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Doubling the equatorial for the prescribed
scalar curvature problem on S"

Lipeng Duan, Monica Musso and Suting Wei

Abstract. We consider the prescribed scalar curvature problem on S¥
N(N —2)

Agnv — 11-1—I~((y)v%i—g =0 onS", v>0 in SV,

under the assumptions that the scalar curvature K is rotationally sym-
metric, and has a positive local maximum point between the poles. We
prove the existence of infinitely many non-radial positive solutions, whose
energy can be made arbitrarily large. These solutions are invariant under
some non-trivial sub-group of O(3) obtained doubling the equatorial. We

use the finite dimensional Lyapunov—Schmidt reduction method.
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1. Introduction

Given the N-th sphere (SV, g) equipped with the standard metric g and a fixed
smooth function K, the prescribed scalar curvature problem on SV consists in
understanding whether it is possible to find another metric g in the conformal
class of g, such that the scalar curvature of g is K. For some positive function
v:SY — R, and a related conformal change of the metric

4
29
the scalar curvature with respect to g is given by

o (ASNUA“A;Q)W),

j=uv~

where Agw is the Laplace-Beltrami operator on SV. Thus the prescribed scalar
curvature problem on SV can be addressed by studying the solvability of the
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problem

N(N - 2)

N+2 N
)

Agnv — v+ K(y)v¥—2 =0 onS v>0 in SV, (1.1)

Testing the Eq.(1.1) against v and integrating on SV, we get that a
necessary condition for the solvability of this problem is that K (y) must be
positive somewhere. There are other obstructions for the existence of solutions,
which are said to be of topological type. For instance, a solution v must satisfy
the following Kazdan-Warner type condition (see [15]):

/ VEK(y) - Vyv~2 do =0. (1.2)
SN

This condition is a direct consequence of Theorem 5.17 in [16], where Kazdan
and Warner proved that given a positive solution v to

N(N —2)
2
on the standard sphere SV, N > 3, then

Agnv — v+ H(y)v* =0

1 N +2
/ v HMVH.-VF = -(N —2) Yr2 / v HF, (1.3)
SN 2 N - 2 SN
for any spherical harmonics F' of degree 1. Taking a = %, H=KandF=y

in (1.3), we can obtain condition (1.2). The problem of determining which K (y)
admits a solution has been the object of several studies in the past years. We
refer the readers to [2—4,6-8,10,14,15,19,30], and the references therein.

By using the stereo-graphic projection 7y : RY — SNM\{(0,0,...,1)},
the prescribed scalar curvature problem on S¥, i.e. (1.1), can be transformed
into the following semi-linear elliptic equation

Av+ K(yw? ~1=0, v>0, inRY veDV3RY). (1.4)

Here 2* = 285 K(y) = K(rny), and DY2(RY) denote the completion of
C2°(RYN) with respect to the norm [ [V|?. It is of interest to establish
under what kind of assumptions on K problem (1.4) admits one or multiple
solutions.

For N = 3, Li [17] showed problem (1.4) has infinitely many solutions
provided that K (y) is bounded below, and periodic in one of its variables, and
the set {z|K(x) = max,ecgs K(y)} is not empty and contains at least one
bounded connected component.

If K has the form K(y) = 1+ eh(y), namely it is a perturbation of the
constant 1, Cao et al. [5] proved the existence of multiple solutions.

If K(y) has a sequence of strictly local maximum points moving to infin-
ity, Yan [32] constructed infinitely many solutions.

