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Abstract
For the Neumann-Poincaré (double layer potential) operator in the three-dimensional
elasticity we establish asymptotic formulas for eigenvalues converging to the points of
the essential spectrum and discuss geometric and mechanical meaning of coefficients
in these formulas. In particular, we establish that for any body, there are infinitely
many eigenvalues converging from above to each point of the essential spectrum. On
the other hand, if there is a point where the boundary is concave (in particular, if
the body contains cavities) then for each point of the essential spectrum there exists
a sequence of eigenvalues converging to this point from below. The reasoning is
based upon the representation of the Neumann-Poincaré operator as a zero order
pseudodifferential operator on the boundary and the earlier results by the author on
the eigenvalue asymptotics for polynomially compact pseudodifferential operators.

Keywords Eigenvalue asymptotics · Pseudodifferential operators ·
Neumann-Poincaré operator · 3D elasticity
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1 Introduction

The paper is devoted to the study of the spectrum of the Neumann-Poincaré (NP) oper-
ator in the 3D linear elasticity. It is based upon results of the previous paper [34], where
we considered general polynomially compact pseudodifferential operators and have
derived formulas describing for such operators the behavior of eigenvalues converging
to the points of the essential spectrum.Themotivating example, theNeumann-Poincaré
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(the double layer potential) operatorK in 3D elasticity was presented, and a discussion
of spectral properties of this operator has started. The present paper continues the study
of the eigenvalues of the Neumann-Poincaré elasticity operator for a homogeneous
and isotropic 3D body D with smooth boundary � on the base of results in [34]. It is
known, since [5, 32], that this operator possesses three points of essential spectrum,
namely, the zero point and two symmetrical ones, ±k, where k is expressed via the
Lamé constants of the material of the body and does not depend on its geometry.
There may also exist finite or infinite sequences of eigenvalues, converging (in the
latter case) to the points of the essential spectrum. In this paper we find sufficient
geometrical conditions for these sequences to be infinite (above or below a point of
the essential spectrum), and if this is the case, we study asymptotic properties of these
sequences, following the general results in [34].

In fact, up to now, very littlewas knownabout the discrete spectrumof the operatorK
beyond the case of the sphere (where the spectrum has been, rather recently, calculated
explicitly, see [16]). In the general case, some estimates for the rate of convergence of
these eigenvalues have been found in [5].

For the case of the ball with radius R and Lamé constants λ,μ, the eigenvalues of
the NP operator, calculated in [16], form three series,

�0
n(K) = 3

2(2n + 1)
∼ 3

4n
, n → ∞

�−
n (K) = 3λ − 2μ(2n2 − 2n − 3)

2(λ + 2μ)(4n2 − 1)
∼ −k + 4k

n
, n → ∞

�+
n (K) = −3λ + 2μ(2n2 + 2n − 3)

2(λ + 2μ)(4n2 − 1)
,∼ k + 4k

n
, n → ∞,

(1.1)

k = μ
2(2μ+λ)

, each of �−
n (K), �0

n(K), �+
n (K) being a multiple eigenvalue with mul-

tiplicity 2n + 1. Additionally, it is found that no eigenvalues coincide with the points
of the essential spectrum. One can see that the eigenvalues �±

n (K) (as well as even
their asymptotics) depend on the material of the body. A possible dependence on the
geometry is concealed here, due to the fact that the spectrum of K is invariant under
the homotheties of the body, so the only geometric characteristic of the sphere, its
radius, is not present in the formulas for eigenvalues. One can also notice that all three
series converge to their limit values from above only; there are no eigenvalues that
approach these points from below. This latter property is important, in particular, in
the analysis of the plasmon resonance in elastic metamaterials, see, e.g., [2, 4, 7, 9, 10,
28, 29], therefore, it is interesting to determine, to what extent these properties persist
in a more general case.

Recently, the spectral problem has been studied for the NP operator in electrostat-
ics, where the operator is compact. There, in dimension 3, for a smooth boundary,
the eigenvalue asymptotics, a power-like one, was found in [30, 31], with somewhat
weaker results for the case of a finite smoothness. In dimension 2, the rate of con-
vergence of eigenvalues to zero depends on the smoothness of the boundary; it is at
least polynomial for a finite smoothness, super-polynomial for an infinitely smooth
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boundary, and (again, at least) exponential for an analytic boundary. Only upper esti-
mates for eigenvalues are known. In the only case where the eigenvalue asymptotics
is found, namely, for an ellipse, the asymptotics is exponential (see [8]).

The situation is similar for the elastic NP operator in dimension 2, where it has
two points of the essential spectrum ([4, 7]); it was found that the rate of convergence
of eigenvalues to these points depends again on the smoothness of the boundary.
Namely, the estimates obtained in these papers show that for a finitely smooth bound-
ary, the eigenvalues converge to their limit points at least polynomially fast, for an
infinitely smooth boundary these eigenvalues converge super-polynomially fast, while
for an analytic boundary they converge at least exponentially. An exact asymptotics
of eigenvalues was never found, even for an ellipse.

In the present paper we consider a bodyD ⊂ R3 made of a homogeneous isotropic
elastic material with Lamé constants λ,μ and bounded by a smooth compact surface
�. The NP operator is a polynomially compact zero order pseudodifferential operator,
with three points ωι : ω−1 = −k, ω0 = 0, ω1 = k, in the essential spectrum,
according to the results of [1, 32]. The asymptotics of eigenvalues of such operator
tending to a point ωι, ι = −1, 0, 1, of the essential spectrum, as found in [34], is
determined by a certain pseudodifferential operatorMι of order−1. The procedure for
calculating the principal symbolmι ofMι is quite intricate. Moreover, the calculation
of the coefficients in the eigenvalue asymptotic formulas involves the eigenvalues of
the latter symbol, a 3×3 symbolic matrix; it presents the so-called irreducible case of
the cubic equation. Therefore the symbolic expression for integrals of powers of these
eigenvalues in the general case would be completely unwieldy and, even if found, be
of no use for further analysis.

In our approach, using the qualitative analysis of the NP operator as a singular
integral operator,we are able first to separate the dependence of the principal symbolmι

on the geometric characteristics of the surface and the dependence on thematerial of the
body. This development is achieved thanks to determining the qualitative structure of
the symbolmι as described in [34]. Namely, we establish that, although the expression
of the symbol mι(x, ξ), (x, ξ) ∈ T∗(�), contains 25 additive terms, each being the
product of 5 symbolic matrices, it is one and only one factor in each such product
that depends on the geometry of �, namely, it is a linear combination of principal
curvatures of � at the point x ∈ �, with (matrix) coefficients depending universally
on ξ and on the Lamé constants. This leads to our structure result: the combination
of these terms, the symbol mι(x, ξ), is a linear form of the principal curvatures with
universal (depending only on the Lamé constants and ξ ) coefficients.

Then a miraculous circumstance helps us. The Birman-Solomyak formula ([11])
for coefficients in the eigenvalue asymptotics for a negative order pseudodifferential
operator involves the trace of a certain, generally fractional, power of the principal
symbol or of its positive or negative parts, in other words, the sum of powers of (all or
a part of) eigenvalues of the matrix symbol mι(x, ξ). Calculating this sum requires,
generally, knowing the eigenvalues themselves, and this, for 3 × 3 matrices, cannot
be achieved in the symbolic way, as was just discussed. The situation seems hopeless.
However, there are exceptions. If the power is an integer, the sum of powers of all
eigenvalues of a Hermitianmatrix (or amatrix similar to a Hermitian one, as it happens
in our case) can be found without knowing the eigenvalues themselves, rather only by
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using polynomial operations with entries of the matrix. And, luckily, for the case of
the NP operator on a two-dimensional surface, this power equals exactly 2. Therefore,
the integrand in the Birman-Solomyak formula is the sum of squares of linear forms in
principal curvatures, therefore, it is a quadratic form of these curvatures, again, with
universal coefficients depending on the Lamé constants only.

This way of reasoning enables us to determine the two-sided asymptotics for the
eigenvalues of theNPoperator, to say itmore exactly, the asymptotics for the sumof the
counting functions for eigenvalues above and belowωι. The reasoning explained above
leads also to the fact that the geometrical characteristics entering in these formulas
are the Euler characteristic of the surface � and its Willmore energy W (�) (see, e.g.,
[36] for a discussion of classical and recent problems and results concerning this latter
quantity which indicates how the surface in R

3 is bent.) Such kind of formulas is
similar to the case of the NP operator in 3D electrostatics, derived in [30, 31].

An important question concerns the infiniteness of the sequences of eigenvalues
tending to the points of the essential spectrum separately from above and from below.
The pattern obtained for the symbolmι(x, ξ), symmetry considerations, and the above
asymptotic formulas show that the sequences of eigenvalues converging to ωι from
above are always infinite. We also find a sufficient condition in geometric terms for
the infiniteness of the sequences of eigenvalues converging to ωι from below: this
happens, in particular, for sure, if there is at least one point on � where the surface is
concave or, more generally, where the mean curvature in a special co-ordinates system
is positive. It deserves noticing that for a body with a cavity, where � is not connected,
this happens always.

In the last section amore detailed analysis which shows in what way the coefficients
in the effective symbol mι should depend on the material characteristics, the Lamé
constants. This task requires amore detailed analysis of the process of calculation of the
symbol and subsymbol of the NP operator. The universality properties in the structure
of the symbol mι enable us to reduce this calculation to a unique particular case,
namely of the surface being a cylinder with circular cross-section, where one of the
principal curvatures vanishes. The treatment of this case still requires a considerable
calculational work, but it is at least more feasible as long, at least, as it concerns
qualitative properties. As a result of our calculations, we establish that this symbol is
a linear form of the quantities k = μ

2(2μ+λ)
and m = 1

2 = k with coefficients, now,

depending only on ι and on ξ ∈ S1. Some further properties of these coefficients are
derived, using the universality, from the result for the case of the sphere.

We should mention that an alternative approach to the elastic NP spectral problem
can, probably, be based upon recent results on diagonalizing matrix pseudodifferential
operators, see [13, 14]; the important initial step, the global diagonalization of the
principal symbol, is possible according to the results of [15]. We plan to explore this
approach in the future.

The Author is appreciative to Miyanishi for introducing him to the NP problematic
as well as for useful discussions.
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2 Preliminaries

Let D ⊂ R
3 be a bounded (connected) body with smooth boundary �. It may happen

that the surface � is not connected, namely, in the case when the body has some
cavities.

We write the Lamé system for a homogeneous isotropic body D in the form

Lu ≡ Lλ,μu ≡ −μdiv (grad u) − (λ + μ)grad (divu) = 0,

x = (x1, x2, x3) ∈ D,u = (u1, u2, u3)
	,

whereλ,μ are theLamé constants. The fundamental solutionR(x, y) = [R(x, y)]p,q ,
p, q = 1, 2, 3, for the Lamé equations, the Kelvin matrix, known since long ago, see,
e.g., [25], equals

[R(x, y)]p,q = λ′ δp,q

|x − y| + μ′ (xp − yp)(xq − yq)

|x − y|3 ,

λ′ = λ + 3μ

4πμ(λ + 2μ)
, μ′ = λ + μ

4πμ(λ + 2μ)
, p, q = 1, 2, 3, x, y ∈ R

3.

