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Abstract

Given a subfield F of C, we study the linear disjointess of the field E generated by
iterated exponentials of elements of F, and the field L generated by iterated logarithms,
in the presence of Schanuel’s conjecture. We also obtain similar results replacing exp
by the modular j-function, under an appropriate version of Schanuel’s conjecture,
where linear disjointness is replaced by a notion coming from the action of GL; on C.
We also show that for certain choices of F we obtain unconditional versions of these
statements.
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1 Introduction

Let exp(z) denote the usual complex exponential function (exp(z) = €°). Set Ep =
Lo = Q and for every positive integer n define

Ep:=E, 1({exp(x) | x € E;—1}) and Ly:=L,_1({x | exp(x) € L,_1}),

andlet E:=J72 | E, and L:= ;2| L. Itis shown in [6] that Schanuel’s conjecture
implies that E and L are linearly disjoint over Q. Similar results have been obtained
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more recently in [5, 15] where exp(z) is replaced by the exponential of an (semi-)
abelian variety.

The aim of this paper is to do three things. The first objective is, still assuming
Schanuel’s conjecture, to find more general finitely generated subfields F' of C such
that if we set the initial step of the towers Eg and L to be the algebraic closure of
F, then the resulting fields E and L are linearly disjoint over F. This is achieved in
Theorem 4.2.

The second objective is to show that under a version of Schanuel’s conjecture for
the modular j-function (that we call MSCD), one can produce an analogous result for
the modular j-function. More specifically, set Jo = Ko = F, where F is a finitely
generated subfield of C, and inductively define

Jni=dno1({j@ |z € ot NHYY) and Kp:=K,—1(fz €e HT | j(z) € Ku1}).

Set J:=|Jo2 | Ju and K:= 72| K,. Unlike exp, the j-function is not a group homo-
morphism, and so linear disjointness is not the right notion for proving a relation
between J and K. Instead we will define a notion of disjointness that previously
appeared in [7] that considers the action of the group G:=GL,. This is achieved in
Theorem 5.3

The final objective is to find initial fields F so that the linear disjointness of E and
L is obtained unconditionally, that is, without having to rely on Schanuel’s conjecture.
We also obtain an analogous unconditional result for j. This is done in Theorems 4.4
and 5.4.

The methods used to prove all of our main results rely mostly on the work of [1]
on convenient generators, which in turn rely heavily on the so-called Ax-Schanuel
theorems: [2] in the case of exp and [16] in the case of j. We expect that similar
constructions can be performed whenever an Ax-Schanuel theorem is available in
differential form, and so the methods presented here can be expected to extend to
other situations, such as the exponential maps of semi-abelian varieties (using [3] or
[9]) or the uniformization maps of Shimura varieties (using [14]).

1.1 Structure of the paper
In Sect. 2, we introduce preliminary definitions and results regarding linear disjoint-
ness and G-disjointness. In Sect. 3, we review several Schanuel-type inequalities, in

particular the Modular Schanuel Conjecture, and discuss the details of convenient
generators. We prove the main results of this paper in Sects.4 and 5.

2 Preliminaries
2.1 Basic notation

e If F is any subfield of C, then F it is algebraic closure in C.
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Schanuel type conjectures and disjointness

o Ifxy,...,x, areelements of C, then we use x to denote (x1, ..., x,;). Furthermore,
if f denotes a function, then we write f(x) to mean (f(x1), ..., f(xm)).

e As mentioned in the introduction, let G denote the linear group GL,. For any
subfield F of C there is a natural action of G(F) on P!(C) = C U {00} given by
Mobius transformations as follows:

ax +b h ab
Xi= , where g = ,
§ cx +d & cd

with g € G(F). Whenever we say that G (F) acts on C, it will be in this manner.

2.2 Closures, dimensions and disjointness

In this section we introduce the various notions of disjointess that will be used for our
main results, and we review some of their properties.

Definition Let F' € C be a subfield and let A C C be a finite subset.

