graphs (USGV), an
alternative characterisation of the well-known rectilinear graphs. We extend known
combinatorial results for USGV and we show that, in the weak case (i.e., visibilities
do not necessarily translate into edges of the represented combinatorial graph), the
area minimisation variant of their recognition problem is NP-hard. We also provide
combinatorial insights with respect to USV, and as our main result, we prove their
recognition problem to be NP-hard, which settles an open question.

Keywords Geometric graph classes · Graph recognition · Visibility graphs ·
Visibility layout · NP-completeness

Mathematics Subject Classification 68R10 · 05C10 · 05C62

1 Introduction

A visibility representation of a graph G is a set R = {Ri | 1 ≤ i ≤ n} of geometric
objects (e.g., bars, rectangles, etc.) alongwith somekindof geometric visibility relation
∼ over R (e.g., axis-parallel visibility), such that G = ({vi | 1 ≤ i ≤ n}, {{vi , v j } |
Ri ∼ R j }). In this work, we focus on rectangle visibility graphs, which are represented
by axis aligned rectangles in the plane and vertical and horizontal axis parallel visibility
between them. In particular, we consider the more restricted variant of unit square
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visibility graphs (see [12]), and, in addition, we also consider the case where the unit
squares are placed on an integer grid (an alternative characterisation of the well-known
class of graphs with rectilinear drawings).

The study of visibility representations is of interest, both for applications and for
graph classes, and has remained an active research area1 mainly because axis-aligned
visibilities give rise to graph and network visualizations that satisfy good readability
criteria: straight edges, and edges that cross only at right angles. These properties are
highly desirable in the design of layouts of circuits and communication paths. Indeed,
the study of graphs arising from vertical visibilities among disjoint, horizontal line
segments (“bars”) in the plane originated during the 1980’s in the context of VLSI
design problems; see [18, 32, 33].

Because bar visibility graphs are necessarily planar, this model has been extended
in various ways in order to represent larger classes of graphs. Such extensions include
new definitions of visibility (e.g., sight lines that may penetrate up to k bars [13] or
other geometric objects [4]), vertex representations by other objects (e.g., rectangles,
L-shapes [20], ortho-polygons [6], and sets of up to t bars [25]), extensions to higher
dimensional objects (see, e.g., [8] for visibility representation in 3D by axis aligned
horizontal rectangles with vertical visibilities, or [21], which studies visibility repre-
sentations by unit squares floating parallel to the x, y-plane and lines of sight that are
parallel to the z-axis). The desire for polysemy, that is, the expression of more than
one graph by means of one underlying set of objects, has also provided impetus in the
study of visibility representations (see for example [6, 20, 31]).

Rectangle visibility graphs have the attractive property, for visualization purposes,
that they yield right angle crossing drawings (RAC graphs (see [17]), which are graphs
with poly-line drawings such that any two crossing segments are orthogonal), which
have seen considerable interest in the graph drawing community. Unit square graphs
form a subfamily of L-visibility graphs (see [20]) and their grid variant a subfamily
of RACs with no bends (note that RAC recognition for 0-bends is NP-hard [2]).

Using visibilities among objects is but one example of the use of binary geometric
relations for this purpose; other geometric relations include intersection relations (e.g.,
of strings or straight line segments in the plane, of boxes in arbitrary dimension),
proximity relations (e.g., of points in the plane), and contact relations. In the literature,
for the resulting graph classes, combinatorial aspects, relationships to other graph
classes, as well as computational aspects are studied (see [22] for a survey focusing
on contact representations of rectangles).

Finally, we note that visibility properties among sets of objects have been studied
in a number of contexts, including motion planning and computer graphics. In [29] it
is proposed to find shortest paths for mobile robots moving in a cluttered environment
by looking for shortest paths in the visibility graph of the points located at the vertices
of polygonal obstacles. This led to a search for fast algorithms to compute visibility
graphs of polygons, as well as to a search for finding shortest paths without computing
the entire visibility graph.

1 The 24th International Symposium on Graph Drawing and Network Visualization (GD 2016) featured an
entire session on visibility representation (see [3, 10, 11, 15]), and the joint workshop day of the Symposium
on Computational Geometry (SoCG) and the ACM Symposium on Theory of Computing (STOC) included
a workshop on geometric representations of graphs in June 2016.
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1.1 Our Contribution

With respect to unit square grid visibility graphs, we extend the known combinatorial
results (since unit square grid visibility graphs are equivalent to rectilinear graphs,
many such results already exist), in particular, with respect to planarity and character-
isations, and we show that the area minimisation variant of the recognition problem
(i.e., deciding whether a given graph can be represented by a layout within some given
height and width bounds) for weak (see Sect. 2) unit square grid visibility graphs is
NP-hard. From our reduction, we are also able to conclude hardness for some other
variants of the recognition problem.

For unit square visibility graphs (i.e., the casewhere the positions of the unit squares
are not restricted to integer coordinates), we also prove some combinatorial results
(thus, we extend the investigations initiated by [12]). As our main result, we settle
the open question regarding the complexity of the recognition problem for this graph
class, by proving its NP-hardness. This requires a reduction that is highly non-trivial
on a technical level with the main difficulty to identify graph structures that can be
shown to be representable by unit square layouts in a unique way to gain sufficient
control for designing suitable gadgets.

1.2 Organisation of the Paper

In Sect. 2, we formally define the considered classes of visibility graphs and we recall
some more classical geometric graph classes that are similar to the unit square grid
visibility graphs. Sections 3 and 4 are then devoted to the grid variant and the non-grid
variant, respectively, of unit square visibility graphs. More precisely, we investigate
combinatorial properties of unit square grid visibility graphs and the areaminimisation
variant of the recognition problem for weak unit square grid visibility graphs in Sects.
3.1 and 3.2, respectively. Section 4 considers unit square visibility graphs, starts with
combinatorial results and the hardness of the recognition problem is shown in Sect. 4.1,
which, due to the intricacy of the whole construction, is further divided in a first
part with some preliminaries and general ideas (Sect. 4.1.1), followed by the formal
definition of the reduction (Sect. 4.1.2) and the actual proof that the reduction is correct
(Sect. 4.1.3).

2 Preliminaries

A visibility layout, or simply layout, is a setR = {Ri | 1 ≤ i ≤ n} with n ∈ N, where
Ri are closed axis-parallel rectangles in the plane; the position of such a rectangle is
the coordinate of its lower left corner. We further ask that any two different rectangles
intersect in at most one point, i.e., touching corners are allowed (we shall discuss this
decision, and more generally the issue of touching corners or borders with respect to
rectangle visibility graphs, in Sect. 2.1 further below).

For every Ri , R j ∈ R with Ri �= R j , a closed non-degenerate axis-parallel rect-
angle S (i.e., a non-empty closed rectangle that is not a line segment) is a visibility
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rectangle for Ri and R j if one side of S is contained in Ri and the opposite side
in R j . In particular, corner-touching does not enable visibility. We define Ri →R R j

(Ri ↓R R j ), if there is a visibility rectangle S for Ri and R j , such that the left side
(upper side) of S is contained in Ri , the right side (lower side) of S is contained in R j

and S ∩ Rk = ∅, for every Rk ∈ R \ {Ri , R j }. Let ↔R and �R be the symmetric
closures of →R and ↓R, respectively. Finally, Ri ∼R R j if Ri ↔R R j or Ri �R R j

(∼R is the visibility relation (with respect to R)). If the layout R is clear from the
context or negligible, we drop the subscript R. We denote Ri ∼ R j , Ri ↔ R j , and
Ri → R j also as Ri sees R j , Ri horizontally sees R j , and Ri sees R j from the left,
respectively, and analogous terminology applies to vertical visibilities. For S, T ⊆ R,
we use S →R T to mean R →R R′ for all R ∈ S and R′ ∈ T .

A layout R = {Ri | 1 ≤ i ≤ n} represents the undirected graph G(R) = ({vi | 1 ≤
i ≤ n}, {{vi , v j } | 1 ≤ i, j ≤ n, Ri ∼ R j }), which is then called a visibility graph,
and the class of visibility graphs is denoted by V. A graph is aweak visibility graph, if it
can be obtained from a visibility graph by deleting some edges and the corresponding
class of graphs is denoted by Vw. As a convention, for a visibility graph G = (V , E)

and a layout representing it we denote by Rv the rectangle for v ∈ V and define
RV ′ = {Rx | x ∈ V ′} for every V ′ ⊆ V . We call layouts R1 and R2 isomorphic
if G(R1) and G(R2) are isomorphic. Furthermore, we call R1 and R2 V-isomor-
phic if, for some x ∈ {→R1 ,→−1

R1
} and y ∈ {↓R1

,↓−1
R1

}, the relational structure

(R1,→R1 ,↓R1
) is isomorphic to (R2, x, y) or (R2, y, x).2

Unit square visibility graphs (USV) and unit square grid visibility graphs (USGV)
are represented by unit square layoutsR, where every R ∈ R is a unit square, and unit
square grid layouts, where additionally the position of every R is from N × N. Note
that in the grid case, if a unit square is positioned at (x, y), then there is no other unit
square on coordinates (x, y), and no unit square on coordinates (x + 1, y), (x, y + 1),
(x, y − 1), or (x − 1, y − 1).

Observation 2.1 If Ru ↓ Rv is in a USGV representation, then Rw ↓ Rv , Ru ↓ Rw,
Rw ↑ Ru, and Rv ↑ Rw are not in the representation for any Rw �= Ru, Rv .

The weak classes USVw and USGVw are defined accordingly.
For a graph G = (V , E), N (v) is the neighbourhood of v ∈ V , �E denotes an

oriented version of E , i.e., E = {{u, v} | (u, v) ∈ �E}, and f : �E → E , (u, v) �→
{u, v}, is a bijection. Let L, R and D,U be pairs of complementary values (for X ∈
{L, R,D,U}, X denotes its complement). An LRDU-restriction (for G) is a labelling
σ : �E → {L, R,D,U} and it is valid if, for every (u, v) ∈ �E with σ((u, v)) = X
and every w ∈ V \ {u, v}, σ((u, w)) �= X �= σ((w, v)), and σ((v,w)) �= X �=
σ((w, u)). Obviously, LRDU-restrictions are only a reasonable concept for graphs with
maximum degree 4. A unit square grid visibility layout satisfies an LRDU-restriction
σ if σ((u, v)) = L implies Rv → Ru , σ((u, v)) = R implies Ru → Rv , σ((u, v)) = D
implies Ru ↓ Rv and σ((u, v)) = U implies Rv ↓ Ru . An HV-restriction (for G) is
a labelling σ : E → {H,V} and it is valid if, for every u ∈ V at most two incident
edges are labeled H and at most two incident edges are labeled V. A unit square grid

2 By �−1, we denote the inverse of a binary relation �.
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visibility layout satisfies an HV-restriction σ if σ({u, v}) = H implies Rv ↔ Ru and
σ({u, v}) = V implies Rv � Ru .

For any set G of undirected graphs, we define the following problem:

Recognition for G (Rec(G))

Instance: Undirected graph G.
Question: G ∈ G?

In the following, we shall consider the problems Rec(USGV) and Rec(USV).

We briefly recall some established geometric graph representations relevant to this
work. A rectilinear drawing (see [19, 28]) of a graph G = (V , E) is a pair of map-
pings x, y : V → Z, where, for every v ∈ V , x(v) and y(v) represent the x- and
y-coordinates of v on the grid and, for every edge {u, v} ∈ E , (x(u), y(u)) and
(x(v), y(v)) are the endpoints of a horizontal or vertical line segment that does not
contain any (x(w), y(w)) with w ∈ V \ {u, v}. A graph is called a rectilinear graph if
it has a rectilinear drawing. A graph has resolution 2π/d if it has a drawing in which
the degree of the angle between any two edges incident to a common vertex is at least
2π/d. We call such graphs resolution-(2π/d) graphs and are mainly interested in the
case d = 4, see [23]. Planar graphs with resolution at least π/2 are rectilinear, see [7].
A bendless right angle crossing (BRAC) drawing of a graph is a straight-line drawing
in which every crossing of two edges is at right angles.3 Note that in a BRAC drawing
or a resolution-(2π/4) drawing, edges are not necessarily axis-parallel (as is the case
for visibility layouts and rectilinear drawings). A graph is called a BRAC graph if it
has a BRAC drawing.

2.1 A Remark on Corner- and Border-Intersections of Rectangles

In the literature on rectangle visibility graphs, it is usually required that rectangles
are pairwise disjoint, but it is not always made precise what this means. In particular,
it is common to allow rectangles to intersect in corners (see [12]), or to allow even
overlapping boundaries (see [14]).4

Since our paper mainly extends the work initiated by [12], we choose to adopt the
respective definitions, i.e., we allow two squares to overlap in at most one point, which
means that they can only intersect in at most one corner. It should be noted, however,
that these seemingly small differences, i.e., whether we allow or disallow rectangles
to intersect in corners or borders, lead to different graph classes.

More precisely, the three versions (I) “no intersection”, (II) “corner-touching”,
and (III) “border intersection” yield a strict hierarchy of graph classes. For example,
Fig. 5(b) shows a layout for the complete bipartite graph K2,6 that has unit squares
with intersecting corners (type (II)), but we cannot represent K2,6 if we require strictly

3 In the literature (e.g., [17]), the edges of a RACdrawing are usually allowed to have bends; the investigated
questions are on finding RAC drawings that minimise the number of bends and crossings. What we call
BRAC drawings here, is also denoted as straight-line RAC drawings in the literature.
4 Actually, the possibility of touching corners is not explicitly mentioned in [12], but the paper contains
example layouts with touching corners that represent graphs that would not be expressible without touching
corners (see [12, Fig. 12]).
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Fig. 1 Example illustrating that there are graphs that can only be represented with layouts that allow
intersection of borders

non-intersecting unit squares (type (I)). Moreover, consider a graph with vertices
{a, b, i, c j , d j | 1 ≤ i ≤ k, 1 ≤ j ≤ k − 1} and with edges such that 1, 2, . . . , k
forms a path in this order with all vertices adjacent to both a and b, and, for every
1 ≤ i ≤ k − 1, both ci and di are adjacent to both vertices i and i + 1. Figure 1(a)
shows how this graph (for k = 4) can be represented by a unit square visibility layout
with border intersections (type (III)). However, Fig. 1(b) illustrates that if unit squares
are not allowed to have touching borders (type (I) or (II)), then we necessarily have to
create some unwanted visibilities.