This expression can be found, in particular, by inverting the Fourier transform of the
symbol r(ξξξ) of L−1:

R(x, y) = F−1[r](x − y) ≡ (2π)−3
∫

R3
ei(x−y)ξξξ

(
μξξξξξξ	 + (λ + μ)|ξξξ |2E

)−1
dξξξ,

(2.1)
where ξξξ is treated as a column-vector, so that ξξξξξξ	 is a 3 × 3 square matrix; E is the
unit 3 × 3 matrix.

The classical boundary problems for the Lamé system involve the coboundary
(traction) operator

[T(x, ∂ννννννννν(x))]p,q = λνp∂q + λνq∂p + μδp,q∂ννννννννν, p, q = 1, 2, 3,

where ννννννννν = ννννννννν(x) = (ν1, ν2, ν3) is the outward normal unit vector to � at the point x
and ∂ννννννννν(x) is the directional derivative along ννννννννν(x).

The NP operator K on � is defined as

(K[ψ])(x) =
∫

�

K(x, y)ψ(y)dS(y) ≡
∫

�

T(y, ∂ννννννννν (y))R(x, y)	ψ(y)dS(y), x ∈ �,

(2.2)
where dS is the natural surface measure on �, the Riemannian measure generated by
the embedding of � in R

3, and T(y, ∂ννννννννν (y)) denotes the coboundary operator at the
point y ∈ �. The explicit expression for the kernel K(x, y) is known since long ago
as well; it is given, e.g., in [26], Sect. 4, Ch.2:

[K(x, y)]p,q = k

2π

νp(y)(xq − yq) − νq(y)(xp − yp)

|x − y|3
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− 1

2π

(
kδp,q + 3m

(xp − yp)(xq − yq)

|x − y|2
)

3∑
l=1

νl(y)
xl − yl
|x − y|3 ; p, q = 1, 2, 3, (2.3)

where

m = λ + μ

2(λ + 2μ)
= 1

2
− k.

Since the boundary is smooth,K is a pseudodifferential operator of order zero on the
surface �, i.e., a singular integral operator on �; the leading singularity at the diagonal
y = x ∈ � of the kernel, determined by off-diagonal terms in (2.3), is of order −2
and it is odd in y − x as y → x. To express the symbol of K as a pseudodifferential
operator, a local co-ordinate system on � and a frame in R

3 are fixed. Following
[1], for a fixed point x◦ ∈ �, two co-ordinate axes x = (x1, x2) are orthogonally
directed in the tangent plane to � at x◦, and the third axis x3 is directed orthogonally,
in the outward direction, so that the surface � near x◦ is described by the equation
x3 = F(x1, x2), and in these co-ordinates, F(0, 0) = 0, ∇F(0, 0) = 0. These x1, x2
are chosen as local co-ordinates near x◦ on �. The dual co-ordinates ξ = (ξ1, ξ2) in
the tangent plane are directed along the same spacial axes in T(�). The corresponding
vectors will be accepted as the basis in the cotangent plane at x◦ (identified naturally
with the tangent plane.) The same vectors as well as the normal ννννννννν(x◦) are accepted as
the frame in the fiber C

3 over � near x◦. In these co-ordinates, the principal symbol
of K is calculated in [1] to be equal to

k0(x, ξ) = ik

|ξ |

⎛
⎝ 0 0 −ξ1
0 0 −ξ2
ξ1 ξ2 0

⎞
⎠ , (2.4)

where k = μ
2(2μ+λ)

, and the eigenvalues of this matrix, ω−1 = −k, ω0 = 0, ω1 = k,
are the points of the essential spectrum ofK. Note that these eigenvalues do not depend
on the geometry of the bodyD.At this point x◦, dx1dx2 equals the area element for the
surface measure on � generated from the Lebesgue measure in R

3 by the embedding
� ⊂ R

3.

The eigenvectors of the principal symbol (2.4) equal e± = 2− 1
2 |ξ |−1

(ξ1, ξ2,±ı |ξ |)	 for the eigenvalues ±k and e0 = |ξ |−1(ξ1,−ξ2, 0)	 for the
eigenvalue 0. In the literature cited above, one can encounter some considerations
concerning the mechanical meaning of such form of eigenvectors. In particular, there
is an assumption that the eigenfunctions of the NP operator, corresponding to its eigen-
values close to 0, describe surface waves which are ’almost purely’ compression ones,
while two other eigenvectors describe ’almost incompressible’ waves lying close to
the subspace divu = 0. We do not know to what extent our results support these
speculations. An essential progress on this topic seems to have been made in a very
recent preprint [18]. There, a splitting of the space of vector-functions on � into three
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subspaces has been constructed, so that, on the one hand, the subspaces approximate
spectral subspaces of K corresponding to its spectrum around the points ωι, and, on
the other hand, functions in these subspaces possess extensions inside or outside � to
functions with special properties, divergence and/or rotor-free.

Due to the results of [34], in order to find the asymptotics of eigenvalues of K,
we need also expressions for the subsymbol of the operator K and the derivatives
of the principal symbol. These objects depend essentially on the choice of local co-
ordinates and frame. The convenient choice, refining the one described above, will be
determined later on, enabling considerable simplification in our calculations. We use
the notion of ’subsymbol’ for the symbol of order−1 of a zero order pseudodifferential
operator in a fixed co-ordinate system and a fixed frame. Unlike the classical notion
of a ’subprincipal symbol’ which is invariant under the change of local co-ordinates,
the ’subsymbol’ is not invariant, but the results of our eigenvalue calculations with the
subsymbol turn out to be invariant.

As established in [34], the asymptotic behavior of the eigenvalues of K, as they
approach the points ωι, is determined by the eigenvalue behavior for the compact
operators Mι = pι(K), where pι(ω) are polynomials specially constructed according
to the eigenvalues of the principal symbol of the operator, see Lemma 4.1 in [34]. In
our case, the dimension N of the vector bundle, where the operator K acts, equals 3
and all eigenvalues of the principal symbol are simple. Therefore, the number ι takes
values −1, 0, 1, and the degree of the polynomial pι(ω) equals 5. By Lemma 4.1 in
[34], this means that the polynomial pι(ω) has the form

pι(ω) = (ω − ωι)
∏
ι′ 
=ι

(ω − ωι′)
2 , ι = −1, 0, 1. (2.5)

We are interested in the principal, order −1, symbol mι = mι,−1(x, ξ) of the
operator Mι; we call it the effective symbol. In [34], Proposition 4.2, the structure of
this symbol was described. Due to this Proposition,mι is the sum of terms of 2 types. In
order to write down them in a systematic way, we consider the sets Jι = {ς j } j=1,...,5,

ι = −1, 0, 1; the set Jι consists of the integers −1, 0, 1, in such way that each of them
is repeated twice, except ι which is repeated only once, placed in the nondecreasing
order, thus, J−1 = {−1, 0, 0, 1, 1}, J0 = {−1,−1, 0, 1, 1}, J1 = {−1,−1, 0, 0, 1}.
Then, by Proposition 4.2 in [34], the terms in mι of type 1 have the form

Fl,ι =
∏
j<l

(
k0 − ως j

)
k−1

∏
j>l

(
k0 − ως j

)
, ς j ∈ Jι, ι = −1, 0, 1, l = 1, . . . , 5,

(2.6)
where k−1 is the subsymbol of the operator K – altogether 5 terms for each ι. The
terms of type 2 have the form

Gα,l,m,ι = 1

i

∏
j<l

(k0 − ως j )(∂ξα k0)
∏

l< j<m

(k0 − ως j )(∂xα k0)
∏
j>m

(k0 − ως j ),

α = 1, 2; 1 ≤ l < m ≤ 5, (2.7)
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altogether 20 terms for each ι.
One should keep in mind that all factors in (2.6), (2.7) are 3 × 3 matrices. The

factors of the form k0 − ως j commute with each other but the ones containing the
derivatives of k0 and the subsymbol do not commute with k0 − ως j . One can also see
in (2.6), (2.7) that the terms of type 1 contain 4 factors k0 − ως j while terms of type
2 contain 3 such factors. Finally, the symbol mι is equal to

mι = [p′
ι(ωι)]−1

⎛
⎝ 5∑

l=1

Fl,ι +
∑

α=1,2

∑
1≤l<m≤5

Gα,l,m,ι

⎞
⎠ , (2.8)

25 terms altogether, for each ι = −1, 0, 1.
In Sect. 6, we discuss some economy approach for calculating the expression (2.8).

This gives us a possibility to describe the dependence of the effective symbol on the
Lamé constants.

As was emphasized earlier, the expressions in (2.6), (2.7) contain factors which are
not invariant with respect to changes of local co-ordinates on the surface � and the
frame. This is unavoidable but not important, since the sum of all such terms in (2.8),
being the principal, order −1, symbol mι,−1(x, ξ) of the operator Mι, is in the usual
sense invariant with respect to changes of local co-ordinates on � and may depend
only on the frame; its eigenvalues are invariant. We will use this invariance essentially
when choosing the co-ordinates and the frame in a convenient way. Moreover, the
operator pι(K) and its principal symbol mι,−1 as well do not depend on the order in
which the terms K − ως j are multiplied, although each particular term in (2.8) does.

A special feature of the operator K is the fact that it is not self-adjoint in L2(�)

(with the surface measure generated by the Lebesgue measure inR
3). This operator is,

however, symmetrizable. This property was discussed in [34], Sect. 6. Recall that the
pseudodifferential operator K is called symmetrizable if there exists a positive elliptic
pseudodifferential operator S such that

A = S−1/2KS1/2,

is self-adjoint in L2(�) or, equivalently,

SK∗ = KS. (2.9)

In Sect. 3 we discuss the symmetrizability of our operator K in more detail.

3 Symmetrization and general asymptotic formulas

3.1 Symmetrization

The fact that the operator K is not self-adjoint in L2(�) is already easily visible from
its definition (2.2)—the adjoint operator involves the normal derivative at the point x,
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and not at the point y, as in (2.2). This shortcoming can be circumvented by showing
that K is symmetrizable.

Consider the single layer potential operator on �:

S[ψ](x) =
∫

�

R(x, y)ψ(y)dS(y), x ∈ �, (3.1)

the kernelR being defined in (2.1). This is a self-adjoint operator in L2(�). It is well
known, see, e.g. [1], that S (it is denoted by A there) is an elliptic pseudodifferential
operator of order −1. Therefore, S maps the Sobolev space Hs(�) into the space
Hs+1(�) for any s ∈ (−∞,∞). The principal symbol of S has been calculated
in [1], Sect. 1.6. In the local co-ordinates and the frame just used above, it has the
block-matrix form

s−1(x, ξ) = 1

2μ|ξ |
(
E − m

(
���(ξ) 0
0 1

))
,m = λ + μ

2(λ + 2μ)
= 1

2
− k.

here���(ξ) is the 2 × 2 matrix

���(ξ) = |ξ |−2
(

ξ21 ξ1ξ2
ξ1ξ2 ξ22

)
,

E denotes the unit 3 × 3 matrix.
Matrix (3.1) is invertible, therefore, the operatorS is elliptic. We need some more,

namely, that S is positive in L2(�).