(a) Thinking of C as an F-vector space, we denote by l.dimg(A) the dimension of
the F-vector space Spany(A), the F-linear span of A.

Given another subset B € C, let # : C — C/Spany(B) denote the quotient
map. We write l.dimp(A|B) to denote the dimension of the F-vector space
w(Spang(A)).

(b) Considering the action of G(F) on C, we denote by dimg(r)(A) the number
of distinct G (F)-orbits generated by elements of A. We say that A is G(F)-
independent if |A| = dimgr)(A).

Given another subset B € C, we denote by dimgr)(A|B) the number of distinct
G (F)-orbits generated by elements of A which do not contain elements from B.

Definition Let E, F, L be subfields of C such that E C F N L.

(a) F is linearly disjoint from L over E, denoted F LIEL, if every finite tuple of
elements in L thatis E-linearly independent is also F -linearly independent. Equiv-
alently, FJ_IEL if and only if for any tuple £ from L, l.dimr (£) = l.dimg (£).

(b) F and L are E-free, denoted F J_‘Z-L, if every finite set of elements of L which
is algebraically independent over E is also algebraically independent over F.
Equivalently, F J_‘}’;L if and only if for any tuple £ from L, tr.deg.,F (£) =
tr.deg.p E (£).

(c) We say that F is G(E)-disjoint from L, denoted F J_gL, if for every finite subset
of elements of L that is G(E)-independent is also G (F)-independent. Equiva-
lently, FJ_gL if and only if for any tuple £ from L, dimgr) (£) = dimg(g) (£).
Equivalently, F J_gL if and only if for any pair of elements £, ¢, from L for
which there exists g € G(F) such that g€; = €5, there is h € G(E) such that
hey = £4o.

Remark 2.1 Although the definitions are not stated in a symmetric way, both L/ and
1/ are symmetric relations (see [12, p. 360] and [12, p. 362]). This leads naturally to
the following question (which seems to be open).
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Question Is G-disjointness a symmetric relation, that is, is it true that for any three
subfields E, F, L € C satisfying E € F N L wehave FLL < L1$F?

While the general case remains open, the following lemma provides a special case
in which symmetry holds:

Lemma 2.2 Suppose that E = L N F. If F is linearly disjoint from L over E, then
F1%L and LLGF.

Proof We will show that F J_ZEL implies F J_gL, and since linear disjointness is a
symmetric condition, this is enough. Suppose that £1, £, € L and g € G(F), such

that g€; = £5. Let g = with a, b, c,d € F satisfying ad # bc. Then we

ab

cd)’
have 0 = ¢£1€> — aly + dl>» — b, which is a non-trivial F-linear combination of the
elements 1, €1, £2, £1£> (all of which are in L). As F is linearly disjoint from L over

E, there exist o, 8, v, § € E (not all zero) preserving the linear dependence:
0=ylily —aly+ 566 —PB.

We now consider the possible cases.

(a) Suppose that a1 + B = 0. It follows that £; € E, and as g € G(F), then
lr = gl € F. This shows that £, € L N F. Since £1, {, € E, then there exists
h € G(E) such that he| = £5.
(b) Suppose that y£; + 6 = 0. Again it follows that £; € E, so we conclude as in (a).
(c) Suppose that «ly + B # 0, y€1 + 8 # 0, and oé " f}/ = 0. Then there exists
aty

e € E such thate = ey and 8 = 6. Then £, = Yiits = ¢ Thus ¢, € E, and

we can conclude with a similar argument to (a).
(d) If none of the cases (a), (b), (c) are satisfied, then the matrix & = (;‘/{ ’g) is in
G (E) and satisfies hé|; = {5.
O
Finally, we will make use of the following lemma throughout Sect. 5:

Lemma23 [fFLSL, then FNL = E.

