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Abstract
Given a subfield F of C, we study the linear disjointess of the field E generated by
iterated exponentials of elements of F , and the field L generated by iterated logarithms,
in the presence of Schanuel’s conjecture. We also obtain similar results replacing exp
by the modular j-function, under an appropriate version of Schanuel’s conjecture,
where linear disjointness is replaced by a notion coming from the action of GL2 onC.
We also show that for certain choices of F we obtain unconditional versions of these
statements.
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1 Introduction

Let exp(z) denote the usual complex exponential function (exp(z) = ez). Set E0 =
L0 = Q and for every positive integer n define

En :=En−1({exp(x) | x ∈ En−1}) and Ln :=Ln−1({x | exp(x) ∈ Ln−1}),

and let E := ⋃∞
n=1 En and L:= ⋃∞

n=1 Ln . It is shown in [6] that Schanuel’s conjecture
implies that E and L are linearly disjoint over Q. Similar results have been obtained

This study was supported by NSF RTG Grant DMS-1646385.

B Sebastian Eterović
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more recently in [5, 15] where exp(z) is replaced by the exponential of an (semi-)
abelian variety.

The aim of this paper is to do three things. The first objective is, still assuming
Schanuel’s conjecture, to find more general finitely generated subfields F of C such
that if we set the initial step of the towers E0 and L0 to be the algebraic closure of
F , then the resulting fields E and L are linearly disjoint over F . This is achieved in
Theorem 4.2.

The second objective is to show that under a version of Schanuel’s conjecture for
the modular j-function (that we call MSCD), one can produce an analogous result for
the modular j-function. More specifically, set J0 = K0 = F , where F is a finitely
generated subfield of C, and inductively define

Jn := Jn−1({ j(z) | z ∈ Jn−1 ∩ H+}) and Kn := Kn−1({z ∈ H+ | j(z) ∈ Kn−1}).

Set J := ⋃∞
n=1 Jn and K :=⋃∞

n=1 Kn . Unlike exp, the j-function is not a group homo-
morphism, and so linear disjointness is not the right notion for proving a relation
between J and K . Instead we will define a notion of disjointness that previously
appeared in [7] that considers the action of the group G:=GL2. This is achieved in
Theorem 5.3

The final objective is to find initial fields F so that the linear disjointness of E and
L is obtained unconditionally, that is, without having to rely on Schanuel’s conjecture.
We also obtain an analogous unconditional result for j . This is done in Theorems 4.4
and 5.4.

The methods used to prove all of our main results rely mostly on the work of [1]
on convenient generators, which in turn rely heavily on the so-called Ax-Schanuel
theorems: [2] in the case of exp and [16] in the case of j . We expect that similar
constructions can be performed whenever an Ax-Schanuel theorem is available in
differential form, and so the methods presented here can be expected to extend to
other situations, such as the exponential maps of semi-abelian varieties (using [3] or
[9]) or the uniformization maps of Shimura varieties (using [14]).

1.1 Structure of the paper

In Sect. 2, we introduce preliminary definitions and results regarding linear disjoint-
ness and G-disjointness. In Sect. 3, we review several Schanuel-type inequalities, in
particular the Modular Schanuel Conjecture, and discuss the details of convenient
generators. We prove the main results of this paper in Sects. 4 and 5.

2 Preliminaries

2.1 Basic notation

• If F is any subfield of C, then F it is algebraic closure in C.
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• If x1, . . . , xm are elements ofC, thenweusex to denote (x1, . . . , xm). Furthermore,
if f denotes a function, then we write f (x) to mean ( f (x1), . . . , f (xm)).

• As mentioned in the introduction, let G denote the linear group GL2. For any
subfield F of C there is a natural action of G(F) on P

1(C) = C ∪ {∞} given by
Möbius transformations as follows:

gx :=ax + b

cx + d
, where g =

(
a b
c d

)

,

with g ∈ G(F). Whenever we say that G(F) acts on C, it will be in this manner.

2.2 Closures, dimensions and disjointness

In this section we introduce the various notions of disjointess that will be used for our
main results, and we review some of their properties.

Definition Let F ⊆ C be a subfield and let A ⊂ C be a finite subset.

(a) Thinking of C as an F-vector space, we denote by l.dimF (A) the dimension of
the F-vector space SpanF (A), the F-linear span of A.
Given another subset B ⊆ C, let π : C → C/SpanF (B) denote the quotient
map. We write l.dimF (A|B) to denote the dimension of the F-vector space
π(SpanF (A)).