Proposition 3.1 The single layer potentialS in (3.1) is a positive operator in L2(�),
〈Sψ,ψ〉L2(�) > 0.

Proof In the scalar case, for the single layer electrostatic potential, this property is
well-known, see, e.g., [27], Theorem 1.15. We failed to find an exact reasoning for the
elastic case in the literature, therefore we present an elementary proof here. Denote
byQ(x, y) the fundamental solution for the square root of the Lamé operator L. This
function can be constructed as

Q(x, y) = (2π)−3/2
∫

R3
ei(x−y)ξξξ

√
r(ξξξ)dξξξ,

with
√· denoting here the positive square root of a positive matrix. Since

√
r(ξξξ) ×√

r(ξξξ) = r(ξξξ), the kernel Q satisfies

∫
R3

Q(x, z)Q(z, y)dz = R(x, y), x ∈ D. (3.2)

Using (3.2), we can represent the single layer potential operator asS = Q∗Q, where
Q is the operator acting from L2(�) to L2(R3) as

Q[ψ](x) =
∫

�

Q(x, y)ψ(y)dS(y).



   26 Page 10 of 36 G. Rozenblum

This representation shows that the operator S is nonnegative. Finally, in accordance
with [1], Proposition 1.2, the null space of S is trivial, so S is positive. ��

Taking into account the ellipticity ofS, we know now thatS is an isomorphism of
Sobolev spaces, S : Hs(�) → Hs+1(�), −∞ < s < ∞. Moreover, any power of
S is an isomorphism Sγ : Hs(�) → Hs+γ (�), −∞ < γ < ∞.

The matrix ��� = ���(ξ) satisfies ���2 = ���, this property enables us to calculate
explicitly principal symbols of some operators related withS. First, the inverseR =
S−1 is a pseudodifferential operator of order 1. Its principal symbol r1 equals s−1,

r1(ξ) = 2μ|ξ |
(
E + λ + μ

λ + 3μ

(
���(ξ) 0
0 1

))
= (s−1(ξ))−1.

Wewill also need the (positive) square roots from the operatorsS andR. The oper-

ator Q = S
1
2 is an elliptic pseudodifferential operator of order − 1

2 and its principal
symbol equals

q− 1
2
(ξ) = (s−1(ξ))

1
2 = 1

(2μ|ξ |) 1
2

(
E − (1 − (1 − m)

1
2 )

(
���(ξ) 0
0 1

))
.

In its turn, the principal symbol of the order 1
2 pseudodifferential operator Z =

Q−1 = R
1
2 equals

z 1
2
(ξ) = (r1(ξ))

1
2 = (q− 1

2
(ξ))−1

= (2μ|ξ |) 1
2

(
E +

(
1√

1 − m
− 1

) (
�(ξ) 0
0 1

))
, (3.3)

We can show now that our operator K is symmetrizable in L2(�), with the single
layer potential operator S acting as symmetrizer. In fact, the relation (2.9) has been
known since long ago; for the Lamé system it was established in [17], p. 89, see also
[1], Proposition 1.8. Moreover, we know now that S is positive. Consequently, the

operator A = S
1
2KS− 1

2 = ZKQ is self-adjoint in L2(�).
This operator A is a zero order self-adjoint classical pseudodifferential operator,

with the same spectrum as K. The latter statement is proved in [34], Proposition 6.1.
By the composition rule for pseudodifferential operators, the principal symbol of A is
a matrix, similar to the principal symbol of K,

a0(x, ξ) = z 1
2
(x, ξ)k0(x, ξ)q− 1

2
(x, ξ).

Being the principal symbol of a self-adjoint operator, the symbol a0(x, ξ) has only real
eigenvalues; it follows that the eigenvalues of the symbol k0(x, ξ), a matrix, similar to
a0(x, ξ), are the same as the eigenvalues of a0(x, ξ); in particular, they are real as well.

Moreover, we notice immediately that the matrices k0(ξ) and

(
���(ξ) 0
0 1

)
commute.
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Taking into account the expression for the principal symbols of S
1
2 and S− 1

2 , we
obtain

a0(ξ) = k0(ξ) = ik

|ξ |

⎛
⎝ 0 0 −ξ1
0 0 −ξ2
ξ1 ξ2 0

⎞
⎠ . (3.4)

So, the principal symbols of K and A coincide; in particular, it follows that k0 is a
Hermitian matrix. This property follows, of course, also from the fact, easily verified,
that the difference, K − K∗, is a pseudodifferential operator of order −1.

We cannot declare here that the subsymbol of K and s−1 commute; in fact, they do
not. However, the important property for our calculations is the following consequence
of the composition rule.

Proposition 3.2 Let K be a polynomially compact zero order pseudodifferential oper-
ator and for given ι, pι be the polynomial in (2.5). Suppose that K is symmetrizable,
with the pseudodifferential operatorS acting as symmetrizer. Then the principal sym-
bol mι,−1(x, ξ) of the operator Mι = pι(K) is a matrix similar to a Hermitian one,
namely to the principal symbol bι,−1(x, ξ) of the operator Bι = pι(A) equals

bι,−1(x, ξ) = z 1
2
(x, ξ)mι,−1(x, ξ)q− 1

2
(x, ξ); (3.5)

here q− 1
2
, z 1

2
are principal symbols of operatorsQ = S

1
2 , resp., Z = S− 1

2 , see (3.1),
(3.3).

Proof The pseudodifferential operator Mι equals

Mι = S
1
2BιS

− 1
2 = S

1
2 pι(A)S− 1

2 , (3.6)

therefore, for the principal symbols of Mι and Bι, symbols of order −1 we have the
equality,

mι,−1 = q− 1
2
bι,−1z 1

2
. (3.7)

It remains to recall that bι,−1 is a principal symbol of a self-adjoint operator, and
therefore it is a Hermitian matrix. ��

3.2 General asymptotic formulas

The operatorMι in (3.6) is a pseudodifferential operator of order−1, and its principal
symbol, a 3 × 3 matrix with real eigenvalues, is denoted by mι(x, ξ) (sometimes the
subscript −1 is added in this notation in order to recall that this is a symbol of order
−1.) Having this symbol at hand, the asymptotics of the eigenvalues of K, tending to
ωι, can be found by the general result obtained in [34], Theor. 6.2. We reproduce here
this Theorem, adapted to our particular case.

First, we introduce proper notations. For a point ωι in the essential spectrum of
K, n±(K;ωι, ·) denotes the counting functions of eigenvalues of the operator K in
intervals near ωι. Namely, we fix some reference points τ± in such way that the
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interval (ωι − τ−, ωι + τ+) contains no points of the essential spectrum of K, other
than ωι. Then, for a small τ > 0, n±(K;ωι, τ ) denotes the number of eigenvalues of
K in the interval (ωι + τ, ωι + τ+) for the ‘+’ sign, resp., (ωι − τ−, ωι − τ) for the ‘-’
sign. The object of our study is the behavior of n±(K;ωι, τ ) as τ → 0. It stands to
reason that n±(K;ωι, τ ) is bounded if there are only finitely many eigenvalues of K in
the corresponding (upper or lower) neighborhood of ωι.On the other hand, if there are
infinitely many eigenvalues of K in such neighbourhood then these eigenvalues must
converge toωι and therefore n±(K;ωι, τ ) tends to infinity as τ → 0. The change in the
choice of the reference points τ± does not influence the rate of growth of n±(K;ωι, τ )

as τ → 0, therefore they are not reflected in our notations.
Next, for a diagonalizable matrixmwith real eigenvalues, the expression Tr (2)

± (m)

denotes the sum of squares of positive, resp., negative, eigenvalues of the matrix m.

Finally,ωωωωωωωωω denotes the 1-formωωωωωωωωω = ξ1dξ2 − ξ2dξ1 = dθ in the polar co-ordinates on
the unit circle S1 ⊂ Tx�, ξ1 = cos θ, ξ2 = sin θ , 0 ≤ θ ≤ 2π and dS(x) denotes the
area element for the surface measure induced by the embedding � ⊂ R

3.

Theorem 3.3 Let B be an order −1 self-adjoint pseudodifferential operator on a
manifold � of dimension 2, with principal symbol b(x, ξ), a Hermitian matrix. Then
for the eigenvalues of B the asymptotic formulas hold

n±(B, 0, τ ) ∼ C±(B, 0)τ−2, τ → 0, (3.8)

C±(B, 0) = 2−1(2π)−2
∫
S∗�

Tr (2)
± (b(x, ξ))ωωωωωωωωωdS(x), (3.9)

(note that the zero in the notation n±(B, 0, τ ) refers to zero being the only point of
essential spectrum for the compact operatorB.)By the results of [34], for the zero order
NP operator K, the asymptotics of n±(K;ωι, ·) is determined by the asymptotics of
eigenvalues of the order −1 operatorMι = pι(K) with the principal symbolmι(x, ξ).
Since the operatorMι is symmetrizable, it has the same eigenvalues as the self-adjoint
operatorBι. The principal symbol bι(x, ξ) ofBι is a Hermitian matrix with the same
eigenvalues asmι(x, ξ). Therefore, Theorem3.3 can bemade concrete in the following
way.

Theorem 3.4 Let K be the elastic NP operator on a smooth closed surface � ⊂ R
3.

Then the asymptotics of eigenvalues of K, converging to the point ωι of the essential
spectrum, is described by the formula

n±(K;ωι, τ ) ∼ C±(ωι)τ
−2, τ → +0, (3.10)

C±(ωι) = 2−1(2π)−2
∫
S∗�

Tr (2)
± (mι(x, ξ))ωωωωωωωωωdS(x), (3.11)

where mι = mι,−1 is the principal symbol of the order −1 operatorMι = pι(K), see
(2.8).

In this way, the asymptotic formula (3.10), (3.11) is derived, as a special case, for
our particular values of the dimension of the manifold and the order of the operator,
of general results by Birman and Solomyak, [11] and [12]. The English translation
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of the (rather technical) proof in [11] is virtually inaccessible now, but an interested
Reader can be directed to a recent, soft analysis, proof by R. Ponge [33]. This proof
concerns a more restricted version of the general result in [11], for a smooth surface
and a homogeneous symbol, however it covers our situation. This result can also be
found in [21], however the proof (based upon the general theory developed in this
book) is left there as an exercise to readers.

There is a simple but important consequence of this general result.

Proposition 3.5 Suppose that at some point (x0, ξ0) ∈ S∗(�), one of eigenvalues of
the matrix mι(x0, ξ0) is positive (negative). Then there exists an infinite sequence of
eigenvalues of K converging to ωι from above (from below) satisfying the asymp-
totic formula (3.10), (3.11) (with the corresponding sign), with a nonzero coefficient
C±(ωι).

Proof Eigenvalues of a continuous diagonalizable matrix-function of (x, ξ) depend
continuously on the variables (x, ξ). Therefore the eigenvalue in question is positive
(negative) in a neighborhood of (x0, ξ0). Consequently, the integrand in (3.11) with
proper sign is positive on a set of positive measure. This means that the integral
determining C±(ωι) is positive. ��

Note that Proposition 3.5 uses, in fact, only that the coefficientsC±(ωι) are integrals
of sign-definite microlocal expressions involving the symbol, and not on the particular
form of (3.11). In the next Section we express the conditions of Proposition 3.5 in
geometrical terms.