Wei and Yan [31] showed that problem (1.4) has infinitely many solutions
provided K is radially symmetric K(y) = K(r), r = |y|, and has a local
maximum around a given ro > 0. More precisely, they ask that there are ry,
cop > 0 and m € [2, N — 2) such that

K(s) = K(rg) — cols — ro|™ + O(|s — r0|m+‘7)7 s € (rg—d,r0+9),
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where o,§ are small positive constants. In order to briefly discuss the main
results in [31], we will recall the expression of Aubin-Talenti bubbles. It is well
known (see [29]) that all solutions to the following problem

Auv+u*'=0, u>0inR"Y, (1.5)

are given by

A N2—2
Uw = (—) ) RN; A 07
Aly) =cn 1T A%y 2 xe >
and cy = [N(N —2)] "5 . The solutions in [31] are obtained by gluing together
a large number of Aubin-Talenti bubbles, which looks like

k
U, ~ E ij,/’\y
Jj=1

where A is a positive constant and the points x; are distributed along the
vertices of a regular polygon of k edges in the (y1, y2)-plane, with |z;| — ry as
k — oo:

20 — 1 20 — 1
xj:<fcos Uk )™ sin (Jk )”,0,...,0), j=1,...k

with 7 — rg as kK — oo.

Under a weaker symmetry condition for K(y) = K(|y'|,y") with y =
(1'],y") € R? x RN=2 Peng et al. [27] constructed infinitely many bubbling
solutions, which concentrate at the saddle points of the potential K(y). Guo
and Li[11] admitted infinitely many solutions for problems (1.4) with polyhar-
monic operators. For fractional case, we refer to [13,23].

The study of other aspects of problem (1.4), such as radial symmetry of
their solutions, uniqueness of solutions, Liouville type theorem, a priori esti-
mates, and bubbling analysis, have been the object of investigation of several
researchers. We refer the readers to the papers [1,9,18,20-22,25,26,32] and
the references therein.

Recently, Guo et al.[12] investigated the spectral property of the lin-
earized problem associated to (1.4) around the solution @y, found in [31]. They
proved a non-degeneracy result for such operator by using a refined version
of local Pohozaev identities. As an application of this non-degeneracy result,
they built new type of solutions by gluing another large number of bubbles,
whose centers lie near the circle |y| = rg in the (ys, y4)-plane.

All these results concern solutions made by gluing together Aubin-Talenti
bubbles with centres distributed along the vertices of one or more planar poly-
gons, thus of two-dimensional nature. The purpose of this paper is to present a
different type of solution to (1.4) with a more complex concentration structure,
which cannot be reduced to a two-dimensional one.

To present our result, we assume that K is radially symmetric and satis-
fies the following condition (H): There are 19 and ¢y > 0 such that

K(s) = K(rg) — cols — ro|™ + O(|s — r0|m+‘7)7 s € (rg—d,r0+9),
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where o, > 0 are small constants, and

[2,N—2) if N =5or6,
m € (N—2)2 . (16)
(2N—3’N_2) if N>T.

There is a slight difference between our assumptions on K (s) and the ones in
[31]. We will comment on this issue later.

Without loss of generality, we assume ro = 1, K(1) = 1. For any integer
k, we denote

r =k~ (1.7)

and set u(y) =r~ e v(@) Then the problem (1.4) can be rewritten, in terms

of u, as

“Au= K(M)u?*l, >0, mRY, weDY2RN).  (L8)

r

We define
k k
Wr,h,A(y) = Z UT]-,A(y) + Z Ulj,l\(y)a Yy e RN? (19)
Jj=1 j=1

for k integer large, where

z; = r(v1—h%cos & VI~ RZsin 20717 hO) J=1....k
T, =7 V1 — hZ cos & /1 — hZsin 2U— 1)7r fh,O), j=1,...k.

Here 0 is the zero vector in RN =3 and h,r are positive parameters.

We shall construct a family of solutions to problem (1.8) which are small
perturbations of W, , n. More precisely, the Aubin-Talenti bubbles are now
centred at points lying on the top and the bottom circles of a cylinder and this
configuration is now invariant under a non-trivial sub-group of O(3) rather
than O(2).

Throughout of the present paper, we assume N > 5 and (r,h,A) € Y,
where

yk:{(r,h,A)]re {k%—&,k% +&}, A€ [Ao—é,A(ﬂ—&},

he {]j/?(p&),&(u&)}}, (1.10)

with Ag, B’ being the constants in (3.7), (3.10) and ¢ a fixed small number,
independent of k.