(b) Considering the action of G(F) on C, we denote by dimG(F)(A) the number
of distinct G(F)-orbits generated by elements of A. We say that A is G(F)-
independent if |A| = dimG(F)(A).
Given another subset B ⊆ C, we denote by dimG(F)(A|B) the number of distinct
G(F)-orbits generated by elements of A which do not contain elements from B.

Definition Let E, F, L be subfields of C such that E ⊆ F ∩ L .

(a) F is linearly disjoint from L over E , denoted F⊥l
E L , if every finite tuple of

elements in L that is E-linearly independent is also F-linearly independent. Equiv-
alently, F⊥l

E L if and only if for any tuple � from L , l.dimF (�) = l.dimE (�).

(b) F and L are E-free, denoted F⊥ f
E L , if every finite set of elements of L which

is algebraically independent over E is also algebraically independent over F .
Equivalently, F⊥ f

E L if and only if for any tuple � from L , tr.deg.F F (�) =
tr.deg.E E (�).

(c) We say that F is G(E)-disjoint from L , denoted F⊥G
E L , if for every finite subset

of elements of L that is G(E)-independent is also G(F)-independent. Equiva-
lently, F⊥G

E L if and only if for any tuple � from L , dimG(F) (�) = dimG(E) (�).
Equivalently, F⊥G

E L if and only if for any pair of elements �1, �2 from L for
which there exists g ∈ G(F) such that g�1 = �2, there is h ∈ G(E) such that
h�1 = �2.

Remark 2.1 Although the definitions are not stated in a symmetric way, both ⊥l and
⊥ f are symmetric relations (see [12, p. 360] and [12, p. 362]). This leads naturally to
the following question (which seems to be open).
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Question Is G-disjointness a symmetric relation, that is, is it true that for any three
subfields E, F, L ⊆ C satisfying E ⊆ F ∩ L we have F⊥G

E L ⇐⇒ L⊥G
E F?

While the general case remains open, the following lemma provides a special case
in which symmetry holds:

Lemma 2.2 Suppose that E = L ∩ F. If F is linearly disjoint from L over E, then
F⊥G

E L and L⊥G
E F.

Proof We will show that F⊥l
E L implies F⊥G

E L , and since linear disjointness is a
symmetric condition, this is enough. Suppose that �1, �2 ∈ L and g ∈ G(F), such

that g�1 = �2. Let g =
(
a b
c d

)

, with a, b, c, d ∈ F satisfying ad �= bc. Then we

have 0 = c�1�2 − a�1 + d�2 − b, which is a non-trivial F-linear combination of the
elements 1, �1, �2, �1�2 (all of which are in L). As F is linearly disjoint from L over
E , there exist α, β, γ, δ ∈ E (not all zero) preserving the linear dependence:

0 = γ �1�2 − α�1 + δ�2 − β.

We now consider the possible cases.

(a) Suppose that α�1 + β = 0. It follows that �1 ∈ E , and as g ∈ G(F), then
�2 = g�1 ∈ F . This shows that �2 ∈ L ∩ F . Since �1, �2 ∈ E , then there exists
h ∈ G(E) such that h�1 = �2.

(b) Suppose that γ �1 + δ = 0. Again it follows that �1 ∈ E , so we conclude as in (a).
(c) Suppose that α�1 + β �= 0, γ �1 + δ �= 0, and αδ − βγ = 0. Then there exists

e ∈ E such that α = eγ and β = eδ. Then �2 = α�1+β
γ �1+δ

= e. Thus �2 ∈ E , and
we can conclude with a similar argument to (a).

(d) If none of the cases (a), (b), (c) are satisfied, then the matrix h =
(

α β

γ δ

)

is in

G(E) and satisfies h�1 = �2.


�
Finally, we will make use of the following lemma throughout Sect. 5:

Lemma 2.3 If F⊥G
E L, then F ∩ L = E.

