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Abstract
This paper concerns the persistence of kink and periodic waves to singularly per-
turbed two-component Drinfel’d-Sokolov-Wilson system. Geometric singular per-
turbation theory is first employed to reduce the high-dimensional system to the 
perturbed planar system. By perturbation analysis and Abelian integrals theory, we 
then are able to find the sufficient conditions about the wave speed to guarantee the 
existence of heteroclinic orbit and periodic orbits, which indicates the existence of 
kink and periodic waves. Furthermore, we also show that the limit wave speed c

0
(k) 

is increasing.
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1 Introduction

As we know, partial differential equations (PDEs) provide a good way to model the 
phenomena in real world and their studies have significant applications in many 
fields such as mathematics, physics, engineering, and so on. A lot of efficient and 
effective numerical and analytical methods have been developed to study the solu-
tions and their dynamical behaviors. As we know, the classical two-component 
Drinfel’d-Sokolov-Wilson (DSW) system [1–3]
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with parameters p,  q,  a and b, is an important water wave model, which is used 
to describe the nonlinear surface gravity waves propagating over horizontal seabed. 
System (1) was originally introduced by Drinfel’d and Sokolov [1, 2] and Wilson 
[3] from the shallow water wave models. Later, Hirota et al. [4] also derived sys-
tem (1) from the Kadomtsev–Petviashvili hierarchy. Due to the great applications 
in physical fields, there have been considerate work concerning the solutions and 
their dynamics of system (1) and its variants. For example, Hirota et al. [4] provided 
the soliton structure of system (1). Yao and Li [5] constructed some exact solutions 
of system (1) through a direct algebra method. Likewise, Liu and Liu [6] presented 
its four kinds of exact solutions algebraically and revealed their relations. Fan [7] 
devised an algebraic method to uniformly construct a series of exact solutions of 
system (1). By improving generalized Jacobi elliptic function method, Yao [8] found 
some traveling wave solutions of system (1). Doubly periodic wave solutions of sys-
tem (1) were also constructed through the Adomian decomposition method [9] and 
an improved F-expansion method [10]. The bifurcation method [11] and the Exp-
function method [12] were also employed to derive exact solutions of system (1). 
Additionally, some methods including the modified kudryashov method [13], the 
first integral method [14] and the bifurcation method [15, 16] were extended to find 
abundant exact solutions of fractional DSW system. However, we find that there is 
little work concerning singularly perturbed DSW system. In fact, in modelling real 
world problems, such as the shallow water waves in nonlinear dissipative media [17] 
and dispersive media [18], some relatively weak influences due to uncertainty or 
perturbation are unavoidable. Therefore, one generally should include certain type 
of small perturbation to obtain a more realistic model and to better understand its 
dynamics. Recently, the singularly perturbed models widely appear in modeling 
the problems across many areas of the natural sciences, and has attracted more and 
more interest [19–30]. Ogawa [19] investigated the persistence of solitary waves and 
periodic waves of the perturbed KdV equation and Yan et al. [20] further proved the 
results for a perturbed generalized KdV equation. Further, Chen et al. [22] also con-
sidered the persistence of kink and periodic waves for a perturbed defocusing mKdV 
equation. Chen et al. [21] also obtained the persistence of solitary waves and peri-
odic waves for the perturbed generalized BBM equation. Among most of these work 
[19–21, 23, 24, 26, 27], the authors focused on solitary waves and periodic waves, 
and little [22, 25] concerned kink waves, especially for the two-component systems. 
As a matter of fact, kink waves have been found in many important integrable mod-
els [31–36] including negative–order KdV equation and Camassa–Holm equations, 
and are believed to have many significant applications in fluid mechanics, nonlinear 
optics, classical and quantum fields theories etc. Therefore, it is of interest to check 
whether these kink waves persist under perturbation.