3 Unit Square Grid Visibility Graphs

The readability of graph drawings is mainly affected by its angular resolution (i.e.,
the minimum angle formed by consecutive edges incident to a common node) and
its crossing resolution (angles formed at edge crossings); see the discussion in [1]. In
this regard, resolution-(π/2) graphs and BRAC graphs have an angular resolution and
crossing resolution of π/2, respectively, while rectilinear drawings and unit square
grid visibility layouts force both resolutions to be π/2.

The question arises of how these classes relate to each other and in this regard, we
first note that USGV and rectilinear graphs coincide. More precisely, a unit square grid
layout can be transformed into a rectilinear drawing by replacing every unit square
on position (x, y) by a vertex on position (x, y) and translate the former visibilities
into straight-line segments. Transforming a rectilinear drawing into a unit square grid
layout can be done by scaling it first by factor 2 and then replacing each vertex on
position (x, y) by a unit square on position (x, y) (without scaling, sides or corners of
unit squares may overlap). This only results in a weak layout, since visibilities may be
created that do not correspond to edges in the rectilinear drawing. However, any weak
unit square grid visibility graph can be transformed into a unit square grid visibility
graph (as formally stated below in Theorem 3.7).

Since all these graphs except the BRAC graphs have maximum degree 4, we only
consider degree-4 BRAC graphs. Obviously, resolution-(π/2) graphs and degree-4
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BRACgraphs are both superclasses ofUSGV (and rectilinear graphs).Witnessedby K3,
the inclusion in degree-4 BRAC graphs is proper, while the analogous question w.r.t.
resolution-(π/2) graphs is open.Moreover, K3 is also an example of a degree-4 BRAC
graph that is not a resolution-(π/2) graph; whether there exist resolution-(π/2) graphs
without a BRAC drawing is open (in this regard, note that the characterisation of
the complete bipartite graphs with BRAC drawings of [16] shows that all complete
bipartite resolution-(π/2) graphs also have BRAC drawings (in fact, as can be easily
verified, Kn,m is a resolution-(π/2) graph if and only if (n = 1 and m ≤ 4) or
n = m = 2)).

Due to the equivalence of USGV and rectilinear graphs, results for the latter graph
class carry over to the former. In this regard, we first mention that the NP-hardness
proof of recognizing resolution-(π/2) graphs from [23] actually produces drawings
with axis-aligned edges; thus, it also applies to rectilinear graphs (a similar reduction
(for rectilinear graphs and presented in more detail) is provided in [19]). As shown in
[19], the recognition problem for rectilinear graphs can be solved in time O(24kk2kn),
where k is the number of vertices with degree at least 3. In [28], it is shown that
recognition remains NP-hard if we ask whether a drawing exists that satisfies a given
HV-restriction5 or a drawing that satisfies a given circular order of incident edges.
However, checking the existence of a rectilinear drawing satisfying a given LRDU-
restriction can be done in timeO(|E | · |V |). Consequently, by trying all such labellings,
we can solve the recognition problem for rectilinear graphs in time 2O(n). In this regard,
it isworth noting that the hardness reduction from [19] can be easilymodified, such that
it also provides lower complexity bounds subject to the Exponential-Time Hypothesis
(ETH). We shall outline this simple modification in more detail next.

The reduction from [19] transforms a 3SAT instance with n variables andm clauses
into a graph of size O(nm).6 The main part of this graph is an L-shaped frame of size
O(n +m) (containing n connecting ports in its horizontal and m connecting ports in
its vertical arm) and, for every variable xi , a tower with m levels. These levels are
aligned with them clause-ports and are connected by edges only if the clause contains
this variable or its negation. Consequently, in every variable tower for xi , only those
levels matter that correspond to clauses which contain xi (or xi ) and the rest can be
ignored. In fact, simply removing those superfluous levels result in a reduction that
works in the same way, but constructs a graph of size O(m).

With this linear reduction from 3SAT, it follows that the above sketched 2O(n)

algorithm for the recognition problem (i.e., enumerating all possible LRDU-restrictions
and then applying the algorithm from [28]) is optimal in the sense that the existence
of a 2o(n) algorithm would refute ETH.

3.1 Combinatorial Properties ofUSGV

First, we shall see that the class USGV is downward closed w.r.t. the subgraph relation,
i.e., if G ∈ USGV, then all its subgraphs are in USGV. This observation will be a
convenient tool for obtaining other combinatorial results.

5 The definition of HV- and LRDU-restriction given above naturally translates to rectilinear drawings.
6 Since rectilinear graphs have maximum degree 4, we measure their size in the number of vertices.
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Lemma 3.1 Let G = (V , E) ∈ USGV, let v ∈ V and e ∈ E. Then (V , E\{e}) ∈ USGV
and (V \ {v}, E) ∈ USGV.

Proof We first prove the first statement. To this end, let e = {u, v}, where u and
v are represented by unit squares Ru and Rv at coordinates (xu, yu) and (xv, yv),
respectively, and, without loss of generality, we assume that Ru ↓ Rv (note that this
implies xu = xv). We now modify the layout as follows. Every unit square R on a
coordinate (x, y) with x > xv or x = xv and y ≤ yv is moved one unit to the right
(note that this means that Rv is also moved to the right, but Ru is not). Obviously,
this modification cannot create any new visibilities and the only visibilities that are
destroyed are between unit squares R and R′ on coordinates (xv, y) and (xv, y′) with
y > yv and y′ ≤ yv , but the only unit squares that satisfy this condition are Ru and Rv .
Consequently, the modified layout represents (V , E \ {e}).

In order to show the second statement, we observe that removing Rv (the unit square
for v) from the layout results in a layout for (V \ {v}, E ∪ E ′), where E ′ is a set of at
most two edges not present in (V \ {v}, E). These additional edges can successively
be deleted as described above, in order to obtain a layout for (V \ {v}, E). ��
The following limitations of USGV are straightforward.

Lemma 3.2 Let G = (V , E) ∈ USGV. Then, (i) the maximum degree of G is 4, (ii) for
every u, v ∈ V , |N (u)∩ N (v)| ≤ 2, and (iii) for every {u, v} ∈ E, N (u)∩ N (v) = ∅.
Proof In a grid layout, any unit square can see at most four other squares; thus, the
maximum degree of G is 4. Let u, v ∈ V be represented by unit squares Ru and Rv

on coordinates (xu, yu) and (xv, yv), respectively. If xu = xv or yu = yv , then there
is at most one unit square that can see both Ru and Rv . If xu �= xv and yu �= yv ,
then there are at most two unit squares that can see both Ru and Rv . This implies the
second statement. If Ru sees Rv , then it is impossible for any unit square to see both
Ru and Rv , which implies the third statement. ��

Aconsequence of Lemma 3.2 is that no graph fromUSGV contains K1,5, K2,3, or K3
as a subgraph, since they violate the first, second and third condition of Lemma 3.2,
respectively. Obvious examples for graphs from USGV are subgraphs of a grid; as
Lemma 3.1 shows, even non-induced subgraphs of a grid. In this context, note that
the problem of deciding if a given graph is such a partial grid graph is equivalent to
deciding if it admits a unit-length VLSI layout, which, even restricted to trees, is an
NP-hard problem; see [5] for details. Yet,USGV containsmore, especially non-bipartite
graphs, with the smallest example being C5.

3.1.1 Planarity

Next, we discuss planarity issues of unit square grid visibility graphs. Before studying
the relationship between USGV and the class of planar graphs, we discuss the rela-
tionship between the planarity of graphs from USGV and planarity of their respective
layouts (where a layout is called planar if it does not contain any crossing visibili-
ties). Obviously, the planarity of a layout is sufficient for the planarity of the graph
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Fig. 2 Illustrations for the proof of Proposition 3.3

it represents, while the converse does not hold (i.e., examples of non-planar layouts
that nevertheless represent planar graphs can be easily found). A somewhat surprising
observation in this regard is that there are also examples of planar graphs in USGV,
for which every possible layout is necessarily non-planar (thus, existence of planar
layouts is only sufficient, but not necessary for the planarity of graphs from USGV).

Proposition 3.3 Let G be the graph of Fig. 2(a). Then G ∈ USGV, but there exists no
planar unit square grid layout for G.

Proof The proof shall be illustrated by Fig. 2. We first consider the C5 on the vertices
1, 2, 6, 7, 8 which requires a visibility layout V-isomorphic to Fig. 2(b). (c)–(g) of
Fig. 2 demonstrate attempts to create a layout for G with all possibilities to represent
the C5 subgraph on vertices 1, 2, 6, 7, 8 with the layout from Fig. 2(b). Cases (c)
and (d) show the only possibility to add the vertices 3 and 4 which leads to a layout
where vertex 5 cannot be added with visibility to both 4 and 6. For cases (e) and (f)
it is already impossible to add the vertices 3 and 4 such that they build a C5 with
vertices 1, 2, and 8. The only possible layout is the non-planar Fig. 2(g) which, up to
V-isomorphism, is the only unit square grid representation for the graph G. ��

Regarding the relationship between USGV and the class of planar graphs, we first
note that, due to the degree restriction of USGV, there are simple planar graphs that
cannot be representedby aunit square grid layout. Since the classUSGV is characterised
in terms of drawings in two-dimensional euclidean space that are strongly restricted
with respect to the crossings of their edges, it might be tempting to assume that graphs
in USGV are necessarily planar. However, as demonstrated by Fig. 3, USGV contains
a subdivision of K5 and K3,3. Hence, with Kuratowski’s theorem, we conclude the
following:

Theorem 3.4 USGV contains non-planar graphs.

Consequently, USGV and the class of planar graphs are incomparable.

We conclude this subsection by observing that unit square grid visibility graphs
necessarily satisfy a slightly weaker condition of planarity, namely quasiplanarity.
More precisely, a graph is k-quasiplanar, if it admits a drawing in which no k edges
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Fig. 3 Grid layouts representing subdivisions of K5 and K3,3 (squares labeled with A, B, . . . represent the
vertices of K5 and K3,3, while vertices labeled with 1, 2, . . . represent subdivisions)

pairwise cross each other, and 3-quasiplanar graphs are simply called quasiplanar;
note that 2-quasiplanar graphs coincidewith planar graphs (see [26, 27]). Indeed, every
unit square grid layout has at most two pairwise crossing visibilities and therefore
represents a quasiplanar drawing of the graph.

3.1.2 Characterisations

Next, we investigate possibilities to characterise USGV. In this regard, we first observe
that a characterisation by forbidden induced subgraphs is not possible (note that under
the assumption P �= NP, this also follows from the hardness of recognition).

Theorem 3.5 USGV does not admit a characterisation by a finite number of forbidden
induced subgraphs.

Proof Consider the family of graphs {Gn | n ≥ 3}, where Gn = (Vn, En) with

Vn = {u1, . . . , un} ∪ {v2, . . . , vn} ∪ {w} and

En = {{ui , ui+1}, {vi , vi+1}, {ui , vi } | 2 ≤ i ≤ n − 1}
∪ {{u1, u2}, {un, vn}, {u1, w}, {vn, w}}.

We note that, for every n ≥ 3, a grid layout for Gn − w (the graph created from Gn

by deleting the vertex w and its incident edges) can be constructed by placing the unit
squares for the vertices ui , 1 ≤ i ≤ n, on a horizontal line in this order and the unit
squares for the vertices vi , 2 ≤ i ≤ n, on a parallel horizontal line in this order, so that,
for every i , 2 ≤ i ≤ n, the unit squares for ui and vi align vertically. Furthermore, every
grid layout forGn−w has either this structure or places the unit squares analogously on
two parallel vertical lines (i.e., it is V-isomorphic to this structure). This consideration
not only shows thatGn−w ∈ USGV, but also demonstrates thatGn /∈ USGV, since it is
impossible for a unit square to see both the unit squares for u1 and vn . In the following,
we observe that, for every x ∈ Vn \ {w}, Gn − x ∈ USGV. For x ∈ {u1, v2, vn, un},
this property can be easily verified. For x = ui , 2 ≤ i ≤ n−1, we can construct a grid
layout by rotating the part representing vertices {u1, . . . , ui−1, v2, . . . , vi−1} by ninety
degrees, and an analogous construction applies in the case x = vi , 3 ≤ i ≤ n − 1.

By Lemma 3.1, it follows that, for every n ≥ 3, every proper subgraph of Gn is in
USGV, while Gn /∈ USGV. Consequently, it is not possible to characterise USGV by a
finite number of forbidden induced subgraphs. ��
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By Lemma 3.2, the classes of cycles, complete graphs and complete bipartite graphs
within USGV are easily characterised: Ci ∈ USGV if and only if i ≥ 4, Ki ∈ USGV if
and only if i ≤ 2, Ki, j ∈ USGV (with i ≤ j) if and only if (i = 1 and j ≤ 4) or (i = 2
and j = 2). Furthermore, the trees in USGV have a simple characterisation as well:

Theorem 3.6 A tree T is in USGV if and only if the maximum degree of T is at most
four.

Proof The only if direction follows from Lemma 3.2. To prove the if direction, let
T ∈ USGV be a tree with a vertex v of degree at most 3. In order to append a new vertex
to v, we can place a new unit square R within visibility of Rv , the unit square for v,
without destroying any visibilities. Possible new visibilities between R and other unit
squares can be removed due to Lemma 3.1. The statement of the lemma follows by
induction. ��
By definition, USGV ⊆ USGVw and every G ′ ∈ USGVw can be obtained from some
G ∈ USGV by deleting some edges. Consequently, by Lemma 3.1, we conclude the
following.

Theorem 3.7 USGV = USGVw.

