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Abstract
In this article, we study the moduli of irregular surfaces of general type with at worst
canonical singularities satisfying K 2 = 4pg − 8, for any even integer pg ≥ 4. These
surfaces also have unbounded irregularityq.We carry out our studyby investigating the
deformations of the canonical morphism ϕ : X → P

N , where ϕ is a quadruple Galois
cover of a smooth surface of minimal degree. These canonical covers are classified in
Gallego and Purnaprajna (Trans Am Math Soc 360(10):5489-5507, 2008) into four
distinct families, one of which is the easy case of a product of curves. The main
objective of this article is to study the deformations of the other three, non trivial,
unbounded families. We show that any deformation of ϕ factors through a double
cover of a ruled surface and, hence, is never birational. More interestingly, we prove
that, with two exceptions, a general deformation of ϕ is two-to-one onto its image,
whose normalization is a ruled surface of appropriate irregularity. We also show that,
with the exception of one family, the deformations of X are unobstructed even though
H2(TX ) does not vanish. Consequently, X belongs to a unique irreducible component
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of the Gieseker moduli space. These irreducible components are uniruled. As a result
of all this, we show the existence of infinitely many moduli spaces, satisfying the strict
Beauville inequality pg > 2q − 4, with an irreducible component that has a proper
"quadruple" sublocus where the degree of the canonical morphism jumps up. These
components are above the Castelnuovo line, but nonetheless parametrize surfaces with
non birational canonical morphisms. The existence of jumping subloci is a contrast
with the moduli of surfaces with K 2 = 2pg − 4, studied by Horikawa. Irreducible
moduli components with a jumping sublocus also present a similarity and a difference
to the moduli of curves of genus g ≥ 3, for, like in the case of curves, the degree
of the canonical morphism goes down outside a closed sublocus but, unlike in the
case of curves, it is never birational. Finally, our study shows that there are infinitely
many moduli spaces with an irreducible component whose general elements have
non birational canonical morphism and another irreducible component whose general
elements have birational canonical map.

Keywords Deformations of morphisms · Moduli of surfaces of general type ·
Canonical covers or surfaces of minimal degree

Mathematics Subject Classification 14J29 · 14J10

1 Introduction

Canonical covers (i.e., canonical maps which are finite morphisms onto their image)
of varieties of minimal degree have a ubiquitous presence in the geometry of algebraic
surfaces and higher dimensional varieties. They appear as extremal cases in a variety
of geometric situations. The first, paradigmatic example of a canonical double cover
is the canonical morphism of a hyperelliptic curve. In the case of surfaces the works
of Enriques and Horikawa (see [18, 32]) show that minimal surfaces of general type
on the Noether line K 2

X = 2pg − 4 are all canonical double covers of surfaces of
minimal degree. These results show that the deformations of canonical double covers
of surfaces ofminimal degree are again canonical double covers of surfaces ofminimal
degree, unlikewhat happens for canonical double covers in the case of curves of g ≥ 3.
Therefore, the natural, next question to ask is:

Question 1.1 Are there cases in which the degree n of a canonical morphism

ϕ : X −→ Y ↪→ P
N

of a surface Y of minimal degree changes, when we deform ϕ?

If Y is not of minimal degree, there are some interesting families of examples
constructed by Catanese, Beauville, Schreyer, Ciliberto–Pardini–Tovena, Ashikaga–
Konno, Gallego–González–Purnaprajna ([3, 12, 14–16, 21, 24]) providing positive
answers to Question 1.1. However, if Y is a surface of minimal degree, apart from the
trivial case of X being a product of curves and the n = 2 and n = 3 cases, the answer
to Question 1.1 in general is unknown. Indeed, Enriques and Horikawa settled the
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matter for canonical double covers. Canonical triple covers X of surfaces of minimal
degree (these covers satisfy K 2

X = 3pg(X) − 6) are very few (their geometric genus
pg(X) is bounded by 5 and their images are singular surfaces; see [33–35] and [39]),
and, when pg(X) ≤ 4, their deformations are again canonical triple covers of surfaces
of minimal degree. Thus, degree n = 4 is the next case of study and for this we settle
Question 1.1 for all cases except one, when X is irregular. The geometry of canonical
quadruple covers of minimal degree (these covers satisfy K 2

X = 4pg(X) − 8) display
a wide range of behaviors. Indeed, they act like general surfaces of general type from
a number of geometric perspectives. Quadruple canonical covers are the first case
among low degree covers where irregular families appear. Moreover, as Remark 1.2
below indicates, they are the only ones, among canonical covers of smooth surfaces
of minimal degree, having both unbounded geometric genus and irregularity (see
Theorem 1.3), with the possible exception of degree 6 covers. All thismakes quadruple
covers stand out as the most interesting case among canonical covers of surfaces of
minimal degree and are natural (and non trivial, except, obviously, when X is a product
of curves, see Type (3)m of Theorem 1.3) candidates for testing Question 1.1.

Remark 1.2 It follows from amore general result (see [28], Theorem3.2), that there are
no odd degree canonical covers of smooth surfaces of minimal degree other than P

2.
This together with [8] implies that, if χ(X) ≥ 31, then the degree of a canonical cover
of a smooth surface of minimal degree could only be 2, 4, 6 or 8 (if χ(X) ≤ 30, then
q(X) is bounded). Since the irregularity of degree 8 canonical covers is bounded above
by 3 when pg ≥ 115 (see [52]), degree 4 canonical covers are the only ones, among
covers of smooth surfaces of minimal degree, having unbounded irregularity (and thus
unbounded geometric genus, since pg(X) ≥ 2q(X) − 4 by [9]) except possibly the
degree six canonical covers. One can show that there are no smooth regular degree
6 abelian covers of smooth surfaces of minimal degree (see [7]). Evidence seems to
indicate that there are no such irregular covers as well.

In moduli problems, it is usual to choose that special member whose deformations
describe the general element of the moduli component. In this article we focus on the
study of the deformations of irregular quadruple Galois canonical covers of smooth
surfaces of minimal degree. Tables 1 and 2 show that the deformations of quadruple
Galois covers capture the full complexity of the situation and provide a very interesting
answer to Question 1.1. This shows that there is no need to deal with quadruple covers
at large, even though we show that Galois covers do deform to the so called non
Galois natural covers. We completely figure out their behavior under deformations for
all but one family in Theorem 1.3 (for that one family, we have some partial results).
Thus our results make quadruple canonical covers of surfaces of minimal degree the
lowest degree covers, with the possible exception of triple covers of geometric genus
5, providing a positive answer to Question 1.1. Regular quadruple Galois canonical
covers of surfaces of minimal degree also provide positive answers to Question 1.1,
as the authors will show in a forthcoming article. From all this we derive interesting
consequences for the moduli of surfaces of general type.
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1.1 Classification of irregular quadruple Galois canonical covers of surface scrolls

The classification of irregular quadruple Galois canonical covers of surfaces of mini-
mal degree was done by the first two authors in [29]. We need the technical details of
their classification results, for the purpose of this article, so we will summarize them
here. The image of these covers are smooth rational normal scrolls Y . Recall that a
smooth rational normal scroll is a Hirzebruch surface Fe (e ≥ 0), which is, by defini-
tion, P(E ), where E = OP1 ⊕OP1(−e). Let p : P(E ) → P

1 be the natural projection.
The line bundles on Fe are of the formOY (aC0 +b f ) whereOY (C0) = OP(E )(1) and
OY ( f ) = p∗OP1(1). The line bundle OY (aC0 + b f ) is very ample if b ≥ ae + 1.

Theorem 1.3 ([29], Theorem0.1)Let X bean irregular surfacewith atworst canonical
singularities and let Y be a smooth surface of minimal degree. If the canonical bundle
of X is ample and base-point-free, and ϕ : X → Y is a quadruple Galois canonical
cover, then Y is the Hirzebruch surface F0, embedded by |C0 + m f |, (m ≥ 1). Let G
be the Galois group of ϕ.

(a) If G = Z4, then ϕ is the composition of two double covers p1 : X1 → Y branched
along a divisor D2 and p2 : X → X1, branched along the ramification of p1 and
p∗
1D1, where D1 is a divisor on Y and with trace zero module p∗

1OY (− 1
2D1 −

1
4D2).

(b) If G = Z
⊕2
2 , then X is the fiber product over Y of two double covers of Y branched

along divisors D1 and D2, and ϕ is the natural morphism from the fiber product
to Y .

More precisely, ϕ has one of the sets of invariants shown in the following table.
Conversely, if ϕ : X → Y is either

(1) the composition of two double covers p1 : X1 → Y , branched along a divisor
D2, and p2 : X → X1, branched along the ramification of p1 and p∗

1D1, and
with trace zero module p∗

1OY (− 1
2D1 − 1

4D2), with D1 and D2 as described in
rows 1 of the table below; or

(2) the fiber product over Y of two double covers p1 : X1 → Y and p2 : X2 → Y ,
branched respectively along divisors D2 and D1, as described in rows 2, 3, and
4 of the table below,

then ϕ : X → Y is a Galois canonical cover whose Galois group is Z4 in case 1 and
Z

⊕2
2 in case 2.

Type pg(X) Y G D1 ∼ D2 ∼ q(X)

(1)m 2m + 2 F0 Z4 (2m + 4) f 4C0 1
(1′)m 2m + 2 F0 Z

⊕2
2 2C0 + (2m + 4) f 4C0 1

(2)m (m ≥ 2) 2m + 2 F0 Z
⊕2
2 (2m + 2) f 6C0 + 2 f m

(3)m 2m + 2 F0 Z
⊕2
2 (2m + 4) f 6C0 m + 3

Surfaces of type (3)m are clearly products of a genus 2 curve and a genus m + 1
hyperelliptic curve, so their study is easier. Surfaces of types (1)m , (1′)m and (2m) are
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not product of curves (for one thing, they satisfy the equality K 2
X = 4pg(X) − 8 but

not the equality pg(X) = 2q(X)−4; see [9]) so studying them ismuchmore complex.
Surfaces of type (1′)m , (2)m and (3)m are smooth (in fact all surfaces of type (3)m are
smooth) while surfaces of type (1)m are necessarily singular, the general ones having
only A1 singularities. The above table shows the existence of families of quadruple
Galois canonical covers with unbounded geometric genus and unbounded irregular-
ity. In addition, some of the families of Theorem 1.3 are extremal cases for several
inequalities concerning irregular surfaces of general type, such as K 2

X ≥ 2χ(X), the
slope inequality (see [40]), K 2

X ≥ 2pg(X) (see [17]) and pg(X) ≥ 2q(X)−4 (see [9]).
Because of all of this, quadruple Galois covers are interesting from the perspective of
the geography of irregular surfaces as well.

Remark 1.4 Although the covers of Theorem 1.3 are simple iterated double covers in
the sense of [41], they are not good sequences (see again [41], DefinitionC).Moreover,
the point of view of our article is to study the deformation of canonical morphisms
to projective spaces, rather than the deformation of finite morphisms between two
surfaces. Therefore our study distinctly differs from the study of simple iterated double
covers carried out by Catanese and Manetti.

1.2 Statements of themain results

Let X be a surface as in Theorem 1.3, and let ϕ be the canonical morphism of X . First
we present a description of our results about the algebraic formally semiuniversal
deformation space of ϕ (which exists by Remark 2.17) in Table 1 (see Theorem 3.1).

The structure of the covers described in Theorem 1.3 easily implies the existence
of pencils in X :

Remark 1.5 (See also [30], Remark 3.4) Let X be as in Theorem 1.3.

(1) If X is of type (1)m or (1′)m , then X contains a rational pencil of genus 3 curves
and an irrational pencil (over an elliptic curve) of genusm+1 hyperelliptic curves.

(2) If X is of type (2)m , then X contains a rational pencil of genus 2m + 1 curves and
an irrational pencil (over a genus m curve) of genus 2 curves.

(3) If X is of type (3)m , since X is a product of a genus 2 curve and a genus m + 1
hyperelliptic curve, then it contains, obviously, two irrational pencils of genus 2
and genus m + 1 hyperelliptic curves.

The deformation of families (1)m , (1′)m , (2)m show the persistence of irrational pencils
under deformation. However, unlike in the case of surfaces with K 2

X = 2pg − 4, for
surfaces of type (1)m , (1′)m and (2)1, the rational pencils vanish under deformation.

It is illustrative to compare the results summarized in the above table with the defor-
mations of lower degree canonical covers of surfaces of minimal degree. As already
mentioned, any deformation of a degree 2 canonical morphism is again of degree 2.
More generally, deformations of double or triple canonical covers of embedded pro-
jective bundles over P1 of arbitrary dimension are, respectively, of degree 2 and 3 (see
[23, 25, 26]). Thus Theorem 3.1 is in sharp contrast with these results and, as pointed
out before, quadruple covers are the lowest degree examples of canonical covers for
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which the degree of the canonical map of a general deformation drops down, with the
possible exception of degree 3 covers with pg = 5.

Now we summarize our results on the moduli (see Theorems 4.1 and 4.2 and
Remark 4.3). For a given m, there is a unique component of moduli of surfaces of
general type that contains all surfaces of type (1)m and (1′)m (see Theorem 4.1). There
is a unique moduli component that contains all surfaces of type (2)2 and, for given
m, there is also a unique moduli component that contains all surfaces of type (3)m . In
Table 2 we outline the description of these moduli components.

The fact that the surfaces X as described in Table 2 lie on a unique component of
the moduli of surfaces of general type is a consequence of the unobstructedness of X .
We prove the unobstructedness of X in these cases despite H2(TX ) being non zero.

The results summarized in Table 2 have further consequences for the moduli of
surfaces of general type.

Corollary 1.6 For each one of the moduli spaces M(pg,q,K 2) = M(2m+2,1,8m), m ≥
1 and M(6,2,16), there exists a reduced, irreducible uniruled component for which
the degree of the canonical morphism jumps up, from 2 to 4, at a proper locally
closed “quadruple” sublocus. The points of this “quadruple” sublocus correspond
to surfaces whose canonical morphism is a quadruple cover of a surface of minimal
degree. The surfaces parametrized by these moduli spaces are not product of curves.

In this sense, quadruple canonical covers (unlike, for instance, Horikawa surfaces),
resemble hyperelliptic curves of genus bigger than 2 and the existence of a proper
hyperelliptic sublocus in the moduli of these curves. In Remark 4.9 we estimate the
dimension of the quadruple loci and give the dimension of the smaller loci parametriz-
ing surfaces of general type whose canonical morphism is a quadruple Galois cover
of a surface of minimal degree.

Recall that outside the region defined byCastelnuovo’s inequality K 2
X ≥ 3pg+q−7

the canonical map of a minimal surface of general type is not birational. Our results
(see Sect. 4.4) show the existence of infinitely many irreducible components inside
the region defined by Castelnuovo’s inequality K 2

X ≥ 3pg + q − 7:

Corollary 1.7 For any m ≥ 1, the moduli spaces M(pg,q,K 2) = M(2m+2,1,8m),
M(2m+2,m,8m) and M(2m+2,m+3,8m), have an irreducible component that parame-
trizes surfaces whose canonical map is a non birational morphism.

Remark 1.8 Except for M(4,4,8), the invariants of the moduli spaces of Corollary 1.7
satisfy K 2

X ≥ 3pg+q−7. Among thesemoduli spaces, onlyM(2m+2,m+3,8m),m ≥ 1,
lie on the line pg = 2q − 4, hence parametrize products of curves (see [9]).

As a consequence of this and the results of Ashikaga (see [2], Theorem 3.2) we get
the following corollary (see Corollary 4.11):

Corollary 1.9 There are infinitely many moduli spaces with an irreducible compo-
nent whose general elements have non birational canonical morphism and another
irreducible component whose general elements have birational canonical map.

The classification of quadruple canonical covers shows the existence of fibrations in
all genus, as is illustrated in Remark 1.5. Thus, the results in this article apply to fibra-
tions of all genus. Deformation and moduli of genus two fibrations have been studied
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in [48] and [22]. Therefore, for the special case of genus two fibrations, namely, the
surfaces of type (1)1, (1′)1 and (2)2, their results on unobstructedness and persistence
of genus two fibrations upon deformation do apply. But in this article we show unir-
uledness not only of these moduli components but also of the moduli components of
fibrations of all genera. In the final section of the article, we show that infinitesimal
Torelli holds for smooth families of type (1′)m . It is known that for (3)m it holds for
m = 1 and does not hold for m > 2 (see Remark 5.3). We end that section with an
interesting question for families of type (2)m .