In this paper, we intend to examine the dynamics of the following singularly 
perturbed two-component DSW system

(1)
{

wt + puux = 0,

ut + awux + buwx + quxxx = 0,
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where the parameters p < 0, a > 0, b > 0, q > 0 , and small 𝜀 > 0 standing for the 
perturbation parameter. In system (2), uxx and uxxxx represent the backward diffusion 
and dissipation terms, respectively. At first glance, one might expect that system (2) 
should have similar solutions with system (1). As indicated in [19], the answer to 
this question is significant not only mathematically but also in the application point 
of view, since in some physical circumstances, for example the Reynolds number is 
large or surface tension is small, correspond to the case when � is small. Besides, it 
also helps understand the role of dispersion, dissipation, and instability in nonlinear 
wave systems. Our aim is to show the persistence of kink and periodic waves with 
singular perturbation under suitable conditions. To be specific, we first reduce the 
corresponding high-dimensional system to the perturbed planar system by geometric 
singular perturbation theory (GSPT). Then we are able to study the wave speed in 
detail by perturbation analysis and Abelian integrals theory, from which we find the 
sufficient conditions to guarantee the existence of heteroclinic orbit and periodic 
orbits, which indicates the existence of kink and periodic waves. Furthermore, we 
also show that the limit wave speed c0(k) is increasing for k ∈ [−

1

4q
, 0).

2  The reduction of traveling wave system on the slow manifold

In this section, we derive the reduction of traveling wave system corresponding to (2) 
on the slow manifold by exploiting GSPT.

The transformations

with c > 0 , convert system (2) into the following system

The first equation of (3) yields

with constant g1 . Substituting it into the other equation of (3) yields

Exploiting the transformations � =
√
ag1 − c � and � =

√
−6c(ag1−c)

p(a+2b)
� , where 

ag1 − c > 0 , we can rewrite (4) as

(2)
{

wt + puux = 0,

ut + awux + buwx + quxxx + �(uxx + uxxxx) = 0,

w(x, t) = �(�), u(x, t) = �(�), � = x − ct,

(3)
{

−c� � + p��� = 0,

−c�� + a��� + b�� � + q���� + ���� + ������ = 0.

� =
p

2c
�2 + g1,

(4)q��� +
p(a + 2b)

6c
�3 + (ag

1
− c)� + ��� + ����� = 0.
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where dot indicates the derivative with respect to �.
System (5) indicates the following singularly perturbed system

which is called the slow system, and has three equilibrium points (0, 0, 0), (−1, 0, 0) 
and (1, 0, 0).

Introducing the transformation � =
�

�
 , we obtain the following equivalent fast sys-

tem corresponding to system (6)

Letting � = 0 in system (6), we obtain the critical manifold

Note that the linearization of the fast system (7) restricted on C0 is given by the fol-
lowing matrix

Obviously, the matrix M has three eigenvalues �1 = 0, �2 = 0 and �3 =
−q√
ag1 − c

 , 

and therefore C0 is normally hyperbolic. According to GSPT, for 𝜀 > 0 sufficiently 
small, three exists a two-dimensional submanifold C� of R3 within the Hausdorff dis-
tance � of C0 , which is invariant under the flow of system (6).

One can write

where Z(�, y, �) depends smoothly on �, y, � , and satisfies Z(�, y, 0) = 0 . We can 
expand Z(�, y, �) in � as follows

(5)𝜙 − 𝜙3 + q�̈� + 𝜀

�
1√

ag1 − c
�̇� +

√
ag1 − c𝜙

�
= 0,

(6)

⎧
⎪⎨⎪⎩

d�

d�
= y,

dy

d�
= z,

�
√
ag1 − c

dz

d�
= �3 − � − qz −

�

�
y,

(7)

⎧
⎪⎨⎪⎩

d�

d�
= �y,

dy

d�
= �z,√
ag1 − c

dz

d�
= �3 − � − qz −

�√
ag1−c

y.

(8)C0 =

{
(�, y, z) ∈ R3|z = 1

q

(
�3 − �

)}
.

M =

⎡
⎢⎢⎢⎢⎣

0 0 0

0 0 0

3�2 − 1√
ag1 − c

0
−q√
ag1 − c

⎤⎥⎥⎥⎥⎦

C� =

{
(�, y, z) ∈ R3 ∶ z =

1

q

(
�3 − � + Z(�, y, �)

)}
,
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By substituting it into the slow system (6), we can get

Equating the coefficients of � , we can obtain

Therefore, the dynamics on the slow manifold C� for system (6) is determined by

It is easy to check that system (10) with � = 0 is a Hamiltonian system with the 
Hamiltonian function

and its phase portrait is given in Fig.  1. In addition, we have H(0, 0) = 0 and 
H(±1, 0) = −

1

4q
 . Then we can parameterize the traveling waves of system (10) with 

� = 0 through the curves H(�, y) = k with parameter k, and display the existence 
result of traveling wave solutions of system (2) as in the following theorem.