Formally the basic theorem by Birman and Solomyak, as formulated in [11, 12],
concerns only connected surfaces. However, obviously, in the case of the surface �

consisting of several connected components, � = ∪�κ, which happens when the
body D possesses cavities, the Neumann-Poincaré operator K is the direct sum of
pseudodifferential operators Kκ on the components �κ . The discrete spectrum of
such sum is the union of the spectra of Kκ .

3.3 The two-sided eigenvalue asymptotics

Although the expression in (3.11) depends formally on the choice of local co-ordinates
on the surface � and the frame in the fiber, the integral in (3.11) and, moreover,
the ωωωωωωωωω-integral in (3.11) over the cotangent circle are invariant under the change of
an orthogonal co-ordinate system on � and under the change of the frame, as was
established in [34].

The expression under the integral in (3.11) is rather hard to handle. In fact, for
the matrix mι,−1 depending on x, ξ—as we see later, determined by the material
characteristics and by the principal curvatures—one needs to calculate the eigenval-
ues, separately the positive and negative ones, and then integrate over S∗(�) certain
expressions containing the squares of positive, resp., negative, eigenvalues. It seems
that the task of finding treatable analytical expressions here is very hard. On the first
step above, namely, finding the eigenvalues of a 3 × 3 symbolic matrix, this means,
solving a third degree algebraic equation with symbolic coefficients, is rather hard.
This equation has three real roots, their expression involves cubic roots from complex
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numbers—and formulas (3.11) require further separating positive and negative ones,
and then integrate the result—altogether, this is highly impractical. Formulas (3.10),
(3.11) may serve, probably, for numerical calculations as well as for the asymptotic
analysis. These formulas can be, however, used for obtaining qualitative results for the
properties of the NP eigenvalues under certain geometrical conditions, see Sects. 4,
5, 6. What we can, however, achieve more easily, is to find the explicit asymptotics
for the distribution function for the union of the sequences of eigenvalues converging
to ωι, in other terms, for the sum of functions n±(K;ωι, τ ) counting the eigenvalues
lying below and aboveωι. It follows from the formulas for the asymptotics of the abso-
lute values of the eigenvalues of an order −1 pseudodifferential operator to which the
spectral problem for the NP operator is reduced. This possibility is explained by a very
fortunate relations between the order of the operator involved and of the dimension
of the space. Such relation leads to the exponent in (3.11) (which, in the general case,
equals the dimension of the manifold divided by minus the order of the operator) to
be equal to 2. And, fortunately, since the eigenvalues of the symbol mι are real, it is
the trace of the square or the matrix symbol that expresses the sum of squares of its
eigenvalues (an effect of similar kind is present also if we are interested in the sum of
some even integer powers of the eigenvalues of the matrix, with a more complicated
but still polynomial expression.) Therefore, Theorem 3.4 has as a consequence the
following asymptotic formula.

Theorem 3.6 Let the conditions of Theorem 3.4 be satisfied and let mι = mι,−1(x, ξ)

be the principal symbol of the operator Mι = pι(K). Then for the eigenvalues of K
the following asymptotics holds:

n(K;ωι, τ ) ≡ n+(K;ωι, τ ) + n−(K;ωι, τ ) ∼ C(ωι)τ
−2, τ → 0, (3.12)

where the coefficient C(ωι) equals

C(ωι) = C+(ωι) + C−(ωι) = 2−1(2π)−2
∫
S∗�

Tr (mι,−1(x, ξ)2)ωωωωωωωωωdS(x). (3.13)

The geometrical meaning of the expression in (3.13) will be discussed further on,
in Sect. 4.

Thus, the problem remains of calculating the symbol mι,−1(x, ξ) (or its positive
and negative eigenvalues) in some co-ordinate system and frame. This freedom will
be used essentially in the reasoning to follow.

In [34], when discussing the reduction of the spectral problem for a polynomially
compact pseudodifferential operator to the one for a compact operator, we con-
sidered also the case when the operator mι,−1 has everywhere vanishing principal
symbol, mι,−1(x, ξ) ≡ 0. In this exceptional case, the coefficient in front of τ−2 in
the asymptotic formula (3.10) vanishes for both signs; in this way (3.10) becomes
non-informative. Such case was called ’degenerate’ in [34], and obtaining eigenvalue
asymptotic formulas required additional considerations, see Lemma 5.1 and Theorem
5.2 in [34]. However, in the only explicitly calculated case of the sphere, see (1.1), the
results can be expressed as
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n+(K; 0, τ ) ∼ 9

16
τ−2, τ → 0;

n−(K; 0, τ ) = 0, ;
n+(K;−k, τ ) ∼ (4k)2τ−2, τ → 0;
n−(K;−k, τ ) = 0;
n+(K;k, τ ) ∼ (4k)2τ−2, τ → 0;
n−(K;k, τ ) = 0. (3.14)

so this case is non-degenerate. We will see further on in this study that for the NP
operator, the nondegenerate case always occurs.

4 The structure of the symbolm�,−1: geometry considerations

4.1 Formulation

Due to the results described in Sect. 3, in order to find the coefficients in the asymp-
totic formula for eigenvalues, we need to calculate the effective principal symbols
mι(x, ξ) ≡ mι,−1(x, ξ), ι = −1, 0, 1, of the order −1 pseudodifferential opera-
tors Mι = pι(K). We aim now for avoiding the (very tedious) direct calculation of
these symbols and their bulky and unwieldy expression using some a prori symmetry
properties. More detailed calculations follow in Sect. 6.

We have already started to investigate the structure of the symbolmι in Sect. 2. Here
we are going to determine the character of dependence of this symbol on the geomet-
rical characteristics of the surface. We denote by k1(x),k2(x) the principal curvatures
of the surface � at a point x ∈ �. If a parametrization of � is chosen, the notation
k1(x),k2(x) is used, x ∈ � ⊂ R

2, as long as it does not cause a misunderstanding.
Recall that the product k1(x)k2(x) is the Gaussian curvature,

k1(x)+k2(x)
2 is the mean

curvature and
(
k1(x)+k2(x)

2

)2
is the Willmore curvature of the surface. Note also that

we have taken the co-ordinate x3 directed along the outward normal to �, therefore
the principal curvatures are negative at the points where the surface is convex.

We will call in this section a matrix-function M(ξ) universal if it, in standard co-
ordinates and frame, depends only on the covector ξ and the Lamé constants, but
does not depend on the point on � where it is calculated. Later, in Sect. 6, the term
’universal’ will refer to functions which depend only on ξ.

The crucial property we establish in this Section is the following.

Theorem 4.1 For any point x◦ ∈ �, in the standardly chosen co-ordinates on the
surface � in a neighborhood of x◦ and the corresponding frame in C

3, the symbol
mι(x, ξ) has at the point x◦ the structure

mι(x, ξ) = k1(x◦)M (1)
ι (ξ1, ξ2) + k2(x◦)M (2)

ι (ξ1, ξ2), (4.1)

with universal matrices M (1)
ι (ξ1, ξ2), M

(2)
ι (ξ1, ξ2), order −1 positively homogeneous

in ξ , depending on the Lamé constants λ,μ but not depending on the surface �.
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We would like to stress that the representation (4.1) is valid only in the specially
selected co-ordinates system and frame at x◦. These are chosen depending on the
geometry of � near the point x◦. However, recall, the eigenvalues of the symbol
mι(x, ξ) do not depend on the co-ordinates chosen or the frame, so the integrand in
(3.11) is invariant under these changes.

We present the proof of Theorem 4.1 further on in this section.

4.2 C–co-ordinate systems

We choose near a point x◦ ∈ � a special co-ordinate system, where the structure of
the symbol is more treatable. We will call it the ’C–co-ordinates at x◦′. It is in this
system that the representation (4.1) is valid.

Suppose first that x◦ is an umbilical point of the surface �. Recall that a point on
a smooth surface in R

3 is called umbilical if the principal curvatures at this point
coincide.1 For such a point, we direct the orthogonal x1, x2 axes arbitrarily in the
tangent plane to � at x◦ and direct the x3 axis orthogonally to them, in the outward
direction at x◦.

If x◦ is not an umbilical point, we direct x1, x2 axes along the lines of principal
curvatures of � at x◦ and direct the x3 axis along the outward normal at x◦.

In both cases, the surface � near x◦ is described by the equation x3 = F(x1, x2) ≡
F(x) with F(0, 0) = 0, so x◦ = (0, 0, 0), and

∇F(0, 0) = 0, F(x1, x2) = 1

2

(
k1(x◦)x21 + k2(x◦)x22

)
+ O

((
x21 + x22

)3/2)
,

(4.2)
where k1(x◦),k2(x◦) are the principal curvatures of� at x◦,while k1(x◦) = k2(x◦) at
an umbilical point. Note that in the non-umbilical case, the numbering of the principal
curvatures matches the numbering of x1, x2 co-ordinates. This co-ordinate systemwill
be called C–co-ordinates. The dual co-ordinates ξ = (ξ1, ξ2) in the cotangent space
are directed along the same axes. The frame in the fiber R

3 at the point x◦ is chosen
along the axes x1, x2, x3.

In a neighborhood of a non-umbilical point, the curvature lines are smooth and
the C–co-ordinate systems chosen above depend smoothly on the point x◦. On the
other hand, near an umbilical point, the curvature lines may behave rather wildly,
and the above co-ordinates system can depend on the base point fairly non-smoothly.
Since we will need further on to trace the behavior of symbols under the change of
the starting point x◦, we adopt certain co-ordinate systems at points x• ∈ � near x◦,
arbitrarily, but consistent smoothly with the C–co-ordinate system at x◦. Namely, for
a point x• ∈ � with co-ordinates (x1, x2, x3) ≡ (x, x3(= F(x))) with respect to the

1 It is a long-standing problem, the Carathéodory conjecture, concerning the minimal possible number of
umbilical points on a surface. According to this conjecture, for any smooth closed surface with nonzero
Euler characteristic, there must exist at least two umbilical points. The topological torus may have no
umbilical points at all. For surfaces of a different topological type, the existence of at least one umbilical
point follows from simple topological considerations. For analytic surfaces the conjecture was settled not
long ago, see [19] and [20] and the literature cited there. For a finite smoothness, and even for the infinite
non-analytic one, the conjecture seems to be still unresolved.
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C-co-ordinate system at x◦, we consider the projection Px• of the tangent plane at x◦,
Tx◦(�), to the tangent plane Tx•(�). The co-ordinates y = (y1, y2) on Tx•(�) will
be generated on Tx•(�) from Tx◦(�) by this projection, with y3 axis directed along
the exterior normal at x• to �. What follows from this construction, is that the Jacobi
matrix of this co-ordinate transformation is, up to higher order terms as x• → x◦, the
identity matrix E plus a term linear in first order derivatives of F . The first derivatives
of this Jacobi matrix, by the chain rule, are matrices, linearly depending on the second
derivatives of F . Therefore, due to (4.2), the derivatives of the Jacobi matrix are the
principal curvatures k1(x◦),k2(x◦) at x◦, which enter with universal coefficients. We
direct the vectors in the frame of the fibre of the bundle at x• along the co-ordinate
axes. The derivatives of the transformation matrix of the fiber to the standard frame
at x◦ are, again, linear forms of k1(x◦),k2(x◦) with universal coefficients, up to some
higher order terms, as x• → x◦.