In [21] a new framework, connecting deformations ofmorphisms and the smoothing
of multiple structures on algebraic varieties, was developed. There, a general criterion
on when a finite morphism deforms to a one to one map was found. Even though this
started a different way of looking at several interesting, natural situations concerning
the moduli of surfaces of general type and higher dimensional varieties, the criterion
in [21] is only the first step in proving results in that realm. One such natural situation
is the moduli of surfaces of general type with K 2 = 4pg − 8, where we need to bring
in new ideas and methods, to study the deformation of the canonical map. This in turn
leads to the description of moduli components of these surfaces. We describe these
new ideas and methods briefly below.

1.3 Brief sketch of the arguments

We outline the main ideas behind our proofs. We study the deformations of the canon-

ical morphism ϕ : X 4:1−→ Y ↪→ P
N . Such a deformation need not be a composition of

the deformations of the twomorphisms. This brings into play the concepts of existence
of multiple structures on a scheme and their smoothings (making our study markedly
different from deformations of finite covers). The proof in general is comprised of the
following five steps:
Step 1.We show in almost all cases (excepting family (2)m ,m ≥ 2) that the morphism

ϕ1 in one of the factorizations X
π1−→
2:1 X1

ϕ1−→
2:1 Y ↪→ P

N ofϕ (see [29]) can be deformed

to a finite birational morphism

X1t X1 X1 X

P
N

P
N
T P

N

1:1 2:1
π1

For this we relate the existence and the deformations of double structures to the defor-
mations of ϕ1.
Step 2. We show that one can complete the above diagram into
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Xt X X

X1t X1 X1

P
N

P
N
T P

N

2:1 2:1

1:1 2:1

This requires showing smoothness of the forgetful map between functors Defπ1 →
Def X1 . This shows that the quadruple cover deforms to a double cover.

Step 3. We then show that any deformation X → P
N
T factors as X → X1 → P

N
T .

This requires the smoothness of the forgetful map of functors Defπ1/PN → Defϕ
where Defπ1/PN are deformations of π1 relative to PN as introduced by Flenner. This
shows that the morphism does not further deform to a birational morphism.

Step 4. To prove the unobstructedness of ϕ and X , we first we show that Defϕ1 is
smooth. Then we show that, the following chain of implications hold:

Defϕ1 is smooth
Thm. 2.19	⇒ Def

π1/P
N is smooth

Cor. 2.21	⇒ Defϕ is smooth
Cor. 2.22	⇒ DefX is

smooth.

It is to be noted that we show that the varieties are unobstructed inspite of H2(TX ) �= 0.
Finally we show the uniruledness of the algebraic formally semiuniversal deformation
space of Defπ1/PN , which we construct in Theorem 2.19. From this, we prove the
uniruledness of the moduli component of X .

Step 5. There is a subtle point, though, that needs to be addressed: since our surfaces
are irregular, a general deformation of the canonical morphism need not be the canon-
ical morphism. We overcome this difficulty and show nevertheless the existence of a
deformation of ϕ which is two-to-one and, indeed, canonical.

1.4 Organization of this article

In Sect. 2, we prove the main results we need to carry out our study. In Sect. 2.1 we
recall some basic facts about the normal sheaf, and in Sect. 2.2 we recall the basics
of abelian covers. In Sect. 2.4, we describe the techniques of deformations of finite
morphisms developed by the first two authors. In Sect. 2.5, we describe how to apply
this technique in our situation, namely to study the covers we are interested in. Finally
Sect. 2.6 devoted to studying the geometry of the moduli components. We prove the
results stated in Table 1 (see Theorem 3.1) in Sect. 3. The proof of the results stated
in Table 2 (see Theorems 4.1 and 4.2) appear in Sect. 4. Finally, we prove that the
infinitesimal Torelli theorem holds for smooth surfaces of type (1′)m in Sect. 5. The
results show that there are families for which infinitesimal Torelli hold, and families
for which it does not, the latter being well known for the case of product of curves,
which is one of the families.
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for partially supporting his research. The second author was partially supported by
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Notations and conventions.

1. We will always work over the field of complex numbers C and a variety is an
integral separated scheme of finite type over C.

2. The symbol ‘∼’ denotes linear equivalence and ‘≡’ denotes numerical equiva-
lence.

3. We will use the multiplicative and the additive notation of line bundles inter-
changeably. Thus, for line bundles L1, L2, L1 ⊗ L2 and L1 + L2 are the same.
L−r , L⊗−r (or −r L) denotes (L∨)⊗r .

4. If Li is a line bundle on the variety Xi for i = 1, 2, L1�L2 is by definition, the line
bundle p∗

1L1⊗ p∗
2L2 on X1× X2 where pi : X1× X2 → Xi is the i-th projection

for i = 1, 2.When Xi = P
1 for i = 1, 2, thenOP1×P1(a, b) := OP1(a)�OP1(b).

5. For a morphism X → Y between algebraic schemes,�X/Y (or�1
X/Y ) is the sheaf

of relative differentials and TX/Y = H om(�X/Y ,OX ) is the relative tangent
sheaf. By convention, �X (or �1

X ) and TX is obtained by taking Y = Spec(C).
6. For an algebraic scheme, Def X (resp. Def ′X ) is the functor of deformations (resp.

locally trivial deformations) of X .
7. For an algebraic scheme X and a line bundle L on it, Def (X ,L) (resp. Def ′(X ,L)) is

the functor of deformations (resp. locally trivial deformations) of the scheme and
the line bundle i.e. the pair (X , L).

8. For a morphism ϕ : X → Z between algebraic schemes,Defϕ (resp.Def ′ϕ) is the
functor of deformations (resp. locally trivial deformations) of ϕ with fixed target.

9. For a morphism X
π−→ Y → Z of algebraic schemes, Defπ/Z (resp. Def ′π/Z ) is

the functor of Z -deformations (resp. locally trivial Z -deformations) of π with
varying target.

For a scheme X , if Def X = Def ′X , then Def (X ,L) = Def ′(X ,L), Defϕ = Def ′ϕ and
Defπ/Z = Def ′π/Z respectively in the situation of 7, 8 and 9. Indeed, by definition
(see e.g. [1] §3, and [49] §3.4.2), deformations of (X , L), ϕ and π/Z are locally trivial
if and only if the induced deformation of X is locally trivial.

2 Results on deformations of finite morphisms

In this section, we provide the main results regarding the deformations of morphisms
that are essential to carry out our study.
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2.1 Preliminaries on normal sheaves

Locally trivial deformation theory of a morphism is governed by the normal sheaf
that we define below.

Definition 2.1 ([49], Definition 3.4.5) To a morphism f : X → Z of algebraic
schemes there exists an exact sequence of coherent sheaves which defines the sheaf
N f called the normal sheaf of f ;

0 → TX/Z → TX → f ∗TZ → N f → 0.

The morphism f is called non-degenerate if TX/Z = 0.

A morphism being non-degenerate is equivalent to being unramified in an open dense
set. Thus, a finite flat morphism between normal Cohen-Macaulay varieties is non-
degenerate and so is the composition of non-degenerate morphisms between normal
Cohen-Macaulay varieties. The following is the general version of [31], Lemma 3.3
whose proof we omit.

Lemma 2.2 Let X ,Y , Z be normal Cohen-Macaulay varieties. Let π : X → Y be a
non-degenerate morphism for which π∗ is an exact functor (this happens if π is finite
and flat) and let ψ : Y → Z be a non-degenerate morphism. Suppose ϕ := ψ ◦ π .
Then there is an exact sequence;

0 → Nπ → Nϕ → π∗Nψ → 0.

2.2 Normal abelian covers of smooth varieties

Our objects of study are canonical morphisms that factor through abelian covers. We
recall some basic facts about these covers, see [45] for further details.

Definition 2.3 Let Y be a variety and let G be a finite abelian group. A Galois cover
of Y with Galois group G is a finite flat morphism π : X → Y together with a faithful
action of G on X that exhibits Y as a quotient of X via G.

Let π : X → Y be a Galois G cover of a smooth variety Y with X normal. Then
π∗OX splits as a direct sum indexed by the characters. More precisely,

π∗OX =
⊕

χ∈G∗
L−1

χ .

Let D be the branch divisor of π . Let C be the set of cyclic subgroups of G and for
all H ∈ C , denote by SH the set of generators of the group of characters H∗. Then,
we may write

D =
∑

H∈C

∑

ψ∈SH
DH ,ψ
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where DH ,ψ is the sum of all the components of D that have inertia group H and
character ψ . The sheaves Lχ and the divisors DH ,ψ are called the building data of
the cover. For every pair χ, χ ′ ∈ G∗, for every H ∈ C and for every ψ ∈ SH , one
may write χ |H = ψ iχ and χ ′|H = ψ iχ ′ , iχ , iχ ′ ∈ {0, . . . ,mH − 1} where mH is the
order of H . Let Sχ = {(H , ψ) : χ |H �= ψmH−1}.

2.3 A generalization of Atiyah exact sequence

For any scheme X , there is a natural map O∗
X → �X defined by u �→ du/u. For

every line bundle L on X , the natural map induced between the cohomology groups
H1(O∗

X ) → H1(�X ) ∼= Ext1(OX ,�X ) gives an extension

eL : 0 → �X → QL → OX → 0.

We set EL := H om(QL ,OX ), and we obtain the following exact sequence which is
known as the Atiyah exact sequence when X is smooth:

0 → OX → EL → TX → 0. (2.1)

Altmann and Christophersen has generalized [49], Theorem 3.3.11 and showed that
H1(EL) parametrizes first order locally trivial deformations of (X , L) when X is
reduced.

Theorem 2.4 ([1], Theorem 3.1 (ii)) If X is a reduced projective scheme, then
Def ′(X ,L)(C[ε]) = H1(EL).

In fact, one can follow the treatment of [49], Section 3.3.4 to define a map M :
EL → H0(L)∨ ⊗ L that fits into the following commutative diagram where the left
vertical map is the one obtained in (2.1).

OX H0(L)∨ ⊗ L

EL H0(L)∨ ⊗ L

m

M

(2.2)

The proof of the following follows by repeating the argument of [49], Proposition
3.3.14 word by word.

Proposition 2.5 Let X be a reduced projective scheme and let L be a line bundle
on X. Assume (X ,L ) is a first order locally trivial deformation of (X , L) defined
by a cohomology class η1 ∈ H1(EL) according to Theorem 2.4. Let s ∈ H0(L) be
a section of L. Then s lifts to a section L if and only if s ∈ ker(M1(η1)), where
M1 : H1(EL) → Hom(H0(L), H1(L)) is induced by M.

When L is base point free, in order to verify the above section-lifting-criterion, we
will make use of [49], (3.39) diagram with exact rows and columns, which is given
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for the smooth case, and whose existence is a routine computation when X is reduced
and projective. In particular, we have the exact sequence

0 → EL → H0(L)∨ ⊗ L → NϕL → 0, (2.3)

where ϕL : X → P(H0(L)∨) is the morphism induced by |L|.

2.4 Techniques to reduce the degree along a deformation

One of the central techniques for deforming a finitemorphism to amorphismof smaller
degree is to construct a suitable multiple structure on the image of themorphismwhich
is called rope.

Definition 2.6 Let Y be a reduced connected scheme and let E be a vector bundle of
rank m − 1 on Y . A rope of multiplicity m on Y with conormal bundle E is a scheme
Ỹ with Ỹred = Y such that I 2

Y/Ỹ
= 0, and IY/Ỹ = E as OY modules. If E is a line

bundle then Ỹ is called a ribbon on Y .

Remark 2.7 Recall that, for amorphismϕ : X → P
N froma smooth, projective variety

which is finite onto a smooth variety Y ↪→ P
N , the space H0(Nϕ) parametrizes the

infinitesimal deformations of ϕ. Suppose E is the trace zero module of the induced
morphismπ : X → Y . It is shown in [31], Proposition 2.1, that the space H0(NY/PN ⊗
E ) parametrizes the pairs (Ỹ , ĩ) where Ỹ is a rope on Y with conormal bundle E and
ĩ : Ỹ → P

N is a morphism that extends i .

The relation between these two cohomology groups is given by the following propo-
sition.

Proposition 2.8 ([31], Proposition 3.7) Let X be a normal Cohen-Macaulay projective
variety and let ϕ : X → P

N be a morphism that factors as ϕ = i ◦ π , where π is a
finite cover of a smooth variety Y and i : Y ↪→ P

N is an embedding. Let E be the trace
zero module of π and letI be the ideal sheaf of i(Y ). There exists a homomorphism

H0(Nϕ)
ψ−→ Hom(π∗(I /I 2),OX )

that appearswhen taking cohomology on the commutative diagram [31] (3.3.2). Since

Hom(π∗(I /I 2),OX ) = H0(NY/PN ) ⊕ H0(NY/PN ⊗ E ),

the homomorphism ψ has two components;

H0(Nϕ)
ψ1−→ H0(NY/PN ) and H0(Nϕ)

ψ2−→ H0(NY/PN ⊗ E ).

We will make use of the following fundamental theorem of the deformation theory
of finite morphisms to reduce the degree of a general deformation of the canonical
morphism.
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Theorem 2.9 ([21], Theorem 1.4) Let X be a smooth irreducible projective variety
and let ϕ : X → P

N be a morphism that factors through an embedding Y ↪→ P
N

with Y smooth and let π : X → Y be the induced morphism which we assume to be

surjective and finite of degree n ≥ 2. Let ϕ̃ : X̃ → P
N

 (
 = Spec

(
C[ε]
ε2

)
) be a first

order infinitesimal deformation of ϕ and let ν ∈ H0(Nϕ) be the class of ϕ̃. If

(a) the homomorphism ψ2(ν) has rank k > n
2 − 1, and

(b) there exists an algebraic formally semiuniversal deformation of Defϕ and Defϕ
is smooth,

then there exists a flat family of morphisms, � : X → P
N
T over T , where T is a

smooth irreducible algebraic curve with a distinguished point 0, such that

(1) Xt is a smooth irreducible projective variety,
(2) the restriction of � to the first order infinitesimal neighbourhood of 0 is ϕ̃, and
(3) for t �= 0, �t is finite and one-to-one onto its image in PN .

We will use the theorem above to study the deformations of the canonical morphisms
of the varieties we are interested in. However, we are also interested in the degree
of the canonical morphisms of the moduli components of these varieties. We remark
that a general deformation of the canonical morphism of a regular variety remains
canonical by [21], Lemma 2.4 (the statement requires smoothness, but it holds for
varieties with canonical singularities as well, see [5], proof of Proposition 2.9).

2.5 Deformations of iterated double covers of embedded varieties

Throughout this subsection, we will work with the following diagram where X , Y
and Z are normal local complete intersection (abbreviated as lci) projective varieties,
i : Z ↪→ P

N is an embedding, and π and p are finite, flat morphisms of degree 2:

X Y Z ↪→ P
Nπ

ϕ

p

We setψ := i ◦ p, and ϕ := ψ ◦π . Our objective is to determine the degree of a general
deformation of ϕ. We will show that under suitable hypotheses, ϕ can be deformed to
a two-to-one morphism onto its image. We first need the following technical fact that
we will put as a remark for future reference.

Remark 2.10 Let Y be a normal lci projective variety. Let L be a line bundle on Y
and B be a divisor in |L|. Assume H1(L) = 0. Let f : Y → T be a deformation
of Y over a smooth affine pointed variety (T , 0) ( f is assumed to be proper and flat).
Assume that L lifts to a line bundleL onY . Then (possibly after shrinking T ) f∗(L )

is locally free of rank h0(L) on T . We have a Cartesian diagram as shown below.