Theorem 2.1 For the perturbed two-component DSW system (2), we have the fol-
lowing results. 

1. There exists 𝜀0 > 0 , � ∈ (0, �0) and k ∈ [−
1

4q
, 0) , system (2) has a traveling wave 

Z(�, y, �) = �z1(�, y) + O(�2).

�
√
ag1 − c

1

q
(3�2y − y) + O(�2) = −

�√
ag1 − c

y − �z1(�, y) + O(�2).

(9)z1(�, y) =

√
ag1 − c

q

�
1 − 3�2 −

q

ag1 − c

�
y.

(10)

⎧
⎪⎨⎪⎩

d�

d�
= y,

dy

d�
=

1

q

�
�3 − � + �

√
ag1−c

q

�
1 − 3�2 −

q

ag1−c

�
y
�
+ O(�2).

(11)H(�, y) = −
1

2
y2 −

1

q

(
1

2
�2 −

1

4
�4

)
,

Fig. 1  The phase portrait of 
system (10) with � = 0
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 where c = c(�, k) , and �(�, k, c, �) is the solution of (5).
2. c = c(�, k) is a smooth function of � and k, with the limit c0(k) as � → 0 , where 

c0(k) is a smooth increasing function for k ∈ [−
1

4q
, 0) , moreover, 

3. When � → 0 , �(�, k, c, �) converges to �(0, k, c0(h), �) , which is the solution of 
system (10) with � = 0 , uniformly in �.

Remark 1 It is well-known that system (10) with � = 0 has heteroclinic orbit and a 
family of periodic orbits, which correspond to kink and periodic waves of system (1) 
[11], and it is natural to ask whether these heteroclinic orbit and periodic orbits will 
break up or persist under perturbation in system (2). Theorem 2.1 provides the suf-
ficient conditions about the wave speed to guarantee the persistence of heteroclinic 
orbit and periodic orbits of system (2), which indicates the existence of kink and 
periodic waves to system (2).

3  Perturbation Analysis

In this section, we exploit perturbation analysis to check whether the periodic orbits 
and the heteroclinic orbits persist.

For (𝜃, 0),−1 < 𝜃 < 0 , let (�(�), y(�)) be the solution of system (10) with ini-
tial point (�, y)(0) = (�, 0) (see Fig. 2a). Then there exist 𝜂1 > 0 and 𝜂2 < 0 , which 
satisfy

and

(12)u =

√
−6c(ag1 − c)

p(a + 2b)
�(�, h, c, �), w =

p

2c
u2 + g1,

(13)ag1 −
5q

2
≤ c0(k) ≤ ag1 − q, lim

k→−1
c0(k) = ag1 −

5q

2
, lim

k→0
c0(k) = ag1 − q.

y(𝜂) > 0 for 0 < 𝜂 < 𝜂1, y(𝜂1) = 0,

Fig. 2  Illustrations of orbits of system (10)
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Define

where

Obviously, Φ(�, c, �) = 0 if and only if �(�) is a periodic solution of (10). We expand 
Φ(�, c, �) in � and obtain

where

in which, (�0, y0) is a solution of system (10) with � = 0 and this integral is per-
formed on a level curve H = H(�, 0) ∈ (−

1

4q
, 0) , since

and

by exploiting integration by parts.
Therefore, Φ1(�, c) = 0 indicates that the limit speed c0(k) satisfies

We can define the similar function for a heteroclinic orbit as

in which, the first integral is performed along with the solution (�(�), y(�)) on the 
one dimensional unstable manifold of the saddle point (−1, 0) with y(𝜂) > 0 for 

y(𝜂) < 0 for 𝜂2 < 𝜂 < 0, y(𝜂2) = 0.

(14)Φ(𝜃, c, 𝜀) = ∫
𝜂1

𝜂2

Ḣ(𝜙, y)d𝜂 = H(𝜙(𝜂1), y(𝜂1)) − H(𝜙(𝜂2), y(𝜂2)),

Ḣ(𝜙, y) = −𝜀

√
ag1 − c

q

�
1 − 3𝜙2 −

q

ag1 − c

�
y2 + O(𝜀2).