Proof Suppose t € L\ E, and by way of contradiction suppose ¢t € F. It follows

that g = (6(1) € G(F). Since gl = t and we are assuming FJ_gL, there exists
h € G(E) such that A1 = ¢. But ¢ is not in E, which is a contradiction. O

2.3 The j-function

First, we define a complex lattice, A € C is the additive subgroup of C generated by
w1, wy € C. In otherwords, A = Zw; + Zw,. An elliptic curve over C is E5:=C/A.
Given two elliptic curves E and E s, an isogeny is a nonzero analytic homomor-
phism mapping of the elliptic curves. There exists an isogeny between any two elliptic
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curves Ep and E 5 if and only if there exists a nonzero z € C such that zA = A’.
Hence studying the G (Q) disjointness of the lattices provides insight into the isogenies
between the corresponding elliptic curves. This motivates the following definition:

Definition Let j : H™ — C be the holomorphic map given by j(z) = j(E,,), where
A is the integer lattice in C, formed using z and j(E,) is the j-invariant of E4 .

It is well-known (see e.g. [13, p. 20]) that j satisfies the following differential
equation (and none of lower order):

3 (j”>2 j2 — 1968 + 2654208

j/// 2
0=2--2 i)
i G-t )

5 2.1)

j/
We recall that there is a family of polynomials {®x (X, Y)}3_; € Z[X, Y] called the
modular polynomials associated with j (see [11, Chap. 5, Sect. 2] for definitions and
properties). Each ® (X, Y) is irreducible in C[X, Y], ®(X,Y) = X — Y, and for
N > 2, dy(X,Y) is symmetric of total degree > 2N.

We will often make use of the following fact. For every g in G(Q) we can define
g as the unique matrix of the form rg with » € Q and r > 0, so that the entries of
g are all integers and relatively prime. Then, for every x and y in H the following
statements are equivalent:

o Oy(j(x), j(») =0;
e There exists g in G with gx = y and det (§) = N.

Definition A point z € H is said to be special if there exists a non-scalar matrix
g € G(Q), such that gx = x. We denote the set of all special points as X.

Remark A classical theorem of Schneider [17] states that tr.deg.qQ(x, j(x)) = 0 if
and only if x € X.

3 Schanuel-type conjectures

We start by recalling the now classical conjecture of Schanuel on complex exponen-
tiation.

Conjecture 3.1 (Schanuel: SC) For every x = (x1, ..., x,) € C" we have

tr.deg.oQ(x, exp(x)) > Ldimg(x). 3.1

We remark that SC gives an inequality statement for the transcendence degree mea-
sured over Q. Since one of our objectives is to obtain results about linear disjointness
over arbitrary fields, we need to first find a version of SC which works over a given
finitely generated field. This will require the use of “convenient generators” for the
fields, and the details will be explained in the next section. First we recall variants of
SC for the j-function. For a detail of the origins of these variants, see [1, Sect. 6.3]
and references therein.
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Conjecture 3.2 (Modular Schanuel with derivative: MSCD) For every z1,...,2, €
HYt we have:

tr.deg.qQ (z, j(@), j' (@), j" (@) = 3dimgq) (2l D).
It is easy to see that MSCD implies the following statement without derivatives.

Conjecture 3.3 (Modular Schanuel) For every zy, ..., z, € H' we have:
tr.deg.qQ (z, j(2)) > dimg () (2| X).

3.1 Field derivations

Definition A map 0 : C — C is a called a derivation if it satisfies the following two
conditions:

(1) d(a + b) = d(a) + d(b) forevery a, b € C.
(2) d(ab) = ad(b) + bd(a) for every a, b € C.

A derivation 9 : C — C is called an exponential derivation if it satisfies:

d(exp(z)) = exp(2)d(z)

for all z € C. Let EDer denote the set of all exponential derivations.
A derivation 3 : C — C is called a j-derivation if it satisfies!:

3(j(2) = j' (@3 A (' (@) = "3 A (" (@) = ;" (),
forall z € HT. Let jDer denote the set of all j-derivations.