Y ×T P( f∗(L )) P( f∗(L ))

Y T

p

q g
f
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Consequently, p : Y ×T P( f∗(L )) → P( f∗(L )) is a deformation of Y with q∗(L )

and the incidence divisor B ∈ |q∗(L )| giving natural lifts of L and B respectively
onY ×T P( f∗(L )). Now since f∗(L ) is locally free, by shrinking T , we can always
construct a section s : T → P( f∗(L )) andB ×P( f∗(L )) T is a lift of the divisor B to
Y . Conversely any lift B of B on Y is obtained by a pullback induced by a section
s : T → P( f∗(L )).

Remark 2.11 Let X andY benormal lci projective varietieswithY smooth and consider

morphisms X
π−→ Y

ψ−→ P
N . Let π be a finite, degree 2 morphism with trace zero

module L∗ on Y . Let ϕ = ψ ◦π . Let L∗ = ωY ⊗ψ∗(OPN (−1)). Then ϕ∗(OPN (1)) =
ωX .

Theorem 2.12 Let X be a normal lci projective variety and let Y and Z be smooth
projective varieties. Let π : X → Y be a finite, flat morphism of degree two onto Y
with trace zero module Eπ = L∗ and branched along a divisor B ∈ |L⊗2|, and let
p : Y → Z be a finite (hence flat) morphism of degree two onto Z with trace zero
module Ep. Let i : Z ↪→ P

N be an embedding, ϕ = i ◦ p ◦ π and ψ = i ◦ p. Suppose

(a) H2(OY ) = 0,
(b) Defψ is smooth,
(c) ψ2 : H0(Nψ) → H0(NZ/PN ⊗ Ep) is non-zero,
(d) H1(L⊗2) = 0,

then there exist a flat family X → T of deformations of X over a smooth pointed
affine algebraic curve (T , 0) and a T -morphism � : X → P

N
T satisfying:

(1) � = � ◦ �, where Y → T is a flat family, � : Y → P
N
T , and � : X → Y

are T -morphisms with Y0 = Y , �0 = π , and �0 = ψ ,
(2) �t is a finite morphism of degree 2 for all t , and �t is birational onto its image

for all t ∈ T − {0},
(3) Suppose that ϕ is the canonical morphism of X and that Eπ = L∗ = ωY ⊗

ψ∗(OPN (−1)), then �t can be taken to be the canonical morphism ofXt .

Proof We will prove the assertions (1) and (2) in two steps.

Step 1. In this step, we deform ψ into a birational morphism. Notice that Defψ is
unobstructed, and has an algebraic formally semiuniversal deformation by [6], Propo-
sition 1.5. Moreover, ψ2 is non-zero, hence we apply Theorem 2.9 and we get that
there exists a family Y of smooth projective varieties, proper and flat over a smooth
pointed affine algebraic curve (T , 0) and a T -morphism � : Y → P

N
T with:

(1) �0 = ψ ,
(2) �t is birational onto its image for all t ∈ T − {0},
Step 2. We construct a deformation X → Y → P

N
T → T of ϕ. For this we need

to construct a deformation � : X → Y → T of the finite morphism π : X → Y .
Let q : Y → T be the deformation obtained by applying the forgetful map to
Y → P

N
T → T . We need to construct lifts L ⊗2 and B of the line bundle L⊗2 and
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the divisor B respectively on Y . Note that since H2(OY ) = 0, we have that the map
Def (Y ,L) → DefY is smooth by ([49], Proposition 2.3.6). Hence by [49], Proposition
2.2.5, (iv), we have a lift L of L on Y . The conclusion follows from Remark 2.10.
This proves statements (1) and (2). For part (3) we note that ωY /T ⊗ �∗(O

P
N
T
(−1))

is a deformation of L∗, since L∗ = ωY ⊗ψ∗(OPN (−1)). Hence ω−2
Y /T ⊗�∗(O

P
N
T
(2))

is a lift of L⊗2. Now we apply Remark 2.10 to construct a relative cover using a lift
B ∈ |ω−2

Y /T ⊗ �∗(O
P
N
T
(2))| of the divisor B ∈ |L⊗2|. Since for each t , the trace

zero module L∗
t = ωYt ⊗ �∗

t (O
P
N
t
(−1)), we have that for each t , �t is the canonical

morphism of Xt by Remark 2.11. ��
Remark 2.13 Let X be a projective variety with at worst canonical singularities, and
with ample and base point free canonical bundle ωX . Let T be a smooth affine curve

and Y
�−→ P

N
T → T be such that for all t ∈ T , �t is given by the complete linear

series ωYt . Suppose that the degree of the finite morphism �t is d for a general t ∈ T .
Then there exists an irreducible component UX of the universal deformation space of
X such that for a general closed point u ∈ UX , the canonical morphism of the fibre
Xu of the universal family over UX has degree less than or equal to d.

Proof Choose an irreducible component UX containing T . Since T is smooth this
embedding factors through the reduced induced structure U 0

X of UX . Consider the

pullback X
p−→ U 0

X of the universal family to U 0
X . Since pg(Xs) is constant for

s ∈ U 0
X (see [38], Theorem 1), we have that p∗(ωX /U0

X
) is locally free of rank h0(ωX ).

ThenX
�−→ P(p∗(ωX /U0

X
)) → U 0

X is a deformation of the canonical morphism of X

such that for each s ∈ U 0
X , �s is the canonical morphism ofXs . SinceU 0

X is integral,

we have that degree of �s is upper semicontinuous. Now Y
�−→ P

N
T → T is obtained

by pulling back X
�−→ P(p∗(ωX /U0

X
)) → U 0

X to T by the embedding T ↪→ U 0
X .

This shows that the degree of �s is less than or equal to d for a general s ∈ U 0
X . Since

closed points of UX are the same as closed points of U 0
X , we are done. ��

Nowwe will find the condition following the proof of [51], Proposition 1.10, under
which any deformation of ϕ factors through a deformation of π (with varying target).

Proposition 2.14 Let π : X → Y be a finite surjective morphism between a normal
lci projective variety X and a smooth projective variety Y , and let E be the trace zero
module of π . Let ψ : Y → Z be a non-degenerate morphism to a smooth projective
variety Z. Let ϕ = ψ ◦ π be the composed morphism. If H0(Nψ ⊗ E ) vanishes, then
the natural map between the functors Defπ/Z → Defϕ is smooth.

Proof To start with, notice that we have the following commutative diagram given
below.

X
π

ϕ

Y

ψ

Z
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For any coherent sheaf M on Y , we set

T i (Y/Z ,M ) := Exti (L •
Y/Z ,M ),

whereL •
Y/Z is the cotangent complex of ψ : Y → Z . Consequently, by [51], Propo-

sition 1.10 we obtain maps

β i : T i (Y/Z) → Exti (Lπ∗L •
Y/Z ,OX )

for i = 1, 2, where we abuse the notation T i (Y/Z) := T i (Y/Z ,OY ). These maps are
induced by the natural composition

OY → π∗OX → Rπ∗OX

thanks to the projection formula Exti (Lπ∗L •
Y/Z ,OX ) ∼= Exti (L •

Y/Z ,Rπ∗OX ) (see

[51], 1.3. e)). In our case, since π is surjective, finite and flat, we have Riπ∗OY = 0,
for all i > 0 and π∗OX = OY ⊕ E ,
so

Exti (L •
Y/Z ,Rπ∗OX ) = Exti (L •

Y/Z , π∗OX ) = Exti (L •
Y/Z ,OY ) ⊕ Exti (L •

Y/Z ,E )

= T i (Y/Z) ⊕ T i (Y/Z ,E ),

and we can identify β i with

β̃ i : T i (Y/Z) → T i (Y/Z) ⊕ T i (Y/Z ,E ),

where the maps β̃ i are the canonical injections.
Thus by [51], Proposition 1.10, it is enough to show that β̃1 is surjective. Then, by

our hypotheses, it is enough to prove that

T 1(Y/Z ,E ) ∼= H0(Nψ ⊗ E ), i.e., Ext1(L •
Y/Z ,E ) ∼= H0(Nψ ⊗ E ). (2.4)

To this end, we consider the following distinguished triangle.

Lψ∗L •
Z → L •

Y → L •
Y/Z→ Lψ∗L •

Z [1] (2.5)

Observe that, since Y , Z are smooth,L •
Y ,L •

Z are quasi-isomorphic to the locally free
sheaves �Y ,�Z respectively and Lψ∗L •

Z is quasi-isomorphic to ψ∗�Z . Then

Exti (L •
Y ,E ) ∼= Exti (�Y ,E ) ∼=Hi (TY ⊗ E ), (2.6)

Exti (Lψ∗L •
Z ,E ) ∼= Exti (ψ∗�Z ,E ) ∼= Hi (ψ∗TZ ⊗ E ), (2.7)

since Exti is defined via the derived category.
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Thus, applying Hom(−,E ) on (2.5) and using (2.6), (2.7) we obtain the long exact
sequence

· · · → Hi−1(TY ⊗ E ) → Hi−1(ψ∗TZ ⊗ E ) → T i (Y/Z ,E )

→ Hi (TY⊗E ) → Hi (ψ∗TZ ⊗ E ) → · · · . (2.8)

Comparing (2.8) with the long exact sequence obtained by twisting by E and taking
cohomology of the following:

0 → TY → ψ∗TZ → Nψ → 0,

(see Definition 2.1; recall that ψ is non-degenerate), we immediately conclude that

T i (Y/Z ,E ) ∼= Hi−1(Nψ ⊗ E )

for all i ≥ 1, whence (2.4) follows. ��
Remark 2.15 Note that, in the set-up of Proposition 2.14, it follows from the argu-
ments in the proof that the maps β i become the canonical injections Hi−1(Nψ) −→
Hi−1(π∗Nψ).

The following is the main result that we will use to prove Theorem 3.1. The proof
of this result is an immediate consequence of Theorem 2.12 and Proposition 2.14.

Corollary 2.16 Assume the hypotheses (a), (b), (c) and (d) of Theorem 2.12. Further-
more, assume Defϕ has an algebraic formally semiuniversal deformation space and
H0(Nψ ⊗E ) = 0. Then a general deformation of ϕ is a composition of a double cover
over a deformation Y ′ of Y followed by a morphism of Y ′ → P

N that is birational
onto its image, consequently, it is a two-to-one morphism onto its image.

Remark 2.17 Let X be a surface with ample and globally generated canonical bundle
ωX with at worst canonical singularities. Let ϕ be the canonical morphism of X .
Then H0(TX ) = 0. Furthermore, DefX , Defϕ , and Def(X ,ωX ) have algebraic formally
universal deformation spaces.

Proposition 2.18 Let X be a normal lci projective variety. Assume π : X → Y is a
double cover of a smooth projective variety Y with ramification divisor R and branch
divisor B ∈ |L⊗2|. Then we have the following exact sequence

0 → Nπ → π∗OY (B)|R → T 1
X → 0. (2.9)

where T 1
X is E xt1(�X ,OX ), as defined for instance in [49], Section 1.1.

Proof LetY ′ := V(L−1) := Spec(Sym(L−1)) denote the total space of the line bundle
L . Let p′ : Y ′ → Y be the projection. We have an embedding of i : X ↪→ Y ′ as a
divisor in Y ′ such that π = p′ ◦ i . The conormal sheafN ∗

X/Y ′ := I /I 2 of X in Y ′ is
given by π∗(OY (−B)) (since X is defined as the scheme of zeroes of t2 − p′∗ς where
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t ∈ p′∗(L) and B is the zero locus of ς ). Since X is a local complete intersection, we
have an exact sequence

0 → π∗(OY (−B)) → �Y ′ ⊗ OX → �X → 0. (2.10)

Now since p′ : Y ′ → Y is a smooth morphism, we have that �Y ′/Y is an invertible
sheaf isomorphic to p′∗(L−1) and we have an exact sequence

0 → π∗(�Y ) → �Y ′ ⊗ OX → π∗(L−1) → 0. (2.11)

We also have another exact sequence as follows

0 → π∗(OY (−B)) → π∗(L−1) → π∗(L−1) ⊗ OR → 0. (2.12)

Now apply snake lemma to the following diagram where the first row is (2.10)

0 π∗(OY (−B)) �Y ′ ⊗ OX �X 0

0 π∗(L−1) π∗(L−1) 0 0

and use the previous two short exact sequences (2.11) and (2.12) to get the following
exact sequence.

0 → π∗(�Y ) → �X → π∗(L−1) ⊗ OR → 0

Since π is non-degenerate, we get that TX/Y = 0 and hence by dualizing the above
sequence we have the following exact sequence

0 → TX → π∗TY → E xt1(π∗(L−1) ⊗ OR,OX ) → T 1
X → 0. (2.13)

Notice that E xt1(π∗(L−1) ⊗OR,OX ) = π∗(L) ⊗OR(R) = π∗(OY (B)) ⊗OR , and
consequently (2.13) becomes

0 → TX → π∗TY → π∗(OY (B)) ⊗ OR → T 1
X → 0. (2.14)

The exact sequence (2.9) follows from the fact that Nπ = ker (π∗(OY (B)) ⊗ OR

→ T 1
X

)
. ��

2.6 Geometry of the deformation spaces

One of our objectives is to describe the moduli components of surfaces of type (1)m
and (1′)m . We will see that for a fixed m, there is a unique component of the moduli
space that contains all surfaces of both types, and that this component is uniruled. The
proof of this fact is based on the following result.
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Theorem 2.19 Assume the hypothesis (a), (b) and (d) of Theorem 2.12. ThenDefπ/PN

has a smooth uniruled algebraic formally semiuniversal deformation space Vπ/PN .

Proof We construct an algebraic formally semiuniversal family of deformations of the
functor Defπ/PN

Xπ/PN → P
N
V

π/PN
→ Vπ/PN

over a smooth pointed irreducible base (Vπ/PN , 0).

LetYψ → P
N
Uψ

→ Uψ be the algebraic formally semiuniversal family of deforma-
tions of the functorDefψ (this space exists, see for example the proof ofTheorem2.12).

Let (YL ,L ) → UL be the algebraic formally semiuniversal deformation space of
the functorDef (Y ,L). LetY → U be the algebraic formally semiuniversal deformation
space of the functor DefY . Forgetful maps between functors induce a Cartesian dia-
gram, which in turn induces a Cartesian diagram of algebraic formally semiuniversal
deformation spaces as shown below.