Φ(�, c, �) = �Φ1(�, c) + O(�2),

Φ1(�, c) = −

√
ag1 − c

q ∫
�
(1 − 3�2

0
)y2

0
−

q

ag1 − c
y2
0

�
d�

= −
1√

ag1 − c

�
(ag1 − c)∫ (���

0
)2d� − ∫ (��

0
)2d�

�
,

∫ �2

0
(��

0
)2d� = −

1

3 ∫ �3

0
���
0
d�,

∫ (��
0
)2d� = −∫ �0�

��
0
d�,

(15)c0(k) = ag1 −
∫ (��

0
)2d�

∫ (���
0
)2d�

.

Ψ(c, 𝜀) = ∫
0

−∞

Ḣ(𝜙, y)d𝜂 + ∫
+∞

0

Ḣ(𝜙, y)d𝜂,
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−∞ < 𝜂 < 0 and y(0) = y1 , where y1 is the y coordinate corresponding to the inter-
section point of the unstable manifold of (−1, 0) and the y axis (see Fig. 2b). The 
later is defined similarly. Following the similar procedure, we also deduce that the 
limit speed c0(k) satisfies (15), where �0 is a solution of system (10) with � = 0 and 
the integration is performed on the curve H = −

1

4q
.

4  Analysis by the Abelian Integral Theory

In this section, we first express the limit speed c0(h) in the form of Abelian integrals 
and then study its properties. Furthermore, we will prove the Theorem 2.1.

Assume that �(�) is the solution of system (10) with � = 0 , and Q and R are defined 
by

where the integrals are performed along the orbits of system (10).
Introducing a new variable h = 4qk , now from (15), we can treat c0(k) as a function 

of h

Now it is time to analyze Q and R in detail. Suppose that ±�(h) and ±�(h) are four 
roots of �4 − 2�2 − h = 0 , where −1 ≤ h < 0 , satisfying 0 ≤ �(h) ≤ �(h) . There-
fore, we can express Q and R as

where E(�) =
√
�4 − 2�2 − h.

For convenience, we introduce the following integrals:

which satisfy

by direct calculus. Now we can rewrite Q and R as

Q =
1

2 ∫ (���)2d�, R =
1

2 ∫ (��)2d�,

c0(h) = ag1 −
R

Q
.

(16)Q =
1√
2q3 ∫

�(h)

−�(h)

(�3 − �)2

E(�)
d�,R =

1

2
√
2q ∫

�(h)

−�(h)

E(�)d�,

(17)Jn(h) = ∫
�(h)

−�(h)

�nE(�)d�, n = 0, 1, 2,⋯ ,

(18)∫
�(h)

−�(h)

�n

E(�)
d� = −2J�

n
(h),

(19)Q =

√
2√
q3

�
−J�

6
(h) + 2J�

4
(h) − J�

2
(h)

�
, R =

1

2
√
2q

J0(h).
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To study the monotonicity of c0(h) , we turn to Z(h) = Q

R
 , and present its properties 

in Proposition 4.1.

Proposition 4.1 We have

Moreover

To prove Proposition 4.1, we need the following lemmas.

Lemma 4.1 We have

Proof Through direct calculus, we have

and J2(−1)
J0(−1)

=
1

5
 follows. In addition, by the squeeze theorem, we easily get

  ◻

Lemma 4.2 We have

Proof Differentiating both sides of E2 = �4 − 2�2 − h with respect to � yields

Z�(h) > 0, and
2

5q
≤ Z(h) ≤ 1

q
, for − 1 < h < 0.

lim
h→−1

Z(h) =
2

5q
, and lim

h→0
Z(h) =

1

q
.

J0(−1) =
4

3
, J2(−1) =

4

15
,
J2(−1)

J0(−1)
=

1

5
, and lim

h→0

J2(h)

J0(h)
= 0.

J0(−1) = ∫
1

−1

√
�4 − 2�2 + 1d� = 2∫

1

0

(1 − �2)d� =
4

3
,

J2(−1) = ∫
1

−1

�2
√
�4 − 2�2 + 1d� = 2∫

1

0

�2(1 − �2)d� =
4

15
,

lim
h→0

J2(h)

J0(h)
= lim

�→0
�2 = 0.