3.2 Area-Minimisation Recognition Problem

The area-minimisation version of the recognition problem is to decide whether a given
graphhas a drawingor layout of givenwidth andheight. Thehardness of recognition for
USGV and also for HV-restricted USGV carries over to the area-minimisation version,
since an n-vertex graph has a layout if and only if it has a (2n − 1) × (2n − 1)
layout. On the other hand, in the LRDU-restricted rectilinear (or unit square grid) case,
recognition can be solved in polynomial time, so the authors of [28] provide a hardness
reduction that proves the area-minimisation recognition problem NP-complete even
for LRDU-restricted rectilinear graphs. However, this construction does not carry over
to USGV, since the non-edges of a rectilinear drawing translate into non-visibilities,
which require space as well;7 moreover, it does not even work for the weak case of
USGV, due to the necessary scaling by factor 2 to translate a rectilinear drawing into
an equivalent weak unit square grid layout.

Next, we provide a reduction to show the hardness of the area-minimisation version
of Rec(USGVw), which shall also imply several additional results. We first define the
following problem:

3-Partition (3Part)
Instance: B ∈ N and a multi-set A = {a1, a2, . . . , a3m} ⊆ N with B/4 < ai < B/2,
1 ≤ i ≤ 3m, and

∑3m
i=1 ai = mB.

Question: Can A be partitioned into multi-sets A1, . . . , Am , such that for each j ,
1 ≤ j ≤ m,

∑
a∈A j

a = B?

Note that the restriction B/4 < ai < B/2 enforces |A j | = 3, 1 ≤ j ≤ m. Fur-
thermore, by simple scaling, we can assume that ai > 2, 1 ≤ i ≤ 3m. Let B ∈ N

7 In general, this space blow-up cannot be avoided, as witnessed by n isolated vertices which have a 1× n
rectilinear drawing, but a smallest unit square grid layout of size (2n − 1) × (2n − 1).
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u-vertices:
v-vertices:

w-vertices:

Fig. 4 Unit square grid layout for the union of the graphs G f (solid squares) and Gb (non-solid squares)

and A = {a1, a2, . . . , a3m} ⊆ N be a 3Part instance. We first construct a basis graph
Gb = (Vb, Eb) on 5(mB +m + 2) vertices that form a 5× (mB +m + 2)-grid, and a
frame graph G f = (V f , E f ) (see Fig. 4 for an illustration of the union of Gb and G f )
with

V f = {ui, j , vi, j , wi,1, wi,2 | 1 ≤ i ≤ m, 0 ≤ j ≤ B}
∪ {um+1,0, vm+1,0, wm+1,1, wm+1,2},

E f = {{ui, j , ui, j+1}, {vi, j , vi, j+1} | 1 ≤ i ≤ m, 0 ≤ j ≤ B − 1}
∪ {{ui,B, ui+1,0}, {vi,B , vi+1,0} | 1 ≤ i ≤ m}
∪ {{ui, j , vi, j } | 1 ≤ i ≤ m, 1 ≤ j ≤ B}
∪ {{ui,0, vi,0}, {vi,0, wi,1}, {wi,1, wi,2} | 1 ≤ i ≤ m + 1}.

Next, we define a graph GA = (VA, EA) with

VA =
3m⋃

i=1

{bi, j , ci, j | 1 ≤ j ≤ ai },

EA = {{bi, j , bi, j+1}, {ci, j , ci, j+1} | 1 ≤ i ≤ 3m, 1 ≤ j ≤ ai − 1}
∪ {{bi, j , ci, j } | 1 ≤ i ≤ 3m, 1 ≤ j ≤ ai }.

Finally, we let G = (V , E) with V = Vb ∪ V f ∪ VA and E = Eb ∪ E f ∪ EA.

Lemma 3.8 (B, A) is a positive3Part-instance if and only if G has a (2(mB + m) + 3)
× 9 unit square grid layout.

Proof First of all, note that there is only one possibility to represent the basis graph
Gb by a (2(mB + m) + 3) × 9 unit square grid layout. Considering our layout to be
normalized with the lexicographically smallest index being (0, 0), this layout places a
square on every even coordinate, i.e., (2i, 2 j) with 0 ≤ i ≤ mB +m + 1, 0 ≤ j ≤ 4.
This directly implies that squares for the remaining vertices of G have to be at odd
coordinates, i.e., (2i + 1, 2 j + 1) for some 0 ≤ i ≤ mB +m, 0 ≤ j ≤ 3. For the sake
of convenience, in the following, we denote the vertices ui, j , 1 ≤ i ≤ m, 0 ≤ j ≤ B,
and um+1,0 by u-vertices, the vertices vi, j , 1 ≤ i ≤ m, 0 ≤ j ≤ B, and vm+1,0 by
v-vertices and the vertices wi,1, wi,2, 1 ≤ i ≤ m + 1, by w-vertices.

We now assume that A1, . . . , Am is a partition of Awith
∑

a∈Ai
a = B, 1 ≤ i ≤ m.

We can construct a (2(mB +m)+ 3)× 9 unit square grid layout for G as follows. We
first represent Gb in the only possible way, by using all even coordinates. Then, we
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add squares for the vertices of G f . We represent all u- and v-vertices as a horizontal
“ladder”, as illustrated in Fig. 4,where vertex u1,0 is positioned at coordinate (1, 1). All
w-vertices can then be placed above their adjacent v-vertices (see Fig. 4). In the thus
obtained layout, for every i , 1 ≤ i ≤ m+1, the unit squares for ui,0, vi,0,wi,1,wi,2 are
positioned at (pi , 1), (pi , 3), (pi , 5), (pi , 7), respectively, where for every i , 1 ≤ i ≤
m + 1, we use pi = (i − 1) · 2(B + 1)+ 1. Consequently, for every i , 1 ≤ i ≤ m, and
� ∈ {5, 7}, the coordinates (pi +2, �), (pi +4, �), . . . , (pi +2B, �) are free (note that
these are the only remaining free odd coordinates). Now let Ai = {aqi,1, aqi,2 , aqi,3},
1 ≤ i ≤ m. Since aqi,1 +aqi,2 +aqi,3 = B, the three connected components on vertices
bqi,r ,s and cqi,r ,s , 1 ≤ r ≤ 3, 1 ≤ s ≤ aqi,r , can be placed horizontally on the free
coordinates (pi + 2, �), (pi + 4, �), . . . , (pi + 2B, �), � ∈ {5, 7}. This constructs a
(2(mB + m) + 3) × 9 unit square grid layout for G.

In order to prove the other direction, we assume that there is a (2(mB+m)+3)×9
unit square grid layout for G. With Gb fixed, the squares from G f and GA have to
be placed on odd coordinates. We first note that, in any such layout, the unit squares
for the u- and v-vertices must be represented as a horizontally or vertically oriented
“ladder” and the same holds for the subgraphs on vertices bi, j and ci, j . Moreover,
since the layout has height 9, we can further assume that the orientation for the ladder
of u- and v-vertices is horizontal, which also means that the orientation for the ladders
of vertices bi, j and ci, j is horizontal (note that we assume that ai > 2, 1 ≤ i ≤ 3m).
Due to the fact that the layout has width 2(mB + m) + 3 where the even coordinates
are already blocked, allmB+m+1 many u-vertices have to be placed on coordinates
(2i + 1, yu), for 0 ≤ i ≤ mB +m and for some yu ∈ {1, 3, 5, 7} and all mB +m + 1
many v-vertices are placed on coordinates (2i + 1, yv) for 0 ≤ i ≤ mB + m and for
some yv ∈ {1, 3, 5, 7} with yu �= yv . Without loss of generality, we assume yv > yu .

Since, for every i , 1 ≤ i ≤ m + 1, the edge {vi,0, wi,1} must be realised by a
visibility of the form Rwi,1 ↓ Rvi,0 (note that the other three visibilities of Rvi,0 are
already used for all 1 < i ≤ m, and for Rv1,0 and Rvm+1,0 another horizontal visibility
would exceed the width of 2(mB + m) + 3), we conclude that yv ≤ 5. The ladders
from GA require two adjacent odd y-coordinates which are not blocked by the u- and
v-vertices.With yu < yv and yv ≤ 5, this is only possible if yu = 1 and yv = 3, to keep
5 and 7 as options for y-coordinates of the squares for the vertices in GA. For every i ,
1 ≤ i ≤ m + 1, we have Rwi,1 ↓ Rvi,0 and either Rwi,2 ↓ Rwi,1 or Rwi,1 ↔ Rwi,2 .
As mentioned above, for every i , 1 ≤ i ≤ 3m, the subgraph on vertices bi, j , ci, j ,
1 ≤ j ≤ ai , is represented by a horizontal ladder. In total, these require exactly mB
many squares to be placed with y-coordinate 5 and alsomB manywith y-coordinate 7.
In total, there are only mB + m + 1 odd coordinates with y-coordinate 5 and m + 1
of those are already occupied by Rwi,1 , 1 ≤ i ≤ m + 1. Hence we conclude that
Rwi,2 ↓ Rwi,1 and thus G f and Gb are represented as illustrated in Fig. 4.

Note that for y-coordinate 5 and 7, the x-coordinates pr = (r − 1) · 2(B + 1) + 1
for 1 ≤ r ≤ m + 1 are already occupied by the w-vertices. To ensure all visibilities, a
ladder that represents bi, j , ci, j , 1 ≤ j ≤ ai , has to be placed on adjacent x-coordinates
strictly between pr and pr+1 for some 1 ≤ r ≤ m + 1. Placing all vertices in GA

hence requires partitioning the ladders such that exactly all B odd coordinates are
filled between each pr and pr+1. Consequently, partitioning A according to how the
ladders are placed yields a solution for the 3Part-instance (B, A). ��

123



Discrete & Computational Geometry

Since the reduction defined above is polynomial in m and B, and 3Part is strongly
NP-complete (see [24, Thm. 4.4]), we can conclude the following:

Theorem 3.9 The area-minimisation variant of Rec(USGVw) is NP-complete.

The area minimisation variant implicitly solves the general recognition problem,
so the question arises whether it is also hard to decide if a graph from USGVw (given
as a layout) can be represented by a layout satisfying given size bounds. Since our
reduction always produces a graph that has an obvious layout as a USGVw, i.e., one
that places the representation of GA independently of the frame graph, the problem
remains hard even if the input graph is given as a layout.

Corollary 3.10 The area-minimisation variant of Rec(USGVw) is NP-complete, even
if the input graph is given as a unit square grid layout.

Moreover, the problem is still NP-complete for the LRDU-restricted variant (the
LRDU-restriction then simply enforces the structure shown in Fig. 4).

Corollary 3.11 The LRDU-restricted area-minimisation variant ofRec(USGVw) isNP-
complete.

The reduction also yields a (substantially simpler) alternative proof for the hardness
of the area-minimisation recognition problem for LRDU-restricted rectilinear graphs
[28] (more precisely, it can be shown that (B, A) is a positive 3Part-instance if and
only ifG has a (2(mB+m)+3)×9 rectilinear drawing), and the hardness also carries
over to the variant where the input graph is already given as a rectilinear drawing.

We conclude this section by pointing out that it is open whether the LRDU-restricted
area-minimisation variant of Rec(USGV) can be solved in polynomial-time. Intu-
itively, reducing the size of a rectilinear drawing is difficult, since space can be saved
by placing non-adjacent vertices on the same line, which is not possible for non-weak
unit square grid layouts. However, computing a unit square grid layout of minimum
size includes finding out to what extend the scaling by 2 is really necessary, which
seems difficult as well.

4 Unit Square Visibility Graphs

Obviously, a larger class of graphs can be represented if the unit squares are not
restricted to integer coordinates (see Fig. 5 for some examples). In [12], cycles, com-
plete graphs, complete bipartite graphs and trees in USV are characterised as follows:

– Ci ∈ USV, for every i ∈ N,
– Ki ∈ USV if and only if i ≤ 4,
– Ki, j ∈ USV with i ≤ j if and only if (1 ≤ i ≤ 2 and i ≤ j ≤ 6) or (i = 3 and
3 ≤ j ≤ 4),8

8 For the more general question of representing bipartite graphs as rectangle visibility graphs, we refer to
[14]. In particular, a linear upper bound on the number of edges, compared to the number of vertices, is
known.
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(a) (b) (c) (d) (e)

Fig. 5 Visibility layouts for K1,6, K2,6, K3,4, K4, and a K5 with one missing edge

u

vw     1
w     2

w     3

w     4

(d)(c)(b)(a)

Fig. 6 Some visibility layouts

– a tree T is in USV if and only if it is the union of two subdivided caterpillar forests
with maximum degree 3 (note that [25] provides an algorithm that efficiently
checks this property).

Next, we observe that every graph with at most four vertices is in USV, while K5 is
not.

Proposition 4.1 Every graph with at most four vertices is in USV.

Proof It is straightforward to construct layouts for graphs with at most three vertices
(thus, also for graphswith four vertices that are not connected) and for P4,C4, and K1,3.
This only leaves K4, for which a layout is presented in Fig. 5, and the two graphs
represented by the layouts in Fig. 6, (a) and (b). ��

A crucial difference between USGV and USV is that for the latter, the degree is not
bounded, as witnessed by layouts of the form shown in Fig. 6(c). However, if a unit
square sees at least seven other unit squares, then these must be placed in such a way
that visibilities or “paths” between some of them are enforced (note that any K1,n may
exist as induced subgraph, as can be demonstrated by modifying the above example
layout so that between each two consecutive neighbours another “visibility-blocking”
unit square is inserted). In [12], it is formally proven that in graphs from USV any
vertex of degree at least 7 must lie on a cycle. In particular, these observations point
out that an analogue of Lemma 3.1 is not possible for USV.

For the class of trees withinUSV, as long as we consider trees withmaximum degree
strictly less or larger than 6, a much simpler characterisation (compared to the one
mentioned at the beginning of this section) applies:

Theorem 4.2 Let T be a tree with maximum degree k. If k ≤ 5, then T ∈ USV, and if
k ≥ 7, then T /∈ USV.