Defψ ×DefY Def (Y ,L) Def (Y ,L)

Defψ DefY

Uψ ×U UL UL

Uψ U

Since H2(OY ) = 0, we have that the forgetful map Def (Y ,L) → DefY is smooth
(see [49], Proposition 2.3.6) and hence the map Defψ ×DefY Def (Y ,L) → Defψ is
smooth. Now using the fact that Defψ is smooth, we have that Defψ ×DefY Def (Y ,L)

is smooth and hence Uψ ×U UL is smooth. We set U(ψ,L) := Uψ ×U UL . The
semiuniversal families form the following Cartesian diagram

(Yψ ×Y YL → P
N
U(ψ,L)

,Lψ) (YL ,L )

(Yψ → P
N
Uψ

) Y

Hence (Yψ ×Y YL → P
N
U(ψ,L)

→ U(ψ,L),Lψ) is a smooth algebraic formally semi-
universal deformation of Defψ ×DefY Def (Y ,L) whereLψ is the pullback ofL under
the morphism Yψ ×Y YL → YL . Let the map Yψ,L := Yψ ×Y YL → U(ψ,L) be
denoted by p(ψ,L). Since H1(L⊗2) = 0, we have that p(ψ,L)∗(Lψ

⊗2) is free after pos-
sibly shrinking U(ψ,L). Let Vπ/PN := P(p(ψ,L)∗(Lψ

⊗2)) and consider the Cartesian
diagram

Yψ,L ×Uψ,L Vπ/PN Vπ/PN

Yψ,L Uψ,L
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Choose a basis
M⊕
i=0

OU(ψ,L)
si of p(ψ,L)∗(Lψ

⊗2). Let Xi ∈ H0(OV
π/PN

(1)) =
H0(p(ψ,L)∗(Lψ

⊗2)∗), with 0 ≤ i ≤ M be the dual basis. Now onYψ,L×U(ψ,L)
Vπ/PN ,

consider the divisor B =
M∑
i=0

Xi si . One can construct a relative Galois double cover

Xπ/PN → Yψ,L ×U(ψ,L)
Vπ/PN given by the equation t2 − B in the total space of

q∗(Lψ) where t is the tautological section of q∗(Lψ) and q : Yψ,L ×U(ψ,L)
Vπ/PN →

Yψ,L . The fibre of this relative double cover over a point (u, [r ]) ∈ Vπ/PN with

u ∈ U(ψ,L) and r ∈ H0(L ⊗2
ψ,u) is the double cover Xπ/PN ,u → Yψ,L,u given by the

line bundle Lψ,u and r ∈ H0(L ⊗2
ψ,u). This is therefore a smooth algebraic deformation

of the functor Defπ/PN .
Now note that given a flat family of polarized schemes f : (C ,M ) → S over

an affine scheme S with f∗(M ) free, giving a divisor D defined as the zero locus
of a section in H0(M ) flat over S is equivalent to giving a unique S-valued point
in P( f∗(M )) and hence a section S → P( f∗(M )). This along with the fact that
U(ψ,L) is formally semiuniversal implies that Vπ/PN is a smooth algebraic formally
semiuniversal deformation of the functorDefπ/PN . Also since it is a projective bundle
over a smooth affine scheme, it is uniruled. ��
Remark 2.20 Under the assumptions of Theorem 2.19, if X is smooth, it is easy to
prove the smoothness ofDefπ/PN only using the existence of a formally semiuniversal
deformation, without the explicit construction. Indeed, since H1(Nπ ) = 0 by [45],
Corollary 4.1 or [21], (2.11), and the assumptions H1(L⊗2) = H2(OY ) = 0, it follows
from the following exact sequence (see the top row of the commutative diagram in
[51], Proof of Proposition 1.10):

· · · → H0(Nπ ) → T 1(π/PN ) → H0(Nψ) → H1(Nπ )

→ T 2(π/PN ) → H1(Nψ) → · · ·

Since H1(Nπ ) = 0, and [49], Proposition 2.3.6 that the forgetful map Defπ/PN →
Defψ is smooth. Consequently Defπ/PN is smooth as Defψ is smooth by hypothesis.

The following corollary shows that if Defϕ has an algebraic formally universal
deformation space, then that space is also smooth and uniruled under suitable assump-
tions. In fact, one can also expect to determine the degree of a general deformation of
ϕ.

Corollary 2.21 Assume the hypotheses (a), (b), (c), and (d) of Theorem 2.12. Assume

(a) Defϕ has an algebraic formally universal deformation space,
(b) H0(Nψ ⊗ Eπ ) = 0.

Then the following happens:

(1) the natural forgetful map Defπ/PN → Defϕ is smooth,
(2) the algebraic formally universal deformation space of Defϕ is smooth and unir-

uled, and
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(3) a general deformation of ϕ is a composition of a double cover over a deformation
Y ′ of Y followed by a morphism of Y ′ → P

N that is birational onto its image.

Proof The smoothness of Defπ/PN → Defϕ is a consequence of Proposition 2.14,
thanks to assumption (b) and Theorem 2.19. Moreover,Defϕ is smooth sinceDefπ/PN

is smooth (see [49], Proposition 2.2.5 (iii)), thanks to Theorem 2.19.
Nowwe show that the algebraic formally semiuniversal deformation space ofDefϕ ,

which we denote by Uϕ , is uniruled. In the notation of Theorem 2.19, after possibly
shrinking Vπ/PN we can assume that Vπ/PN = U(ψ,L) × P

m where over a point
u ∈ U(ψ,L), the fibre which is a projective space that parametrizes the divisors in the
linear system of Lψ,u which are branch divisors of the finite morphism Xu → Yu .
The conclusion follows since a branch divisor is uniquely determined by the finite
morphism. Finally, part (3) follows from Corollary 2.16. ��

Now we provide the consequences of the above results on the deformations of X .

Corollary 2.22 Assume all the hypotheses of Corollary 2.21. Furthermore assume
Def X has an algebraic formally semiuniversal deformation space. If the natural for-
getful map Defϕ → Def X has surjective differential map then Def X is smooth and
the algebraic formally semiuniversal deformation space of X is uniruled.

Proof Since Defϕ is smooth by Corollary 2.21, the smoothness of Def X follows from
[49], Proposition 2.3.7. Composing by the smooth surjection Vπ/PN → Uϕ , we have a
smooth surjection Vπ/PN → U where U is the algebraic formally universal deforma-
tion space of Def X . Lastly, U is uniruled since X is normal and for a normal abelian
cover, the branch divisors are uniquely determined by X . ��

3 Deformations of irregular covers of surface scrolls

The objective of this section is to study the deformations of the canonicalmorphisms of
surfaces of each of the four types (1)m , (1′)m , (2)m and (3)m described in Theorem 1.3.
In particular, we aim to prove the following

Theorem 3.1 Let X be an irregular surface with at worst canonical singularities.
Assume the canonical bundle ωX is ample and globally generated, and the canonical
morphism ϕ is a quadruple Galois cover onto a smooth surface of minimal degree,
i.e, X belongs to one of the four families described in Theorem 1.3. Then we have the
following description of the algebraic formally semiuniversal deformation space Uϕ

of ϕ (that exists by Remark 2.17).

(1) Any deformation of ϕ factors through a double cover of a ruled surface over a
smooth curve of genus

(I) g = 1 if X is of type (1)m or (1′)m;
(II) g = m if X is of type (2)m;
(III) g = m + 1 if X is of type (3)m.

In particular, there does not exist any irreducible component in the algebraic
formally semiuniversal deformation space of ϕ, such that its general element is
birational onto its image.
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(2) If X belongs to the family of type (1)m (m ≥ 1), (1′)m (m ≥ 1), (2)2 or (3)m
(m ≥ 2), then Uϕ is irreducible and a general element ϕ′ of Uϕ is a two-to-one
morphism onto its image,

(I) which is a non-normal variety whose normalization is an elliptic ruled sur-
face with invariant e = 0, if X is a surface of type (1)m or (1′)m;

(II) which is a smooth surface ruled over a smooth curve of genus 2with invariant
e = −2, if X is a surface of type (2)2;

(III) which is a product of a smooth curve of genus 2 with a smooth non-
hyperelliptic curve of genus m + 1 if X is a surface of type (3)m (m ≥ 2).

Moreover, ϕ′ is induced by the complete linear series of a line bundle numeri-
cally equivalent to the canonical (in case (III), any element of Uϕ is a canonical
morphism).

(3) If X is of type (3)1, any deformation of ϕ is a canonical morphism of degree four
onto its image which is F0.

We will give the proof of Theorem 3.1 at the end of this section, as a consequence
of the results we will be proving in it. First we fix the notations that we are going to use
throughout this section. It follows from Theorem 1.3 that if π : X → Y is an irregular
quadruple Galois canonical cover of a smooth surface of minimal degree Y with trace
zero module E , then i : Y = P

1 × P
1 ↪→ P

N and the embedding is given by the
complete linear series |OY (C0 +m f )|. We have N = 2m+1 and we identifyOY (C0)

with OY (1, 0) and OY ( f ) with OY (0, 1). Notice that TY = OY (2, 0) ⊕ OY (0, 2),
whence h0(TY ) = 6. One has the following two exact sequences;

0 → OY (2, 0) ⊕ OY (0, 2) → TPN |Y → NY/PN → 0, (3.1)

0 → OY → OY (1,m)⊕N+1 → TPN |Y → 0. (3.2)

Lemma 3.2 Let Y = P
1 × P

1 ↪→ P
N be the embedding given by the complete linear

series |OY (C0 + m f )|.
(1) H0(TPN |Y ) = (N + 1)2 − 1, H0(NY/PN ) = (N + 1)2 − 7.
(2) H1(TPN |Y ) = 0, H1(NY/PN ) = 0.

Proof Since Y is regular with H2(OY ) = 0, the assertions about H j (TPN |Y ) for
j = 0, 1 follow from (3.2). Consequently, it is easy to compute H j (NY/PN ) for
j = 0, 1 using (3.1). ��

Nowwe fix our notations for nonrational ruled surfaces. A nonrational ruled surface
over a nonrational smooth curve C of genus g �= 0 is by definition a projective bundle
W = P(E ′) where E ′ is a rank 2 vector bundle on C . We will always assume that E ′
is normalized, i.e., E ′ has sections, but any twist of E ′ by any line bundle of negative
degree has no section. By definition e := −deg(det(E ′)) is the invariant of W . A
section of p′ : W → C determines a sectional curve C ′

0 with self intersection −e,
and let f ′ be the numerical class of a fiber of p′. It is known that Pic(W ) = ZC ′

0 ⊕
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p′∗Pic(C). In particular, the Néron-Severi group NS(W ) = ZC ′
0 ⊕ Z f ′ satisfying

C ′2
0 = −e, C ′

0 f
′ = 1, f ′2 = 0.

If a is a divisor on C , a f ′ denotes the pull-back p′∗a. The canonical bundle ωW =
OW (−2C ′

0 + (e + ωC ) f ′), where e := det(E ′), consequently

ωW ≡ −2C ′
0 − (e + 2 − 2g) f ′.

3.1 Deformations of canonical morphisms for types (1)m and (1′)m

For these surfaces, we have the following diagram.

X X1 Y
i

↪→ P
Nπ1

π

p1

We also know that p1∗OX1 = OY ⊕OY (−2C0). Since we have identifiedOY (C0)with
OY (1, 0), we can write p1∗OX1 = OY ⊕OY (−2, 0). It is easy to see that X1 = E×P

1

where ψ : E → P
1 is a smooth double cover, with ψ∗OE = OP1 ⊕ OP1(−2), i.e. E

is a smooth elliptic curve. We set ϕ1 := i ◦ p1 and call B the branch divisor of π1.

Proposition 3.3 Let X be a surface of type (1)m or (1′)m. Then the following happens:

(1) h1(OX1) = 1 and h2(OX1) = 0,
(2) h0(Np1) = 4 and h1(Np1) = 0,
(3) h0(TPN |Y ⊗ OY (−2, 0)) = 1 and h1(TPN |Y ⊗ OY (−2, 0)) = 0,
(4) h0(NY/PN ⊗ OY (−2C0)) = 3 and h1(NY/PN ⊗ OY (−2C0)) = 0,
(5) h0(Nϕ1) = (N + 1)2 and h1(Nϕ1) = 0; consequently ϕ1 is unobstructed.

Proof (1) Follows from h j (OX1) = h j (OY ) ⊕ h j (OY (−2, 0)) and Künneth formula.
(2) We apply [45], Corollary 4.1 or [21], (2.11). Since Y is regular, it follows that
h0(Np1) = h0(OY (4, 0)) − 1 = 4. Furthermore, since H2(OY ) = 0, we obtain
h1(Np1) = h1(OY (4, 0)) = 0. (3) Tensor (3.2) byOY (−2, 0) to obtain the following
exact sequence

0 → OY (−2, 0) → OY (−1,m)⊕N+1 → TPN |Y ⊗ OY (−2, 0) → 0.

It follows that h0(TPN |Y ⊗ OY (−2, 0)) = 1, h1(TPN |Y ⊗ OY (−2, 0)) = 0. (4) This
is a consequence of the long exact sequence associated to the exact sequence (3.1)
tensored by OY (−2, 0) and part (3). (5) We have the following short exact sequence
by Lemma 2.2

0 → Np1 → Nϕ1 → p∗
1NY/PN → 0. (3.3)
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It follows that h0(Nϕ1) = h0(Np1) + h0(p∗
1NY/PN ) = h0(Np1) + h0(NY/PN ) +

h0(NY/PN ⊗ OY (−2C0)), since h1(Np1) = 0 by part (2). We obtain h0(Nϕ1) =
(N + 1)2 thanks to part (2) and Lemma 3.2. The fact h1(Nϕ1) = 0 follows from the
vanishings of h1(Np1) (proven in part (2)), h1(NY/PN ) (proven in Lemma 3.2), and
h1(NY/PN ⊗ OY (−2C0)) (proven in part (4)). ��

Corollary 3.4 Let X be a surface of type (1)m or (1′)m. Then there exists a smooth,
affine irreducible algebraic curve T and a flat family of morphisms � : X → P

N
T

over T for which the following happens;

(a) �t : Xt → P
2m+1 is a morphism of degree two from a normal projective surface

with at worst canonical singularities for all t ∈ T − {0}. Further for any t ∈
T − {0}, the normalization of Im(ϕt ) is an elliptic ruled surface which is the
projectivization of a rank two split vector bundle on an elliptic curve and has
invariant e = 0. Further one can take �t to be the canonical morphism of Xt .

(b) �0 : X0 → P
2m+1 is the canonical morphism ϕ : X → P

N .

Moreover the forgetful map from Defπ1/PN → Defϕ is smooth and hence any defor-
mation of ϕ factors through a double cover of an elliptic ruled surface and is hence
a morphism of degree ≥ 2. Hence in particular ϕ cannot be deformed to a birational
morphism.

Proof We check the hypotheses of Theorem 2.12. Hypothesis (a) has been checked in
Proposition 3.3 (1). To check hypothesis (b), we need to prove that Defϕ1 is smooth,
which we have showed in Proposition 3.3 (5). To check hypothesis (c), we need to
check H0(Nϕ1) → H0(NY/PN ⊗ OY (−2, 0)) is non-zero. This is a consequence of
the long exact sequence associated to (3.3), and the facts that h1(Np1) = 0 (proven in
Proposition 3.3 (2)), and h0(NY/PN ⊗OY (−2, 0)) �= 0 (proven in Proposition 3.3 (4)).
The fact that Xt is a normal projective surface with at worst canonical singularities
follows thanks to [37]. Now note that since h1(TPN |Y ⊗OY (−2, 0)) = h1(TPN |Y ) = 0
(by Proposition 3.3 (3) and Lemma 3.2 (2)), we have that h1(ϕ∗

1 (TPN )) = 0 and
Defϕ → Def X1 is smooth. Hence the map H0(Nϕ1) → H1(TX1) is surjective. By
[47], Lemma 12, there exists an open set in H1(TX1) such that for a smooth curve along
a first order deformation belonging to the open set a general deformation of X1 along
the curve is an elliptic ruled surface which is the projectivization of a split rank two
vector bundlewith invariant e = 0.Also H0(Nϕ1) → H0(NY/PN ⊗OY (−2, 0)) is sur-
jective and there exists an open set of non-zero elements in H0(NY/PN ⊗OY (−2, 0)).
Hence one can choose an element (in fact an open set of elements) from H0(Nϕ1)

such that it maps to a non-zero element in H0(NY/PN ⊗ OY (−2, 0)) and the general
induced deformation X1t of X1 is an elliptic ruled surface which is the projec-
tivization of a split rank two vector bundle with invariant e = 0. Finally to check
hypothesis (d), note that H1(L⊗2) = H1(B) = 0 by Proposition 4.4, (1). Note that
Eπ1 = p∗

1(OY (−C0 − (m + 2) f )). Let Ep1 = OY (−2C0). Then

ωX1 = p∗
1(ωY ⊗ OY (2C0)) = p∗

1(OY (−2C0 − 2 f ) ⊗ OY (2C0)) = p∗
1(−2 f ).
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Thus, we obtain

ωX1 ⊗ ϕ∗
1 (OPN (−1)) = p∗

1(−2 f ) ⊗ p∗
1(−C0 − m f )

= p∗
1(OY (−C0 − (m + 2) f )) = Eπ1 . (3.4)

Hence by Theorem 2.12, we can take �t to be the canonical morphism of Xt . The
second assertion follows from Corollary 2.16. The existence of an algebraic formally
semiuniversal deformation space of ϕ follows from Remark 2.17. To finish the proof,
we need to show that H0(Nϕ1 ⊗Eπ1) = 0where Eπ1 is the trace zeromodule ofπ1.We
make use of the fact that X1 = E×P

1 for an elliptic curve E . Recall thatψ : E → P
1

is the morphism induced by the restriction of p1, satisfies ψ∗OE = OP1 ⊕ OP1(−2).
We have

π1∗OX = OX1 ⊕ (ψ∗OP1(−1) � OP1(−m − 2)).