(20)

J0 =
4h

3
J�
0
+

4

3
J�
2
,

J2 =
4h

15
J�
0
+

4

15
(3h + 4)J�

2
,

J4 =
h

7
J0 +

8

7
J2,

J6 =
4h

21
J0 +

32 + 7h

21
J2.
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and it follows that

by integration by parts and (18). Hence, we have

Similarly, we have

and it follows that,

J4 and J6 can be obtained in a similar way. Here we omit them.   ◻

From (19) and (20), we see that Q can be expressed by J′
0
 and J′

2
 , which can be 

inversely expressed by J0 and J2 in Lemma 4.3.

Lemma 4.3 We have

E
dE

d�
= 2�3 − 2�,

J0 =∫
�(h)

−�(h)

E2 d�

E

= ∫
�(h)

−�(h)

(�4 − 2�2 − h)
d�

E

= ∫
�(h)

−�(h)

((
1

2
E
dE

d�
+ �

)
� − 2�2 − h

)
d�

E

= −
1

2
J0 + 2J�

2
+ 2hJ�

0
,

J0 =
4h

3
J�
0
+

4

3
J�
2
.

J2 =∫
�(h)

−�(h)

�2E2 d�

E

=∫
�(h)

−�(h)

�2(�4 − 2�2 − h)
d�

E

=∫
�(h)

−�(h)

((
1

2
E
dE

d�
+ �

)
(�3 − 2�) − h�2

)
d�

E

=∫
�(h)

−�(h)

1

2
�3dE − ∫

�(h)

−�(h)

�dE + ∫
�(h)

−�(h)

�4 d�

E
− ∫

�(h)

−�(h)

2�2 d�

E
− ∫

�(h)

−�(h)

h�2 d�

E

=
1

2
J0 −

3

2
J2 + 2J�

2
+ 2hJ�

2
,

J2 =
4h

15
J�
0
+

4

15
(3h + 4)J�

2
.
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where Δ = h(h + 1).

Proof This lemma follows from the first two equations in (20) by direct calculation.  
 ◻

Lemma 4.4 We have

.

Proof Exploiting (19) and (21), we easily obtain

and the statement follows.   ◻

To prove Z�(h) > 0 for −1 < h < 0 in Proposition 4.1, we need to study the mono-
tonicity of J2

J0
 . To state conveniently, introduce the notations

Lemma 4.5 For −1 < h0 < 0 , if Ã�(h0) = 0 , then 0 < Ã(h0) <
1

5
.

Proof Eliminating J′
0
 from the first two equations of (20), we arrrive at

(21)

J�
0
=

1

Δ

((
3h

4
+ 1

)
J0 −

5

4
J2

)
,

J�
2
=

h

4Δ

(
−J0 + 5J2

)
,

J��
0
= −

1

4Δ

(
hJ�

0
+ J�

2

)
,

J��
2
= −

h

4Δ

(
J�
0
+ J�

2

)
,

(22)Z(h) =
Q

R
=

4

q

(
1

4
−

3

4

J2

J0

)
.

(23)

√
q3√
2

Q = − J�
6
(h) + 2J�

4
(h) − J�

2
(h)

= −
4

21
J0(h) −

4

21
hJ�

0
(h) −

1

3
J2(h) −

1

21
(32 + 7h)J�

2
(h) +

16

7
J�
2
(h)

+
2

7
J0(h) +

2

7
hJ�

0
(h) − J�

2
(h)

=
2

21
J0(h) −

1

3
J2(h) +

2h

21
J�
0
(h) −

5 + 7h

21
J�
2
(h)

=
1

4
J0(h) −

3

4
J2(h),

Ã =
J2

J0
, and Â =

J�
2

J�
0

.
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i.e.

If Ã�(h0) = 0 , then we easily have Ã(h0) = Â(h0) , and

Note that J
�
0
(h0)

J0(h0)
< 0 and h0 + 1 > 0 , and it follows that

which indicates the statement.   ◻

Lemma 4.6 For −1 ≤ h ≤ 0 , we have

and

Proof The statements follow easily from Lemmas 4.1, 4.4 and 4.5.   ◻

Lemma 4.7 If Ã�(h0) = 0 for −1 < h0 < 0 , then Ã��(h0) > 0.