Proof The second statement follows from the fact that for unit square visibility graphs,
any vertex of degree at least‘ 7 lies on a cycle, which has been shown in [12]. Let
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T ∈ USV be a tree with a maximum degree of 5 represented by a layout R. We show
that if we append at most four nodes to an arbitrary leaf of T , the resulting tree can still
be represented by a layout. The first statement of the lemma follows then by induction.
Let v be a leaf of T with a parent node u and let Rv, Ru ∈ R be the corresponding
unit squares. Without loss of generality, we assume that Ru ↓ Rv . Next, we note that
that there is no R ∈ R with R → Rv , Rv → R, or Rv ↓ R, which, in particular, means
that Rv can be moved arbitrarily far down without destroying or introducing any
visibilities. Consequently, we can assume that the two rectangles of height 0.5 and
infinite width just above and below Rv are not intersected by any R ∈ R. This implies
that we can append new vertices wi , 1 ≤ i ≤ 4, to v by placing new unit squares Rwi ,
1 ≤ i ≤ 4, as shown in Fig. 6(d). Moreover, the only new edges are between the wi ,
1 ≤ i ≤ 4, and v, and no existing edges are destroyed. Consequently, the obtained
layout represents the tree T ′ that is obtained from T by appending four new nodes to
the leaf v. In a similar way, we can also append less than four new vertices to v. ��
That layouts for trees are rather involved as soon as there are degree-6 nodes, is pointed
out by Fig. 7(a), which shows an example of a tree from USVwith maximum degree 6,
and its representing layout, shown in Fig. 7(b). This is due to the fact that, as can be
easily verified, any node of degree 6 must be represented V-isomorphically to Fig. 5(a)
(note that this also holds for nodes A and B in (a) and (b) of Fig. 7). Figure 5(a) also
demonstrates that not all treeswithmaximumdegree 6 can be represented: let R denote
the square below the central square in the layout, then it is impossible for R to see five
additional unit squares that exclusively see R. On the other hand, USV contains trees
with arbitrarily many degree-6 vertices, e.g., trees of the form depicted in Fig. 7(c) (it
is straightforward to see that they can be represented as the union of two forests of
caterpillars with maximum degree 3). This reasoning shows that not all planar graphs
are in USV, while it follows from [33] that all planar graphs are (non-unit square)
rectangle visibility graphs (also see [32]).9 Finally, we note that, unlike for the grid
case, USV is a proper subset of USVw (e.g., K1,7 is a separating example):

Theorem 4.3 USV � USVw.

4.1 The Recognition Problem

The recognition problem for USV consists in checking whether a given graph can be
represented by a unit square layout. We first observe that this problem is in NP (note
that this is not completely trivial, since we cannot naively guess a layout) and the main
result of this section shall be its hardness (see Theorem 4.13).

Theorem 4.4 Rec(USV) ∈ NP.

Proof Assuming there exists a USV layout for a graph G over n vertices, this layout
can obviously be considered to use space reasonably, hence with x- and y-coordinates

9 Note that the observations of this paragraph are already covered by the characterisation of trees given
in [12]; we merely intend to support the intuitive understanding of unit square visibility graphs by these
discussions.
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Fig. 7 Illustration for trees from USV with maximum degree 6

within range 0 to n. Further, squares do not have to be shifted arbitrarily: Shifting the
x-coordinate of a rectangle R with respect to the x-coordinate of another rectangle R′
bymore than zero but less than one is only necessary if R needs to see another rectangle
to the same side as R′. The number of different shifts of distance strictly between zero
and one which are necessary for a layout is hence bounded by the maximum degree
of the input graph. In general, this means that if G ∈ USV, guessing all possibilities to
choose coordinates (x, y) with x, y ∈ {a/n | 0 ≤ a ≤ n2} for each vertex in G yields
at least one layout for G. Since checking if a set of coordinates yields a feasible layout
for a graphG can be done in polynomial time, this kind of guessing n coordinates from
a set of (n + 1)4 possibilities yields NP-membership for Rec(USV). For Rec(USGV),
the similar arguments apply and it is even sufficient to only guess integer coordinates
(x, y) with 0 ≤ x, y ≤ 2n − 1. ��

The NP-hardness proof of Rec(USV) is rather involved on a technical level and we
shall break it up into several parts. In the next subsection, we prove a crucial technical
lemma and we explain the main parts of our reduction in an intuitive way.

4.1.1 Preliminaries for the Hardness Proof

The complete graph K4 shall be a basic building block for our reduction. Thus, we
first show that, intuitively speaking, the K4 is a structure that does not give too much
leeway with respect to how a layout can represent it. More precisely, we show that
every layout for K4 is V-isomorphic to one of the three layouts of Fig. 8. Since these
three possibilities are uniquely determined by the horizontal and vertical visibilities
(up to a renaming of the unit squares), e.g., for the first layout of Fig. 8, we have
R1 →{R2, R3, R4}, R2 → R3, R2 ↓ R4, R4 → R3, we can state the lemma in the fol-
lowing way (note that the three cases of the following lemma correspond to the three
layouts of Fig. 8).

Lemma 4.5 Every layout for K4 is V-isomorphic to a layout {R1, R2, R3, R4} that
satisfies one of the following cases:
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R4
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Fig. 8 The three ways of representing K4 by a layout

1. R1 →{R2, R3, R4}, R2 → R3, R2 ↓ R4, R4 → R3,
2. R1 →{R2, R3}, R1 ↓ R4, R2 ↓{R3, R4}, R4 → R3,
3. R1 →{R2, R3}, R1 ↓ R4, R2 ↓{R3, R4}, R3 ↓ R4.

Proof It can be easily verified that at least one of the edges of K4 must be represented
by a visibility of length strictly less than 1. Hence, we assume that this is true for the
visibility between R1 and R2 and, furthermore, we assume that R1 → R2 and that for
the y-components y1 and y2 of the coordinates of R1 and R2, respectively, we have
y2 ≤ y1 (i.e., R1 is to the left of R2 and R2 is either horizontally aligned with R1 or
further down. We now investigate all possibilities of how the remaining unit squares
R3 and R4 can be placed in the layout in order to represent K4.

– {R3, R4} �{R1, R2}: This implies that R3 must be placed above and R4 below R1
and R2, or vice versa:

R1 R2

R3

R4

This layout is V-isomorphic to case 1.
– {R3, R4} ↔{R1, R2}: If R3 and R4 are placed on opposite sides of R1 and R2, then
they either cannot see each other or one of them cannot see R1 or R2. If they are
placed on the same side of R1 and R2, then at most one of them can see both R1
and R2. Thus, this case is not possible.

– R3 ↔{R1, R2} and R4 �{R1, R2} or R3 �{R1, R2} and R4 ↔{R1, R2}: We only
consider the case R3 ↔{R1, R2} and R4 �{R1, R2}, since the other case is sym-
metric. Since R1 and R2 are at horizontal distance less than 1, it follows that
either R3 →{R1, R2} or {R1, R2} → R3. If R3 →{R1, R2}, then {R1, R2} ↓ R4 and
R3 → R4. Analogously, {R1, R2} → R3 implies that R4 ↓{R1, R2} and R4 → R3:

R1 R2R3
R4

R1 R2

R3

R4

Both these layouts are V-isomorphic to case 3.

Hence, from now on, we can assume that at least one of R3 and R4 is placed so that
it sees one of R1 and R2 horizontally and the other one vertically. Without loss of
generality, we assume that this is the case for R3, which means that either R3 ↔ R1
and R3 � R2 or R3 � R1 and R3 ↔ R2. Moreover, due to the relative positions of R1
and R2, this is only possible if R1 → R3 and R3 ↓ R2 or R1 ↓ R3 and R3 → R2. We
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assume the former situation and now check all possibilities of how R4 can be placed
in the layout in order to represent K4.

– R4 �{R1, R2}: Since R1 → R2 (i.e., R4 does not vertically fit between R1 and R2),
either {R1, R2} ↓ R4 or R4 ↓{R1, R2}. The case {R1, R2} ↓ R4 implies R3 ↓ R4
and thus, we have case 3. R4 ↓{R1, R2} requires that for the x-coordinates xi of Ri

we have x1 < x4 < x2 < x3 and hence either R4 ↓ R3 which also yields case 3.,
or R4 → R3 which yields case 2. See also the illustrations below:

R3 ↓ R4 R4 ↓ R3 R4 →R3

R1
R2

R3

R4
R1

R2

R3

R4

R1
R2

R3
R4

– R4 ↔{R1, R2}: Since R4 must see R3, this implies R1 → R4 and R2 → R4 which
means that either R3 → R4 or R3 ↓ R4:

R1
R2

R3
R4 R1

R2

R3

R4

Observe that the layout with R3 → R4 is V-isomorphic to case 1., and the layout
with R3 ↓ R4 V-isomorphic to case 3.

– R4 ↔ R1, R4 � R2: We note that if R4 → R1, then R4 cannot see R2 vertically,
which implies R1 → R4. In particular, this also implies R4 ↓ R2. This gives a
layout of the following form (where R3 and R4 can also switch places)

R1
R2

R3 R4

This layout is V-isomorphic to case 3.
– R4 ↔ R2, R4 � R1: Similarly to the previous case, if R4 ↓ R1, then R4 cannot see

R2 horizontally; thus, R1 ↓ R4, which, in particular, implies R4 → R2:

R1
R2

R3

R4

This layout is V-isomorphic to case 2.

The case where R1 ↓ R3 and R3 → R2 is symmetric to the case R1 → R3 and R3 ↓ R2
considered above. Furthermore, the cases that y1 ≤ y2 or that the visibility between
R1 and R2 is vertical can be handled analogously. This completes the proof. ��
Next, we describe the gadgets used in our reduction in an intuitive way:

Backbone gadget As the central structure, we use a sequence of K4’s as depicted
in Fig. 9(a). Note that the K4’s are joined in the sense that the last vertex of the
i th K4 is also the first vertex of the (i + 1)th K4, and also the upper and lower
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(a)

X

S1

S2 S3
(b)

L R

(c)

Fig. 9 Illustration of the main gagdets (as combinatorial graphs)

vertex of every K4 is connected to the corresponding vertices of the preceding and
the following K4. In this structure, the inner vertices on the middle line (i.e., the
vertices that belong to two K4’s) shall be the ones that actually carry information in
the reduction (see the explanation of the selection gadget below), while the others
are merely necessary to enforce certain structural properties. An obvious visibility
layout for the backbone can be obtained by just replacing the vertices in Fig. 9(a)
by unit squares (see Fig. 10) and in our reduction, we will force the backbone to
be represented in this way. However, since the layout of Fig. 10 is not at all the
only possible one for representing the backbone, our line of reasoning will not be
so simple and has to take other structural properties into account as well.

Selection gadget Figure 9(b) shows two K4’s of the backbone with common inner
vertex X , which is connected to three vertices S1, S2, and S3 (called selectables in
the following) that are not part of the backbone. If the backbone is represented by
unit squares strictly horizontally (more precisely, as shown in Fig. 10), then the
visibilities of the unit squares for S1, S2, and S3 and the unit square for X must
be vertical (if the unit square for some Si would see X horizontally, then it would
get in the way of the backbone; thus, causing forbidden visibilities). Moreover, if
all three unit squares for S1, S2, and S3 are on the same side of the backbone, then
there would be forbidden visibilities between them, which implies that exactly
one of these unit squares is above the backbone and the other two are below (or
the other way around). Consequently, this implements a gadget that selects one
element out of three.

Path gadget Figure 9(c) shows a path from vertex L to vertex R with the special
property that both L and R are connected to all internal vertices of this path. In our
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reduction, we shall use such paths where the internal vertices are selectables of
selection gadgets. As for the backbone, we show that in the layout, such paths must
expand along one dimension, which implies that the path either lies completely
above or completely below the backbone; thus, implementing a kind of synchro-
nisation between the selections done by the selection gadgets. Unfortunately, as
it was the case for the backbone, the combinatorial structure of the path shown
in Fig. 9(c) is not sufficient to force its layout into a strictly horizontal or vertical
shape; our argument will again be non-local and dependent on other parts of the
represented graph.

Having described the basic gadgets that we will use, we can now sketch the reduction.
In this way, we hope to equip the reader with an understanding of the general idea of
the reduction, so that the very involved technical details that follow will be easier to
grasp.

We represent a monotone Boolean formula in 3-CNF by a graph as follows. We
use a backbone with a first part in which the inner vertices represent the clauses and
a second part in which the inner vertices represent the variables; i.e., each clause and
each variable is represented by a selection gadget as described above (called clause and
variable gadgets in the following). The three selectables of a clause gadget correspond
to the three literals of the clause; placing a selectable above the backbone corresponds
to assigning its variable the value true and placing it below the backbone corresponds
to assigning its variable the value false. The situation is a bit more complicated with
respect to the variable gadgets. Obviously, we want to assign either true or false to the
variable, but our selection gadgets only work with three instead of two selectables. We
handle this difficulty by interpreting two selectables to correspond to false and one
to true. In this way, there is always at least one false selectable on the opposite side
(with respect to the backbone) of the true selectable. All selectables that correspond
to an occurrence of a variable xi in the formula are connected by a path gadget, as
described above, that leads from the leftmost such occurrence to the true xi -variable
gadget selectable.

The correctness of the reduction can now be easily seen. The path gadget, called
a variable path, for all occurrences of xi is always on one side of the backbone.
Arbitrarily interpreting “above the backbone” as Boolean value true, this describes a
valid assignment to the variables. Furthermore, for every clause, exactly one selectable
is on one side of the backbone, while the other two are on the other side; thus, the
corresponding assignment is a not-all-equal assignment for the input formula.

In this reduction sketch, we have assumed that the backbone stretches horizontally
from left to right (or vertically, which is analogous), the variable paths are also repre-
sented horizontally and either lie completely above or completely below the backbone,
exactly one of the three selectables is on one side of the backbone, while the other two
are on the opposite side. As it turns out, formally proving these properties is surpris-
ingly non-trivial and requires substantial technical effort. Before we move on to this
task, let us give some intuition of the challenges that lie ahead.