Also recall that TX1 = (OE �OP1(2))⊕OX1 and Eπ1 = ψ∗OP1(−1)�OP1(−m−2).
It is easy to check that H1(TX1 ⊗ Eπ1) = 0. One has the following pullback of the
Euler sequence;

0 → OX1 → p∗
1OY (1,m)⊕N+1 → ϕ∗

1TPN → 0. (3.5)

We tensor (3.5) by Eπ1 and take the long exact sequence of cohomology. Notice that
H1(Eπ1) = 0, and H0(p∗

1OY (1,m)⊗Eπ1) = 0, consequently H0(ϕ∗
1TPN ⊗Eπ1) = 0.

Now consider the exact sequence;

0 → TX1 → ϕ∗
1TPN → Nϕ1 → 0. (3.6)

It follows from the long exact sequence of cohomology that H0(Nϕ1 ⊗ Eπ1) = 0. ��
Before moving on to the next case, we make a remark that will help us to see that for
these surfaces H1(Nϕ) �= 0.

Remark 3.5 It follows from the vanishing of H1(TX1 ⊗ Eπ1) and the long exact
sequence associated to (3.6) that h1(Nϕ1 ⊗ Eπ1) ≥ h1(ϕ∗

1TPN ⊗ Eπ1) ≥ h1(TPN |Y ⊗
OY (−1,−m − 2)) = N + 1, where the last equality follows from (3.2).

Corollary 3.6 Let X be a surface of type (1)m or (1′)m. Then there exists an irreducible
component Uϕ of the algebraic formally semiuniversal deformation space of ϕ (that
exists by Remark 2.17) whose general elements are two-to-one morphisms onto their
image whose normalization is an elliptic ruled surface with invariant e = 0. Further,
there does not exist any component of the algebraic formally semiuniversal deforma-
tion space of ϕ whose general elements are morphisms that are birational onto their
image.

Proof Since the curve constructed in Corollary 3.4 is irreducible, it is contained in
an irreducible component. Now the assertion follows by applying semicontinuity to
the reduced induced structure of the irreducible component (note that a general closed
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point of an irreducible scheme is the same as a general closed point of its reduced
induced structure). ��

The corollary of the following proposition shows that the image of a general mor-
phism in the irreducible component Uϕ constructed above is necessarily non-normal.
We remark that what we prove in the following proposition is a slightly stronger state-
ment than what we need in order to prove Corollary 3.8; to prove Corollary 3.8, we
only need the conclusion of the following proposition for e = 0.

Proposition 3.7 There does not exist a surface of general type X ′ with at worst canoni-
cal singularities and K 2

X ′ = 4pg(X ′)−8 that satisfies both of the following properties.

(1) There exists an ample and base point free line bundle K ≡ ωX ′ with h0(K ) =
pg(X ′).

(2) The morphism ϕ′ induced by the complete linear series |K | is two-to-one onto its
image which is a smooth elliptic ruled surface with invariant e ≥ 0.

Proof Suppose there exists such a surface X ′ with a numerically canonical bundle K
satisfying the properties in the proposition. Let the image of the morphism ϕ given by
|K | be W so that the morphism ϕ factors as

X ′ π ′−→ W ↪→ P
N ′

where N ′+1 = pg(X ′). Let the very ample line bundle onW be denoted by aC ′
0+b f ′.

Note that we have ϕ′∗(O
PN ′ (1)) = K . Themorphism is induced by the complete linear

series and hence

h0(K ) = h0(aC ′
0 + b f ′) + h0((aC ′

0 + b f ′) ⊗ Eπ ′) = N ′ + 1,

where Eπ ′ is the trace zero module of π ′. But now Eπ ′ ≡ KW ⊗ (−aC ′
0 − b f ′).

Hence h0((aC ′
0 + b f ′) ⊗ Eπ ′) = 0 which gives h0(aC ′

0 + b f ′) = pg(X ′). Since
hi (aC ′

0 + b f ′) = 0 for i = 1, 2 (see for example [27], Proposition 3.1), we obtain by
Riemann-Roch

1

2
(−a2e − ae + 2ab + 2b) = pg(X

′).

Now note that K = ϕ∗(OPN (1)) = π∗(aC ′
0 + b f ′). Hence K 2 = 2(aC ′

0 + b f ′)2 =
2(−a2e + 2ab). Using the relation K 2 = 4pg(X ′) − 8, we obtain

2(−a2e + 2ab) = 2(−a2e − ae + 2ab + 2b) − 8.

This gives 2b− 4 = ae. But very ampleness of aC ′
0 + b f ′ implies a ≥ 1, b ≥ ae+ 3

which implies −ae ≥ 2 which is a contradiction if e ≥ 0. ��
Corollary 3.8 Consider the irreducible componentUϕ obtained inCorollary 3.6. There
exists an open set U 0

ϕ ⊆ Uϕ such that for a closed point t ∈ U 0
ϕ , Im(ϕt ) is non-normal,

whose normalization is an elliptic ruled surfacewith e = 0which is the projectivization
of a rank two split vector bundle on the elliptic curve.
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Proof Since we are concerned with closed points t ∈ Uϕ , we can take the reduced
induced structure ofUϕ and consider the pullback of the formally semiuniversal family.

Thus, without loss of generality, one can assume that Uϕ is integral. Let X
�−→

P
N
Uϕ

→ Uϕ be the algebraic formally semiuniversal family of ϕ. Since the forgetful
map Defπ1/PN → Defϕ is smooth we have that the above deformation factors as

X
�1−→ X1

�1−→ P
N
Uϕ

→ Uϕ (� = �1 ◦�1). LetY = Im(�) = Im(�1). SinceX is
integral,Y is integral. SinceUϕ is integral, we have by generic flatness thatY → Uϕ

is flat (after possibly shrinkingUϕ). Consider the induced deformationX1 → Uϕ . By
our choice of Uϕ , we have that there exists t ∈ Uϕ such that X1t is an elliptic ruled
surface which is the projectivization of a rank two split vector bundle on the elliptic
curvewith invariant e = 0. Then by [47], Lemma 12,we have that for a general t ∈ Uϕ ,
X1t has the same property. Now for a general t ∈ Uϕ , Im(�t ) = Im(�1t ) = Yt . Also
for a general t ∈ Uϕ , we have that X1t → Yt is the normalization map. Assume for
a general t , that Yt is smooth. Then Yt ∼= X1t = Im(ϕt ). But this is a contradiction
to Proposition 3.7. ��

3.2 Deformation of canonical morphism for type (2)m (m ≥ 2)

Now we do analogous calculations for surfaces type (2)m . In this case, we have
the following diagram where p1∗OX1 = OY ⊕ OY (−3,−1) and p2∗OX2 = OY ⊕
OY (0,−m − 1).

X X1

X2 Y P
N

π1

π2 p1

p2 i

(3.7)

Notice X2 = P
1 × C for a smooth curve C that is a double cover ψ : C → P

1 with
ψ∗OC = OP1 ⊕ OP1(−m − 1). Set ϕ j = p j ◦ i for j = 1, 2 and call B the branch
divisor of π2.

Proposition 3.9 Let X be a surface of type (2)m (m ≥ 2). Then the following happens;

(1) h1(OX2) = m and h2(OX2) = 0,
(2) h0(Np2) = 2m + 2 and h1(Np2) = 0,
(3) h0(TPN |Y ⊗ OY (0,−m − 1)) = h1(OY (0,−m − 1)) = m and h1(TPN |Y ⊗

OY (0,−m − 1)) = 0,
(4) h0(NY/PN ⊗OY (0,−m − 1)) = 5m − 2 and h1(NY/PN ⊗OY (0,−m − 1)) = 0,
(5) h0(Nϕ2) = (N+1)2+7m−7 and h1(Nϕ2) = 0where ϕ2 = p2◦i ; consequently,

ϕ2 is unobstructed.

Proof (1) Follows from h j (OX2) = h j (OY ) ⊕ h j (OY (0,−m − 1) and Künneth for-
mula. (2) We apply [45], Corollary 4.1 or [21], (2.11). Since Y is regular, it follows
that h0(Np0) = h0(OY (0, 2m + 2)) − 1 = 2m + 2. Furthermore, since H2(OY ) = 0,
we obtain h1(Np2) = h1(OY (0, 2m+2)) = 0. (3) The assertion follows by tensoring
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the exact sequence (3.2) by OY (0,−m − 1) and taking the long exact sequence of
cohomology. (4) This is obtained by tensoring (3.1) by OY (0,−m − 1) and taking
cohomology. (5) As before, the assertion follows from the following exact sequence
(see Lemma 2.2)

0 → Np2 → Nϕ2 → p∗
2NY/PN → 0.

Since h1(Np2) = 0, we obtain h0(Nϕ2) = h0(Np2) + h0(NY/PN ) + h0(NY/PN ⊗
OY (0,−m − 1)). We get the value of h0(Nϕ2) from part (2), (4) and Lemma 3.2.
Finally, h1(Nϕ2) = 0 by part (2), (4) and Lemma 3.2. ��

Corollary 3.10 Let X be a surface of type (2)m (m ≥ 2).

(1) Suppose m = 2, then there exists a smooth, affine irreducible algebraic curve T
and a flat family of morphisms � : X → P

N
T over T for which the following

happens;

(a) �t : Xt → P
5 is a morphism of degree two from a normal projective surface

with at worst canonical singularities for all t ∈ T − {0}. Further for any
t ∈ T − {0}, the normalization of Im(ϕt ) is a ruled surface over a smooth
curve of genus 2 and has invariant e = −2. Further one can take �t to be the
canonical morphism ofXt .

(b) �0 : X0 → P
5 is the canonical morphism ϕ : X → P

N .

(2) The forgetful map from Defπ2/PN → Defϕ is smooth and hence any deformation
of ϕ factors through a double cover of a ruled surface over a curve of genus m
and is hence a morphism of degree bigger than or equal to 2 onto its image. In
particular ϕ cannot be deformed to a birational morphism.

Proof (1) The existence of the curve T so that for a general t ∈ T , �t has degree
two follows from Theorem 2.12, Proposition 3.9 and [37]. Note that since h1(T

P5 |Y ⊗
OY (0,−3)) = h1(T

P5 |Y ) = 0 (by Proposition 3.9 (3), Lemma 3.2 (2)), we have
that h1(ϕ∗

2 (TP5)) = 0 and Defϕ2 → Def X2 is smooth. Hence the map H0(Nϕ2) →
H1(TX2) is surjective.By [47], Lemma12, there exists anopen set inH1(TX2) such that
for a smooth curve along a first order deformation belonging to the open set a general
deformation of X2 along the curve is a ruled surface over a smooth curve of genus
2 with invariant e = −2. Also H0(Nϕ2) → H0(NY/P5 ⊗ OY (0,−3)) is surjective
and there exists an open set of non-zero elements in H0(NY/P5 ⊗OY (0,−3)). Hence
one can choose an element (in fact an open set of elements) from H0(Nϕ2) such that
it maps to a non-zero element in H0(NY/P5 ⊗ OY (0,−3)) and the general induced
deformationX2t of X2 is a ruled surface over a smooth curve of genus 2 with invariant
e = −2. The trace zero module of the finite map π2 is Eπ2 = ωX2 ⊗ ϕ∗

2 (OPN (−1))
(this follows from a computation identical to the one in the proof of Corollary 3.4
when we showed (3.4)). The fact that �t can be taken to be the canonical morphism
of Xt follows from Theorem 2.12.
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(2) Recall that X2 = P
1×C for a smooth curveC that is a double coverψ : C → P

1

with ψ∗OC = OP1 ⊕ OP1(−m − 1). We have the following splitting of π2∗OX :

π2∗OX = OX2 ⊕ (OP1(−3) � ψ∗OP1(−1)).

Also, TX2 = (OP1�ψ∗OP1(1−m))⊕OP1(2)�OC , andEπ2 = OP1(−3)�ψ∗OP1(−1)
is the trace zero module of π2. It is easy to check that H1(TX2 ⊗ Eπ2) = 0. One has
the following pullback of the Euler sequence;

0 → OX2 → p∗
2OY (1,m)⊕N+1 → ϕ∗

2TPN → 0.

By tensoring the above exact sequence by Eπ2 and taking cohomology, we obtain
H0(ϕ∗

2TPN ⊗ Eπ2) = 0. Consequently, the exact sequence;

0 → TX2 → ϕ∗
2TPN → Nϕ2 → 0.

shows that H0(Nϕ2 ⊗Eπ2) = 0, and the assertion follows from Proposition 2.14 (and
Corollary 2.16). ��

The following corollary is analogous to Corollary 3.6 and follows immediately
from Corollary 3.10.

Corollary 3.11 Let X be a surface of type (2)m (m ≥ 2).

(1) If m = 2, there exists an irreducible component Uϕ of the algebraic formally
semiuniversal deformation space of ϕ (that exists by Remark 2.17) whose general
elements are two-to-one morphisms onto their image, whose normalization is a
ruled surface over a smooth curve of genus 2 and has invariant e = −2.

(2) There does not exist any component of the algebraic formally semiuniversal defor-
mation space of ϕ whose general elements are morphisms that are birational onto
their image.

The following propositions and corollary show that the image of a generalmorphism
in the irreducible component constructed above is smooth. They also show that this
open set intersects the locally closed subloci where the deformed morphism is again
the canonical morphism. Recall that for a ruled surface X → C of invariant e over a
smooth curve of genus g ≥ 1, we denote C ′

0 and f ′ denote the numerical classes of a
section and a fibre respectively satisfying C ′2

0 = −e, f ′2 = 0 and C ′
0 · f ′ = 1.

Proposition 3.12 Suppose that there exist a flat family (X2 → T ,L ) of polarized
surfaces ruled over a curve C of genus m over a smooth one dimensional base T with

(1) X20 has invariant 0 and L0 ≡ C ′
0 + 2m f ′

(2) X2t has invariant −m or −(m − 1) accordingly as m is even or odd.

Then after possibly shrinking T ,Lt ≡ C ′
0+ 3m

2 f ′ ifm is even andLt ≡ C ′
0+ 3(m−1)

2 f ′
if m is odd.
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Proof We prove the statement for m even. The proof is identical for m odd. Let

X20 = X2. Let X2
q−→ C be the smooth morphism. We consider the following

commutative diagram (see [51], proof of Proposition 1.10)) and argue similarly to the
proof of Proposition 2.14:

. . . T 1(X2/C) = H1(TX2/C ) T 1(q) H1(TC ) T 2(X2/C) = H2(TX2/C ) T 2(q) H2(TC ) . . .

. . . T 1(X2/C) = H1(TX2/C ) H1(TX2) H1(q∗(TC )) T 2(X2/C) = H2(TX2/C ) H2(TX2) H2(q∗(TC )) . . .

α1 β1
α2 β2

Note that since q∗(OX2) = OC , Hi (q∗(TC )) = Hi (TC ) for i = 1, 2. Hence the map
β1 is surjective and the map β2 is injective and therefore α1 is surjective and α2 is
injective. This implies that the forgetful map Defq → Def X2 is smooth. Hence there

exists a deformation of C → T of C so thatX2 → T factors asX2
Q−→ C → T . Fix

a line bundle OC (1) of degree one on C . Since H2(OC ) = 0, we have that the line
bundle OC (1) lifts to a line bundle OC (1). Now the numerical class of Q∗(OC (1))
restricts to the numerical class of f ′ on the central fibre and it is the pullback of a
degree one line bundle on Ct on a general fibre. Hence the numerical class of f ′ on
X2 deforms to the numerical class of f ′ on X2t . Now suppose that a line bundle of
numerical class C ′

0 in X2 deforms to a line bundle of numerical class aC ′
0 + b f ′ on

X2t for t �= 0. Using the fact that their self intersections are the same and noting that
C ′2
0 = 0 on X2 while C ′2

0 = m on X2t , we have that a2m + 2ab = 0. Suppose that
a = 0. Then for sufficiently large k, C ′

0 + k f ′ which is very ample on X20 deforms to
(k + b) f ′ which is not ample. Hence a �= 0 and b = −am

2 . Then C ′
0 on X20 deforms

to a(C ′
0 − m

2 f ′) on X2t . Considering that on X20, C ′
0 · f ′ = 1, we have that a = 1.