Proof Differentiating both sides of the equations J2 = J0Ã twice and J�
2
= J�

0
Â once 

with respect to h, respectively, yields

and it follows that

since Ã(h0) = Â(h0) , if Ã�(h0) = 0 . Note that J0 > 0 and J′
0
< 0 , therefore, we just 

need show that Â�(h0) < 0 , which can be proved as follows

J2 −
1

5
J0 =

4(h + 1)

5
J�
2

Ã −
1

5
=

4(h + 1)

5

J�
0

J0
Â.

Ã(h0) −
1

5
=

4(h0 + 1)

5

J�
0
(h0)

J0(h0)
Ã(h0).

Ã(h0)
(
Ã(h0) −

1

5

)
< 0,

(24)0 ≤ Ã(h) ≤ 1

5
,

(25)
2

5q
≤ Z(h) ≤ 1

q
.

J��
2
= Ã��J0 + J��

0
Ã + 2J�

0
Ã� = J��

0
Â + J�

0
Â�,

(26)

Ã��(h0) =
1

J0(h0)

(
J��
0
(h0)Â(h0) + J�

0
(h0)Â

�(h0) − 2J�
0
(h0)Ã

�(h0) − J��
0
(h0)Ã(h0)

)

=
J�
0
(h0)Â

�(h0)

J0(h0)
,
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since h0(h0 + 1) < 0 and Â2(h0) − h0 > 0 for −1 < h0 < 0 . Thus, the proof is com-
pleted.   ◻

Hence we have the conclusion Ã�(h) =
(

J2(h)

J0(h)

)�

< 0 by the proof by contradiction 
(see Fig. 3 for illustration), based on the facts in Lemmas 4.1 and 4.7, and the fol-
lowing lemma follows from Z(h) = 4

q

(
1

4
−

3

4

J2

J0

)
=

4

q

(
1

4
−

3

4
Ã(h)

)
.

Lemma 4.8 For −1 < h0 < 0 , Z�(h) > 0.

Obviously, the statements in Proposition 4.1 follow from Lemma 4.8. Now we 
can prove Theorem 2.1.

Since 𝜕Φ1

𝜕c
(𝜃, c0(k)) =

∫ (𝜙��
0
)2d𝜂

2
√
ag1−c0(k)

+
∫ (𝜙�

0
)2d𝜂

2
√
ag1−c0(k)(ag1−c0(k))

> 0 , by the implicit func-
tion theorem, there exist a unique smooth function ch(�) = c(�, h) for h ∈ [−1, 0] and 
� ∈ (0, �0) so that

The existence of c(�, h) indicates the first statement in Theorem 2.1, since k = h

4q
 . 

While the second statement in Theorem 2.1 follows from Proposition 4.1, and the 
third statement holds obviously.

Â�(h0) =
1

(J�
0
(h0))

2
(J��

2
(h0)J

�
0
(h0) − J��

0
(h0)J

�
2
(h0))

= −
h0

4h0(h0 + 1)

(
J�
0
(h0) + J�

2
(h0)

) 1

J�
0
(h0)

+
1

4h0(h0 + 1)

(
h0J

�
0
(h0) + J�

2
(h0)

) J�
2
(h0)

(J�
0
(h0))

2

=
1

4h0(h0 + 1)

(
Â2(h0) − h0

)
,

Φ̃(𝜃, c(𝜀, h), 𝜀) =0 for − 1 < h < 0, 0 < 𝜀 < 𝜀0,

Ψ̃(c(𝜀, h), 𝜀) =0, 0 < 𝜀 < 𝜀0.

Fig. 3  Illustration of contradic-
tion
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5  Conclusion

Through perturbation analysis and Abelian integrals theory, we derive the suf-
ficient conditions about the wave speed to guarantee the existence of heteroclinic 
orbit and periodic orbits, which indicates the existence of kink and periodic 
waves. Besides, we also prove the monotonicity of the limit wave speed c0(k) . 
As we know, the wave phenomena, such as the discovery of solitary waves, kink 
and periodic waves, play an important role in fluid dynamics, plasma and elastic 
media. We believe that the waves found under small perturbation in a more realis-
tic model will help facilitate the wave dynamics, and it potentially provides a way 
to analyze the propagation of the nonlinear waves.
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