Proof Suppose t ∈ L \ E , and by way of contradiction suppose t ∈ F . It follows

that g =
(
t 0
0 1

)

∈ G(F). Since g1 = t and we are assuming F⊥G
E L , there exists

h ∈ G(E) such that h1 = t . But t is not in E , which is a contradiction. 
�

2.3 The j-function

First, we define a complex lattice, � ⊆ C is the additive subgroup of C generated by
ω1, ω2 ∈ C. In otherwords, � = Zω1 +Zω2. An elliptic curve over C is E�:=C/�.
Given two elliptic curves E� and E�′ , an isogeny is a nonzero analytic homomor-
phismmapping of the elliptic curves. There exists an isogeny between any two elliptic
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curves E� and E�′ if and only if there exists a nonzero z ∈ C such that z� = �′.
Hence studying theG(Q) disjointness of the lattices provides insight into the isogenies
between the corresponding elliptic curves. This motivates the following definition:

Definition Let j : H+ → C be the holomorphic map given by j(z) = j(E�z ), where
�z is the integer lattice in C, formed using z and j(E�z ) is the j-invariant of E�z .

It is well-known (see e.g. [13, p. 20]) that j satisfies the following differential
equation (and none of lower order):

0 = j ′′′

j ′
− 3

2

(
j ′′

j ′

)2

+ j2 − 1968 j + 2654208

j2( j − 1728)2
(
j ′
)2

. (2.1)

We recall that there is a family of polynomials {
N (X ,Y )}∞N=1 ⊆ Z[X ,Y ] called the
modular polynomials associated with j (see [11, Chap. 5, Sect. 2] for definitions and
properties). Each 
N (X ,Y ) is irreducible in C[X ,Y ], 
1(X ,Y ) = X − Y , and for
N ≥ 2, 
N (X ,Y ) is symmetric of total degree ≥ 2N .

We will often make use of the following fact. For every g in G(Q) we can define
g̃ as the unique matrix of the form rg with r ∈ Q and r > 0, so that the entries of
g̃ are all integers and relatively prime. Then, for every x and y in H the following
statements are equivalent:

• 
N ( j(x), j(y)) = 0;
• There exists g in G with gx = y and det (g̃) = N .

Definition A point z ∈ H is said to be special if there exists a non-scalar matrix
g ∈ G(Q), such that gx = x . We denote the set of all special points as �.

Remark A classical theorem of Schneider [17] states that tr.deg.QQ(x, j(x)) = 0 if
and only if x ∈ �.

3 Schanuel-type conjectures

We start by recalling the now classical conjecture of Schanuel on complex exponen-
tiation.

Conjecture 3.1 (Schanuel: SC) For every x = (x1, . . . , xn) ∈ C
n we have

tr.deg.QQ(x, exp(x)) ≥ l.dimQ(x). (3.1)

We remark that SC gives an inequality statement for the transcendence degree mea-
sured over Q. Since one of our objectives is to obtain results about linear disjointness
over arbitrary fields, we need to first find a version of SC which works over a given
finitely generated field. This will require the use of “convenient generators” for the
fields, and the details will be explained in the next section. First we recall variants of
SC for the j-function. For a detail of the origins of these variants, see [1, Sect. 6.3]
and references therein.
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Conjecture 3.2 (Modular Schanuel with derivative: MSCD) For every z1, . . . , zn ∈
H

+ we have:

tr.deg.QQ
(
z, j(z), j ′(z), j ′′(z)

) ≥ 3 dimG(Q)(z|�).

It is easy to see that MSCD implies the following statement without derivatives.

Conjecture 3.3 (Modular Schanuel) For every z1, . . . , zn ∈ H
+ we have:

tr.deg.QQ (z, j(z)) ≥ dimG(Q)(z|�).

3.1 Field derivations

Definition A map ∂ : C → C is a called a derivation if it satisfies the following two
conditions:

(1) ∂(a + b) = ∂(a) + ∂(b) for every a, b ∈ C.
(2) ∂(ab) = a∂(b) + b∂(a) for every a, b ∈ C.

A derivation ∂ : C → C is called an exponential derivation if it satisfies:

∂(exp(z)) = exp(z)∂(z)

for all z ∈ C. Let EDer denote the set of all exponential derivations.
A derivation ∂ : C → C is called a j-derivation if it satisfies1:

∂( j(z)) = j ′(z)∂(z) ∧ ∂( j ′(z)) = j ′′(z)∂(z) ∧ ∂( j ′′(z)) = j ′′′(z)∂(z),

for all z ∈ H
+. Let jDer denote the set of all j-derivations.

Define

Cexp:=
⋂

∂∈EDer
ker ∂ and C j :=

⋂

∂∈ jDer

ker ∂.