Define

Cexp:= ﬂ kerd and Cj:= ﬂ ker .
deEDer de jDer

Using some techniques from o-minimality, one can show that there are |C|-many C-
linearly independent exponential derivations, and the same is true about j-derivations
(see [4] for the details in the case of exp and [7, Sect. 5] for the case of j). One can
find more explicit descriptions of the sets Cexp and C; by using Khovanskii systems
of equations (see [1, Sect. 6] for j and [10, Sect. 3] for exp).

These types of derivations can also be used to define certain closure operators
called pregeometries which have associated well-defined notions of dimension (see
[18, Appendix C] for the basic definitions and properties concerning pregeometries).

1" As shown in [7, Sect. 5] these conditions already imply that 9 will respect all the derivatives of ;.
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Definition Let A € C be any set. We define the set ecl(A) by the property: x € ecl(A)
if and only if d(x) = O for every exponential derivation d with A € kerd. If A =
ecl(A), then we say that A is ecl-closed.

Similarly, we define the set jcl(A) by the property: x € jcl(A) if and only if
d(x) = 0 for every j-derivation d with A C ker d. If A = jcl(A), then we say that A
is jcl-closed.

Every ecl-closed and every jcl-closed subset of C is an algebraically closed sub-
field. We denote by dim® the dimension associated with ecl, and by dim/ the dimension
associated with jcl. For reference, dim® can be defined in the following way. For any
subsets A, B C C and for every non-negative integer n, dim®(A|B) > n if and only

if there exist ay, ..., a, € ecl(A) and 91, ..., d, € EDer such that B C ker 9; for
i=1,...,nand
1, ifi =k
0i (ar) = {0 , else
forevery i,k = 1,..., n. The dimension dim’ can be defined in an analogous way.

Lemma 3.4 (see [10] and [7]) Cexp and C; are countable algebraically closed sub-
fields of C. Furthermore,

(a) For every z € C, z is in Cexp if and only if exp(z) is in Cexp.
(b) Foreveryz € HY, zisin C; if and only if j(2), j'(z) or j"(2) isin Cj.

3.2 Convenient generators

Definition We will say that a tuple t = (¢1, . .., t,,) of elements of C is convenient for
exp if

tr.deg.oQ(t, exp(t)) = L.dimg(t) + dim®(t).
We will say that a tuple t = (11, ..., t;,) of elements of HT is convenient for j if
tr.deg.oQ(t, J (1)) = 3dimg (t|2) + dim/ (t).

Convenient tuples allow us to get Schanuel-type inequalities.

Lemma 3.5 Suppose t € C™ is convenient for exp. Set F = Q(t, exp(t)). Then SC
implies that for any X = (x1, . ..x,) € C" we have:

tr.deg.  F'(x, exp (x)) > Ldimg(x]t).
Proof By SC we have that
tr.deg.oQ(x, t, exp(x), exp(t)) > l.dimg(x, t).
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Using the addition formula and the fact that t is convenient for exp as in the proof of
[8, Lemma 4.9], we get the result. |

An analogous statement for j can be found in [8, Lemma 4.9]. Of course, we need
to address the question of whether convenient tuples exist. For the case of j this was
shown in [8, Lemma 4.13], under the assumption of MSCD. A similar proof gives us
the result for exp.

Proposition 3.6 Let ' C C be a subfield such that tr.deg.q F is finite. Then SC implies
that there existt = (t1, ..., t,) € C™ such that

(cl) F < Q(t, exp (t))), and
(c2) tis convenient for exp.

Furthermore, without loss of generality we may assume that 1.dimg(t) = m.
Proof By [1, Theorem 5.6] there exist t;:=t{, ..., € C\ Cexp such that

(@) K € Cexp (t1, exp (t1)),
(b) tr.deg.c, Cexp (tr, exp (t)) = Ldimg (t1|Cexp) + dim® (t).