Since h — 0 as k — oo, then the two circles where the points Z; and z;
are distributed become closer to each other as k increases.

In this paper, we shall prove that for any k large enough, problem (1.8)
admits a family of solutions u, with the approximate form

uk(y) ~ Wina- (1.11)
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Moreover, these solutions are polygonal symmetry in the (y1,y2)-plane, even
in the y3 direction and radially symmetric in the variables vy, ..., yx. Our so-
lutions are thus different from the ones obtained in [31] and have strong analo-
gies with the doubling construction of the entire finite energy sign-changing
solutions for the Yamabe equation in [24].

Define the symmetric Sobolev space:

H, = {u cue H'(RY), uis even inyy, £ = 2,3,4,..., N,

u (\/y% 42 cos0, \/y? + y3sin, y3,y~)
27 29
=u <\/y% + y3 cos <9 + %) \/ ¥i +y3sin (9+ %),ys,y/) }

where 6 = arctan z—f

Let us define the following norms which capture the decay property of
functions

ol = sup (3 R S : 1) o)l

yERY 21 1+|y—$|) N

and

a 1 1 -1
[ llee = sup (Z{ e+ s ]) W),

yerN N LI+ ly —7) T (L4 |y —ay) 2 17

where

N—-2—-m N-2—-m
’7'—< N 5 TN 3 +61>, (1.14)

for some €; small. The main results of this paper are the following:

Theorem 1.1. Let N > 5 and suppose that K(|y|) satisfies (H). Then there
exists a large integer ko, such that for each integer k > ko, problem (1.8) has
a solution uy, of the form

uk(y) = Wrp s (0) + G (y), (1.15)
where ¢k7 € Hsa (Tkv hk7Ak:) S y]@, and (bk; Satisﬁes
loklle = ok(l), as k— oc.

Equivalently, problem (1.4) has solution vi(y) of the form

[er,hk,l\k (I'y) + ok (I’y) )

2—N

ve(y) =1 2

with v as in (1.7).
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Let us sketch the proof of Theorem 1.1. The first step in our argument is
to find ¢ so that u = W, ;A + ¢ solves the auxiliary problem

AWy pa + ) ZK(lrl)( rhA+¢) -

3 k
3 Y e ( W2+ UL —A%J) RN, (1.16)
(=1j=1

¢ € E,

for some constants ¢, for £ = 1,2,3. In (1.16), the functions Z; and Ly; are
given by

— anij — 8U§j7[\ = 8U§j7[\
U= Lo = g Zsj = —5p

AU, A U, A U, A
L= Zoj =~ Lsj = —ga

for j =1,...,k. Moreover, the function ¢ belongs to the set E given by
E= {v v € Hy, / _QZgJ’U =0 and
/ U2 32Zyo =0, j=1,...k (= 1,2,3}. (1.17)
RN

From the linear theory developed in Sect. 2, problem (1.16) can be solved by
means of the contraction mapping theorem. More precisely, we prove that, for
any (r,h,A) € 7, there exist ¢ = ¢, ao € E and constants ¢, £ = 1,2,3
which solve the auxiliary problem (1.16).

After the correction ¢ has been found, we shall choose (r,h,A) € % so
that the multipliers ¢, = 0(¢ = 1,2,3) in (1.16). As a consequence, we can
derive the results as in Theorem 1.1.

Equation (1.8) is the Euler-Lagrange equation associated to the energy
functional

r

1 1
I(u) = 5/ Vul*dy - 5 K(‘m)w (1.18)
Thus, roughly speaking, if (r, h, A) is a critical point of function
F(r,h,A) == I(Wp A+ ¢rna) for ¢ropa €K,

then the constants ¢;, £ = 1,2,3 would be zero. Thus finding solutions of
problem (1.8) would be reduced to find a critical point of F(r,h,A). This is
the result in Proposition 3.1.