Themain difficulty is that proving that any layout is necessarily V-isomorphic to the
one sketched above cannot be done separately for the individual gadgets, e.g., showing
that the backbonemust be represented as in Fig. 10 (as alreadymentioned, the structure
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of the backbone alone simply does not enforce such a layout) and the selectables must
form horizontal paths and so on. Instead, the desired structure of the layout is only
enforced by a rather complicated interplay of the different parts of the graph. A main
building stone is our Lemma 4.5, which says that a K4 can only be represented in
three different ways (up to V-isomorphism). This observation is important, since the
backbone is a sequence of K4.

There is another technical difficulty that we have neglected in the sketches above.
When reasoning about layouts for combinatorial graphs, it is tempting to exclude
certain forms of layouts by demonstrating that they would necessarily place a unit
square X “within visibility” of a unit square Y that represents a non-adjacent vertex.
However, the visibility in a layout between unit squares X and Y does not only depend
on their placement but also on the placement of other squares that may block their
potential visibility. Hence, the argument from above is only correct if “placing within
visibility” means that in the layout, there will necessarily be a visibility between X
and Y , which is only the case if the visibility is not “blocked” by other unit squares.
Consequently, this argument only works, if all other vertices that are adjacent to the
ones corresponding to X and Y are taken into consideration as well. In other words, a
layout that places unit squares within mutual visibility for non-adjacent vertices does
not necessarily lead to a contradiction, since the forbidden visibility might be blocked
by other unit squares. This difficulty further substantially increases the combinatorial
depth of the already technical arguments.

4.1.2 The Reduction

In this subsection, we formally define our reduction. As already mentioned, we use the
following variant of the 3-satisfiability problem (shown to be NP-hard in [30] under
the name NP2 Not-All-Equal Satisfiability):

Monotone Not-All-Equal 3-Satisfiability (NAE-3SAT)
Instance: A Boolean formula F in 3-CNF and without negated variables.
Question: Is there an assignment for the variables of F , such that every clause contains
at least one true and one false variable?

Let F = {c1, . . . , cm} be a 3-CNF formula over the variables x1, . . . , xn . We assume
that each clause has exactly three variables and that no variable occurs more than once
in any clause. We further assume that every variable occurs at least three times in the
formula. Observe that every instance of Monotone Not-All-Equal 3-Satisfiability can
be checked in polynomial time to ensure these properties. For the sake of convenience,
let ci = {yi,1, yi,2, yi,3}, 1 ≤ i ≤ m.

We transform F into a graph G = (V , E) as follows. The set of vertices is defined
by V = Vc ∪ Vx ∪ Vh , where

Vc = {
c j , c

1
j , c

2
j | 0 ≤ j ≤ m − 1

} ∪ {cm} ∪ {
l1j , l

2
j , l

3
j | 1 ≤ j ≤ m

}
,

Vx = {
xi , x

1
i , x

2
i | 1 ≤ i ≤ n + 1

} ∪ {
ti ,

→
ti ,

←
ti , f 1i ,

→
f 1i ,

←
f 1i , f 2i ,

→
f 2i ,

←
f 2i | 1 ≤ i ≤ n

}
,

Vh = {
hrti , h

r
f 1i

, hr
f 2i

| 1 ≤ i ≤ n, 0 ≤ r ≤ 4
}
.
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Fig. 10 The backbone-gadget

The vertices c j , c1j , c
2
j and xi , x1i , x

2
i are part of the clause and variable gad-

gets, respectively, of the backbone, where the vertices c j and xi are the inner
vertices (see Fig. 10). More formally, we require, for every 0 ≤ j ≤ m − 1 and
1 ≤ i ≤ n, the following groups of four vertices to form a K4: {c j , c1j , c2j , c j+1},
{xi , x1i+1, x

2
i+1, xi+1}, and {cm, x11 , x

2
1 , x1}. Moreover, for every j ∈ {1, 2}, the ver-

tices c j0 , c
j
1 , . . . , c

j
m−1, x

j
1 , x j

2 , . . . , x j
n+1 form a path in this order (observe that this

creates all the edges of the backbone structure, as illustrated in Fig. 9(a)).
Vertex ti is the true selectable, while the f 1i and f 1i are the first and second false

selectable of the variable gadgets for variable xi . Vertices l1j , l
2
j , l

3
j are the selectables

of the clause gadget for clause c j . Formally this means that we introduce the edges
{xi , ti }, {xi , f 1i }, {xi , f 2i } for all 1 ≤ i ≤ n and {c j , lrj } for all 1 ≤ j ≤ m and
1 ≤ r ≤ 3 (note that this corresponds to the definition of the selection gadgets given
in Sect. 4.1.1; see also Fig. 11, (a) and (b)). The variable paths described in Sect. 4.1.1
are obtained as follows. For every 1 ≤ j ≤ m, 1 ≤ i ≤ n, and 1 ≤ r ≤ 3:

– if y j,r = xi , there are edges {lrj ,
→
ti }, {lrj ,

←
ti },

– there are edges {ti , →
ti }, {ti , ←

ti } and {→
ti , h

p
ti },{

←
ti , h

p
ti } for all 0 ≤ p ≤ 4,

– there are edges { f si ,
→
f si }, { fi ,

←
f si } and { →

f si , h p
f si

}, { ←
f si , h p

f si
} for all 0 ≤ p ≤ 4,

s ∈ {1, 2},
Moreover, for every i , 1 ≤ i ≤ n,

– if N (
→
ti ) = {h1ti , h2ti , lr1j1 , l

r2
j2
, . . . , l

rq
jq
, h0ti , ti , h

3
ti , h

4
ti } with j1 < j2 < . . . < jq , then

these vertices form a path in this order,
– For s ∈ {1, 2}, the vertices in {h1f si , h2f si

, h0f si
, f si , h3f si

, h4f si
} form a path in this

order.

Wenote that this constructs path gadgets as defined in Sect. 4.1.1; see also Fig. 11(c).
This concludes the definition of the reduction, a full example can be found in Sect. A.2.

4.1.3 Proof of Correctness

It remains to prove the correctness of the reduction, i.e., the CNF formula F has a
not-all-equal assignment if and only if G ∈ USV. We start with the only if direction,
which is the easier one.

We assume that the formula F is not-all-equal satisfiable and show how a layout
for G can be constructed. First, we represent the backbone as illustrated in Fig. 10.
If a variable xi is assigned the value true, then we place the unit squares R{xi ,ti , f 1i , f 2i }
as illustrated on the left side of Fig. 11(b), and otherwise as illustrated on the right
side. The edges for the vertices ti ,

→
ti ,

←
ti , hrti , 0 ≤ r ≤ 4, and all lrj with y j,r = xi
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Fig. 11 Possible placements of selectables, possible placements of assignment vertices, and the clause path
for xi

can be realised as illustrated in Fig. 11(c) (either placed above or below the backbone,
according to the position of Rti ). The paths must be horizontally shifted so that they
can see their corresponding Rc j from above or from below, according to whether the
path lies above or below the backbone (as indicated in Fig. 11(c)). As long as not all
paths for the three variables of the same clause lie all above or all below the backbone,
this is possible by arranging the unit squares as illustrated in Fig. 11(a). However,
if for some clause all paths lie on the same side of the backbone, then the variables
of the clause are either all set to true or all set to false, which is a contradiction to
the assumption that the assignment is not-all-equal satisfiable. Consequently, we can
represent G as described, which yields the following lemma. A formal definition of
the layout is provided in Sect. A.1.

Lemma 4.6 If F is not-all-equal satisfiable, then G ∈ USV.

Proving that a layout for G translates into a satisfying not-all-equal assignment for F ,
is much more involved (see the discussions and sketches given in Sect. 4.1.1).

We now assume G can be represented by some layoutR. For every j , 1 ≤ j ≤ m,
we define L j = {l1j , l2j , l3j }, for every i , 1 ≤ i ≤ n, we define Ai = {ti , f 1i , f 2i },
and, for every j , 1 ≤ j ≤ m − 1, we define Cl

j = {c j , c j−1, c1j−1, c
2
j−1}, Cr

j =
{c j , c j+1, c1j , c

2
j }, and C j = Cl

j ∪ Cr
j .

The road map for the proof is as follows. We first consider the neighbourhood of c j
and once we have fixed the layout for this subgraph, the structure of the whole layout
can be concluded inductively. The closed neighbourhood of c j consists of Cl

j and C
r
j

(two K4 joined by c j ) and L j , where all vertices of the two K4 (except c j ) are not
connected to any vertex of L j . Intuitively speaking, this independence between L j

and the K4 of the backbone will force the backbone to expand along one dimension,
say horizontally (as depicted in Fig. 10), while the visibilities between L j and c j must
then be vertical (as depicted in Fig. 11(a)). However, formally proving this turns out
to be quite complicated.
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cj
l1j

l2j

l3j

Fig. 12 Possible placement of selectables for c j

The general proof idea is to somehow place the unit squares RL j in such a way
that they all see Rc j , for example, as depicted in Fig. 12 (in fact, this is one of the
configurations that is not possible, since it does not leave enough space for all unit
squares RC j ). The grey area represents areas of visibility of the unit squares RL j . If we
were able to show that no unit squares from RC j can intersect the grey area, then this
considerably restricts the possibilities to place the unit squares RC j and by applying
arguments of this type, it can be concluded, by exhaustively searching all possibilities
and under application of Lemma 4.5, that the only possible layouts have the above
described form. If a unit square Rx from RC j\{c j } is placed in this grey area, then
either there is a visibility between this unit square and a unit square from RL j , which
is not allowed as there are no edges between the associated vertices, or this forbidden
visibility is blocked by other unit squares. This type of blocking would require a
path between x and c j or some vertex from L j ; a neighbourhood-structure which,
unfortunately, does exist in G. Consequently, in order to apply the above described
argument, we first have to show that the existence of such visibility-blocking unit
squares leads to a contradiction. However, before we are able to do this, we need to
make a few more assumptions about the structure of the formula and we have to prove
two technical lemmata.

Without loss of generality (if necessary with additional satisfiable clauses over new
variables), we can assume that the clauses c1, . . . , cm are ordered so that, for each i ,
the indices

prev(yi,h) := max {{−6} ∪ { j < i | c j contains yi,h as literal}},
succ(yi,h) := min {{m + 6} ∪ { j > i | c j contains yi,h as literal}}

for h = 1, 2, 3 differ from i and from each other for different values of h by at least six.
We also need some more notations. Let Ri , R j , Rk be unit squares. If some visibility
rectangle for Ri and Rk intersects R j , then R j is strictly between Ri and Rk ; if this
holds for every visibility rectangle for Ri and Rk , then R j blocks the view between Ri

and Rk .

Lemma 4.7 For any 1 ≤ j ≤ m, no unit square for a vertex in N (
←
t j ) \ {h0t j , . . . , h4t j }

can be vertically aligned with the unit square of a neighbour from N (
←
t j ) ∪ {←

t j ,
→
t j } so

that there is no unit square with smaller x-coordinate strictly between them.

Proof Observe generally that for two vertically aligned squares Ru, Rw there are only
the two layouts, shown in Fig. 13, to place squares for two common neighbours s1, s2
of u andw. In Fig. 13(a) there is no possibility to avoid placing either Rs1 or Rs2 strictly
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u

w     

s1
s2

u

w     

s1 s2

(a) (b)

Fig. 13 Illustrations for Lemma 4.7

between Ru and Rw with smaller x-coordinate. In Fig. 13(b), there is no possibility
for a vertex s3 adjacent to both s1 and s2 to place its square Rs3 so that it sees both Rs1
and Rs2 . We show that this neighbourhood structure among s1, s2, s3, u and w occurs
for any choice of u ∈ N (

←
t j ) \ {h0t j , . . . , h4t j } and w ∈ N (u) ∩ (N (

←
t j ) ∪ {←

t j ,
→
t j }).

The neighbourhood N (
←
t j ) is by definition {h1t j , h2t j , lr1j1 , l

r2
j2
, . . . , l

rq
jq
, h0t j , t j , h

3
t j , h

4
t j }

with j1 < j2 < . . . < jq which builds a path in this order. If w is not in {←
t j ,

→
t j } the

vertices
←
t j and

→
t j are the common neighbours s1 and s2 of u and w, while h1t j or h

4
t j

can be considered as their common neighbour s3. If w ∈ {←
t j ,

→
t j }, the two vertices in

N (u) \ {←
t j ,

→
t j } (observe that with the additional vertices h0t j , . . . , h

4
t j , u always has

exactly two neighbours in N (
←
t j )) are the common neighbours s1 and s2 of u and w,

while the vertex in {←
t j ,

→
t j } \ {w} is their common neighbour s3. ��

Lemma 4.8 For all 1 ≤ i ≤ m and r ∈ {1, 2, 3} and z ∈ N (ci ) \ {lri }, there is no
path between lri and z which does not include ci such that the associated unit squares
are vertically aligned and such that there exists no other unit square which is strictly
between two unit squares of this path with strictly smaller x-coordinate.

Proof Assume that there is such a path P . Regardless whether z = lti for some t ∈
{1, 2, 3} \ {r} or z ∈ Ci \ {ci }, P has to start with some neighbour of lri . Let yi,r = x j
and let N (

←
t j ) = {h1t j , h2t j , lr1j1 , l

r2
j2
, . . . , l

rq
jq
, h0t j , t j , h

3
t j , h

4
t j } with j1 < j2 < . . . < jq

be the neighbourhood of
←
t j which, by definition, builds a path in this order.