As tr.deg.cexp Cexp (t1, exp (t1)) is finite, then there is a finitely generated field L € C
such that tr.deg.cexp Cexp (t1, exp (t)) = tr.deg.; L (t1, exp (t1)). As F is finitely gen-
erated, if M denotes the compositum of L and F'NCexp, then M has finite transcendence
degree over Q.

Claim 3.7 SC implies that there existt; =ty 11, ..., ty € CN Cexp such that

(i) M € Q(t2, exp (t2)), and
(ii) ty is convenient for exp.

Proof If M C @, then we are done. So suppose that M has positive transcendence
degree over QQ, and let T be a transcendence basis for M over Q. As M C Ceyp, then by
[10, Theorem 1.1], forevery y € T thereare y = y1, ..., y» € Cexp such that they are
a solution to a Khovanskii system of exponential polynomials. Although the definition
of Khovanskii systems used in [ 10, Sect. 3] allows the exponential polynomials to have
iterated exponentials, we appeal to [1, Remark 6.1] to ensure that no iterations of exp
occur (by increasing the number of variables if necessary). Thus the Khovanskii system
we obtain is made up of polynomials py, ..., p, € Q[ X1, ..., X,, Y1, ..., YV, ]sothat
if we set fi(Z1,...,Zy):=pi(Z1, ..., Zn,exp(Zy1), ..., exp(Z,)), then

i1, ..., yp) =0 foralli € {1,...,n},

and
Af .. 9N
9Z) 97,
o Oy #0.
3 fn 3 fn
Z : 0Zy
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If we choose n minimal with this property, we can guarantee thatl.dimg(y1, ..., y») =
n. Having this Khovanskii system guarantees that

tr.deg.Q(yi, .- -, Yn, exp(y1), - .., exp(yn)) < n,

which combined with SC guarantees that yy, ..., y, is convenient for exp. Since T
is a transcendence basis, it’s elements are QQ-linearly disjoint, so by repeating the
above argument for every element of 7 and combining the solutions of the various
Khovanskii systems, we get the desired tuple t,. O

Lett = (t1, tp). By construction, the elements of t; are linearly disjoint with element
of t;. Condition (c1) is satisfied by (a) and (i). As L is contained in M, then condition
(c2) is satisfied by (ii) and (b). O

4 Main results for exp

Throughout this section F will denote some specific choice of subfield of C. Set

Ey = Lo = F, and then we define, as stated in the introduction, the towers of
extensions

Ep=E,—1({exp(x) | x € E,1}) and  Lp:=L,-1({x | exp(x) € Ly—1}).

Finally we define E:=|J;2 | E, and L:={J;2 | L.

Lemma 4.1 Let F be any subfield of C. For all x € E,_1, there exists A C E,_1 such
that A U {x} is algebraic over F(exp(A)). Likewise, for any x € L, _1 there exists
C C C such that exp(C) C Ly then exp(C) U {x} is algebraic over F(C).

Proof Repeat the proof of [6, Lemma], or see the proof of Lemma 5.2. O

Theorem4.2 Let t = (t,...,t;) € C° be a convenient tuple for exp czzd set
F:=Q(t, exp(t)). Assume SC is true. Then E is linearly disjoint from L over F.

Proof With all we have done, the proof is now a small modification of the one given in
[6, Theorem] with the role of SC appearing in the form of Lemma 3.5. We proceed by
induction and assume that E,,_1 and L, are linearly disjoint over F. Suppose by way
of contradiction that E,, and L, are not linearly disjoint over F, so take a finite subset
{l1,..., Ik} € L,, which is linearly independent over F, and assume that there are
{e1, ..., ex} C E, such that ZLI lie; = 0, where at least one ¢; # 0. By Lemma 4.1
there exists a finite set A C E,,_1 such that A U {e,-}f.‘:1 is algebraic over F'(exp(A)),
and a finite set C € L, such that exp(C) U {/; }le is algebraic over F(C).