An important work of this paper is to give an accurate expression of
F(r,h,A) (see Proposition 3.2). Under the assumptions r ~ k%,h —

0, ﬁ — 0 as k — oo, we first get the expansion of the energy functional
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I(Wr,h,A)
Fi(r,h,A) :=I(W,.pa)
i Bk Bsk
AN=2 (/T = R2)N-2 PN_2pN-3. /T _ 12
Az As 2 1
" k{Amk%V*) e ) [+ kO(W)

where A; for i =1,2,3 and B, for j = 4,5 are constants. We denote

B4]€N72 n Bsk
Vi s
and let h be the solution of d,G(h) = 0, then

G(h) =

/

h:ﬁ(1+0(1)), as k’—>OO,

kN-1

N—-2 /
for some B’ > 0. If r ~ kN-2-m h ~ —£— then
kN—1

Bsk
NI e g 1 Toll), as koo
for some constant B.

However, we now find that the term O(W) in the expansion of
kN—=2-m "7

Fi(r,h,A) competes with the term W This makes it impossible
to identify a critical point for Fy(r, h,A). In reality, though the remainder

O(ﬁ) can be estimated in a more accurate way (see Proposition A.4)
kN—2-m 77

under our assumption (H).

We need to expand the full energy F(r,h,A) = I(Wy.pA + ¢rpa). We
need a strong control on the size of ¢, A in order not to destroy the criti-
cal point structure of Fy(r,h,A) and to ensure the qualitative properties of
the solutions as stated in Theorem 1.1. This is another delicate step of our
construction, where we make full use of the assumption (H) on K.

Structure of the paper. The remaining part of this paper is devoted to
the proof of Theorem 1.1, which will be organized as follows:

1. In Sect.2, we will establish the linearized theory for the linearized pro-
jected problem. We will give estimates for the error terms in this Section.

2. In Sect. 3, we shall prove Theorem 1.1 by showing there exists a critical
point of reduction function F(r, h, A).

3. Some tedious computations and some useful Lemmas will be given in
Appendices 3—4.

Notation and preliminary results. For the readers’ convenience, we will
provide a collection of notation. Throughout this paper, we employ C,C}; to
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denote certain constants and o, 7,0; to denote some small constants or func-
tions. We also note that 6;; is Kronecker delta function:

1, ifi=j
0ij = e
0, ifi#j.
Furthermore, we also employ the common notation by writing O(f(r, h)), o(f(r,
h)) for the functions which satisfy

it g(r,h) € O(f(r,h) then  lim | ?E:Z; [<C<too,
and
it g(r,h) € o(f(r,h)) then kEI—E@O?'((:Z; _o.

2. Finite dimensional reduction
For j =1,...,k, we divide RY into k parts:
Q; Zz{y = (Y1, 42, y3,y") € R® x RN 72 ;

<|§Zi:zz§|7 (cos 20 ; Uﬂ.,sin 20 ; 1)77)>R2 > cos %}

where (,)gz denote the dot product in R?. For €2;, we further divide it into
two parts:

Q;r :{y ‘Y= (3/1792’3/37y//) S Qj7y3 Z 0}7

Q; :{y Y= (y17y2uy3>y”) S Qj7y3 < O}
We can know that
k —
RY =UF_1Q;, Q;=0fuQ;

=1
and
QNQ=0, QFnQ; =0, if i#j
We consider the following linearized problem
—A¢ = (2 = DK (BYW?, Po = f
+ i i (CgUngi + c(gU;:’XQZh) in RV, (2.1)
b [El =1

for some constants cy.
Coming back to Eq. (1.5), we recall that the functions

oU . N -2
= (y), i=1,....,N, Zniu1(y):= TU(ZI)‘HJ'VU(Z/)-

(2.2)
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belong to the null space of the linearized problem associated to (1.5) around
an Aubin-Talenti bubble, namely they solve

Ap+ (2" —1)U* 2 =0, n RY, ¢e DV2RY). (2.3)

Tt is known [28] that these functions span the set of the solutions to (2.3). This
fact will be used in the following crucial lemma which concerns the linearized
problem (2.1).