4.3 The symbolm� and the principal curvatures

The key point in the reasoning to follow is the fact that the symbols we obtain are
linear forms of principal curvatures with coefficients depending on the co-variables
ξ = (ξ1, ξ2) and the Lamé constants λ,μ but not on the point x◦. We call such
coefficients ’universal’. Our considerations will be based upon the analysis of the
structure of various terms in the expansion of the principal symbolmι,−1. The general
idea is the following. If we have a function �(z), depending on some parameters
λ,μ, ξ , and z = F(x) is a function on x ∈ R

d such that F(0) = 0,∇F(0) = 0, then,
according to the chain rule, the iterated gradient ∇2

x�(F(x))|x=0 is a linear (matrix)
form of second derivatives of F at zero, with coefficients depending only on λ,μ, ξ

and �′′
z (0), this means with universal coefficients.

We pass to the study of the symbolmι(x, ξ) (the principal, order −1, symbol of the
operator Mι). Recall that this symbol is constructed following the rules (2.6), (2.7),
(2.8). The expression (2.8) is a sum of 25 terms. These terms involve the principal
symbol k0 of the operator K, its first order derivatives in x and ξ and, finally, the
subsymbol k−1 of K. It was explained in Sect. 2 that relations (2.6), (2.7), (2.8) show
that each of 25 additive terms in the expression formι contains only one factor of order
−1, all the remaining factors having order 0. Since we may perform our calculations
in any co-ordinate system by our choice, we will studymι in the C–co-ordinate system
centered at the point x◦.

The symbol k0 does not depend on the geometry of �, as can be seen in (2.4). So,
the only way how mι can depend on the geometry is via ∇x k0,∇ξ k0, and k−1.

4.4 Dependence on the geometry of 0. 1.∇xk0,∇�k0

Here and in the next subsection we determine which characteristics of the surface may
be present in the expression of the terms in (2.8). The unwieldy explicit formulas are
not needed at the moment (they will be discussed in Sect. 6 in more detail). First, we
can see in (2.4), that the expression for the symbol k0 does not involve any dependence
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on x◦, therefore, the same is true for the ξ derivatives of k0 (these derivatives can be
calculated directly from (2.4), but we will not do this at the moment).

To evaluate ∇x k0 at the point x◦ ∈ �, we take another point x• ∈ �, in a neigh-
borhood of x◦. We consider also the C–co-ordinate system centered at x◦ and the
consistent system centered at x•, as explained in Sect. 4.2. We will mark by the super-
script ◦ the principal symbol k0 and other objects expressed in the x◦– centered system
and by • the same objects, but expressed in the x•- centered system.

In this notation, we are interested in the derivative∇x k
◦
0(x, ξ) calculated at the point

x◦, i.e., at x = 0. Thus we study the behavior of the principal symbol as x• approaches
x◦. We denote by Z = Zx• the variables change on � in a neighborhood of x◦ from
the x◦-centered co-ordinates to the x•-centered ones. The Jacobi matrix DZ = DZx◦
of this transformation contains the first order derivatives of the function F at x•. The
transformationU (x•) ∈ GL(R, 3) from the x◦-frame to the x•-frame depends linearly
on the first order derivatives of F at x• as well.

We use now the classical rule of transformation of the symbol under the change of
variables and the natural rule of transformation under the change of the basis in the
fiber. Namely, we write the symbol in x•-centered co-ordinates—it will have the same
form as (2.4)—and then transform it to x◦-centered co-ordinates. In this way, we have
at the point x•

k◦0(x, ξ) = U (x•)k•0(Z(x•), ((DZ)−1)	ξ)U (x•)−1

= U (x•) ik|ξ |

⎛
⎝ 0 0 −η1

0 0 −η2
η1 η2 0

⎞
⎠U (x•)−1,

with η ≡ (η1, η2) = ((DZ)−1)	ξ. We recall here that the variables change Z(x•),
its differential DZ(x•), and the linear transformationsU (x•) depend smoothly on the
first order derivatives of the function F(x1, x2), moreover they become identity maps
as x• → x◦, since the derivatives of F vanish ay x◦. Therefore, the derivatives of
k◦0(x, ξ) at x◦, by the chain rule, depend linearly on the second derivatives of F at x◦,
with no more characteristics of F involved. Since the co-ordinates x1, x2 have been
chosen along the curvature lines of � at x◦, the mixed second derivative of F vanishes,
while the pure second derivatives are equal to the principal curvatures of the surface
at the point x◦, moreover, this dependence is linear. Thus, we have established that

∇x k
◦
0(x, ξ)x=0 = k(k1(x◦) f1(ξ) + k2(x◦) f2(ξ))

in the C–co-ordinate system centered at x◦, with some (matrix) symbols f1, f2 of
order 0 depending on ξ (and the Lamé constants) only. The same conclusion holds at
umbilical points, where k1(x◦) = k2(x◦), by a similar reasoning.

4.5 Dependence on the geometry of 0. 2. k−1(x, �)

In order to find the required representation for the subsymbol k−1(x, ξ) of the operator
K, it is more convenient to work not with the symbol but with the kernel of the integral
operator.
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We consider the local expression (2.3) for the NP operator. Having the point x = x◦
(the point x = 0 in theC-co-ordinate systemcentered at x◦)fixed,we expand all entries
of the kernel K in the asymptotic series in terms, positively homogeneous in y − x .
We are interested in the first two terms in this expansion in the form

K(x, y) = K0(x, x − y) + K−1(x, x − y) + O(1);
x = (x, F(x)) = 0 ∈ �, y = (y, F(y)) ∈ �, (4.3)

where K0(x, x − y) is order −2 positively homogeneous and odd in (x − y) and
K−1(x, x − y) is order −1 positively homogeneous in (x − y). In order to find these
terms, we consider the expansion for separate terms in (2.3). Here we keep in mind
the Taylor expansion for the function F near x◦, F(x) = 1

2 (H(x◦)x, x) + O(|x |3),
x → 0, where H = diag (k1(x◦),k2(x◦)). Next, by our choice of co-ordinates, the
co-ordinate axes x1, x2 lie along the eigenvectors of the matrix H (for an umbilical
point, i.e., when H is a multiple of the unit matrix, any orthogonal directions may be
chosen.) In this co-ordinate system, the first fundamental form of the surface � at x◦
is the identity one,

I[�]x◦(dx) = |dx |2.
The second fundamental form for this surface at x◦ is diagonal in this co-ordinate
system:

II[�]x◦(dx) = k1(x◦)(dx1)2 + k2(x◦)(dx2)2,

calculated, recall, with the direction of the normal vector chosen to be the outward
one, so it is negative at those points where the surface is convex. For the entries in the
kernel of the integral operator K, at the point x◦ with co-ordinates (x, F(x)) = (0, 0)
in the chosen co-ordinate system, we use the standard relations for co-ordinates in this
system. Namely, for the components of the normal vector, we have

να(y) = να(0) + kα(x◦)yα + O(|y|2) = kα(x◦)yα + O(|y|2), α = 1, 2, (4.4)

and
ν3(y) = 1 − O

(
|y|2

)
. (4.5)

The distance between points, entering in (2.3), is found as

|x◦ − y|2 = |x − y|2
(
1 + 2

II[�]x◦(x − y)2

|x − y|2
)

+ o(|x − y|4). (4.6)

We substitute (4.4), (4.5), (4.6) in (2.3) and obtain that the leading termK−1 in the
singularity as y → x of the kernel K−1(y, x − y) is a linear function of the principal
curvatures.

4.6 Proof of Theorem 4.1

Finally, we take into account the structure properties of the symbol m(x, ξ) as it
depends on the principal symbol and the subsymbol of the operator K, see (2.6), (2.7),
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(2.8). At a given point, in C–co-ordinates, for each summand in (2.8), the factors k0
do not depend on the geometry of �. Exactly one factor is present in each summand
that involves the geometry of �, and this term is linear in the principal curvatures.
All other terms in the products in (2.8) do not involve geometric characteristics of the
surface, and therefore are universal matrices (depending, of course, on the material
constants and the direction of the covector ξ ∈ T∗

x�.) Therefore, each summand, being
the product of 5 factors, and further on, the whole symbol mι(x, ξ), depend linearly
on the principal curvatures of �, with universal coefficients. This concludes the proof
of Theorem 4.1.

5 Symmetries, reductions, and curvatures in asymptotic formulas

In this section we start applying the results about the spectrum of general polynomially
compact pseudodifferential operators, obtained in [34], see Theorem 3.4, to study the
asymptotics of eigenvalues of the NP operator. At this stage we will see that some
properties of the spectrum can be derived by means of qualitative considerations,
without calculating the symbols explicitly. Later,wewill presentmore detailed spectral
properties based upon explicit calculations.

5.1 Symmetries

The first property follows from the fact that the symbol k(x, ξ) should transform in
a definite way as soon as we permute the co-ordinate axes x1 and x2. We choose the
principal curvatres in the convenient way. Namely, let k1 = k 
= 0,k2 = 0. Then, by
(4.1),

mι(x, ξ1, ξ2) = kM (1)
ι (ξ1, ξ2). (5.1)

Now, let k1 = 0, k2 = k. The corresponding symbol must be the same as (5.1), after
the following transformations caused by the permutation of co-ordinates:

(1) The covariables (ξ1, ξ2) must be permuted, (ξ1, ξ2) � (ξ2, ξ1);
(2) M (1)

ι should be replaced by M (2)
ι ;

(3) The frame in C
3 changes, therefore, the first two horizontal rows should be

permuted as well as two first columns. This is obtained by the transformation
m � V−1m, where V is the linear unitary transformation in C

3 interchanging the
first row with the second one, i.e., the matrix

V =
⎛
⎝0 1 0
1 0 0
0 0 1

⎞
⎠ , V = V−1.

So, we obtain

mι(x, ξ1, ξ2) = kM (1)
ι (ξ1, ξ2) = kV−1M (2)

ι (ξ2, ξ1)V ,
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therefore, if we denote ξ̂ ≡ (̂ξ1, ξ2) = (ξ2, ξ1)

M (2)
ι (ξ1, ξ2) = V−1M (1)

ι (ξ2, ξ1)V . (5.2)

As a result, the symbol mι(x; ξ2, ξ1) must depend on only one universal matrix
Mι(ξ1, ξ2) = M (1)

ι (ξ1, ξ2), andweobtain, for a general body,with principal curvatures
k1(x),k2(x),

mι(x, ξ) = k1(x)Mι(ξ ) + k2(x)V−1Mι(ξ̂ )V . (5.3)

We consider now the special case of � being the unit sphere S2 in R
3. All points on

� are umbilical, moreover, k1(x) = k2(x) = −1 everywhere on �. We can choose the
local (orthogonal) co-ordinates in an arbitrary way. Therefore, the symbol mι(x, ξ)

for the sphere equals

mι(x, ξ) = −Mι(ξ ) − V−1Mι(̂ξ )V . (5.4)

For the sphere, the eigenvalues of the symbol mι(x, ξ) are the same for all points x ,
and, accordingly, the integrand in (3.11) is independent of the point x . Therefore, the
asymptotic formula (3.10), (3.11) gives the following expression for the coefficient
C±(ωι) for the sphere:

C±(ωι) = 2−1(2π)−2
∫
S∗�

Tr (2)
∓ (Mι(ξ ) + V−1Mι(ξ̂ )V )ωωωωωωωωωdS(x)

= (2π)−1
∫
S1
Tr (2)

∓ (Mι(ξ ) + V−1Mι(ξ̂ )V )ωωωωωωωωω (5.5)

(note the sign: Tr (2)
∓ enters in the formula, since the curvature k1 = k2 equals −1).