Using some techniques from o-minimality, one can show that there are |C|-many C-
linearly independent exponential derivations, and the same is true about j-derivations
(see [4] for the details in the case of exp and [7, Sect. 5] for the case of j). One can
find more explicit descriptions of the sets Cexp and C j by using Khovanskii systems
of equations (see [1, Sect. 6] for j and [10, Sect. 3] for exp).

These types of derivations can also be used to define certain closure operators
called pregeometries which have associated well-defined notions of dimension (see
[18, Appendix C] for the basic definitions and properties concerning pregeometries).

1 As shown in [7, Sect. 5] these conditions already imply that ∂ will respect all the derivatives of j .
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Definition Let A ⊆ C be any set.We define the set ecl(A) by the property: x ∈ ecl(A)

if and only if ∂(x) = 0 for every exponential derivation ∂ with A ⊆ ker ∂ . If A =
ecl(A), then we say that A is ecl-closed.

Similarly, we define the set jcl(A) by the property: x ∈ jcl(A) if and only if
∂(x) = 0 for every j-derivation ∂ with A ⊆ ker ∂ . If A = jcl(A), then we say that A
is jcl-closed.

Every ecl-closed and every jcl-closed subset of C is an algebraically closed sub-
field.We denote by dime the dimension associatedwith ecl, and by dim j the dimension
associated with jcl. For reference, dime can be defined in the following way. For any
subsets A, B ⊆ C and for every non-negative integer n, dime(A|B) ≥ n if and only
if there exist a1, . . . , an ∈ ecl(A) and ∂1, . . . , ∂n ∈ EDer such that B ⊆ ker ∂i for
i = 1, . . . , n and

∂i (ak) =
{
1 , if i = k
0 , else

for every i, k = 1, . . . , n. The dimension dim j can be defined in an analogous way.

Lemma 3.4 (see [10] and [7]) Cexp and C j are countable algebraically closed sub-
fields of C. Furthermore,

(a) For every z ∈ C, z is in Cexp if and only if exp(z) is in Cexp.
(b) For every z ∈ H

+, z is in C j if and only if j(z), j ′(z) or j ′′(z) is in C j .

3.2 Convenient generators

Definition Wewill say that a tuple t = (t1, . . . , tm) of elements ofC is convenient for
exp if

tr.deg.QQ(t, exp(t)) = l.dimQ(t) + dime(t).

We will say that a tuple t = (t1, . . . , tm) of elements of H+ is convenient for j if

tr.deg.QQ(t, J (t)) = 3 dimG(t|�) + dim j (t).

Convenient tuples allow us to get Schanuel-type inequalities.

Lemma 3.5 Suppose t ∈ C
m is convenient for exp. Set F = Q(t, exp(t)). Then SC

implies that for any x = (x1, . . . xn) ∈ C
n we have:

tr.deg.F F(x, exp (x)) ≥ l.dimQ(x|t).

Proof By SC we have that

tr.deg.QQ(x, t, exp(x), exp(t)) ≥ l.dimQ(x, t).
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Using the addition formula and the fact that t is convenient for exp as in the proof of
[8, Lemma 4.9], we get the result. 
�

An analogous statement for j can be found in [8, Lemma 4.9]. Of course, we need
to address the question of whether convenient tuples exist. For the case of j this was
shown in [8, Lemma 4.13], under the assumption of MSCD. A similar proof gives us
the result for exp.

Proposition 3.6 Let F ⊂ C be a subfield such that tr.deg.QF is finite. Then SC implies
that there exist t = (t1, . . . , tm) ∈ C

m such that

(c1) F ⊆ Q(t, exp (t))), and
(c2) t is convenient for exp.

Furthermore, without loss of generality we may assume that l.dimQ(t) = m.

Proof By [1, Theorem 5.6] there exist t1:=t1, . . . , tk ∈ C\Cexp such that

(a) K ⊆ Cexp (t1, exp (t1)),
(b) tr.deg.Cexp

Cexp (t1, exp (t1)) = l.dimQ

(
t1|Cexp

) + dime (t1).

As tr.deg.Cexp
Cexp (t1, exp (t1)) is finite, then there is a finitely generated field L ⊆ C

such that tr.deg.Cexp
Cexp (t1, exp (t1)) = tr.deg.L L (t1, exp (t1)). As F is finitely gen-

erated, ifM denotes the compositumof L and F∩Cexp, thenM has finite transcendence
degree over Q.