Now take B € A and D C C such that exp(B) is a transcendence basis for
F(exp(A)) over F and D is a transcendence basis for F(C) over F. We first show
that .dimg(B U D|t) = |B| + |D|. To this end, consider an expression of the form

N

S b+ Y qad+ ) riti =0 (4.1)

beB deD i=1
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with pp, qa,ri € 7. Observe that >, _p ppb € Epn_1, Y 4cpgad € L, and

Yo riti € F, so (4.1) shows that Y pep Pvb € Lyand )", pqad € Ej—1. By the

induction hypothesis, E;,—1 and L, are linearly disjoint over F,s0E,_1NL,=F.

Since D is a transcendence basis over F', the condition Zde pqad € F implies that
S

the coefficients g4 = 0 for each d € D. Hence Z prb + Z rit; = 0 and thus
beB i=1
l_[(exp b)’* € F. But exp B is a transcendence basis, so p, = 0 for every b € B.

beB
This proves that 1.dimg(B U D|t) = |B| + |D|.

By Lemma 3.5 we have tr.deg.  F (B, D, exp(B), exp(D)) > |B| 4 | D|. We also
have that:

tr.deg.p F (B, D, exp(B), exp(D)) = tr.deg. F (D, exp(B))
<|B|+|D].

Therefore tr.deg.p F (D, exp(B)) = |B| +|_D|, so F(exp(B)) and F (D) are F-free,
and hence they are linearly disjoint over F. Since {ej,...,ex} C F(exp(B)) and
{li,..., I} C F(D), we reach a contradiction. O

4.1 Unconditional result
Letty,...,t; € C\ Cexp satisfy
tr.deg.CeXp Cexp(t, exp(t)) = L.dimg(t|Cexp) + dim®(t).
As we explained in the proof of Proposition 3.6, the existence of tuples t satisfying

the above equation is given by [1, Theorem 5.6]. Set F:=Cexp(t, exp(t)) and define
E and L accordingly.

Lemma 4.3 Then for any X = (x1, ...x,) € C" we have:
tr.deg. p F/(X, exp (X)) > Ldimg (x|t U Cexp) + dim®(x]t).

Proof By [10, Corollary 5.2] (a consequence of a theorem of Ax [2, Theorem 3]) we
have that

tr.deg.CeXpCexp(x, t, exp(x), exp(t)) > Ldimq (X, t|Cexp) + dim®(X, t|Cexp).

Using the addition formula and the fact that t is convenient for exp as in the proof of
[8, Lemma 5.2], we obtain the desired result. ]

We can now prove the following unconditional version of Theorem 4.2.

Theorem 4.4 With F as above, EJ_IFL.
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Proof The proof is nearly the same as the proof of Theorem 4.2. In what follows we
will only focus on the step that require extra attention. Instead of assuming SC, we
will use Lemma 4.3.

As before, we assume that £,,,_| J_%Ln and that E,, and L, are not linearly disjoint
over F. Suppose the set {/1,...,lx} € L, is linearly independent over F, and that
there are {eq, ..., ex} € E,, such that Zle lie; = 0, where some ¢; #= 0. Choose
A C E,_1and C C L, using Lemma 4.1 just as before.

Take B € Aand D C C asabove. We show that1.dimg(BUD|tUCexp,) = |B|+|D|.
This time we need to consider an expression of the form

N
Y b+ > qad+ Y riti=vy. (4.2)
1

beB deD i=

for some y € Cexp, With pp,qa,r; € Z. We have that ), _p ppb € E,_1,
Y depqdd € Ly and y — Y i rit; € F, 50 (4.2) shows that Y pep Pob € Ly
and ) ;.p qad € Ep—1. Use Lemma 3.4, apply the induction hypothesis and finish
as before. O

5 Main results for j

Throughout this section F will a subfield of C. As in the previous section, we start
with Eg = Lo = F and then proceed inductively as follows:

Ji=hh (U@ 12 € Jusy NHT)) and Kyi=Kn_1(1z € HT | j(2) € Ku1)),

andset J:=J72 | J, and K:= {2, K. We will keep this notation for the rest of the
section.