We recall now the explicit formulas for the eigenvalues of the NP operator on the
sphere, see (1.1). These formulas show that the eigenvalues of K approach each of
three points of the essential spectrum from above. Therefore the coefficients C−(ωι)

in (3.10) vanish. This, by Theorem 4.1, means that the integrand in the last line in
(5.5) eigenvalue asymptotic formula (3.11), Tr (2)

∓ (Mι(ξ ) + V−1Mι(ξ̂ )V ) is always
positive for − sign and it is everywhere zero for the + sign. Therefore, the matrix
(Mι(ξ ) + V−1Mι(ξ̂ )V ) for each ι, is nonpositive for all ξ ∈ S1, and at least for some
ξ at least one of eigenvalues is strictly negative.

5.2 Curvatures and the eigenvalue asymptotics

The property of (Mι(ξ ) + V−1Mι(ξ̂ )V ) being non-positive does not automatically
imply that the matrix Mι(ξ ) is non-positive – it is easy to construct a counterexample.
Nevertheless, certain important results can be derived from it.

First of all, we note that the trace tr (Mι(ξ ) + V−1Mι(ξ̂ )V ) is non-positive for all
ξ ∈ S1 and strictly negative for some ξ . Since tr (V−1Mι(ξ̂ )V )) = tr Mι(ξ̂ ), we have

tr Mι(ξ ) + tr Mι(ξ̂ ) ≤ 0.
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and at least at one point ξ ∈ S1 this trace is negative. It follows that for such ξ at least
one of eigenvalues of the matrix Mι(ξ ) is strictly negative.

Now we use the fact that for any bounded body D ⊂ R
3 with smooth boundary

� there exists a point x◦ where both principal curvatures are strictly negative—see
Sect. 5.4. Then the trace

tr (mι(x, ξ)) = k1(x◦) tr
(
M (1)

ι (ξ)
)

+ k2(x◦) tr
(
M (2)

ι (ξ)
)

(5.6)

is strictly positive for some ξ and, consequently, at least one of eigenvalues ofmι(x, ξ)

is strictly negative. Therefore, as explained in Proposition 3.5, the coefficient C+
ι does

not vanish. Since on every compact smooth surface in R
3, such point x◦ exists, this

gives us the following result for the eigenvalues of the NP operator.

Theorem 5.1 For any body D, the coefficients C+(ωι) in (3.11) are strictly positive;
therefore there exist infinitely many eigenvalues of the NP operator K approaching the
points ωι of the essential spectrum from above, and they satisfy the asymptotic law
(3.10), (3.11) with ’plus’ sign.

On the other hand, if there exists a point at the boundary where it is concave, the
existence of eigenvalues converging to ωι from below is granted. More exactly,

Theorem 5.2 Let the boundary � of the body D have at least one point such that
both principal curvatures are non-negative while at least one is strictly positive. Then
the coefficients C−(ωι) in (3.11) is positive, this means that there are infinitely many
eigenvalues of K approaching ωι from below, and they satisfy the asymptotic formula
(3.10) with ‘-’ sign.

An interesting particular case of this theorem is the following.

Corollary 5.3 Suppose that the body D contains a cavity inside. Then the coefficients
C−(ωι) in (3.11) are positive, there are infinitely many eigenvalues of K approaching
ωι from below, and they satisfy the asymptotic formula (3.10) with ‘-’ sign.

It is clear that at the point where the boundary of the cavity is convex, the surface
�, considered as the boundary of D, is concave and Theorem 5.2 applies.

5.3 Two-sided asymptotics

Using our results on the structure of the symbol mι(x, ξ) we can find a visual expres-
sion for the two-sided asymptotics of eigenvalues of the NP operator K, following
Theorem 3.6.

Let � be a smooth compact surface and k1(x),k2(x) be the principal curvatures
at the point x ∈ �. We suppose that they are calculated in C-co-ordinate systems,
discussed above, where dS(x) equals the area element for the measure on � induced
by the Lebesgue measure in R

3.
We calculate the integrand in (3.13); it gives

tr
(
(mι(x, ξ))2

)
= tr

([
k1(x)Mι(ξ ) + k2(x)V−1Mι(ξ̂ )V

]2)
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= k1(x)2 tr M2
ι (ξ ) + 2k1(x)k2(x) tr

[
Mι(ξ )V−1Mι

(
ξ̂
)
V

]
+ k22 tr M2

ι (ξ̂ ),

(here, we used the fact that tr ((V−1MV )2) = tr (M2)). We substitute (5.3) into (3.13)
and use the fact that

∫
S1 M

2
ι (ξ̂ )ωωωωωωωωω = ∫

S1 M
2
ι (ξ )ωωωωωωωωω and obtain

C(ωι) = 2−1
∫

�

(k21 + k22)dS(x)
∫
S1
tr (M2

ι (ξ ))ωωωωωωωωω

+
∫

�

k1(x)k2(x)dS(x)
∫

tr [Mι(ξ )V−1Mι(ξ̂ )V ]ωωωωωωωωω
≡ AιW (�) + Bιχ(�), (5.7)

where χ(�) is the Euler characteristic of the surface �,

χ(�) = (2π)−1
∫

�

k1(x)k2(x)dS(x),

by the Gauss-Bonnet formula, and W (�) is the Willmore energy of �,

W (�) =
∫

�

(k1(x) + k2(x))2

4
dS(x).

The coefficientsAι,Bι depend only on the Lamé constants λ,μ and they are equal to

Aι = 2
∫
S1
tr (M2

ι (ξ ))ωωωωωωωωω,

and

Bι = 2π
∫
S1

[
tr [Mι(ξ )V−1Mι(ξ̂ )V ] − tr [M2

ι (ξ )]
]
ωωωωωωωωω

We formulate this, rather esthetic, result as a theorem.

Theorem 5.4 Let � be a compact smooth surface in R
3. Then for each point kι, ι =

−1, 0, 1, of the NP operator, there exist infinite sequences of eigenvalues converging
to kι satisfying the two-sided asymptotic law (3.12) with nonzero coefficients given
by (5.7). In particular, the degenerate case in the spectral analysis of polynomially
compact pseudodifferential operators never happens for the elastic NP operator.

Remark 5.5 One can note a similarity of our Theorem 5.4 and, especially, formula
(5.7), with the results of the papers [30, 32] concerning the eigenvalues, tending to
zero, of the compact NP operator in 3D electrostatics. There, the asymptotics of the,
separately considered, positive and negative eigenvalues contains, respectively, inte-
gral of positive and negative parts of a certain rather complicated expression involving
the curvatures of the surface, while the coefficient in the two-sided asymptotics of
these eigenvalues is expressed in a linear way via the global geometric characteristics
of the surface, namely, its Euler charateristic and Willmore energy.
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5.4 Some geometry

In the considerations above we used the following geometrical fact: for a smooth
closed surface � ⊂ R

3, there exists a point x◦ ∈ � such that the surface is strictly
convex at x◦, this means, both principal curvatures of � at x◦ are negative. We were
not able to locate a proof of this, probably, folklore, result in the literature, therefore
we give an elementary proof here (not pretending that it is a novel one).

Let d = diam (�) be the diameter of�, the largest distance between a pair of points
in �. By compactness, such pair must exist (probably, not a unique one, but this does
not matter.) Let A, B be such points. Let k1(B),k2(B) be the principal curvatures of
� at B in a C-co-ordinate system.

Proposition 5.6 The principal curvatures at the point B satisfy k1(B),k2(B) ≤
−d−1.

Proof In a C-co-ordinate system centered at B, the surface is described near B by

x3 = k1(B)

2
x21 + k2(B)

2
x2

2 + O
(
|x |3

)
.

Therefore, the distance from A to the point x of � near B, with co-ordinates x1, x2, x3
satisfies

dist 2(A, x) =
(
x21 + x22 +

(
d + k1(B)

2
x21 + k2(B)

2
x2

2
))2

+ O(|x |3).

If we suppose, for example, that k1(B) > −d−1, we have for x2 = 0,

dist 2(A, x) =
(
x21 +

(
d + k1(B)

2
x21

))2

+O
(
x31

)
= d2+x21−dk1(B)x21+O

(
x31

)
,

therefore dist (A, x) > d for small x1, and this contradicts the fact thatd is the diameter
of �. ��

6 Explicit calculation of the symbolm�: dependence on the Lamé
constants

As marked above, the expression for the coefficients in (3.11) is highly complicated
since it involves integration of the eigenvalues of a definite sign of the symbolic
matrices mι(x, ξ). In this section we demonstrate, nevertheless, how the symbol mι

can be calculated. In order to find the symbol mι,−1(x, ξ) we need to find just one
matrix-function Mι(ξ ). This matrix depends on the Lamé constants of the material
and is a function of the covector ξ ∈ R

2.
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6.1 The standard surface

Since the universal symbol Mι(ξ ) is the same for all surfaces, it is sufficient to find it
for just one, specially chosen, surface, where the calculation of Mι is less troublesome.
As such a surface we take the one with only one of principal curvatures nonvanishing.
As such standard surface, we select the cylinder � with radius R = −k−1, k < 0 and
we perform calculation in more detail than it was done in Sect. 4. This enables us to
determine the dependence of the effective symbol on the Lamé constants. (It does not
matter that the cylinder is non-compact since the symbol Mι(ξ ) is a local quantity.)

We consider such cylinder � as being described by the equation x21 + (x3 + R)2 =
R2; in a neighborhood of‘the point x◦ placed in the origin, x◦ : x1 = x2 = x3 = 0,
we can write

x3 = F(x) = −R +
√
R2 − x21 = 1

2
kx21 + O

(
x41

)
, x1 → 0, x2 ∈ R

1, (6.1)

with the normal vector directed outside the body, i.e., upward along the x3 axis at
the point x◦ = (0, 0, 0). The C-co-ordinates lines are, due to our construction in
Sect. 4.2, directed along the curvature lines, i.e., along the orthogonal cross-section of
the cylinder and along its axis. The frame vectors are directed along x1, x2, x3 axes in
R
3 ⊂ C

3. In the chosen co-ordinates, k1(x◦) = k,k2(x◦) = 0, and derivatives of all
entries in the direction x2 vanish.

The first and second fundamental forms of the surface G at the point x◦ are equal
to

I(x◦, dx) = dx21 + dx22 ; II(x◦, dx) = kdx21 .