Claim 3.7 SC implies that there exist t2 = tk+1, . . . , tm ∈ C ∩ Cexp such that

(i) M ⊆ Q (t2, exp (t2)), and
(ii) t2 is convenient for exp.

Proof If M ⊆ Q, then we are done. So suppose that M has positive transcendence
degree overQ, and let T be a transcendence basis forM overQ. AsM ⊆ Cexp, then by
[10, Theorem 1.1], for every y ∈ T there are y = y1, . . . , yn ∈ Cexp such that they are
a solution to a Khovanskii system of exponential polynomials. Although the definition
of Khovanskii systems used in [10, Sect. 3] allows the exponential polynomials to have
iterated exponentials, we appeal to [1, Remark 6.1] to ensure that no iterations of exp
occur (by increasing the number of variables if necessary). Thus theKhovanskii system
we obtain is made up of polynomials p1, . . . , pn ∈ Q[X1, . . . , Xn,Y1, . . . ,Yn] so that
if we set fi (Z1, . . . , Zn):=pi (Z1, . . . , Zn, exp(Z1), . . . , exp(Zn)), then

fi (y1, . . . , yn) = 0 for all i ∈ {1, . . . , n},

and
∣
∣
∣
∣
∣
∣
∣
∣

∂ f1
∂Z1

· · · ∂ f1
∂Zn

...
. . .

...
∂ fn
∂Z1

· · · ∂ fn
∂Zn

∣
∣
∣
∣
∣
∣
∣
∣

(y1, . . . , yn) �= 0.
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Ifwe choose nminimalwith this property,we can guarantee that l.dimQ(y1, . . . , yn) =
n. Having this Khovanskii system guarantees that

tr.deg.QQ(y1, . . . , yn, exp(y1), . . . , exp(yn)) ≤ n,

which combined with SC guarantees that y1, . . . , yn is convenient for exp. Since T
is a transcendence basis, it’s elements are Q-linearly disjoint, so by repeating the
above argument for every element of T and combining the solutions of the various
Khovanskii systems, we get the desired tuple t2. 
�
Let t = (t1, t2). By construction, the elements of t1 are linearly disjoint with element
of t2. Condition (c1) is satisfied by (a) and (i). As L is contained in M , then condition
(c2) is satisfied by (ii) and (b). 
�

4 Main results for exp

Throughout this section F will denote some specific choice of subfield of C. Set
E0 = L0 = F , and then we define, as stated in the introduction, the towers of
extensions

En := En−1({exp(x) | x ∈ En−1}) and Ln := Ln−1({x | exp(x) ∈ Ln−1}).

Finally we define E := ⋃∞
n=1 En and L:= ⋃∞

n=1 Ln .

Lemma 4.1 Let F be any subfield ofC. For all x ∈ En−1, there exists A ⊆ En−1 such
that A ∪ {x} is algebraic over F(exp(A)). Likewise, for any x ∈ Ln−1 there exists
C ⊆ C such that exp(C) ⊆ Ln−1 then exp(C) ∪ {x} is algebraic over F(C).

Proof Repeat the proof of [6, Lemma], or see the proof of Lemma 5.2. 
�
Theorem 4.2 Let t = (t1, . . . , ts) ∈ C

s be a convenient tuple for exp and set
F :=Q(t, exp(t)). Assume SC is true. Then E is linearly disjoint from L over F.

Proof With all we have done, the proof is now a small modification of the one given in
[6, Theorem] with the role of SC appearing in the form of Lemma 3.5. We proceed by
induction and assume that Em−1 and Ln are linearly disjoint over F . Suppose by way
of contradiction that Em and Ln are not linearly disjoint over F , so take a finite subset
{l1, . . . , lk} ⊆ Ln , which is linearly independent over F , and assume that there are
{e1, . . . , ek} ⊆ Em such that

∑k
i=1 li ei = 0, where at least one ei �= 0. By Lemma 4.1

there exists a finite set A ⊆ Em−1 such that A ∪ {ei }ki=1 is algebraic over F(exp(A)),
and a finite set C ⊆ Ln such that exp(C) ∪ {li }ki=1 is algebraic over F(C).