Since yi,r = x j , we can conclude that l
rp
jp

= lri , for some p ∈ {1, . . . , q}. In
order to reach z ∈ N (ci ), the path P has to contain at least one vertex from N (

←
t j ) \

{h0t j , . . . , h4t j }. By Lemma 4.7, it follows that there are only two options to choose a

neighbour u of l
rp
jp
such that the path can then be continued with one of its neighbours

w without violating the property that there is no unit square strictly between the unit
squares for u andw with strictly smaller x-coordinate: either P starts with l

rp−1
jp−1

which

then has to be followed by c jp−1 (if p > 1) or l
rp+1
jp+1

which then has to be followed

by c jp+1 (if p < q). Observe that all other neighbours of l
rp
jp
only have neighbours in

N (
←
t j )∪{←

t j ,
→
t j } and that the only neighbours outside N (

←
t j )∪{←

t j ,
→
t j } for lrp−1

jp−1
and l

rp+1
jp+1

,
are c jp−1 and c jp+1 , respectively. Lemma 4.7 further implies that P contains no other
selectable since each lts ∈ {lts | 1 ≤ s ≤ m, 1 ≤ t ≤ 3} has only one neighbour outside
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Fig. 14 Illustration for the proof of Lemma 4.8

N (
←
t j ′) for some j ′, continuing the path to z (recall z /∈ N (

←
t j ′) for any j ′) however

requires at least two such neighbours.
Consider, without loss of generality, that p < q and that P contains l

rp+1
jp+1

followed
by c jp+1 . With the above definition of succ, we know that jp+1 = succ(yi,r ). By the
previously assumed properties of the input-formula, we know that jp+1 differs from
i and also from the smallest index k > i for which ci shares a literal other than yi,r
with ck by at least six; especially ci and c jp+1 share no common literal other than
x j = yi,r . This means that P has to continue from c jp+1 with at least five vertices
from Vc \ {lts | 1 ≤ s ≤ m, 1 ≤ t ≤ 3}; observe that there are no other paths that avoid
selectables.

Let s = jp+1. Assume that the vertex following cs on P is some v ∈ Cl
s \ {cs}

(the case v ∈ Cr
s \ {cs} is analogous and these are the only non-selectable neighbours

of cs). The vertices Cl
s build a K4 and, by Lemma 4.5, the only possibility for a layout

of this K4 such that there is no unit square with smaller x-coordinate strictly between
the vertically aligned Rv and Rcs , is case 1. from Fig. 8 with Rv and Rcs taking the role
of R2 and R4. Observe that in case 1. there is no possibility to add a unit square which
sees both R1 and R3 without destroying any of the K4 edges. The only possibility for
v is hence cs−1, since cs−1 and cts−1 have the common neighbour cts−2 for t = 1, 2
which could not be placed otherwise. By the same argument, the whole part of at
least five vertices from Vc \ {lts | 1 ≤ s ≤ m, 1 ≤ t ≤ 3} in P are in fact vertices in
{c j | 1 ≤ j ≤ m} and especially contain the sequence cs, cs−1, cs−2, cs−3, cs−4 which
has to be arranged as illustrated in Fig. 14.

There is no possibility to enable visibility representing the edge {cs−2, l1s−2} so that
Rl1s−2

sees none of the unit squares Rc1s−2
, Rc2s−2

, Rc1s−3
, Rc2s−3

, for these unit squares
however, all neighbours have been placed, so there is no possibility to block this
unwanted visibility which overall yields a contradiction to the existence of P . ��

We are now ready to prove that no Rx from RC j\{c j } can be placed within visibility
of the squares RL j (in the sense of the discussion below Fig. 12, see also the figure
itself). We state the corresponding lemma in a way that it is more applicable in the
following proofs.

Lemma 4.9 For all i , 1 ≤ i ≤ m, r ∈ {1, 2, 3}, and every Rz with z ∈ N (ci ) \ {lri },
there exists no non-degenerate axis-parallel rectangle S which is not intersected by
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Rci such that one side of S is in Rlri
and the opposite side is in Rz. In particular, this

implies the following properties:

1. Rz is not strictly between Rci and Rlri
.

2. Rlri
is not strictly between Rci and Rz.

3. If Rci is strictly between Rlri
and Rz then Rci blocks the view between Rlri

and Rz.

Proof Let z, i and r be as in the statement of the lemma. We assume that there exists
a non-degenerate axis-parallel rectangle S which is not intersected by Rci such that
one side of S is in Rlri

and the opposite side is in Rz . Without loss of generality, we
assume that, after removing all unit squares except Rlri

and Rz from the layout, we
have Rlri

↓ Rz , and, furthermore, that the x-coordinate of Rlri
is not smaller than the

x-coordinate of Rz (so we have the situation shown in Fig. 15). Moreover, since z is
not adjacent to lri , some further unit square(s) have to block the visibility (otherwise
implied by the rectangle S) between Rlri

and Rz , while Rci has to see both Rz and Rlri
.

There are only the following possibilities for this situation:

1. Rci ↓{Rlri
, Rz} or {Rlri

, Rz} ↓ Rci (see Fig. 15(a)):
We only consider the case Rci ↓{Rlri

, Rz}, since {Rlri
, Rz} ↓ Rci can be dealt with

analogously. Let Rh1, . . . , Rhs be the unit squares strictly between Rlri
and Rz

(to intersect S in order to block the view) of minimum x-coordinate sorted by y-
coordinate.Observe that each Rht has a larger x-coordinate than Rz since otherwise
there is no visibility between Rci and Rz . If there is a unit square R strictly between
some Rht and Rht+1 with smaller x-coordinate, then this either contradicts the
definition of the Rht (i.e., if R is strictly between Rlri

and Rz) or, again, the visibility
between ci and z would be blocked. Consequently, there is no such unit square
strictly between some Rht and Rht+1 with smaller x-coordinate.

lri

ci

h1

hs

...

The vertices h1, . . . , hs corresponding to Rh1, . . . , Rhs hence describe a path
which does not include ci and for which h1 is adjacent to z ∈ N (ci ) \ {lri } and
hs is adjacent to lri . By their choice as the squares strictly between Rlri

and Rz

with minimum x-coordinate, the unit squares Rh1, . . . , Rhs are aligned and no
unit square with smaller x-coordinate is strictly between any Rht and Rht+1 which
is a contradiction to Lemma 4.8.

2. (Rz → Rci and Rlri
↓ Rci ) or (Rci ↓ Rz and Rci → Rlri

) (see Fig. 15(b)):
We only consider the case (Rz → Rci and Rlri

↓ Rci ), since the case (Rci ↓ Rz and
Rci → Rlri

) can be dealt with analogously. To preserve the visibility Rlri
↓ Rci , all

unit squares which intersect S must have an x-coordinate strictly smaller than Rlri
.
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Let Rh1, . . . , Rhs be the unit squares strictly between Rlri
and Rz (to intersect S in

order to block the view) of maximum x-coordinate. These unit squares have the
same properties as for case 1. (with “strictly larger” instead of “strictly smaller”),
which yields a contradiction to Lemma 4.8.

lri

ci

h1

hs

...

3. Rci ↓ Rz and Rlri
↓ Rci (see Fig. 15, (c) and (d)):

Note that S is not intersected by Rci and, without loss of generality, we assume that
S lies to the left of Rci . Among all unit squares which intersect S, let Rh1, . . . , Rhs
be the ones of maximum x-coordinate, sorted by y-coordinate. We consider two
different cases according to whether one of the unit squares Rh1, . . . , Rhs sees Rci
vertically or not:

(a) We assume that there is no j , 1 ≤ j ≤ s, such that Rh j sees Rci vertically (see
Fig. 15(c)).
This implies that the vertices associated to Rh1 , . . . , Rhs build a path from z
to lri and ci is not included in this path (observe that although one or even two
of the vertices h1, . . . , hs could be neighbours of c j by horizontal visibility,
vertex c j itself is not among the vertices h1, . . . , hs). Further, since the x-
coordinate of the unit squares Rh1, . . . , Rhs is assumed to be maximum among
the unit squares which intersect S, there is no other unit square which lies
strictly between some Rht and Rht+1 and has a larger x-coordinate. Since
Rh1, . . . , Rhs all have the same x-coordinate and are hence vertically aligned,
this is a contradiction to Lemma 4.8.

lri

ci

h1

hs

...

(b) We assume that, for some j , 1 ≤ j ≤ s, the unit square Rh j sees Rci vertically
(see Fig. 15(d)).
This is only possible if this Rh j is between Rci and either Rlri

or Rz . However,
if Rh j is between Rci and Rlri

, then, with Rh j playing the role of z (note that
h j ∈ N (ci ) \ {lri }), we obtain case 1. again. Thus, we can assume that Rh j is
between Rci and Rz . Furthermore, if j < s, then Rh j+1 is between Rci and Rlri
and we obtain case 1. as before. Consequently, j = s and hs ∈ N (ci ). Since
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z

lri

ci

h1

hs

...

z

lri

ci

h1

hs

...

z

lri

ci

h1

hs

...

z

lri

ci

hs

h1

k1

k t
..
.

..

.

(a) (b) (c) (d)

Fig. 15 Illustrations for the proof of Lemma 4.9

lri is not adjacent to any neighbour of ci , lri and hs are not adjacent; thus, the
visibility between Rhs and Rlri

must be blocked. Let Rk1 , . . . , Rkt be the unit
squares of maximum x-coordinate which intersect every visibility rectangle
between Rhs and Rlri

, sorted by y-coordinate. We note that if they are strictly
between Rlri

and Rci , then we obtain case 1. again, with Rk1 playing the role
of z.

lri

ci

hs

h1

k1

kt
...

...

Moreover, if they have an x-coordinate that is more than one less than the
x-coordinate of Rci , then they would not block the visibility between Rhs
and Rlri

. Consequently, these unit squares all have the same x-coordinate which
is exactly one less than the x-coordinate of ci (as shown in Fig. 15(d)). The
vertices associated to Rk1 , . . . , Rkt again build a path between lri and some
neighbour of ci and do not include ci , and, as explained above, there is no unit
square strictly between some Rkt and Rkt+1 of larger x-coordinate. Hence, the
path Rk1 , . . . , Rkt is also a contradiction to Lemma 4.8.

Since Lemma 4.8 holds equivalently, the same argumentation yields this result for t j
or f 1j or f 2j instead of lri , and x j instead of ci for all 1 ≤ j ≤ n. ��
With the help of Lemma 4.9, we can now apply the argument sketched below Fig.
12 in order to show that RCl

j
and RCr

j
cannot all see Rc j from the same side, which
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cj

y

cj

y

(b)(a)

cj
y

(c)

Fig. 16 Illustrations for the proof of Lemma 4.10

can then be used to show that either all RL j see Rc j vertically or all of them see Rc j
horizontally (see Lemma 4.11):

Lemma 4.10 For every j , 1 ≤ j ≤ m − 1 and y ∈ C j \ {c j }, Rc j → RC j\{y,c j } is not
possible.

Proof We first note that, independent from the choice of y, either Cl
j or C

r
j is com-

pletely contained in RC j\{y}. We assume that the former applies, which means that the
K4 on vertices Cl

j must satisfy case 1. of Lemma 4.5 with c j playing the role of R1,
or it satisfies case 3. of Lemma 4.5 with c j playing the role of R4. Next, we note that
Ry → Rc j is not possible, since then the K4 on vertices Cr

j contains a unit square,
namely Rc j , which horizontally sees all other vertices, but not in the same direction
and this is, according to Lemma 4.5, not possible; thus, we have either case Ry � Rc j
or case Rc j → Ry , which we shall now consider separately.

1. Case Ry ↓ Rc j (the case Rc j ↓ Ry can be handled analogously): For the K4 on
vertices Cr

j , we have that Ry ↓ Rc j , while all unit squares RCr
j \{c j ,y} see Rc j

horizontally to the same side. This means that the K4 on vertices Cr
j satisfies

case 2. or case 3. of Lemma 4.5. If it satisfies case 2., then we have the situation
illustrated in Fig. 16(a) (where the four vertices on the left are the vertices fromCr

j ).
On the other hand, if it satisfies case 3., then we claim that the only unit square
that can play the role of the unit square R4 (i.e., the one that sees all the others by
the same kind of visibility) is Ry . In order to verify this claim, we first observe
that Rc j cannot play the role of R4, since it sees Ry vertically and the two other
unit squares in RCr

j \{c j ,y} horizontally. If, for a z ∈ Cr
j \ {y, c j }, Rz plays the role

of R4, then, since Rc j → Rz , we must have RCr
j \{z} → Rz ; in particular, Rz plays

the role of R4, Rc j plays the role of R2 and Ry plays the role of R1. Now it is not
possible to add another unit square R with Rc j → R, since in order to see Rc j ,
R must be placed to the left of Rz , which means that it necessarily blocks the
visibility between Rz and one of Cr

j \ {c j , z}. This is a contradiction, since such
a unit square must exist in order to represent the edges of the K4 on vertices Cl

j .
Consequently, if the K4 on vertices Cr

j satisfies case 3., then we have the situation
illustrated in Fig. 16(b).
We now turn to the K4 on vertices RCl

j
. As mentioned before, the relation

Rc j → RCl
j\{c j } implies that the K4 on vertices Cl

j must satisfy case 1. of

Lemma 4.5 with Rc j playing the role of R1 or case 3. of Lemma 4.5 with Rc j
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playing the role of R4. (Note that in Fig. 16, (a) and (b), we only illustrate case 1.
for the K4 on vertices Cl

j , which are the three vertices to the right together with
vertex c j ; the following arguments can be carried out analogously for the case that
the K4 on verticesCl

j satisfies case 3. of Lemma 4.5.) However, for both situations
depicted in Fig. 16, (a) and (b), it is not possible that a unit square in RCl

j\{c j } sees
Rc j horizontally and at the same time (by any kind of visibility) also Ry . Thus, y
must be a vertex that is not connected to any vertex from RCl

j\{c j }, which implies

y = c j+1. More precisely, since Rc1j−1
∈ RCl

j\{c j } must see both Rc j and Rc1j
, and

Rc2j−1
∈ RCl

j\{c j } must see both Rc j and Rc2j
, we can conclude y /∈ {c1j , c2j }, which

implies y = c j+1.