Remark 5.1 Consider C as a degree two extension of the field of real numbers R (and
not as an abstract field). Let L € C be an algebraically closed subfield. Then for
every z € C we have that z € L if and only if the real and imaginary parts of z are
in L. Indeed, choose z € L and write z = a + ib. Let  : C — C be any derivation
satisfying that L = ker d (which exists since L is algebraically closed). Using [19,
Sect. 4] we know that there are derivations A, i : R — IR such that:

0=09(2) = Aa) — ud) +i(A(a) + nb)),

which gives that A(a) = u(b) = 0. So d(a) = A(a) + ir(a) = 0 and similarly
d(b) = 0. Therefore a, b € L.

Lemma5.2 Forany x € J,, there exists a finite set T < J,—1 NHT such that T U {x}
is algebraic over F(j(T)).

Likewise, for all x € K,, there exists a finite set R € H™ such that j(R) U {x} is
algebraic over F(R) and for every z € R, j(2) € K,—1.
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Proof By Remark 5.1, given x € J, there is a finite set S, C J,_; NH* (possibly
empty) such that the set T,_; = {j(z) | 7 € S,_1} is contained in H* and x is
algebraic over J,_1(T,—1). Similarly, given 0 < i < n and a finite set 7,,_; C J,,—;,

thereis afinite set S, _; | C J,_; NHT suchthattheset T, ; | = {j(2) |z € Sp_i_1}
is contained in H* and 7,_ is algebraic over J,_; _1(T,—_;i_1). So we can proceed
inductively to obtain finite sets Ty, ..., T,,—1 such that if we set T = Um<n T, then

T U {x} is algebraic over F(j(T)).

We now seek to prove the existence of the finite set R with the desired properties.
Using Remark 5.1, given x € K, there is a finite set R,_; C H™ such that for every
z€ R,—1,j(2) € K,,—1 and x is algebraic over K, —1(R,—_1). Proceeding in analogous
way to the previous paragraph, we are done. O

Theorem 5.3 Suppose thatt = (t1,...,t;) € (H"’)S is a convenient tuple for j. Set

F:=Q(t, j(t), j'(t), j"(1)).
Assume MSCD is true. Then J J_%K and K J_%J .

Proof We follow the same overall strategy as in the proof of Theorem 4.2. We show
that J J_%K (the proof of K J_%J is the same with the roles of J and K reversed).
We proceed by induction, assuming J,,,—1 and K,, are G (f)-disjoint. We wish to
prove that J,,, and K, are G (f )—disjoint. Proceed by contradiction. Suppose k1, k» €
K, are in different G (ﬂ—orbits, but that there is g € G(J,,) such that gk; = k».
Leta, b, c,d € J, be the coefficients of g (in the usual way). Then by Lemma 5.2,
we have that there exists a finite set 7 < J,_; N H* such that all the elements of
T U{a, b, ¢, d} are algebraic over F (j(T)). Similarly, there exists a finite set R C H™
such that j(R) U {k1, k»} is algebraic over F(R) and for every z € R, j(2) € K,—1.
Let P C T be a subset such that the set j(P) is a transcendence basis for F (j(T))
over F,and let O C R be a transcendence basis for F'(R) over F. The definitions of P
and Q immediately imply that (PUQ)NXE = ¥J. We will show thatdimg ) (PUQ|t) =
|P| + | QJ. Choose two elements x, y € P U Q. We consider the following cases.

(a) Suppose that x, y € P. If there is g € G(Q) such that gx = y, then there exists
a modular polynomial &y (X, Y), such that ®x(j(x), j(y)) = 0, which shows
that j(x) and j(y) are algebraically dependent over Q. But this contradicts that
j(P) is a transcendence basis.