Now take B ⊆ A and D ⊆ C such that exp(B) is a transcendence basis for
F(exp(A)) over F and D is a transcendence basis for F(C) over F . We first show
that l.dimQ(B ∪ D|t) = |B| + |D|. To this end, consider an expression of the form

∑

b∈B
pbb +

∑

d∈D
qdd +

s∑

i=1

ri ti = 0 (4.1)
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with pb, qd , ri ∈ Z. Observe that
∑

b∈B pbb ∈ Em−1,
∑

d∈D qdd ∈ Ln and
∑s

i=1 ri ti ∈ F , so (4.1) shows that
∑

b∈B pbb ∈ Ln and
∑

d∈D qdd ∈ Em−1. By the
induction hypothesis, Em−1 and Ln are linearly disjoint over F , so Em−1 ∩ Ln = F .
Since D is a transcendence basis over F , the condition

∑
d∈D qdd ∈ F implies that

the coefficients qd = 0 for each d ∈ D. Hence
∑

b∈B
pbb +

s∑

i=1

ri ti = 0 and thus

∏

b∈B
(exp b)pb ∈ F . But exp B is a transcendence basis, so pb = 0 for every b ∈ B.

This proves that l.dimQ(B ∪ D|t) = |B| + |D|.
By Lemma 3.5 we have tr.deg.F F(B, D, exp(B), exp(D)) ≥ |B| + |D|. We also

have that:

tr.deg.F F(B, D, exp(B), exp(D)) = tr.deg.F F(D, exp(B))

≤ |B| + |D|.

Therefore tr.deg.F F(D, exp(B)) = |B| + |D|, so F(exp(B)) and F(D) are F-free,
and hence they are linearly disjoint over F . Since {e1, . . . , ek} ⊂ F(exp(B)) and
{l1, . . . , lk} ⊂ F(D), we reach a contradiction. 
�

4.1 Unconditional result

Let t1, . . . , ts ∈ C \ Cexp satisfy

tr.deg.Cexp
Cexp(t, exp(t)) = l.dimQ(t|Cexp) + dime(t).

As we explained in the proof of Proposition 3.6, the existence of tuples t satisfying
the above equation is given by [1, Theorem 5.6]. Set F :=Cexp(t, exp(t)) and define
E and L accordingly.

Lemma 4.3 Then for any x = (x1, . . . xn) ∈ C
n we have:

tr.deg.F F(x, exp (x)) ≥ l.dimQ(x|t ∪ Cexp) + dime(x|t).

Proof By [10, Corollary 5.2] (a consequence of a theorem of Ax [2, Theorem 3]) we
have that

tr.deg.Cexp
Cexp(x, t, exp(x), exp(t)) ≥ l.dimQ(x, t|Cexp) + dime(x, t|Cexp).

Using the addition formula and the fact that t is convenient for exp as in the proof of
[8, Lemma 5.2], we obtain the desired result. 
�

We can now prove the following unconditional version of Theorem 4.2.

Theorem 4.4 With F as above, E⊥l
F
L.
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Proof The proof is nearly the same as the proof of Theorem 4.2. In what follows we
will only focus on the step that require extra attention. Instead of assuming SC, we
will use Lemma 4.3.

As before, we assume that Em−1⊥l
F
Ln and that Em and Ln are not linearly disjoint

over F . Suppose the set {l1, . . . , lk} ⊆ Ln is linearly independent over F , and that
there are {e1, . . . , ek} ⊆ Em such that

∑k
i=1 li ei = 0, where some ei �= 0. Choose

A ⊆ Em−1 and C ⊆ Ln using Lemma 4.1 just as before.
Take B ⊆ A andD ⊆ C as above.Weshow that l.dimQ(B∪D|t∪Cexp) = |B|+|D|.

This time we need to consider an expression of the form

∑

b∈B
pbb +

∑

d∈D
qdd +

s∑

i=1

ri ti = γ, (4.2)

for some γ ∈ Cexp, with pb, qd , ri ∈ Z. We have that
∑

b∈B pbb ∈ Em−1,∑
d∈D qdd ∈ Ln and γ − ∑s

i=1 ri ti ∈ F , so (4.2) shows that
∑

b∈B pbb ∈ Ln

and
∑

d∈D qdd ∈ Em−1. Use Lemma 3.4, apply the induction hypothesis and finish
as before. 
�

5 Main results for j

Throughout this section F will a subfield of C. As in the previous section, we start
with E0 = L0 = F and then proceed inductively as follows:

Jn :=Jn−1({ j(z) | z ∈ Jn−1 ∩ H+}) and Kn :=Kn−1({z ∈ H+ | j(z) ∈ Kn−1}),

and set J := ⋃∞
n=1 Jn and K := ⋃∞

n=1 Kn . We will keep this notation for the rest of the
section.