The normal vector ννννννννν(y) = ννννννννν(y1, y2, F(y1)) at the point y = (y, F(y)) =
(y1, y2, F(y1, y2)) lying close to x◦ equals

ννννννννν(y) =
(

−ky1, 0,
√
1 − k2y21

)	
= (−ky1, 0, 1)	 + O(y21 ), y1 → 0. (6.2)

Therefore, its derivatives are

∂ννννννννν(y)
∂ y1

= (−k, 0, 0)	 + O(|y1|); ∂ννννννννν(y)
∂ y2

= 0.

6.2 The expansion of the kernel

Recall that the kernelK(x, y) of the NP operator K is given in (2.3). We will express it
in co-ordinates x, y and find the first two power terms in the expansion ofK(y, y− x),
as y → x .

In the C–co-ordinate system centered at x = x◦ = 0, we calculate contributions
to the singularities of the symbol of K coming from the terms in (2.3) separately.
First, we find the expansion of the distance |x − y| = |y| and its powers. We have:
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|y|2 = y21 + y22 + F(y1)2, therefore

|y|−2 = |y|−2
(
1 + F(y1)2

|y|2
)−1

= |y|−2 + O(1).

Similarly,

|y|−3 = |y|−3
(
1 + O(|y|2)

)
= |y|−3 + O

(
|y|−1

)
, y → 0.

Thus, when calculating the leading two terms in the expansion in (4.3), wemay replace
|y| by |y|.

Next we evaluate the expression S1(y) = −∑3
l=1 νl(y)yl entering in the second

line (2.3), for y = (y, F(y1)) ∈ �. Since ννννννννν(y) = (−ky1, 0, 1)	 + O(y21 ), we have

S1 = −(−ky1, 0, 1)
(
y1, y2,

1

2
ky21

)	
+ O

(
|y|3

)
= 1

2
ky21 + O

(
|y|3

)
, y → 0.

Further on, we calculate the expression S2,p,q(y) = (xp − yp)(xq − yq) in (2.3), with
xp = xq = 0. On the matrix diagonal, i.e., for p = q,

S2,1,1 = y21 ; S2,2,2 = y22 ; S2,3,3 = F(y1)
2 = O

(
y41

)
,

while off-diagonal, for p 
= q,

S2,1,2 = S2,2,1 = y1y2; S2,1,3 = S2,3,1 = F(y1)y1 = O
(
|y|3

)
;

S2,3,2 = S2,2,3 = F(y1)
2 = O

(
|y|4

)
.

Therefore, the expression on the second line in (2.3) equals, for x = 0,

[K(2)(y)]p,q = 1

2π

[
kδpq + 3m

2

yp yq
|y|2

]
ky21
|y|3 + O(1), p, q = 1, 2,

[K(2)(y)]p,q = O(1), for p = 3, q = 2 or p = 2, q = 3,

and, finally,

[K(2)(y)]3,3 = − 1

2π
kk

y21
|y|3 + O(1)

(recall that k = μ
2(λ+2μ)

).
In particular,we can see that the expression on the second line in (2.3) has singularity

of order −1 in |x − y|, and, therefore, contributes only to the subsymbol of the
pseudodifferential operator K, but not to its principal symbol.

Next we calculate the expansion on the first line in (2.3) (recall, we set x = x◦ = 0
here.) These terms may contribute to both principal and subsymbol of K. Note first
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that the matrix defined by this line is antisymmetric, therefore, the diagonal terms,
p = q, vanish.

For the off-diagonal terms, using (6.2), we obtain

ν1(y)y2 − ν2(y)y1 = −ky1y2;
ν1(y)y3 − ν3(y)y1 = −y1 + O(|y|3);
ν2(y)y3 − ν3(y)y2 = −y2 + O(|y|3).

Therefore, the expression on the first line in (2.3) equals

K(1)(y) = 1

2π
k|y|−3

⎛
⎝ 0 0 −y1

0 0 −y2
y1 y2 0

⎞
⎠

+ 1

2π
kk|y|−3

⎛
⎝ 0 −y1y2 0

y1y2 0 0
0 0 0

⎞
⎠ , (6.3)

and the one on the second line is

K(2)(y) = k
2π

⎛
⎜⎜⎜⎝

3m
2

y41
|y|5 + k

y21
|y|3

3m
2

y31 y2
|y|5 0

3m
2

y31 y2
|y|5

3m
2

y21 y
2
2

|y|5 + k
y21

|y|3 0

0 0 k
y21

|y|3

⎞
⎟⎟⎟⎠

= 1

2π
kk

y21
|y|3E + 3

4π
kmy21 |y|−5

⎛
⎝ y21 y1y2 0

y1y2 y22 0
0 0 0

⎞
⎠ . (6.4)

The first term in (6.3) corresponds to the principal part of the symbol of the NP
operator only, while (6.4) and the second term in (6.3) contribute to the subsymbol.

6.3 The expansion of the symbol

Next we transform our formulas for the kernels (6.3), (6.4) of the integral operators
to the corresponding expressions for the components of the symbol of the pseudod-
ifferential operator K. Recall that this symbol is the Fourier transform of the kernel
K of the integral operator in x − y ∈ R

2 variable. Some of formulas we use can be
found in standard tables of the Fourier transform of distributions, other ones need to
be calculated by hand.

We start with recalling that the kernel (2π |x − y|)−1 in R
2 corresponds, by means

of the Fourier transform F in R
2, to the symbol |ξ |−1,

F [(2π |y|)−1] = |ξ |−1.
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Further on, since yp
|y|3 = −∂p(|y|−1), p = 1, 2,

F

[
(2π)−1 yp

|y|3
]

= iξp|ξ |−1,

in the sense of distributions.
Next, we consider the kernel |y|−5. Its Fourier transform in the sense of distributions

equals 2π
9 |ξ |3. By the properties of the Fourier transform, we have

F

[
y31 y2
2π |y|5

]
= 1

9
∂ξ2∂

3
ξ1

(|ξ |3) = ξ32 ξ1|ξ |−5.

In the same way,

F

[
y41

2π |y|5
]

= 1

9
∂4ξ1(|ξ |3) = ξ42 |ξ |−5.

Finally,

F

[
y21

2π |y|3
]

= ξ22 |ξ |−3, (6.5)

F

[
y1y2

2π |y|3
]

= ξ1ξ2|ξ |−3, (6.6)

and

F

[
y22

2π |y|3
]

= ξ21 |ξ |−3. (6.7)

As a result, the symbol of the NP operator K on the surface � equals, in C-co-
ordinates centered at the point x◦ = (0, 0, 0),

k(x◦, ξ) = ik

⎛
⎝ 0 0 −ξ1|ξ |−1

0 0 −ξ2|ξ |−1

ξ1|ξ |−1 ξ2|ξ |−1 0

⎞
⎠

+1

2
kkξ22 |ξ |−3E + 3

2
km|ξ |−5ξ22

⎛
⎝ ξ22 ξ1ξ2 0

ξ1ξ2 ξ21 0
0 0

⎞
⎠

+km|ξ |−3

⎛
⎝ 0 ξ1ξ2 0

−ξ1ξ2 0 0
0 0 0

⎞
⎠ + O(1). (6.8)

So, we have calculated the leading two terms in the expansion of the symbol ofK for
the case of a cylinder. In the expression (6.8), the first term is order −0 homogeneous
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and represents the leading symbol k0, as we already know, while the remaining terms,
the ones on the second and third lines, represent the subprincipal symbol k−1. We note
that both k0 and k−1 areHermitian.Moreover, k0 does not dependon the geometry of the
surface�, while k−1 depends linearly on the curvaturek, aswehave already found from
less detailed considerations in Sect. 4. Therefore, for a general, non-cylindrical surface,
by the curvature linearity established in Sect. 4, a similar term containing the second
principal curvature should be added to the subsymbol. Additionally, we pinpoint that
the subsymbol terms in (6.8) depend linearly on the material characteristics k =

μ
2(2μ+λ)

and m = λ+μ
2(2μ+λ)

= 1
2 − k. These properties of the symbol of K will be

discussed further on.

6.4 The gradient of the principal symbol

Next, we need to find an explicit expression of one more object, namely the gradient of
the principal symbol k0(x, ξ) that enters in the expression formι. We note, for a further
reference, that the principal symbol k0 depends linearly on k but does not depend on
m. The same property is valid for all derivatives of k0.

Formula (6.8) gives us the representation of this symbol at the point x◦ = 0 in
the co-ordinates and the frame associated with this point. What we need now is to
calculate this symbol at a different point x• = (x, F(x)) 
= x◦ and then find derivatives
∂xα k0(x, ξ) and ∂ξα k0(x, ξ) for x = 0 by means of making x• approaching x◦. Again,
a condense description of this calculatoin is presented in Sect. 4. This calculation is
needed for α = 1 only, since, on the cylinder, all derivatives in x2 variable vanish. We
find the derivative in ξ1 first. By a direct calculation, we obtain from (6.8):

∂ξ1k0(x, ξ) = ik

|ξ |3

⎛
⎝ 0 0 ξ22

0 0 ξ1ξ2
−ξ22 −ξ1ξ2 0

⎞
⎠ .

Next we find the derivative ∂x1k0(x, ξ). For a given x1, we take a point x• =
(x1, 0, F(x1)) ∈ � and consider the C–co-ordinates system (y1, y2, y3) centered at x•
and the corresponding frame in R

3. These co-ordinates are rotated compared with the
system centered at x◦, the rotation realized by the matrix

U (x•) =
⎛
⎝ cos(θ) 0 sin(θ)

0 1 0
− sin(θ) 0 cos(θ)

⎞
⎠ , (6.9)

where the angle θ equals

θ = arcsin F ′(x1) = arcsin
( x1
k

)
. (6.10)

This is a rotation around the y2 axis, directed, recall, along the directrix of the cylinder
�, i.e., parallel to the x2 axis. The frame in R

3 at the point x• has directions along the
axes y1, y2, y3; the covariables η j are directed along the corresponding y j axes.
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Further on, since we need to trace the dependence of the symbols of our operator
on the co-ordinate system, we will mark it by the superscript: thus, k◦0 denotes the
expression of the symbol in the C–co-ordinate system and frame centered at x◦ etc.