(b) Suppose that x, y € Q. If these elements were in the same G (Q)-orbit, this would
contradict that Q is a transcendence basis.

(c) Suppose that x € P and y € Q. If there is g € G(Q) such that gx = y, this
implies that x and y are in J,,_1 N K,,. By Lemma 2.3 this implies that x, y € F,
but that contradicts that Q is a transcendence basis over F'.

This shows that dimg (@) (P U Q) = | P| 4+ |Q|. Now suppose that there is x € P U Q
and g € G(Q) such that gx = 1; for some i € {1,...,s}. This implies that x is not
transcendental over F',sox ¢ Q.Butthenitmustbe thatx € P,andas gx = t;, the set
{x, j(x)}is algebraic over Q (¢;, j(¢;)). This contradicts that j(P) is a transcendence
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basis over F. Therefore dimgq)(P U Q|t) = |P| + |Q]. Then by [8, Lemma 4.9]
(which assumes MSCD):

tr.deg.p F(P, j(P), Q. j(Q)) = |[P[+ Q|

We also have that

tr.deg., F(P, j(P)., Q. j(Q)) = tr.deg.; F(P. R, j(T). j(Q))
= tr.deg.p F(R, j(T))
= tr.deg.FF(Q, ](P))’

thus

tr.deg.p F (P, j(P), Q, j(Q)) = [P|+1QI|

Hence_F(j(P)) and F(Q) are F-free, so F(j(P)) andf(Q) are F-free. Freedom
over F implies that the fields are linearly disjoint over F'. Applying Lemma 2.2, it
follows that F(j(P)) and F(Q) are G (F ) -disjoint, which is a contradiction. m|

In [6] it is shown that as a consequence of the main theorem, one can show (among
other things) that the numbers 7, log(r), log(log(r)), ... are E-linearly independent,
where E is constructed as in Sect.4 with Eqg = @ However, obtaining a similar
result about the j function and 7 is not expected. As shown in [1, Remark 6.21],
the generalized period conjecture of Grothendieck—André which implies MSCD, also
implies that 7 ¢ C;. Choosing F' = Q will give that J, K € C j (see [1, Proposition
6.6]), so this prevents 7 from being in either J or K. Of course, one can find elements in
C; which would make the statement true in place of 7 (as well as the other corollaries
of [6]), but since these numbers are not so natural we have decided not to pursue this.

5.1 Unconditional result
Suppose that 11, ..., 1, € HY \ C; satisfy:
trdeg.c, C;(t, j (1)) = dimg Q) (tIC;) + dim’ (¢).

Set F:=C(t, j(t), j/(t), j”(t)), and define J and K as before with Jo = Ko = F.
Theorem 5.4 With F as above, J LYK and K LS.

Proof We only focus on the differences with the proof of Theorem 5.3. We assume
Jn—1 and K, are G (F)-disjoint and suppose ki, k, € K, are in different G (F)-
orbits, but that there is g € G(J,;) such that gk; = k. Let a, b, c,d € J, be the
coefficients of g. Choose T € J,_1 NHT and R € H* using Lemma 5.2 as before.
Let P C T be asuch that j(P) is a transcendence basis for F'(j(T)) over F, and let
O C Rbeatranscendence basis for F'(R) over F'. We will show thatdimg ) (PUQ|tU
C;) = |P|+1Q|. The same proof from Theorem 5.3 shows that dimg ) (P U Q|t) =
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|P| 4 | Q. Now suppose that there is x € P U Q and g € G(Q) such that gx € C;.

If x € Q, that contradicts that Q is a transcendence basis over F. So then we would

have that x € P, butsince x € C; impies j(x) € C; (by Lemma 3.4), this contradicts

that j(P) is a transcendence basis over F. So dimg ) (P U Q|tUC;) = |P| + |Q].
Then by [1, Lemma 5.2]:

tr.deg.p F(P, j(P), Q, j(Q)) = |P| + Q.
The rest of the proof stays the same. O
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