Lemma 2.1. Suppose that ¢ solves (2.1) for f = fi. If | fx|l«x tends to zero
as k tends to infinity, so does ||dk||«.

The norms || - ||« and || - ||+« are defined respectively in (1.12) and (1.13).

Proof. We prove the Lemma by contradiction. Suppose that there exists a
sequence of (rg,hg,Ag) € Y%, and for ¢y satisfies (2.1) with f = fr,r =
T, h = hgp, A = Ag, with ||fg|l«« — 0, and ||¢g|« > ¢ > 0. Without loss
of generality, we can assume that ||¢g|« = 1. For convenience, we drop the
subscript k.

From (2.1), we know that

¢><y>=<2*—1>ANWK('Z')W2h—i¢< >dz+/ s S

r
k

[ s L (R e

j=1¢=1

Z:Ml + M2 + Mg.

For the first term M7, we make use of Lemma B.5, so that

()
r 2% —2

My < C|lol« /N er,h,lx

b 1
Z ~—— + 3 dz
= 1+|z_%|> R P
k
1 1
<Clloll. > | ot = |-
= RIEAPEED R (142 — ;)™

For the second term Ms, we make use of Lemma B.4, so that

" 1 1
M, SCHfll**/ + dz
\” 22[ (14| —z) "2+ (1+|z—@j|>”z*"’+J
k
1 1
< Cflln S
;[(1+\y—@|)¥” (I+]y—z; N ”]
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In order to estimate the term M3, we will first give the estimates of Z;

and Z,

_ C = Cr = c

71| < (| < Ty < ——

23l < T —are < gy el < gy
c Cr c

Z.. 1Z, | < T < — &

12151 < (L+ |y —z;[)N-2 12251 < (1+ |y —z;)N-2 1251 < (L+ |y —z; )N -2

(2.4)

Combining estimates (A.26) and Lemma B.4, we have
1+ 7rd,
(1 +7d42) ds

272
Zyjdz < C
Z/RN 2 -y IN 7 Uz Bey 2 Z/N |z — IN (A |z —m )N

k
(1+T(5[2)
<C> . —— e forl=123,
j:l( +ly—z5)) =2

where dpp = 0if £ #£ 2, dpp =1 if £ = 2. Similarly, we have
1 0
Z/ N3 2‘22e3d2<02 Lrron) — tere=123
RN \z—yl (It ly—z) T T
Next, we will give the estimates of ce, ¢ = 1,2,3. Multiply both sides of
(2.1) by Zg1,q = 1,2, 3, then we obtain that

[ [-ae-e - or(Wywz 26z,
RN
B . 3 ) (2.5)
= . fZy +;;/RN (ceU% T —|-CeU AQZ@ ) Zq.

Using Lemma B.3, we can get
1476

k
Z SC koK / T
/RNf n =il ; re (1 [y =z )V

1 1
+
A+ly—z) 2 (L+ly—z) +]

< C(L 47 062)| fre s
The discussion on the left side of (2.5) may be more tricky, in fact, we

have
/RN {— Ap— (2" - 1K <|y|)W2h_A2¢] Zqg1
_ /RN [~ AZ, - (2 - 1)K(@)W§;;€Zq1}¢

:<2*_1)/RN [1_K(L?j,|)}wa~2h7\22ql¢+( ;317\2 thf) LZq19

=J; + Jo.
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Using the property of K (s), similar to the proof of Lemma B.5, we can get

n=clol. [ [i-x()] th‘iquz

1 1
S N-2 ]
A+ly—7) = (A+ly—z)) = 7

=Cléll / ‘1 (|y|> ’Wghj\zqu

lly|—r|<vr

1 1
R, T N-2 ]
A+ly—z) =" (A4ly—gh =+

vl [ f-x () |wez,
llyl=r[=vr

1 N 1
(Ll =2 (I ly—a) ™=+

2*_2 1+7’6[2 Z 1
< 7 L RO S o) T

k
ce / 2% _9 1+7pm
+ = w, (y) — )
v Jry YTy - T )N ; (1+]y—m) = +72

—_

o

C
S ? (1 +7’6£2).