Now, the principal symbol of the operator K at the point x•, calculated in (y, η)-
C–co-ordinate system, is given by the same expression as in (6.8), just with ξ replaced
by η :

k•0(x•, η) = ik|η|−1

⎛
⎝ 0 0 −η1

0 0 −η2
η1 η2 0

⎞
⎠ . (6.11)

Now we apply the rule of the variables change in the principal symbol of pseudodif-
ferential operators;

kx0(x
•, ξ) = U (x1)

−1k•0(x•,U (y)∗ξ)U (x1),

where U = U (x1) is the linear transformation (6.9). Note, that in addition to the
standard formula for the change of variables in pseudodifferential operators, which is
reflected by the presence of U in the argument in k, formula (6.11) takes into account
the circumstance that the symbols at the points x• and x◦ are represented in different
frames, related, again, by means of the same matrix U (x1). This gives us

kx
•

0 (x◦, ξ) = ik

|ξ |U
−1

⎛
⎝ ξ1 sin θ 0 −ξ1 cos θ

0 0 −ξ2
ξ1 cos θ ξ2 ξ1 sin θ

⎞
⎠U

= ik

|ξ |

⎛
⎝ ξ1 sin θ 0 −ξ1 cos θ

0 0 −ξ2
ξ1 cos θ ξ2 ξ1 sin θ

⎞
⎠ . (6.12)

The last equality uses the fact that, in our case, the matrixU commutes with the matrix
k0. Thus, we have obtained the expression for the principal symbol of Kwritten in one
and the same co-ordinate system and the same frame. Now we can differentiate the
expression (6.12) in x1 variable, taking into account (6.10):

∂

∂x1
kx

◦
0 (x1, 0, F(x1), ξ) |x1=0 = ikk

|ξ |

⎛
⎝ ξ1 0 0

0 0 0
0 0 ξ1

⎞
⎠ . (6.13)

Finally, we collect all terms we calculated in the symbols; it is more graphical to
represent them in homogeneous variables φβ = ξβ/|ξ |, β = 1, 2, so that φ2

1+φ2
2 = 1.

In this way we have

k0(ξ) = ik

⎛
⎝ 0 0 −φ1

0 0 −φ2
φ1 φ2 0

⎞
⎠ ; k−1(ξ) = |ξ |−1k(ku(ξ) + mv(ξ)),
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u(ξ) = −φ2
2E; v(ξ) = −1

2
φ2
2

⎛
⎝ φ2

2 φ1φ2 0
φ1φ2 φ2

1 0
0 0 0

⎞
⎠ − 3

2

⎛
⎝ 0 φ1φ2 0

−φ1φ2 0 0
0 0 0

⎞
⎠ ;

∂ξ1k0(x, ξ) = ik|ξ |−1

⎛
⎝ 0 0 −φ2

2
0 0 −φ1φ2

φ2
2 φ1φ2 0

⎞
⎠ ;

∂x1k0(x, ξ) = ikk|ξ |−1

⎛
⎝φ1 0 0

0 0 0
0 0 φ1

⎞
⎠ .

6.5 The symbolm�

By the reasons discussed earlier, the explicit expression of the symbol of the order −1
pseudodifferential operator Mι is rather wild. Even in the case of a cylinder, the task
of calculating the eigenvalues of the symbol remains quite irrational. This calculation
would involves 15 products of matrices, leading to a incomprehensible expression. It
would become even more obscure and senseless after adding 10 more terms present if
both principal curvatures are nonzero.To illustrate the above, we write down all terms
in the terms for the cylinder case in the symbol m−1.

To shorten the notations, we write k instead of k0, j instead of k−1, g instead of ∂ξ1k,
and h instead of ∂x1k, and also omit the subscript α in (2.7).

So, for calculatingm−1 (recall, this is the effective symbol for the pointω−1 = −k),
we compose terms of type 1, see (2.6) and find their sum:

F := F1 + F2 + F3 + F4 + F5 = jk2(k − k)2 + (k + k)jk(k − k)2

+(k + k)kj(k − k)2 + (k + k)k2j(k − k) + (k + k)k2k − k)j. (6.14)

Then we determine the terms of type 2, see (2.7), and write down their sum:

G := −ı[G1,2 + G1,3 + G1,4 + G1,5 + G2,3 + G2,4 + G2,5 + G3,4 + G3,5 + G4,5]
= −ı[ghk(k − k)2 + gkh(k − k)2 + gk(k − k)h(k − k) + gk(k − k)2h

+(k + k)gh(k − k)2 + (k + k)gkh(k − k) + (k + k)gk(k − k)h

+(k + k)kgh(k − k) + (k + k)kg(k − k)h + (k + k)k2gh]. (6.15)

Finally, m−1 = (p′(ωι))
−1(F + G), it is the sum of 15 terms, for a cylinder with

radius k, and the coefficient M−1(ξ) is equal to M−1(ξ) = k−1m−1(ξ). This coef-
ficient is universal, and for a general surface with principal curvatures k1(x),k2(x),
the symbol is calculated using the linearity in the principal curvatures, see (5.3). The
integrand in the asymptotic formulas is, up to some constant,

For calculating mι for ι = 0 and for ι = 1, the formulas are analogous to (6.14),
(6.15), but with different combinations of k − ωι, in accordance with (2.6), (2.7).
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6.6 Dependence on thematerial

The explicit expression for m(x, ξ) is extremely cumbersome; if typed, it would fill
several unreadable pages. We, however, have already determined its dependence on
the geometry of the bodyD. What we can do now is to describe its dependence on the
material of the body, namely on the Lamé constants.

When analysing the expression (6.14), we see that in each of 5 summands (the
last one vanishes, but this does not matter) there are 4 factors containing the principal
symbol k = k0(ξ), each of them contains the factor k. Additionally, one of factors
is the symbol j, linear in kand m. The above 4 entries of k are cancelled by the
factor (p′

ι(ωι))
−1 in (2.8) which contains k−4. What remains, is that all summands

in (6.14) produce a contribution to mι, being linear form linearly of k and m with
universal coefficients which are some matrices depending only on ξ (and, of course,
on ι). Let us pass to the terms of type 2 in (6.15). Each summand in G is a product
of five terms, of which 3 contain the principal symbol k = k0(x, ξ), the other two are
the gradient in ξ and the gradient in x variables of k. As follows from our calculations
above, each of these factors in (2.7) contain the factor k, altogether 5 of them. Four
of them are canceled, again, by the coefficient (p′

ι(ωi ))
−1, therefore, again, a linear

dependence of the parameter k remains in mι but not a dependence on m any more.
We sum this reasoning by stating that the contribution of the term G in (2.8) to mι is
a linear function of quantities k = μ

2(λ+2μ)
with a universal coefficient.

Altogether, we obtain that the matrix Mι(ξ ) is a linear form of k and m = 1
2 − k

with universal coefficients. Therefore, (3.10) involves the eigenvalues of a matrix
depending linearly on the material parameters k and m and linearly on the principal
curvatures. We arrive at the following representation for the effective symbol.

Theorem 6.1 The effective symbol mι satisfies

mι(x, ξ) = k1(x)(k, X ι(ξ )+mYι(ξ ))+k2(x)V−1(kX ι(ξ̂ )+mYι(ξ̂ ))V−1. (6.16)

with universal matrix functions X ι(ξ ), Yι(ξ ), order −1 positively homogeneous in
ξ ∈ R

2.

We obtain more knowledge on the matrices kXi (ξ), Yι(ξ ) after some further
analysis of the spherical case.

6.7 Returning to the sphere

Having the expression (6.16) for the symbol mι, we return to the result (5.7) for the
two-sided asymptotics of eigenvalues, We obtain the following expressions for the
coefficients Aι and Bι in (5.7).

Aι = 2π−1
[∫

S1
k2 tr (X ι(ξ ))2ωωωωωωωωω + 2

∫
S1
km tr (X ι(ξ )Yι(ξ ))ωωωωωωωωω + m2

∫
S1
tr Y 2

ι (ξ )ωωωωωωωωω

]

= ���ι,W (k,m), (6.17)
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and a similar expression for Bι,

Bι = 2

(∫
S1
tr [(kX ι(ξ ) + mYι(ξ )) V−1 (kX ι(ξ ) + mYι(ξ )) V

]
ωωωωωωωωω − Aι

= ���ι,χ (k,m). (6.18)

In these formulas���ι,W (k,m),���ι,χ (k,m) are quadratic forms of the quantities k,m,
with universal coefficients depending only on ι.

In particular, these coefficients have the same form for the body being the unit ball;
the Euler characteristic and theWillmore energy for the sphere equal, correspondingly,
χ(S2) = 2, W (S2) = 4π . We compare (6.17), (6.18) with the asymptotic formulas
(3.14). Due to the fact that both formulas (3.14) and (5.7) with coefficients (6.17),
(6.18) must give the same result for all combinations of the Lamé constants λ,μ,
we derive from this comparison the following. In particular, the coefficient in the
eigenvalue asymptotics for a sphere, see (3.14), for ι = 0 does not depend on the
Lamé constants, therefore, all their entries for ι = 0 cancel due to k + m = 1

2 .

Theorem 6.2 The quadratic form ϒι(k,m) = 2π−1Aι(k,m) + 2Bι possesses the
following properties

• For ι = ±1, the form ϒι(k,m) equals γιk
2,

• For ι = 0, ϒι(k,m) = γ0,

Here γι are absolute numeric coefficients obtained by integrating expressions
containing the matrix-functions X ι,Yι, see (6.17), (6.18).

We can also note that for the sphere, there are no eigenvalues approaching ωι from
below. This means that the symbol (6.16) is non-negative for all ι,k, ξ.
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Appendix A: Some remarks on the nonhomogeneousmaterial

In the paper [32] an approach was made to consider a mathematical model of a nonho-
mogeneous elastic body (with theLamé) parametersλ(x), μ(x)being smooth, possibly
nonconstant, functions of the point x ∈ D. A possible version of the NP operator
was constructed. It was found that the essential spectrum of this operator K may fill
nontrivial intervals of the real line, namely, the set of values of the, now functions,
k(x) = μ(x)

2(2μ(x)+λ(x)) and −k(x) for x ∈ �, as well as the point 0. This fact was
based upon the representation, found in [32], of K as an order zero pseudodifferential
operator with principal symbol

k0(x, ξ) = ik(x)

|ξ |

⎛
⎝ 0 0 −ξ1
0 0 −ξ2
ξ1 ξ2 0

⎞
⎠ , (A.1)

(x, ξ) ∈ T ∗�, in the same local co-ordinate system and local frame, as we use here for
a homogeneous material. A question arises about the eigenvalues converging to the
tips of the essential spectrum, namely, to the boundary points of the above intervals.
It is natural to expect that the character of this convergence should depend on the
structure of these boundary points.

The starting point here is the case of a nondegenerate extremal point of k(x) at the
boundary point. If k(x), say, has a nondegenerate maximal point at x◦ ∈ � then the
corresponding eigenvalue σ(x, ξ) of the principal symbol k0(x, ξ) is equal to k(x◦)
and therefore does not depend on ξ. It has its extremal value,moreover a nondegenerate
one, for all ξ.

Another special (and quite convenient) property concerns the subsymbol of K. As
the reasoning in the present paper shows, the subsymbol of K is constructed using
the Taylor expansion of the integral kernel of the operator K. This reasoning, based
on the explicit formulas in [32], can be performed analogously to the one in Sect. 5
in our present paper. Unlike our present case, for a nonhomogeneous material, this
expansion would involve not only geometrical characteristics (principal curvatures) of
�, but also the derivatives of the function k(x) along directions on �. Fortunately, in
the extremal point of k(x), the first order derivatives of this function vanish, therefore,
the expression for the subsymbol of K at this point turns out to be the same as for the
homogeneous case, thus given by (6.8). A construction has been performed in [34],
showing that under the above conditions, the knowledge of the second order jet of the
eigenvectors of k0(x, ξ) at the point x◦, together of the subsymbol k−1 at this point
suffices to find the asymptotics of eigenvalues converging to k(x◦).

http://creativecommons.org/licenses/by/4.0/
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