(a) Situation illustrated in Fig. 16(b) (repeated on the left):

cj

y

cj→

cj+1

c1j

c2j

c1j−1

c2j−1

cj−1

Weassume that Rc1j
↓ Rc2j

(note that, due to the edges {c1j , c1j−1} and {c2j , c2j−1},
this uniquely defines all the unlabeled unit squares of Fig. 16(b)); the case
Rc2j

↓ Rc1j
can be handled analogously. We now consider the vertices c1j+1 and

c2j+1 from the K4 on vertices Cl
j+1 (which we have not considered so far and

which are not present in Fig. 16(b)). The vertex c1j+1 is connected to both c j+1

and c1j and, likewise, the vertex c
2
j+1 is connected to both c j+1 and c2j . To see

both Rc j+1 (the square labelled y in Fig. 16(b)) and Rc2j
, Rc2j+1

must be placed

so that Rc j+1 ↓ Rc2j+1
and Rc2j+1

→ Rc2j
or Rc2j

↓ Rc2j+1
(note that Rc2j

↓ Rc2j+1

would block the visibility of Rc j+1 and either Rc j or Rc1j
). Thismeans that Rc2j+1

is placed below Rc j which means that the y-coordinates of Rc2j+1
and Rc j+1

differ bymore than one. Further, there are two rectangles strictly between Rc2j+1

and Rc j+1 that require visibility to these two (Rc j and Rc2j
) which leaves no

possibility for Rc1j+1
to see both Rc2j+1

and Rc j+1 without blocking a visibility

among the rectangles for {c j , c j+1, c2j , c
2
j+1}. This means that the situation

illustrated in Fig. 16(b) is not possible.
(b) Situation illustrated in Fig. 16(a):

cj

y

cj→
cj+1

c1j

c2j

c1j−1

c2j−1

cj−1

Similarly as in the previous case, we assume that Rc1j
↓ Rc2j

(again, this

uniquely defines all the unlabeled unit squares of Fig. 16(a)) and note that
the case Rc2j

↓ Rc1j
can be handled analogously. We now consider all possibil-
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ities of how the unit squares RL j+1 for the selectables l
1
j+1, l

2
j+1, l

3
j+1 can be

placed so that they see Rc j+1 without other unwanted visibilities.
If, for some r , 1 ≤ r ≤ 3, Rc j+1 ↓ Rlrj+1

, then there is at least one unit square Rz ,
with z ∈ N (c j+1), strictly between Rc j+1 and Rlrj+1

, which according to case 1.
of Lemma 4.9, is not possible. If, for some r , 1 ≤ r ≤ 3, Rlrj+1

↓ Rc j+1 , so that
Rlrj+1

and Rc j+1 are not aligned, then there is at least one unit square Rz , with
z ∈ N (c j+1), such that Rc j+1 does not block the view between Rlrj+1

and Rz ,
which according to case 3. of Lemma 4.9, is not possible. Consequently, there
is at most one r , 1 ≤ r ≤ 3, such that Rlrj+1

↓ Rc j+1 and, furthermore, Rlrj+1

and Rc j+1 must be aligned. If, for some r , 1 ≤ r ≤ 3, Rc j+1 → Rlrj+1
, then, due

to case 1. of Lemma 4.9 and the position of Rc1j
, we can conclude that Rlrj+1

is

not aligned with Rc j+1 , but shifted upwards. Furthermore, again due to case 1.
of Lemma 4.9, there is at most one such Rlrj+1

with Rc j+1 → Rlrj+1
. If, for

some r , 1 ≤ r ≤ 3, Rlrj+1
→ Rc j+1 , such that Rlrj+1

and Rc j+1 are not aligned,
but Rlrj+1

is shifted downwards, Rc j+1 does not block the view between Rc1j
and

Rlrj+1
which according to case 3. of Lemma 4.9, is not possible. In particular,

due to case 1. of Lemma 4.9, this means that there is at most one Rlrj+1
with

Rlrj+1
→ Rc j+1 , which is either alignedwith Rc j+1 or shifted upwards.However,

we may assume that there is an r , 1 ≤ r ≤ 3, with Rc j+1 → Rlrj+1
(which, as

explained above, is shifted upwards), since otherwise not all three unit squares
in RL j+1 can be placed. Consequently, by applying case 3. of Lemma 4.9,
if there is an Rlrj+1

with Rlrj+1
→ Rc j+1 , then Rlrj+1

is aligned with Rc j+1 . We
conclude that the unit squares in RL j+1 must beplaced as illustrated inFig. 17(a)
(obviously, the positions of the unit squares in RL j+1 can be switched).
Now consider the unit squares Rc1j+1

and Rc2j+1
from Cl

j+1, which both must

see Rc j+1 . Due to the positions of Rl1j+1
and Rl2j+1

, and due to cases 1. and 2. of

Lemma 4.9, for every z ∈ {c1j+1, c
2
j+1}, neither Rz → Rc j+1 nor Rz ↓ Rc j+1 is

possible. If Rc j+1 → Rc2j+1
, then, in order to also see Rc2j

, Rc2j+1
must be placed

so that Rc2j+1
↓ Rc2j

; as there is no space between Rc2j+1
and Rc1j

to add another

unit square, this implies that Rc2j+1
↓ Rc1j

without enough space to block this

unwanted visibility, which is a contradiction. Consequently, Rc j+1 ↓ Rc2j+1
.

Clearly, Rc j+1 ↓ Rc1j+1
is not possible, since then visibility between Rc1j+1

and Rc1j
is not possible. Hence, Rc j+1 → Rc1j+1

(recall that above we have

excluded all other directions). However, now there is no visibility between
Rc1j+1

and Rc2j+1
, which is a contradiction. Consequently, the situation illus-

trated in Fig. 16(a) is not possible.

2. Case Rc j → Ry : We first note that this yields the situation illustrated in Fig. 16(c).

cj

y
cj→

cj+1 c1j

c2j

c1j−1

c2j−1

cj−1
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Again, we only consider the situation where the K4 on Cl
j satisfies case 1. of

Lemma 4.5 as the further argument does not differ for case 3. of Lemma 4.5. In
the same way as for case 1. from above, we can conclude that y = c j+1. We again
assume Rc1j

↓ Rc2j
(since Rc2j

↓ Rc1j
can be handled analogously), we note that this

uniquely defines all unit squares (as illustrated in Fig. 17(b)), and againwe consider
how the selectables for c j+1 can be placed in order to see Rc j+1 . Note that from
case 1. of Lemma 4.9, it follows that if, for some r , 1 ≤ r ≤ 3, Rc j+1 ↔ Rlrj+1

,
then Rlrj+1

is not aligned with Rc j+1 , but shifted upwards. Moreover, by case 3. of
Lemma 4.9, there is at most one r , 1 ≤ r ≤ 3, with Rc j+1 ↔ Rlrj+1

. From case 3. of
Lemma 4.9 it also follows that if, for some r , 1 ≤ r ≤ 3, Rlrj+1

↓ Rc j+1 , then Rlrj+1

is aligned with Rc j+1 or shifted to the left. From case 1. of Lemma 4.9 it follows
that if, for some r , 1 ≤ r ≤ 3, Rc j+1 ↓ Rlrj+1

, then Rlrj+1
is not aligned with Rc j+1 ,

but shifted to the left. Since, according to case 3. of Lemma 4.9, it is not possible
that, for some r , r ′, 1 ≤ r < r ′ ≤ 3, Rlrj+1

↓ Rc j+1 and Rc j+1 ↓ Rlr
′
j+1

in such a

way that both Rlrj+1
and Rlr

′
j+1

are not aligned with Rc j+1 , but shifted to the left, we

can conclude that we either have the situation illustrated in Fig. 17(b), or a similar
situation with the only difference that Rc j+1 → Rl1j+1

instead of Rl1j+1
→ Rc j+1 ,

which can be handled analogously.
Again, we now consider the unit squares Rc1j+1

and Rc2j+1
. We first note that, due

to cases 1. and 2. of Lemma 4.9, Rc1j+1
↓ Rc j+1 is not possible. If Rc1j+1

→ Rc j+1 ,

then the position of Rl1j+1
and cases 1. and 2. of Lemma 4.9 imply that Rc1j+1

has a

y-coordinate not larger than Rc j+1 . However, then either Rc1j+1
cannot see Rc1j

, or

it blocks the view between Rc j and Rc1j
. If Rc j+1 ↓ Rc1j+1

, then, due to the position

of Rl3j+1
and cases 1. and 2. of Lemma 4.9, Rc1j+1

cannot be aligned with Rc j+1 , but

must be shifted to the right. However, then Rc1j+1
cannot see Rc1j

. Consequently,

we can conclude that Rc j+1 → Rc1j+1
. In the same way as above, we can exclude

Rc2j+1
↓ Rc j+1 and Rc2j+1

→ Rc j+1 . If Rc j+1 ↓ Rc2j+1
, then, due to Rc2j

, Rc2j+1
cannot

see R1
c j+1

. Consequently, we must have Rc j+1 → Rc2j+1
. However, there is no way

for Rc2j+1
to see both Rc j+1 and Rc2j

without seeing Rc1j
(i.e., Rc2j+1

would have

been placed with less than one unit distance to Rc1j
). Consequently, the situation

illustrated in Fig. 16(b) is not possible. ��
Lemmas 4.5, 4.9 and 4.10 can now be used to show that in fact the unit squares

from RL j , representing the literals (i.e., the selectables) for the j th clause gadget, see
Rc j all either horizontally or vertically.

Lemma 4.11 For every j , 1 ≤ j ≤ m, either Rc j ↔ RL j or Rc j � RL j .

Proof We first observe that it is not possible that Rc j → RL j , RL j → Rc j , Rc j ↓ RL j

or RL j ↓ Rc j . More precisely, all these cases mean that there are R, R′ ∈ RL j , such
that R′ is strictly between R and Rc j , which is a contradiction to case 1. of Lemma 4.9.
Hence we only have to rule out the following cases (for the sake of convenience, we
set RL j = {x, y, z}):

123



Discrete & Computational Geometry

cj

cj +1
c1j

c2j

c1j−1

c2j−1

cj−1

l1j +1

l2j +1

l3j +1
cj

cj +1 c1j

c2j

c1j−1

c2j−1

cj−1

l1j +1

l2j +1

l3j +1

(b)(a)

Fig. 17 Illustrations for the proof of Lemma 4.10

1. x ↓ Rc j , Rc j ↓ y, and Rc j ↔ z,
2. x → Rc j , Rc j → y and Rc j � z,
3. {x, y} ↓ Rc j and Rc j ↔ z,
4. Rc j ↓{x, y} and Rc j ↔ z,
5. {x, y} → Rc j and Rc j � z,
6. Rc j →{x, y} and Rc j � z.

Since cases 1. and 2. are symmetric, as well as cases 3., 4., 5., and 6., we only consider
cases 1. and 3.

1. Case 1. (x ↓ Rc j , Rc j ↓ y, and Rc j ↔ z):

cj

x

y

z

We assume that Rc j → z; the case z → Rc j can be handled analogously. Due to
statement 3. of Lemma 4.9, we can assume that Rc j blocks the view between
x and y (which, in particular, means that x and y cannot both be shifted to the
same side w.r.t. Rc j ). We now consider the K4 on vertices Cl

j . First, we assume
that the unit squares RCl

j
are placed so that for some S, S′ ∈ RCl

j
with S �= S′,

Rc j →{S, S′}. By consulting Lemma 4.5, we observe that this means that there are
T , T ′ ∈ RCl

j
, such that Rc j →{T , T ′}, neither T nor T ′ are aligned with Rc j , T

is shifted upwards and T ′ is shifted downwards. However, this necessarily means
that there is a unit square R ∈ RN (c j ) (T or T ′), such that R is strictly between Rc j
and z, or z is strictly between Rc j and R, which is a contradiction to statement 1.
or 2., respectively, of Lemma 4.9. The same argument applies to the situations that
two unit squares of RCl

j
are placed within vertical visibility both above or both

below Rc j .
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If there are R, R′ ∈ RCl
j
with R ↓ Rc j and Rc j ↓ R′, they have to be shifted to

the same side in order to see each other. However, since x and y are either aligned
or shifted to opposite directions, this means that R or R′ is strictly between Rc j
and x or y, or x or y is strictly between R or R′ and Rc j , which is a contradiction
to case 1. or 2., respectively, of Lemma 4.9. Consequently, there is at most one
R ∈ RCl

j
with R � Rc j and, in the following, we assume that R ↓ Rc j holds (the

case Rc j ↓ R can be handled analogously). In particular, this means y is aligned
with Rc j . Now let R′ and R′′ be the two remaining unit squares from RCl

j
, i.e.,

{R′, R′′} = RCl
j\{c j } \{R}. According to what we observed above, either R′ → Rc j

and Rc j → R′′, or {R′, R′′} → Rc j . We first assume the former case. According
to Lemma 4.5, this means that the K4 on vertices Cl

j either satisfies case 1. of
Lemma 4.5 with Rc j playing the role of R4 (denote this case as (a)), or case 3. of
Lemma 4.5 with Rc j playing the role of R3 (denote this case as (b)):

cj

x

y

z

R
R′ R′′

cj

x

y

z

R

R′ R′′

case (a) case (b)

In both these cases z has to be shifted downwards to avoid a contradiction to case 1.
or 2. of Lemma 4.9 with R′′. On the other hand, if {R′, R′′} → Rc j , then the K4

on Cl
j either satisfies case 2. (case (c)), or case 3. of Lemma 4.5 with R in the role

of R4 (case (d)) or case 3. of Lemma 4.5 with R′ in the role of R4 (case (e)):

cj

x

y

z
R

R′

R′′
cj

x

y

z

R

R′

R′′
cj

x

y

z
R

R′
R′′

case (c) case (d) case (e)

In these three cases, z has to be aligned with Rc j to avoid contradiction with
Lemma 4.9. Consequently, under the assumption that, for some R ∈ RCl

j\{c j },
R ↓ Rc j , the unit squares for the K4 on vertices Cl

j satisfy one of the cases (a)
to (e) illustrated above, and, since the arguments from above apply in the same
way, the same holds for the unit squares for the K4 on vertices Cr

j .