Hence our statement is proven. ��
We prove a slightly stronger version of a result we need to prove Corollary 3.14.

More precisely we will use the result proven below for m = 2.

Proposition 3.13 Suppose X is a ruled surface over a curve C of genus m with invari-
ant−m or−(m−1) accordingly asm is even or odd. Then a line bundle L ≡ C0+ 3m

2 f

is very ample if m is even and a line bundle L ≡ C0 + 3(m−1)
2 f is very ample if m is

odd.

Proof We use the following criterion for very ampleness (see [20] Corollary 2.13): let
|H | be the complete linear series of a line bundle H ≡ C0 + b f . Then |H | is very
ample if and only for any two points P and Q onC , h0(H −(P+Q) f ) = h0(H)−4.
Letm be even and consider L ≡ C0 + 3m

2 f on a ruled surface with invariant −m over
a curve of genus m with m ≥ 2. We need to show, for any two points P and Q on C ,

h0(L − (P + Q) f ) = h0(L) − 4.

Let X = P(E ) where E is normalized and since e < 0, we have that E is stable. Since
higher pushforward of any bundle of numerical equivalence class C0 + b f is zero we
can compute the above cohomology by pushing forward to the base curve of genusm.
Notice that L − (P + Q) f ≡ C0 + ( 3m2 − 2) f . Hence it is enough to show that for
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any two line bundles L1 and L2 on C with degree 3m/2 − 2 and 3m/2 respectively,
we have

h0(L1 ⊗ E ) = h0(L2 ⊗ E ) − 4.

For simplicity, let us denote L1 byOC ( 3m2 −2), and L2 byOC ( 3m2 ).ApplyingRiemann-
Roch to the vector bundles OC ( 3m2 − 2) ⊗ E and OC ( 3m2 ) ⊗ E and subtracting we
get

h0
(
E

(
3m

2

))
− h0

(
E

(
3m

2
− 2

))
= h1

(
E

(
3m

2

))
− h1

(
E

(
3m

2
− 2

))

+c1

(
E

(
3m

2

))
− c1

(
E

(
3m

2
− 2

))
.

Since E is of rank two we have that c1(E ( 3m2 ) − c1(E ( 3m2 − 2)) = 4. Hence we are
done if we show

h1
(
E

(
3m

2

))
= h1

(
E

(
3m

2
− 2

))
= 0.

Note that h1(E ( 3m2 )) = h0(E ∗(m2 −2)). Now the slope of the vector bundleμ(E ∗(m2 −
2)) = −2. Also since E is stable we have that E ∗(m2 − 2) is stable. Since its slope
is negative we have that h0(E ∗(m2 − 2)) = 0. Now note that h1(E ( 3m2 − 2)) =
h0(E ∗(m2 )). Note that deg(E ∗(m2 )) = 0 and E ∗(m2 ) is stable since E is stable. Then
h0(E ∗(m2 )) = 0 since for degree 0 vector bundles the existence of a section contradicts
stability. The proof for the case m odd follows exactly along the same lines. ��
Corollary 3.14 In Corollary 3.10 (1), we can choose the curve T so that after possibly
shrinking T , for t ∈ T , t �= 0, Im(�t ) is smooth and �t can be taken to be the
canonical morphism ofXt .

Proof We resume notations of Corollary 3.10. Consider the factorization X
π2−→

X2
p2−→ Y

i−→ P
N . Let ϕ2 = i ◦ p2. Note that since X2 = C × P

1, where
C is a smooth curve of genus 2, we have that it is a ruled surface over C and
has invariant e = 0. Consider L = ϕ∗

2 (OPN (1)) = p∗
2(OY (C0 + 2 f )) (recall

C0 and f are the classes of a section and fibre of Y ). Since C2
0 = f 2 = 0 and

C0 · f = 1, we have that p∗
2(OY (C0)) ≡ aC ′

0, and p∗
2(OY ( f )) ≡ b f ′, with ab = 2.

Then since h0(p∗
2OY (C0)) = 2 we have that a = 1 and hence b = 2. Hence

p∗
2(OY (C0 + 2 f )) ≡ C ′

0 + 4 f ′.
Note that the pair (X2, L) is unobstructed since h2(EL) = 0 (since h2(OX2) =

h2(TX2) = 0). Also since h2(OX2) = 0, Def (X2,L) → Def X2 is smooth. Choose a

smooth curve T from the smooth versal deformation space of (X2, L). Let (X2
σ−→

T ,L ) be the family obtained. Then for a general such curve, for t �= 0, X2t has
invariant −2. By Proposition 3.12, Lt ≡ C ′

0 + 3 f ′ which is very ample by Propo-
sition 3.13. Since H1(L) = 0, (easy to check by projection formula) we have that
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(after shrinking T ), σ∗(L ) is locally free of rank h0(L) and we get a morphism

X2
�2−→ P(σ∗(L )) → T which is an embedding for t �= 0 since it is given by the

complete linear series of a line bundle numerically equivalent to C ′
0 + 3 f ′, which is

very ample. Note that Eπ2 = ωX2 ⊗ ϕ∗
2 (L

∗) and let B ∈ |(ωX2 ⊗ ϕ∗
2 (L

∗))−2| be the
divisor giving π2. Note that (ω−2

X2/T
⊗ �∗

2(OP
N
T
(2))) is a lift of (ωX2 ⊗ ϕ∗

2 (L
∗))−2.

Then by Remark 2.10 one can construct a lift B of B and hence a relative double
cover �2 since H1(OX2(B)) = 0 (easy to check, see the proof of Proposition 4.7
(1)). Consider � = �2 ◦ �2. For t �= 0, �t is the composition of a double cover �2t
followed by an embedding�2t of a smooth surface given by the complete linear series
of a very ample line bundle Lt . Moreover �2t is branched along (ωX2t ⊗ L ∗

t )−2.
Hence�t is the canonical morphism ofXt (by Remark 2.11) and its image is smooth.

��

3.3 Deformation of canonical morphism for type (3)m

Recall that surfaces of type (3)m are of the form C1 × C2 where C1 is a smooth
hyperelliptic curve of genus 2 and C2 is a smooth hyperelliptic curve of genus m + 1.
The deformations of ϕ can be studied with the same machinery used so far. Thus,
they fit in the same theoretical framework as the deformations of the other three
types of quadruple Galois covers. However, product of curves can be dealt with in a
different, ad-hoc, easier way. We start with a consequence of Beauville’s numerical
characterization of minimal surfaces of general type satisfying pg = 2q − 4 (see [9]):

Corollary 3.15 Let C ′
1 be a curve of genus 2, let C ′

2 be a curve of genus g, g ≥ 2, let
X ′ = C ′

1 ×C ′
2 and letM(pg,q,K 2) be the moduli space of minimal surfaces of general

type with invariants (pg, q, K 2) to which [X ′] belongs. Then
(1) M(pg,q,K 2) = M(2 g,g+2,8 g−8) = M2 × Mg if g > 2; and

(2) M(pg,q,K 2) = M(4,4,8) = Sym2(M2) if g = 2.

In particular, M(pg,q,K 2) is irreducible. Moreover, the canonical morphism of X ′ is
the composition of ψ ′

1 ×ψ ′
2, where ψ ′

i is the canonical morphism of C ′
i , and the Segre

embedding of P1 × P
g−1.

Proof The corollary follows from the fact that ωX ′ = ωC ′
1
� ωC ′

2
, Kunneth formula,

Beauville’s characterization ofminimal surfaces of general type satisfying pg = 2q−4
(see [9]) and [44], Theorems 4.1, 4.2. ��
Proposition 3.16 Let X be a (smooth) surface of type (3)m and let Uϕ be the algebraic
formally semiuniversal deformation space of Defϕ . For any [(X ′, ϕ′)] of Uϕ , we have
X ′ = C ′

1 × C ′
2, where C

′
1 is a curve of genus 2 and C ′

2 is a curve of genus g, g ≥ 2,
and ϕ′ is the canonical morphism of X ′, so Uϕ is irreducible. In particular:

(1) If m = 1, then any deformation of ϕ is a morphism of degree 4 onto its image,
which is isomorphic to P1 × P

1.
(2) If m ≥ 2, then any deformation ϕ′ of ϕ has degree 2 or 4 (in particular, ϕ′ is not

birational onto its image). If ϕ′ is general, then ϕ′ has degree 2.
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Proof The spaceUϕ admits a dominantmorphism toM(2g,g+2,8g−8), soCorollary 3.15
implies X ′ = C ′

1 × C ′
2, where C

′
1 is a curve of genus 2 and C ′

2 is a curve of genus g,
g ≥ 2. By abuse of notation we will call C2 any of the fibers of the projection from X
to C1. For any [(X ′, ϕ′)] ∈ Uϕ , a fiber of the projection from X ′ to C ′

1, which we will
call C ′

2 by the same abuse of notation, is a deformation of some of the C2, and ϕ′|C ′
2
is

the deformation of ϕ|C2 , which, by the Künneth formula, is the canonical morphism of
C2. Then ϕ′|C ′

2
is the canonical morphism of C ′

2, so the restriction of L
′ = ϕ′(OPN (1)

to each fiber of the projection to C ′
1 is the canonical bundle of the fiber. Then (see e.g.

[10], §11.5 and [50], Proposition 3.3.8), L ′ ⊗ ω∗
X ′ is the box product of a line bundle

of C ′
1 and a line bundle of C ′

2; consequently, L
′ = (ωC ′

1
⊗ δ1) � (ωC ′

2
⊗ δ2), where

δ′
i is a degree 0 line bundle on C ′

i . Since ϕ′ is induced by |L ′|, we have, by Künneth
formula, 2 g = h0((ωC ′

1
⊗ δ1) � (ωC ′

2
⊗ δ2)) = h0(ωC ′

1
⊗ δ1) · h0(ωC ′

2
⊗ δ2). Then

h0(ωC ′
1
⊗ δ1) = 2 and h0(ωC ′

2
⊗ δ2) = g, so δ1 = δ2 = 0. Thus ϕ′ is the composition

of ψ ′
1 × ψ ′

2, where ψ ′
i is the canonical morphism of C ′

i , and the Segre embedding
of P1 × P

g−1. Therefore, ϕ′ is the canonical morphism of X ′. Then Uϕ is birational
to M(2g,g+2,8g−8), hence irreducible (see Corollary 3.15). Since ϕ′ factors through
ψ ′
1 × ψ ′

2 and the Segre embedding, (1) and (2) are straight-forward. ��
Remark 3.17 Using arguments similar to the ones employed in Sects. 3.1 and 3.2, one
can prove that, if X is of type (3)m , m ≥ 2, then any deformation of ϕ factors through
a double cover of a ruled surface over a curve of genus m + 1.

Proof It follows immediately from Corollaries 3.6, 3.8, 3.11, 3.14, Proposition 3.16,
Remark 3.17 and Theorem 4.1. ��

4 Moduli components of irregular covers of surface scrolls

In this section we will study the moduli components of irregular quadruple covers of
minimal degree. Furthermore, if the cover is unobstructed, we know that there is a
unique component of the moduli of surfaces of general type; in that case we would
like to understand the geometry of this moduli component. Regarding surfaces X of
type (1)m and (1′)m , our result is as follows.

Theorem 4.1 Let X be a surface of type (1)m or (1′)m. Then

(1) the functorsDefϕ , where ϕ is the canonical morphism of X, andDef X are smooth.
Hence in particular any X of type (1)m or (1′)m is contained in aunique irreducible
component of the moduli of surfaces of general type;

(2) there exists a unique irreducible component of the moduli of surfaces of gen-
eral type M(8m,1,2m+2) containing all surfaces of both types. This component is
uniruled of dimension 8m + 20; and

(3) the canonical morphism of a general element of this component is a two-to-one
morphism onto its image which is a non-normal variety whose normalization is
an elliptic ruled surface which is the projectivization of a rank two split vector
bundle over an elliptic curve and has invariant e = 0.
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The situation is not as clean as the previous theorem for general surfaces of type
(2)m for m ≥ 3, even though the result is neat for m = 2. In particular, we show the
following.

Theorem 4.2 Let X be a surface of type (2)m. Then

(1) If m = 2, then Defϕ , where ϕ is the canonical morphism of X, and Def X are
smooth. Hence in particular X is contained in a unique irreducible component of
the moduli of surfaces of general type. Furthermore,

(a) there exists a unique irreducible component of the moduli space of surfaces
of general type M(16,2,6) containing X (and all other surfaces of type (2)2).
This component is uniruled of dimension 28, and

(b) the canonical morphism of a general element in that component is a double
cover onto its image whose normalization is a ruled surface over a smooth
curve of genus 2 and has invariant e = −2.

(2) If m ≥ 3, there does not exist an irreducible component of the moduli of surfaces
of general typeM(8m,m,2m+2) containing X, such that the canonical morphism of
a general element in that component is birational onto its image.

The proofs of Theorems 4.1 and 4.2 are quite involved and we devote the next two
subsections to them. In contrast, surfaces of type (3)m , since they are product of two
curves, are much easier to handle:

Remark 4.3 Recall that, if X is a surface of type (3)m , then X is a product of smooth
hyperelliptic curves of genus 2 and m + 1. Then, as pointed out in Corollary 3.15, X
belongs to the moduli spaceM = M(2m+2,m+3,8m), which is irreducible.We also saw
in Corollary 3.15 thatM(4,4,8) = Sym2(M2) and that, if m ≥ 2,M = M2 ×Mm+1.
It follows that M is of dimension 3m + 3 and is uniruled, since M2 is uniruled (in
fact, rational, see [11, 36]). By Corollary 3.15, ifm ≥ 2, then the canonical morphism
of a surface, general in M , is of degree 2, and its image is isomorphic to P

1 × C ′
2,

where C ′
2 is a curve of genus m + 1. If m = 1, the canonical morphism of any surface

of M is a quadruple cover of P1 × P
1 (see again Corollary 3.15).

In contrast to Theorems 4.1 (2), 4.2 (2) and Remark 4.3, it is shown in [12, 14–16,
21] (see also [3] and [24]) that there are irreducible components of moduli spaces
of surfaces of general type such that the canonical morphism of a general element
is birational onto its image. At the same time, in these components there is a proper
sublocus in which the canonical morphism has degree 2.

4.1 Description of moduli components of surfaces of types (1) and (1′)

First we aim to prove Theorem 4.1. Throughout this subsection, we work with the
notations of Sect. 3.1. Let B ∈ |ψ∗OP1(2) � OP1(2m + 4)| be the branch divisor of
π1. In order to do that, we need the following cohomology computations.
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Proposition 4.4 Let X be a surface of type (1)m or (1′)m.

(1) h0(OX1(B)) = 8m + 20 and h1(OX1(B)) = h2(OX1) = 0.
(2) h0(π∗

1 TX1) = 4, h1(π∗
1 TX1) = 4 and h2(π∗

1 TX1) = 4m.

Furthermore, if X is smooth (and, hence, of type (1′
m)), then:

(3) h0(Nπ1) = 8m + 20 and h1(Nπ1) = h2(Nπ1) = 0.
(4) h1(TX ) = 8m + 20, h2(TX ) = 4m.
(5) h0(Nϕ) = 4m2 + 16m + 24, and h1(Nϕ) ≥ 2m + 2.

Proof (1) It is easy to see from Künneth formula, and projection formula that

h0(OX1(B)) = 8m + 20, h1(OX1(B)) = 0, and h2(OX1(B)) = 0.

Then (3) follows from (1) and the following exact sequence

0 → OX1 → OX1(B) → OB(B) → 0,

[45], Corollary 4.1 or [21], (2.11), and Proposition 3.3 (1).
(2): One checks this readily by Proposition 3.3 (1), Künneth formula, and projection

formula since h j (π∗
1 TX1) is nothing but the following sum

h j (OX1) + h j (OE � OP1(2)) + h j (ψ∗OP1(−1) � OP1(−m − 2))

+h j (ψ∗OP1(−1) � OP1(−m)).