Remark 5.1 Consider C as a degree two extension of the field of real numbers R (and
not as an abstract field). Let L ⊆ C be an algebraically closed subfield. Then for
every z ∈ C we have that z ∈ L if and only if the real and imaginary parts of z are
in L . Indeed, choose z ∈ L and write z = a + ib. Let ∂ : C → C be any derivation
satisfying that L = ker ∂ (which exists since L is algebraically closed). Using [19,
Sect. 4] we know that there are derivations λ,μ : R → R such that:

0 = ∂(z) = λ(a) − μ(b) + i(λ(a) + μ(b)),

which gives that λ(a) = μ(b) = 0. So ∂(a) = λ(a) + iλ(a) = 0 and similarly
∂(b) = 0. Therefore a, b ∈ L .

Lemma 5.2 For any x ∈ Jn, there exists a finite set T ⊆ Jn−1 ∩H
+ such that T ∪ {x}

is algebraic over F( j(T )).
Likewise, for all x ∈ Kn, there exists a finite set R ⊆ H

+ such that j(R) ∪ {x} is
algebraic over F(R) and for every z ∈ R, j(z) ∈ Kn−1.
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Proof By Remark 5.1, given x ∈ Jn there is a finite set Sn−1 ⊂ Jn−1 ∩ H
+ (possibly

empty) such that the set Tn−1 = { j(z) | z ∈ Sn−1} is contained in H
+ and x is

algebraic over Jn−1(Tn−1). Similarly, given 0 ≤ i ≤ n and a finite set Tn−i ⊂ Jn−i ,
there is a finite set Sn−i−1 ⊂ Jn−i ∩H

+ such that the set Tn−i−1 = { j(z) | z ∈ Sn−i−1}
is contained in H

+ and Tn−1 is algebraic over Jn−i−1(Tn−i−1). So we can proceed
inductively to obtain finite sets T0, . . . , Tn−1 such that if we set T = ⋃

m<n Tm , then
T ∪ {x} is algebraic over F( j(T )).

We now seek to prove the existence of the finite set R with the desired properties.
Using Remark 5.1, given x ∈ Kn there is a finite set Rn−1 ⊂ H

+ such that for every
z ∈ Rn−1, j(z) ∈ Kn−1 and x is algebraic over Kn−1(Rn−1). Proceeding in analogous
way to the previous paragraph, we are done. 
�
Theorem 5.3 Suppose that t = (t1, . . . , ts) ∈ (

H
+)s

is a convenient tuple for j . Set

F :=Q(t, j(t), j ′(t), j ′′(t)).

Assume MSCD is true. Then J⊥G
F
K and K⊥G

F
J .

Proof We follow the same overall strategy as in the proof of Theorem 4.2. We show
that J⊥G

F
K (the proof of K⊥G

F
J is the same with the roles of J and K reversed).

We proceed by induction, assuming Jm−1 and Kn are G
(
F

)
-disjoint. We wish to

prove that Jm and Kn are G
(
F

)
-disjoint. Proceed by contradiction. Suppose k1, k2 ∈

Kn are in different G
(
F

)
-orbits, but that there is g ∈ G(Jm) such that gk1 = k2.

Let a, b, c, d ∈ Jm be the coefficients of g (in the usual way). Then by Lemma 5.2,
we have that there exists a finite set T ⊆ Jn−1 ∩ H

+ such that all the elements of
T ∪{a, b, c, d} are algebraic over F( j(T )). Similarly, there exists a finite set R ⊆ H

+
such that j(R) ∪ {k1, k2} is algebraic over F(R) and for every z ∈ R, j(z) ∈ Kn−1.

Let P ⊆ T be a subset such that the set j(P) is a transcendence basis for F( j(T ))

over F , and let Q ⊆ R be a transcendence basis for F(R) over F . The definitions of P
andQ immediately imply that (P∪Q)∩� = ∅.Wewill show that dimG(Q)(P∪Q|t) =
|P| + |Q|. Choose two elements x, y ∈ P ∪ Q. We consider the following cases.

(a) Suppose that x, y ∈ P . If there is g ∈ G(Q) such that gx = y, then there exists
a modular polynomial 
N (X ,Y ), such that 
N ( j(x), j(y)) = 0, which shows
that j(x) and j(y) are algebraically dependent over Q. But this contradicts that
j(P) is a transcendence basis.