(a) Both K4 on vertices Cl
j and Cr

j satisfy case (a), (b), (c), or (e): We note that
this implies that there are R ∈ RCl

j\{c j } and S ∈ RCr
j \{c j } with {R, S} ↓ Rc j

with a distance of less than one unit from Rc j . This is only possible if R and
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S are placed (horizontally) next to each other, which means that one of them
is strictly between x and Rc j , which yields a contradiction with case 1. of
Lemma 4.9.

(b) The K4 on verticesCl
j or the the K4 on verticesCr

j satisfies case (d):We assume

that the K4 on vertices Cl
j satisfies case (d) (the other case is analogous). We

note that this implies that there are R′, R′′ ∈ RCl
j\{c j } with {R′, R′′} → Rc j ,

such that both R′ and R′′ have a horizontal distance of less than one to Rc j . This
means that there is no S ∈ RCr

j \{c j } with S → Rc j that also has a distance of less
that one unit from Rc j . Consequently, the K4 on vertices Cr

j can only satisfy
case (a). However, in this case z cannot be aligned with Rc j , which contradicts
the fact that the K4 on vertices Cl

j satisfies case (d) (which requires z to be
aligned with Rc j ).

Consequently, we can assume that there is no R ∈ RCl
j\{c j } with R � Rc j (or that

this holds for the K4 on vertices Cr
j , which can be handled analogously). Conse-

quently, RCl
j\{c j } ↔ Rc j , which, by Lemma 4.5, implies that either RCl

j\{c j } → Rc j

or Rc j → RCl
j\{c j }. Since, as explained above, the latter leads to a contradiction,

we can conclude that RCl
j\{c j } → Rc j . Now if the K4 on vertices Cr

j satisfies case

(c), (d), or (e), or if this K4 is also realised exclusively by horizontal visibilities,
then we obtain a contradiction to Lemma 4.10. Thus, we assume that the K4 on
vertices Cr

j satisfies case (a) or (b), which means that z is not aligned with Rc j .
This is a contradiction, since, due to Lemmas 4.5 and 4.9, RCl

j\{c j } → Rc j implies

that z must be aligned with Rc j .
2. Case 3. ({x, y} ↓ Rc j and Rc j ↔ z):

cj

x
y

z

Due to cases 1. and 2. of Lemma 4.9, we know that neither x nor y is aligned with
Rc j and, furthermore, there exists no R ∈ RC j with R ↓ Rc j . Next, we assume
that there is also no R ∈ RC j with Rc j ↓ R, which implies RC j\{c j } ↔ Rc j . By
Lemma 4.5, this means that either RCl

j\{c j } → Rc j or Rc j → RCl
j\{c j } and either

RCr
j \{c j } → Rc j or Rc j → RCr

j \{c j }. However, Rc j → RCl
j\{c j } or Rc j → RCr

j \{c j }
yields a contradiction with Lemma 4.9, which implies that RC j\{c j } → Rc j . This is
a contradiction to Lemma 4.10. Consequently, there is at least one R ∈ RC j with
Rc j ↓ R and, due to case 3. of Lemma 4.9, we can conclude that there is exactly
one such unit square that is aligned with Rc j . Moreover, without loss of generality,
let R ∈ RCl

j
. This means that the K4 on vertices Cl

j satisfies case 1. of Lemma 4.5

with Rc j playing the role of R2. In particular, this implies that z cannot be aligned
with Rc j , since this would lead to a contradiction with case 1. or 2. of Lemma 4.9.
However, due to the fact RCr

j \{c j } ↔ Rc j , we obtain a contradiction to one of the
cases of Lemma 4.9. ��
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We have now all technical tools at our disposal that are needed to conclude the
proof, i.e., to show that the layout for G must have the desired structure; thus,
it translates into a not-all-equal satisfying assignment for the formula F . We first
observe that Lemmas 4.9, 4.10, and 4.11 also hold for the part of the graph
consisting of the vertices which represent the variables. More precisely, define
X0 = {cm−1, c1m−1, c

2
m−1, cm, x11 , x

2
1 , x1}, X1 = {cm, x11 , x

2
1 , x1, x

1
2 , x

2
2 , x2}, and

Xi = {xi−1,x1i , x
2
i , xi , x

1
i+1, x

2
i+1, xi+1}, for all i , 2 ≤ i ≤ n, and Ai = {ti , f 1i , f 2i },

for all i , 1 ≤ i ≤ n. Then Lemma 4.9 also holds for the version where ci is replaced
by xi and lri is replaced by ti , f

1
i , or f 2i , Lemma 4.10 also holds for the version where

Ci is replaced by Xi and ci is replaced by xi (or cm in case of X0), and Lemma 4.11
also holds for the version where ci is replaced by xi and Li is replaced by Ai . This is
simply due to the identical structure of these parts of the graph. In the following, we
shall refer to these more general versions of the lemmas.

Lemma 4.12 If G ∈ USV, then F is not-all-equal satisfiable.

Proof Let G ∈ USV. By Lemma 4.11 we know that for each j , 1 ≤ j ≤ m − 1, either
Rc j ↔ RL j or Rc j � RL j , so assume that, for some j , 1 ≤ j ≤ m − 1, Rc j � L j . If,
for some x ∈ C j \ {c j }, Rx � Rc j , then we obtain a contradiction with case 1. or 2.
of Lemma 4.9; thus, Rc j ↔ RC j\{c j }. Consequently, for every j , 1 ≤ j ≤ m − 1,
Rc j ↔ RC j\{c j } or Rc j � RC j\{c j }, Rcm ↔ RX0\{cm } or Rcm � RX0\{cm } and, for every i ,
1 ≤ i ≤ n, Rxi ↔ RXi\{xi } or Rxi � RXi\{xi }.

We assume, without loss of generality, that Rc1 ↔ RC1\{c1}. By Lemma 4.5, this
implies that either Rc1 → RCl

1\{c1} or RCl
1\{c1} → Rc1 and that either Rc1 → RCr

1\{c1}
or RCr

1\{c1} → Rc1 . Moreover, Lemma 4.10 yields RCl
1\{c1} → Rc1 if and only if

Rc1 → RCr
1\{c1}. Obviously, this argument applies to every c j , 1 ≤ j ≤ m, and every i ,

1 ≤ i ≤ n. We now assume, without loss of generality, that RCl
1\{c1} → Rc1 , which

implies Rc1 → RCr
1\{c1} and, in particular, RCl

2\{c2} → Rc2 . Repeating this argument
inductively on allC j , 1 ≤ j ≤ m−1, and on all Xi , 0 ≤ i ≤ n, implies that the part of
the graph consisting of vertices {ci , c1i , c2i | 0 ≤ j ≤ m−1}∪{cm}∪{xi , x1i , x2i | 1 ≤
i ≤ n + 1}, which we shall call backbone in the following, is represented by a layout
that is V-isomorphic to the one in Fig. 10, except for the K4 on vertices RCl

1
and the

K4 on vertices xn, x1n+1, x
2
n+1, xn+1, which could also satisfy case 3. of Lemma 4.5

(note that all the other K4 must satisfy case 1. of Lemma 4.5, since all their visibili-
ties are horizontal). Moreover, as explained above, this also implies that, for every j ,
1 ≤ j ≤ m, RL j � Rc j and, for every i , 1 ≤ i ≤ n, RAi � Rxi .

Now, for some i , 1 ≤ i ≤ n and j1 < j2 < . . . < jq , let l
r1
j1
, . . . , l

rq
jq
be exactly

the selectables corresponding to occurrences of literal xi . By definition, these ver-
tices form a path in this order and the structure of the backbone implies that the
x-coordinates of their corresponding unit squares differ by at least two, which means
that the visibilities between the unit-squares for lr1j1 , . . . , l

rq
jq
are all horizontal; thus,

they form a horizontal path in this order and are all on the same side of the backbone.
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By definition, both vertices
→
ti and

←
ti are adjacent to all vertices l

r1
j1
, . . . , l

rq
jq
. Since every

literal of the formula has at least three occurrences, i.e., q ≥ 3, the only possibility
to place unit squares for

→
ti and

←
ti in order to see every unit square of the path is hor-

izontally from opposite sides, i.e., either R→
ti

→ R{lr1j1 ,...,l
rq
jq

} and R{lr1j1 ,...,l
rq
jq

} → R←
ti
or

R←
ti

→ R{lr1j1 ,...,l
rq
jq

} and R{lr1j1 ,...,l
rq
jq

} → R→
ti
; since these two cases can be handled anal-

ogously, we assume the former. Since the horizontal distance between R→
ti
and R←

ti
is

more than one unit, the unit squares for all other mutual neighbours of
→
ti and

←
ti , i.e.,

the vertices hrti , 0 ≤ r ≤ 4, and ti , must also be placed horizontally in between R→
ti

and R←
ti
. In particular, this implies that Rti has to be placed on the same side as the

path Rl
r1
j1
, . . . , Rl

rq
jq
with respect to the backbone.

We define an assignment σ : {x1, x2, . . . , xn} → {true, false} as follows. For
every i , 1 ≤ i ≤ n, we define σ(xi ) = true if and only if Rxi ↓ Rti . We claim
that this assignment is a satisfying not-all-equal assignment for the formula F . To this
end, let c j = {x�1, x�2 , x�2} be an arbitrary clause of F . Due to Lemma 4.9 it is not
possible that RL j ↓ Rc j or Rc j ↓ RL j , which implies that at least one of R{t�1 ,t�2 ,t�3 }
is placed below the backbone and at least one of them is placed above the backbone
(since, as explained above, they are placed at the same side as their corresponding unit
square from RL j ). Consequently, at least one variable occurring in c j is set to true and
at least one is set to false. ��
Lemmas 4.6 and 4.12 show that our reduction is correct.Moreover, it can be easily seen
that the reduction can be computed in polynomial time; Consequently, we conclude
the following main result of this section:

Theorem 4.13 Rec(USV) is NP-complete.

We conclude this section, by observing that the size of the graph is linear in the
size of the formula, which means that we can also conclude ETH-lower bounds for
Rec(USV).

5 Conclusions

The hardness of Rec(USVw) is still open (note that in our reduction, we heavily used
the argument that certain constellations yield forbidden edges, which falls apart in the
weak case) and we conjecture it to beNP-hard as well. Two open problems concerning
graph classes related to USGV are mentioned in Sect. 3: (1) are USGV and the class
of resolution-(π/2) graphs identical, (2) are there resolution-(π/2) graphs without
BRAC drawing? Note that a positive answer to (2) gives a negative answer to (1).

From a parameterised complexity point of view, our NP-completeness result shows
that the number of different rectangle shapes (considered as a parameter) has no
influence on the hardness of recognition. Another interesting parameter to explore
would be the step size of the grid, i.e., for k ∈ N, let USGVk be defined like USGV, but
for a {�/k | � ∈ N}2 grid. We note that these classes form an infinite hierarchy between
USGV = USGV1 and USV = ⋃

k USGV
k , and it is hard to define them in terms of
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extensions of rectilinear graphs. Another interesting observation is that the hardness
reduction for the recognition problem of rectilinear graphs from [19], if interpreted
as reduction for Rec(USGV), does not work for USGV2. The classes USGVk might be
practically more relevant, since placing objects in the plane with discrete distances is
more realistic.

Another possible modification of rectangle visibility graphs is that visibility (and
therefore adjacency in the represented combinatorial graph) requires also a certain
proximity between the (unit) squares. This setting would cater for situations where
the components modelled by vertices can only be connected by straight-line segments
that meet certain length bounds.
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Appendix A

A.1 Details for the Proof of Lemma 4.6

Let F be a monotone not-all-equal satisfiable 3-SAT formula with clauses c1, . . . , cm
over variables v1, . . . , vn and let φ : {x1 . . . , xn} → {0, 1} be an according not-all-
equal satisfying assignment. The following coordinates yield a USV drawing for the
corresponding graphG (see Fig. 18 for an illustration). For j ∈ {1, . . . ,m}, h ∈ {1, 2},
i ∈ {1, . . . , n}, r ∈ {1, 2, 3},
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A.2 Example of the Reduction

See Fig. 18 for an illustration of the visibility layout for a monotone Boolean formula
with four variables and three clauses.

Vertex x-coordinate y-coordinate

c j 4 j 0
chj 4 j + 2 2 − 1.3h
xi 4m + 8i 0
xhi 4m + 8i − 6 2 − 1.3h

ti 4m + 8i (−1)(1−φ(xi ))(5i + 2) + 1 − 2m + 4

2m + 8

f hi 4m + 8i + 3

2
− h (−1)φ(xi )(5i + 2h) + 1 − 2m + 4

2m + 8

lrj 4 j + r − k

2max {1, |r − k|} (−1)(1−φ(xi ))(5i + 2) + 1 − j + 2

2m + 8
for y j ,h = xi , k = argmax {|r − k| | φ(lrj ) = φ(lkj )}→

ti −9i (−1)(1−φ(xi )(5i + 2)
←
ti 4m + 8(n + 1) + 9i (−1)(1−φ(xi )(5i + 2) + 1
→
f hi −9i − h (−1)φ(xi )(5i + 2h)
←
f hi 4m + 8(n + 1) + 9i − h (−1)φ(xi )(5i + 2h) + 1

h0ti 4m + 8i − 3 (−1)(1−φ(xi )(5i + 2) + 1 − 2m + 3

2m + 8

h0
f hi

4m + 8i − 2h (−1)φ(xi )(5i + 2h) + 1 − 2m + 3

2m + 8

hrti −9i + 3r (−1)(1−φ(xi )(5i + 2) + 1 − r

2m + 8
for r ∈ {1, 2}

hr
f hi

−9i + 3r − h (−1)φ(xi )(5i + 2h) + 1 − r

2m + 8
for r ∈ {1, 2}

hrti 4m + 8(n + 1) + 9i + 3r − 15 (−1)(1−φ(xi )(5i + 2) + 5 − r

2m + 8
for r ∈ {3, 4}

hr
f hi

4m + 8(n + 1) + 9i + 3r − h − 15 (−1)φ(xi )(5i + 2h) + 5 − r

2m + 8
for r ∈ {3, 4}
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