(4): We use the following exact sequence

0 → TX → π∗
1 TX1 → Nπ1 → 0. (4.1)

Since h0(TX ) = 0, and h1(Nπ1) = h2(Nπ1) = 0 by part (3), we get the following
two exact sequences:

0 → H0(π∗
1 TX1) → H0(Nπ1) → H1(TX ) → H1(π∗

1 TX1) → 0,

0 → H2(TX ) → H2(π∗
1 TX1) → 0.

The conclusion now follows from parts (2) and (3).
(5): We get the following exact sequence from Lemma 2.2:

0 → Nπ1 → Nϕ → π∗
1Nϕ1 → 0. (4.2)

We first compute h0(Nϕ). From part (1), we get h1(Nπ1) = 0. It follows from
projection formula that

h0(Nϕ) = h0(Nπ1) + h0(Nϕ1) + h0(Nϕ1 ⊗ Eπ1).
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Recall that we have checked the vanishing of h0(Nϕ1 ⊗ Eπ1) in the proof of Corol-
lary 3.4. Thus,

h0(Nϕ) = 8m + 20 + (N + 1)2

by part (3) and Proposition 3.3 (5). The conclusion follows since N + 1 = 2m + 2.
Notice that h2(Nπ1) = 0 by part (3). From (4.2), we obtain that h1(Nϕ) =

h1(Nϕ1) + h1(Nϕ1 ⊗ Eπ1). The conclusion follows from Remark 3.5. ��
Proof of Theorem 4.1 We resume the notations of Sect. 3.1. Fix a surface X of type
(1)m or (1′)m . First note that Defϕ and Def X have algebraic formally semiuniversal
deformation spaces by Remark 2.17.

We apply Corollary 2.21. All the hypotheses have been verified in the proofs of
Proposition 4.4 and Corollary 3.4. It follows that Defϕ is unobstructed.

We first show that Def X is unobstructed for a smooth surface of family (1′)m . We
will show unobstructedness of Def X for a singular surface of family (1′)m and any
surface of family (1)m after we prove part (2). We use Corollary 2.22. It remains to
verify that the differential of the mapDefϕ → Def X is surjective. Since the canonical
bundle ωX lifts to any first order deformation of X , it is enough to show that any
section of ωX lifts to any first order deformation of (X , ωX ). We aim to use the section
lifting criterion (Proposition 2.5). Consider the Atiyah extension (2.1)

0 → OX → EωX → TX → 0. (4.3)

Since the canonical bundle ωX lifts to any first order deformation of X , H1(EωX ) →
H1(TX ) is surjective. This, together with H0(TX ) = 0 implies that

h0(EωX ) = 1 and h1(EωX ) = h1(OX ) + h1(TX ) = 8m + 21

where the last equality follows from Proposition 4.4 (3) and Theorem 1.3. Now con-
sider the following exact sequence (2.3)

0 → EωX → H0(ωX )∨ ⊗ ωX → Nϕ → 0. (4.4)

Recall that a section in H0(ωX ) lifts to a first order deformation η ∈ H1(EωX )

of the pair (X , ωX ) if and only if its image under the map H1(EωX ) →
Hom(H0(ωX ), H1(ωX )) induced from (4.4) is zero (see Proposition 2.5). Thus, it is
enough to show that the map H1(EωX ) → H0(ωX )∨ ⊗ H1(ωX )) induced from (4.4)
is zero. Now, (4.4) gives rise to the following exact sequence

0 → H0(EωX ) → H0(ωX )∨ ⊗ H0(ωX ) → H0(Nϕ) → H1(EωX ). (4.5)

Thus, the dimension of the image of H0(Nϕ) → H1(EωX ) is

h0(EωX ) − (h0(ωX ))2 + h0(Nϕ) = 1 − (2m + 2)2 + 4m2 + 16m + 24 = 8m + 21
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where the last equality follows from Proposition 4.4 and Theorem 1.3. But this dimen-
sion is the same as h1(EωX ). This shows that (4.5) is surjective on the right, and
consequently any section of ωX lifts to any first order deformation of (X , ωX ). Thus
the differential of Defϕ → Def X is surjective. Thus Def X is unobstructed, and the
algebraic formally semiuniversal (in fact universal) deformation space UX of this
functor is smooth, irreducible and uniruled.

(2) We now show that there exists a unique component of the moduli of surfaces of
general type containing all surfaces of both types (1)m and (1′)m . We do this by the
following few steps. ��

Step 1. We claim that all bidouble covers i.e, the surfaces of the family (1′)m , are
contained in an irreducible component of the moduli. We will show this by showing
that the bidouble covers in (1′)m are parametrized by a subset and, smooth ones, by a
(non-empty) open set ofP(H0(2C0+(2m+4) f ))×P(H0(4C0)), which is irreducible.

Let L1 = −C0 − (m + 2) f and L2 = −2C0 on Y = P
1 × P

1. Note that Y is rigid
and consider the following Cartesian square.

Y × P(p∗(L⊗−2
1 )) ×k P(p∗(L⊗−2

2 )) P(p∗(L⊗−2
1 )) ×k P(p∗(L⊗−2

2 ))

Y Spec(C)

q
p

Furthermore, consider the divisor B1 = {(x, r , s) ∈ Y × P(p∗(L⊗−2
1 )) ×k

P(p∗(L⊗−2
2 ))|r(x) = 0} = q∗(L⊗−2

1 ) and B2 = {(x, r , s) ∈ Y × P(p∗(L⊗−2
1 )) ×k

P(p∗(L⊗−2
2 ))|s(y) = 0} = q∗(L⊗−2

2 ). Let

T = Y × P(p∗(L⊗−2
1 )) ×k P(p∗(L⊗−2

2 )).

Let L ⊗−1
1

f1−→ T and L ⊗−1
2

f2−→ T denote the total spaces of the line bun-
dles q∗(L⊗−1

1 ) and q∗(L⊗−1
2 ) on T . Moreover, let t1 ∈ H0( f ∗

1 q
∗(L⊗−1

1 )) and
t2 ∈ H0( f ∗

2 q
∗(L⊗−1

2 )) be the corresponding tautological sections. Then one can
consider relative double covers on T given as the zero locus of t2i − f ∗

i Bi inside
L ⊗−1

i .

T1 = (t2i − f ∗
i Bi )0 L ⊗−1

i

T

Nowconsider the fibre product of the relative double covers T1 and T2 over T . Consider
the flat family T1 ×T T2 → T → P(p∗(L⊗−2

1 )) ×k P(p∗(L⊗−2
2 )). Pulling back the

composed morphism at a point (r , s) ∈ P(p∗(L⊗−2
1 )) ×k P(p∗(L⊗−2

2 )) we have the
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following Cartesian square

Yr ×Y Ys T1 ×T T2

Y T

(r , s) P(p∗(L⊗−2
1 )) ×k P(p∗(L⊗−2

2 ))

where Yr and Ys denote the double covers constructed by r ∈ |L⊗−2
1 | and s ∈ |L⊗−2

2 |.
By Theorem 1.3, each surface of family (1′)m is a fiber product Yr ×Y Ys , for uniquely
determined divisors r in |L⊗−2

1 | and s in |L⊗−2
2 |, so surfaces belonging to family (1′)m

are parametrized by a subset of P(p∗(L⊗−2
1 )) ×k P(p∗(L⊗−2

2 )). A surface of family
(1′)m is smooth if and only the divisors r and s are smooth and meet transversally.
Such divisors exist by Bertini. Then, generic smoothness implies that smooth surfaces
are parametrized by a (non-empty) open set of P(p∗(L⊗−2

1 )) ×k P(p∗(L⊗−2
2 )).

Step 2. In this step we note that there is a unique irreducible component, say D, of
the moduli containtaing all surfaces of type (1′)m . This comes from Step 1 and the
unobstructedness of the smooth surfaces of type (1′)m .

Step 3.We claim that any cyclic cover in (1)m can be deformed to a smooth bidouble
cover along an irreducible curve whose general fibre parametrizes smooth surfaces of
general type. In particular, given any cyclic cover, there exists an irreducible component
D′ containing the cyclic cover and a smooth bidouble cover. Indeed, take the cyclic
cover X . Its intermediate cover X1 is smooth. The cyclic cover is obtained by a (special)
choice of branch divisor from p∗

1(2C0+2(m+2) f ). Since X1 is smooth, by a different
(special) choice of branch divisor, one can construct a smooth bidouble cover over X1.
Since P(H0(p∗

1(2C0 + 2(m + 2) f ))) is irreducible and a general member is smooth
by Bertini, we have that one can deform the cyclic cover to a smooth bidouble cover
along a curve whose general member is a smooth surface of general type (in this case
a smooth double cover over an elliptic ruled surface).

Step 4. We claim that D′ = D. Indeed, if D′ �= D, the smooth bidouble cover lies in
both D and D′ contradicting its unobstructedness.

The dimension of themoduli component containing surfaces of type (1)m and (1′)m
follows from Proposition 4.4 (3) and the unobstructedness of Def X for family (1′)m .
That completes the proof of part (2).

Consider now an arbitrary surface of type (1)m or (1′)m (in particular, X might be
singular). By the proof of Proposition 2.18, we have

0 → π∗(�X1) → �X → π∗(L−1) ⊗ OR → 0 (4.6)

We apply Hom( _,OX ) to (4.6). By Remark 2.17 and because X1 is smooth, we have
the exact sequence
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0 → H0(π∗
1 (TX1)) → Ext1(π∗

1 (L−1) ⊗ OR,OX )

→ Ext1(�X ,OX ) → H1(π∗
1 (TX1)) → 0 (4.7)

Now note that again from the proof of Proposition 2.18, we have

0 → π∗
1 (OX1(−B)) → π∗

1 (L−1) → π∗
1 (L−1) ⊗ OR → 0.

Once again taking Hom( _, OX ) we have

0 → Hom(π∗
1 (L−1),OX ) → Hom(π∗

1 (OX1(−B)),OX ) →
Ext1(π∗

1 (L−1) ⊗ OR,OX ) → Ext1(π∗
1 (L−1),OX ) → Ext1(π∗

1 (OX1(−B)),OX ) → 0.

Note that

Hom(π∗
1 (L−1),OX ) = H0(π∗

1 L) = H0(L) ⊕ H0(OX1).

Similarly,

Hom(π∗
1OX1(−B),OX ) = H0(π∗

1OX1(B)) = H0(OX1(B)) ⊕ H0(L).

Again

Ext1(π∗
1 (L−1),OX ) = H1(π∗

1 (L)) = H1(L) ⊕ H1(OX1).

Similarly

Ext1(π∗
1OX1(B),OX ) = H1(π∗

1OX1(B)) = H1(OX1(B)) ⊕ H1(L).

Now using Proposition 4.4, (1) we have H1(OX1(B)) = 0. So

dim(Ext1(π∗
1 (L−1) ⊗ OR,OX )) = h0(OX1(B)).

Putting this back in (4.7) and using Proposition 4.4, (1) and (2), we have

dim(Ext1(�X ,OX )) = h0(OX1(B)) = 8m + 20.

Since this is the dimension of the unique irreducible moduli component of X , by [49],
Theorem2.4.1 (iv), this shows that all surfaces of type (1)m and (1′)m are unobstructed.

(3) Since there is a unique component of the moduli space containing all surfaces
of type (1)m and (1′)m , therefore to describe the canonical morphism of a general
surface in this component, it is enough to start with a general surface X of either type.
It follows from Corollary 3.4, Remark 2.13, and the fact that X is unobstructed, that
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for a general surface of the algebraic formally universal deformation space of X , the
canonical morphism is of degree two onto its image which is non-normal and whose
normalization is an elliptic ruled surface which is the projectivization of a split vector
bundle over an elliptic curve with invariant e = 0. Since X is a smooth surface with
ample canonical bundle we have that the same holds for its unique irreducible moduli
component. That completes the proof. ��
Remark 4.5 It is interesting to note that H1(Nϕ) �= 0 by Proposition 4.4, but Defϕ is
still unobstructed by the above proof. Another example of such an instance is when
φ : H → P

L is a morphism that is finite onto its image where H is a hyperkähler
variety. It has been proven in [42], Lemma 3.1, that in this case Defφ is unobstructed
but H1(Nφ) ∼= H2(TH ) which is non-zero in general.

Remark 4.6 From Proposition 2.18 we have the exact sequence

0 → Nπ1 → π∗
1OY (B)|R → T 1

X → 0.

SinceT 1
X is supported on the singular locus, if X is smooth, thenNπ1 = π∗

1OY (B)|R ,
while, if X is singular of type (1m) or (1′

m), then, by [49], §3.1.1,T 1
X �= 0, soNπ1 and

π∗
1OY (B)|R are not isomorphic in that case. This is why, when proving the smoothness

of Def X , we proceeded differently for X smooth and for X singular.

4.2 Description of moduli components of surfaces of type (2)m

Now we aim to prove Theorem 4.2. Throughout this subsection, we work with the
notations of Sect. 3.2. Recall that B ∈ |OP1(6) ⊗ ψ∗OP1(2)| is the branch divisor of
π2. In order to do that, we need the following cohomology computations.

Proposition 4.7 Let X be a surface of type (2)2.

(1) h0(OX2(B)) = 21 and h1(OX2(B)) = 0
(2) h0(π∗

2 TX2) = 3 and h1(π∗
2 TX2) = 9.

Moreover if X is smooth, then

(3) h0(Nπ2) = 22 and h1(Nπ2) = 0,
(4) h1(TX ) = 28,
(5) h0(Nϕ) = 65.

Proof (1) It is easy to see from Künneth formula, and projection formula that

h0(OX2(B)) = 21, and h1(OX2(B)) = 0.

(3) follows from the following exact sequence

0 → OX2 → OX2(B) → OB(B) → 0

and [45], Corollary 4.1 or [21], (2.11), and the fact that h1(OX2) = 2 (see Proposi-
tion 3.9 (1)).
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(2) This one follows from Proposition 3.9 (1), Künneth formula, and projection
formula since h j (π∗

2 TX2) is the following sum

h j (OP1(2) � OC ) + h j (OP1 � ψ∗OP1(−1))

+h j (OP1(−1) � ψ∗OP1(−1)) + h j (OP1(−3) � ψ∗OP1(−2)).

(4) We use the following exact sequence

0 → TX → π∗
2 TX2 → Nπ2 → 0. (4.8)

Since h0(TX ) = 0, and h1(Nπ2) = 0 by part (1), we get the following exact sequence:

0 → H0(π∗
2 TX2) → H0(Nπ2) → H1(TX ) → H1(π∗

2 TX2) → 0.

The conclusion now follows from part (2).
(5) We get the following exact sequence from Lemma 2.2:

0 → Nπ2 → Nϕ → π∗
2Nϕ2 → 0. (4.9)

We first compute h0(Nϕ). From part (1), we get h1(Nπ2) = 0. It follows from
projection formula that

h0(Nϕ) = h0(Nπ2) + h0(Nϕ2) + h0(Nϕ2 ⊗ Eπ2).

The vanishing of h0(Nϕ2 ⊗Eπ2) has been shown in the proof of Corollary 3.10. Thus,

h0(Nϕ) = 22 + 36 + 7 = 65

by part (1) and Proposition 3.9 (5). ��
Proof of Theorem 4.2. We only need to show the unobstructedness of X for X of type
(2)2. All the cohomological criteria have been verified in Proposition 3.9, Corol-
lary 3.10 and in Proposition 4.7. The unobstructedness of ϕ in assertion 1 follows
from Corollary 2.21 and assertion 1 (b) and (2) are consequences of Corollary 3.10,
Remark 2.13 and the unobstructedness of X .

We first show that for a smooth surface X of type (2)2, X is unobstructed. We
need to show any section of H0(ωX ) lifts to any first order deformation of X . The
remaining argument is identical to the proof of Theorem 4.1. Using the generalized
Atiyah sequence (4.3), and arguing as in the proof of Theorem 4.1, we obtain

h0(EωX ) = 1 and h1(EωX ) = h1(OX ) + h1(TX ) = 30

thanks to Proposition 4.7 (3). Now, arguing as in the proof of Theorem 4.1, we get
that the dimension of the image of H0(Nϕ) → H1(EωX ) is

h0(EωX ) − (h0(ωX ))2 + h0(Nϕ) = 1 − 36 + 65 = 30
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thanks to Proposition 4.7 (4). Thus, the map H1(EωX ) → H0(ωX )∨ ⊗ H1(ωX ) is
zero, so any section of H0(ωX ) lifts to any first order deformation of X .