(b) Suppose that x, y ∈ Q. If these elements were in the sameG(Q)-orbit, this would
contradict that Q is a transcendence basis.

(c) Suppose that x ∈ P and y ∈ Q. If there is g ∈ G(Q) such that gx = y, this
implies that x and y are in Jm−1 ∩ Kn . By Lemma 2.3 this implies that x, y ∈ F ,
but that contradicts that Q is a transcendence basis over F .

This shows that dimG(Q)(P ∪ Q) = |P| + |Q|. Now suppose that there is x ∈ P ∪ Q
and g ∈ G(Q) such that gx = ti for some i ∈ {1, . . . , s}. This implies that x is not
transcendental over F , so x /∈ Q. But then it must be that x ∈ P , and as gx = ti , the set
{x, j(x)} is algebraic over Q (ti , j(ti )). This contradicts that j(P) is a transcendence
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basis over F . Therefore dimG(Q)(P ∪ Q|t) = |P| + |Q|. Then by [8, Lemma 4.9]
(which assumes MSCD):

tr.deg.F F(P, j(P), Q, j(Q)) ≥ |P| + |Q|.

We also have that

tr.deg.F F(P, j(P), Q, j(Q)) = tr.deg.F F(P, R, j(T ), j(Q))

= tr.deg.F F(R, j(T ))

= tr.deg.F F(Q, j(P)),

thus

tr.deg.F F(P, j(P), Q, j(Q)) ≤ |P| + |Q|.

Hence F( j(P)) and F(Q) are F-free, so F( j(P)) and F(Q) are F-free. Freedom
over F implies that the fields are linearly disjoint over F . Applying Lemma 2.2, it
follows that F( j(P)) and F(Q) are G

(
F

)
-disjoint, which is a contradiction. 
�

In [6] it is shown that as a consequence of the main theorem, one can show (among
other things) that the numbers π, log(π), log(log(π)), ... are E-linearly independent,
where E is constructed as in Sect. 4 with E0 = Q. However, obtaining a similar
result about the j function and π is not expected. As shown in [1, Remark 6.21],
the generalized period conjecture of Grothendieck–André which implies MSCD, also
implies that π /∈ C j . Choosing F = Q will give that J , K ⊆ C j (see [1, Proposition
6.6]), so this preventsπ frombeing in either J or K . Of course, one can find elements in
C j which would make the statement true in place of π (as well as the other corollaries
of [6]), but since these numbers are not so natural we have decided not to pursue this.

5.1 Unconditional result

Suppose that t1, . . . , ts ∈ H
+ \ C j satisfy:

tr.deg.C j
C j (t, j(t)) = dimG(Q)(t|C j ) + dim j (t).

Set F :=C j (t, j(t), j ′(t), j ′′(t)), and define J and K as before with J0 = K0 = F .

Theorem 5.4 With F as above, J⊥G
F
K and K⊥G

F
J .

Proof We only focus on the differences with the proof of Theorem 5.3. We assume
Jm−1 and Kn are G

(
F

)
-disjoint and suppose k1, k2 ∈ Kn are in different G

(
F

)
-

orbits, but that there is g ∈ G(Jm) such that gk1 = k2. Let a, b, c, d ∈ Jm be the
coefficients of g. Choose T ⊆ Jn−1 ∩ H

+ and R ⊆ H
+ using Lemma 5.2 as before.

Let P ⊆ T be a such that j(P) is a transcendence basis for F( j(T )) over F , and let
Q ⊆ R be a transcendencebasis for F(R)over F .Wewill show that dimG(Q)(P∪Q|t∪
C j ) = |P|+ |Q|. The same proof from Theorem 5.3 shows that dimG(Q)(P ∪ Q|t) =
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|P| + |Q|. Now suppose that there is x ∈ P ∪ Q and g ∈ G(Q) such that gx ∈ C j .
If x ∈ Q, that contradicts that Q is a transcendence basis over F . So then we would
have that x ∈ P , but since x ∈ C j impies j(x) ∈ C j (by Lemma 3.4), this contradicts
that j(P) is a transcendence basis over F . So dimG(Q)(P ∪ Q|t ∪ C j ) = |P| + |Q|.

Then by [1, Lemma 5.2]:

tr.deg.F F(P, j(P), Q, j(Q)) ≥ |P| + |Q|.

The rest of the proof stays the same. 
�
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