Consider nowan arbitrary surface X of type (2)2 (in particular, X might be singular).
By the proof of Proposition 2.18, as in the proof of Theorem 4.1, we have

0 → H0(π∗
2 (TX2)) → Ext1(π∗

2 (L−1) ⊗ OR,OX ) →
Ext1(�X ,OX ) → H1(π∗

2 (TX2)) → 0 (4.10)

and

0 → π∗
2 (OX2(−B)) → π∗

2 (L−1) → π∗
2 (L−1) ⊗ OR → 0.

Calculating Ext1(�X ,OX ) from the above exact sequences as in the proof of Theo-
rem 4.1, we have

Ext1(�X ,OX ) = 28

Then X is unobstructed by [49], Theorem 2.4.1 (iv) and the fact that surfaces of type
(2)2 form an irreducible family (the latter follows in the same way as in Step (1) of
the proof of Theorem 4.1, part (2)). ��

We end this section by asking the following natural questions, concerning the
deformations of surfaces of type (2)m , as it is evident that our technique of show-
ing unobstructedness does not work for them.

Question 4.8 Let X be a smooth surface of type (2)m .

(1) Are Defϕ and Def X unobstructed if m ≥ 3? The problem that we face for these
surfaces is that H1(Nπ2) �= 0. Thus, for these surfaces, we know that the for-
getful map Defπ2/PN → Defϕ is smooth; however the smoothness of Defπ2/PN

is unknown despite knowing the smoothness of Defϕ2 , since the forgetful map
Defπ2/PN → Defϕ2 is not smooth.

(2) Can surfaces of type (2)m , for m ≥ 3 be deformed to canonical double covers
over surfaces ruled over smooth curves of genus m ?

4.3 Dimensions of the quadruple loci

For X of type (1)m , (1′)m , (2)2 or (3)m , we defineM quad
[X ] as the locally closed sublocus,

in the (unique) irreduciblemoduli componentM[X ] of X , that parametrizes surfaces of
general type whose canonical morphism is a quadruple cover of a surface of minimal
degree. As pointed out in the introduction, sinceM quad

[X ] is, except in case (3)1, a proper
sublocus, quadruple canonical covers resemble hyperelliptic curves and the existence
of a proper hyperelliptic sublocus in themoduli of curves of genus bigger than 2. Thus,
it is natural to ask for the dimension of M quad

[X ] and of other related subloci contained
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in M
quad
[X ] , namely, the locally closed sublocus M G

[X ] of surfaces whose canonical
morphism is a quadruple Galois cover with the same Galois group G as X and the
locally closed sublocus MNat[X ] (G) that contains M G

[X ] and parametrizes the so-called
natural deformations of the cover π : X −→ Y (see [45], Definition 5.1; the canonical
morphism of surfaces of MNat[X ] (G) is again four–to–one but not Galois in general).
Note that for the moduli of curves and its hyperelliptic locus the three analogous
subloci coincide as double covers are Galois. In the next remark we compute the
dimensions of M G

[X ] and MNat[X ] (G) (this yields a lower bound for the dimension of

M
quad
[X ] ). We omit the proof as it follows from the description of MNat[X ] (G) given in

[45], Section 5, and general principles of deformation theory under some vanishing
conditions, using methods same as in the proof of Theorem 2.19.

Remark 4.9 The loci M G
[X ] and MNat[X ] (G) are uniruled and their dimensions are as

stated in the following table, where we compare them with the dimension, computed
in Theorems 4.1 and 4.2 and Remark 4.3, of the irreducible moduli componentM[X ]
of X , that contains them. We exclude the case (3)1 from the table as in this case
M G

[X ] = M[X ].

X is general of type Dim. ofMG[X ] Dim. ofMNat[X ] (G) Lower bound for dim.
ofM quad

[X ]
Dim. ofM[X ]

(1)m 2m + 1 2m + 4 6m + 18 8m + 20
(1′)m 6m + 13 6m + 18 6m + 18 8m + 20
(2)2 25 25 25 28
(3)m (m ≥ 2) 2m + 4 2m + 4 2m + 4 3m + 3

Remark 4.10 As mentioned before Remark 4.3, the moduli space in which surfaces of
type (3)m lie ismuch easier compared to the other types (1)m , (1′)m and (2)m , due to the
fact that they are products of curves. Then the existence, when m ≥ 2, of a quadruple
locus in these moduli spaces, follows essentially from [9] and [44], Theorems 4.1 and
4.2 (see Corollary 3.15). In fact, products of curves yield another, easy-to-get, example
of irreduciblemoduli componentswith proper, locally closed subloci, where the degree
of the canonical morphisms jumps up. Indeed, let g1, g2 ≥ 3. Products of curves of
genera g1 and g2 are parametrized by an irreducible moduli componentMg1,g2 which
has three strata: the general one, corresponding to surfaces whose canonical morphism
is an embedding; a stratum parametrizing surfaces whose canonical morphism has
degree 2 onto its image; a stratum parametrizing surfaces whose canonical morphism
has degree 4 onto its image. Note however that the image of the canonical morphism
of the surfaces of this last stratum is not a surface of minimal degree, as the canonical
covers this article is concerned with. Coming back to our surfaces of types (1)m , (1′)m
and (2)m versus surfaces of type (3)m , it is interesting that, while the existence of the
quadruple locus for the latter is dictated by being a product, the former, despite not
being such, have also a quadruple locus of the same nature.
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4.4 Remarks on the geography of surfaces of general type

Recall that the invariants of aminimal surface of general type with birational canonical
map satisfy Castelnuovo’s inequality, which, for given irregularity q is

K 2 ≥ pg + q − 7.

It’s worth noting that Theorems 4.1, 4.2 and Remark 4.3 imply that, for any m ≥ 1,
the moduli spaces M(pg,q,K 2) = M(2m+2,1,8m),M(2m+2,m,8m) andM(2m+2,m+3,8m),
have an irreducible component that parametrizes surfaces whose canonical map is
a non birational morphism, despite the fact that, except for M(4,4,8), they are all
above Castelnuovo’s line. This and Ashikaga’s construction of surfaces with birational
canonical map (see [2], Theorem 3.2) yield the existence of infinitely many moduli
spaces having at least two irreducible components of very distinct nature:

Corollary 4.11 For any m ≥ 1, the moduli space M(2m+2,1,8m) has one irreducu-
ble component parametrizing surfaces with non birational canonical morphisms and
another component whose general elements have birational canonical maps.

5 Infinitesimal Torelli theorem

The goal of this section is to prove the infinitesimal Torelli theorem for some smooth
families of quadruple covers. Let X be a smooth algebraic variety of dimension n
with ample canonical bundle ωX = �n

X . Let p : X → UX be a semiuniversal
deformation of X , and we assume that S is smooth. The infinitesimal Torelli problem
for weight n Hodge structure asks how far the complex structure of X is determined
by the decreasing Hodge filtration

⎛

⎝F p =
⊕

i≥p

Hn−i (X ,�i
X )

⎞

⎠

p∈N
.

The Hodge filtrations on the fibres glue together to give a subbundle F p of
OUX ⊗ Rn p∗ZX and define the period map �n : UX → Dn to the space Dn

parametrizing Hodge filtrations of weight n. The tangent map T�n at the special
point is the composition of an injective map and the sum of the linear maps

λi : H1(X , TX ) → Hom(C; Hn−i (X ,�i
X ), Hn−i+1(X ,�i−1

X )), n ≥ i ≥ 1

induced by the contraction maps. Hence T�n is injective if λi is injective for some i ,
in which case �n is an immersion. We say that

(1) the infinitesimal Torelli theorem holds (for weight n Hodge structures) for X if
�n is an immersion;

(2) the infinitesimal Torelli theorem for periods of n forms holds for X if λn is an
injection.
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The infinitesimal Torelli theorem for periods of n forms holds for X if and only if the
following map is a surjection

Hn−1(X ,�X ) ⊗ H0(X ,�n
X ) → Hn−1(�X ⊗ �n

X ).

Classically, a curve of genus g ≥ 2 satisfies the infinitesimal Torelli theorem if
and only if g = 2 or it is non-hyperelliptic. When n = 2 i.e., when X is a surface,
the infinitesimal Torelli theorem for periods of 2 forms holds for X if and only if
the infinitesimal Torelli theorem for weight 2 Hodge structures holds for X . The
infinitesimal Torelli problem for abelian covers was studied by Pardini in [46] in a
very general setting. We refer to the article of Catanese (see [13]) for counterexamples
of Torelli problems, the article of Bauer and Catanese (see [4]) for counterexamples
of the infinitesimal Torelli theorems with ωX quasi-very ample.

The following criterion under which the infinitesimal Torelli theorem for weight n
Hodge structures holds for X was developed by Flenner.

Theorem 5.1 ([19], Theorem 1.1) Let X be a compact n-dimensional Kähler manifold
and assume the existence of a resolution of �X by vector bundles

0 → G → F → �X → 0.

If both conditions are satisfied:

(a) H j+1(S jG ⊗ ∧n− j−1F ⊗ ω−1
X ) = 0 for all 0 ≤ j ≤ n − 2;

(b) The pairing H0(Sn−pG−1⊗ωX )⊗H0(S p−1G−1⊗ωX ) → H0(Sn−1G−1⊗ω⊗2
X )

is surjective for a suitable p ∈ {1, 2, . . . , n}
then the canonical map λp : H1(X , TX ) → Hom(C; Hn−p(X ,�

p
X ), Hn+1−p(X ,

�
p−1
X )) is injective.

Notice that if X is a smooth quadruple Galois canonical cover of a smooth surface
of minimal degree with irregularity one, then X is necessarily of type (1′)m . In order
to prove the theorem, we are going to invoke the theorem of Flenner i.e., Theorem 5.1.

Theorem 5.2 Let X be a smooth surface with irregularity one. Assume the canonical
bundle ωX is ample and globally generated, and the canonical morphism ϕ is a
quadruple Galois canonical cover onto a smooth surface of minimal degree. Then the
infinitesimal Torelli theorem holds for X.

Proof We work with the notations of Sect. 3.1. We have the following commutative
diagram

X Z

X1 = E × P
1

j

π1
p

where Z = V(Eπ1) is the affine bundle over X1 with the natural projection p. We have
the following short exact sequence (2.10)

0 → π∗
1E

⊗2
π1

→ �Z |X → �X → 0.
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We will use the criterion of Flenner (Theorem 5.1). (a) Since dim(X) = 2, we need
to check H1(�Z |X ⊗ ω−1

X ) = 0. We also have the following exact sequence (2.11)

0 → π∗
1�X1 → �Z |X → π∗

1Eπ1 → 0. (5.1)

Now, �X1 = (OE � OP1(−2)) ⊕ (OE � OP1). Consequently, we obtain:

H1(π∗
1�X1 ⊗ ω−1

X ) = H1(π∗
1 (�X1 ⊗ (ψ∗OP1(−1) � OP1(−m))))

Now, the last term by projection formula is just

H1(ψ∗OP1(−1) � OP1(−m − 2)) ⊕ H1(ψ∗OP1(−1) � OP1(−m))⊕
H1(ψ∗OP1(−2) � OP1(−2m − 4)) ⊕ H1(ψ∗OP1(−2) � OP1(−2m − 2)).

This term is zero by Künneth formula and the projection formula. Notice that we also
have

H1(π∗
1Eπ1 ⊗ ω−1

X ) = H1(π∗
1 (ψ∗OP1(−2) � OP1(−2m − 2)))

This term is just H1(ψ∗OP1(−2)�OP1(−2m−2))⊕H1(ψ∗OP1(−3)�OP1(−3m−
4)) which is zero by Künneth formula and the projection formula. Thus, it follows
from (5.1) that H1(�1

Z |X ⊗ ω−1
X ) = 0.

(b) Now we check the surjection corresponding to p = 1, i.e.,

H0(π∗
1 (E ∗

π1
)⊗2 ⊗ ωX ) ⊗ H0(ωX ) → H0(π∗

1 (E ∗
π1

)⊗2 ⊗ ω⊗2
X ).

Thus we need to check the surjection of

H0(π∗
1 (ψ∗OP1(2) � OP1(2m + 4)) ⊗ ωX ) ⊗ H0(ωX )

→ H0(π∗
1 (ψ∗OP1(2) � OP1(2m + 4)) ⊗ ω⊗2

X ).

To check this surjection, we use Castelnuovo-Mumford regularity (see [43]). By pro-
jection formula,

H1(π∗
1 (ψ∗OP1(2) � OP1(2m + 4))) = H1(ψ∗OP1(2) � OP1(2m + 4))

⊕H1(ψ∗OP1(1) � OP1(m + 2))

and it is easy to check that both terms are zero by Künneth formula and the projection
formula. Now we compute the following cohomology group

H2(π∗
1 (ψ∗OP1(2) � OP1(2m + 4)) ⊗ ω−1

X ) = H2(ψ∗OP1(1) � OP1(m + 4))

⊕H2(ψ∗OP1 � OP1(2))

and one checks that both terms are zero. That concludes the proof. ��
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Remark 5.3 Let X be a surface of type (3)m . It is easy to see in these cases that the
infinitesimal Torelli theorem holds only if X is a surface of type (3)1. We give a brief
explanation following [4] for the sake of completeness. We resume the notations of
Sect. 3.3. Since dim(X) = 2, infinitesimal Torelli theorem holds ⇐⇒ infinitesimal
Torelli theorem for periods of 2 forms holds ⇐⇒ H1(�1

X )⊗H0(�2
X ) → H1(�1

X ⊗
�2

X ) is surjective. Using �1
X = (�1

C1
�OC2)⊕ (O1

C1
��C2), �

2
X = �1

C1
��1

C2
, and

Künneth formula, we have

H1(�1
X ) =

(
H0(�1

C1
) ⊗ H1(OC2)

)
⊕

(
H1(OC1) ⊗ H0(�1

C2
)
)

,

H0(�2
X ) = H0(�1

C1
) ⊗ H0(�1

C2
),

H1(�1
X ⊗ �2

X ) = H1((�1
C1

)⊗2 � �1
C2

) ⊕ H1(�1
C1

� (�1
C2

)⊗2)

=
(
H0((�1

C1
)⊗2) ⊗ H1(�1

C2
)
)

⊕
(
H1(�1

C1
) ⊗ H0((�1

C2
)⊗2)

)
,

where the last equality is obtainedbyusing the fact that H1((�1
C j

)⊗2) = 0 for j = 1, 2.

Notice also that H1(O1
C j

) ⊗ H0(�1
C j

) → H1(�1
C j

) is surjective for j = 1, 2 by the

non-degeneracy of Serre duality. Thus, H1(�1
X ) ⊗ H0(�2

X ) → H1(�1
X ⊗ �2

X ) is
surjective if and only if

H0(�1
C j

) ⊗ H0(�1
C j

) → H0(�⊗2
C j

) (5.2)

is surjective for j = 1, 2. Notice that (5.2) is surjective for j = 1 since C1 is a
hyperelliptic curve of genus 2. Since C2 is also hyperelliptic, (5.2) is surjective only
when m = 1.

We end this article by asking the natural question regarding the infinitesimal Torelli
theorem for smooth surfaces of type (2)m .

Question 5.4 Let X be a smooth surface of type (2)m . Does the infinitesimal Torelli
theorem hold for X? Let us resume the notations of Sect. 3.2. Let Z := V(Eπ2) be
the affine bundle over X2. It is easy to verify that H1(�1

Z |X ⊗ ω−1
X ) = 0. However,

to apply the criterion of Flenner (i.e., Theorem 5.1), we need the surjectivity of the
following multiplication map:

H0(π∗
2 (E ∗

π2
)⊗2 ⊗ ωX ) ⊗ H0(ωX ) → H0(π∗

2 (E ∗
π2

)⊗2 ⊗ ω⊗2
X ).

It follows from [30], Lemma 2.1 that this map is not surjective.
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