For Js, it is easy to derive that

Jzé/
RN

k

>

j=1
o

C
S ? (1"‘7‘552).

U2 w2 L+ 70
T1,A mA (1 4 |y — T )N 2

1
u—&-'r_‘_ +‘r
1+\y—%|) 2 1+ y—z;) =

Then, we get

[oa

/RN [-ao— e (w2207, < £+ ran 0.

On the other hand, there holds

Z/ *QZ@ + U AQZZJ ) Zg1 = Cpq(1 4 040r%) + 0(1), as k — oo.
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Note that

> 9= = [0, it (#q,
~/RN Ufl,/\ Zélqu - {Eq(l +5q2r2)7 if /= q,

for some constant ¢, > 0. Then we can get

1+ 7rdp
o= 20 (4 ol + 1) =o(1), as koo (20)
Then we have
k
1 1
ol < {1702 | ——r o+ |
Sty Tt Aty -z T
(2.7)
~ 1 1
2 + e
— [A+ly—3) = (14 |y —ay|) "= *7+e
Combining this fact and ||¢||. = 1, we have the following claim:
Claim 1: There exist some positive constants R, d; such that
¢l L~ (Ba@)) = 61 >0, (2.8)

for some I € {1,2,...,k}.

Since ¢ € Hg, we assume that [ = 1. By using local elliptic estimates and
(2.7), we can get, up to subsequence, ¢~>(y) = ¢(y — T1) converge uniformly in
any compact set to a solution

—Au— (2" =1)U3*u=0, inRY,

for some A € [Ly, Ls]. Since ¢ is even in ygq,d = 2,4,..., N, we know that
u is also even in y4,d = 2,4,..., N. Then we know that v must be a linear
combination of the functions

OUp A OUp A
oy ’ ys3

) y- VU + (N —2)Upa.
From the assumptions
/ U2 Znd=0 forl=1,2,3,
RN

we can get

m/ 2*28U0A¢+h/ U2,28UOA(Z§ 0,

RN RN

\/ﬁ/ U2_28U0A¢ h/ U2_28U0A¢ 0,
RN

and

/ Us i [y -VUon + (N — 2)UO,A]¢§ =
RN
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By taking limit, we have
Lﬂ*728UbA
0,A ay
3U
2 72 0, A 2 72
/ y VU07A+(N—2)U07A}’LL=0.
RN

So we have u = 0. ThlS is a contradlctlon to (2.8). O

For the linearized problem (2.1), we have the following existence, unique-
ness results. Furthermore, we can give the estimates of ¢ and ¢, ¢ = 1,2, 3.
Proposition 2.2. There exist kg > 0 and a constant C' > 0 such that for all
k > ko and all f € L>=(RY), problem (2.1) has a unique solution ¢ = Ly (f).
Besides,

*< sk g > *ok :17 y I .
ol < Cllfhs el S Gl =123 (29)

Proof. Recall the definition of E as in (1.17), we can rewrite problem (2.1) in
the form

—A0=f+ 2 - DK( ‘i') W2, 26 forall ¢ € E, (2.10)

in the sense of distribution. Furthermore, by using Riesz’s representation the-
orem, Eq. (2.10) can be rewritten in the operational form

(I-Ty)p=f, inE, (2.11)
where T is identity operator and T}y is a compact operator. Fredholm’s al-

ternative yields that problem (2.11) is uniquely solvable for any f when the
homogeneous equation

(I-Ty)¢ =0, inE, (2.12)

has only the trivial solution. Moreover, problem (2.12) can be rewritten as
following

o (-0 ()W
k3 R .
=33 (elVZ 3¥Z0i + UL 37Zy;) in R, (2.13)
i=1¢=1 ' =
¢ € E.
Suppose that (2.13) has nontrivial solution ¢, and satisfies ||¢g||« = 1. From
Lemma 2.1, we know ||¢x]|« tends to zero as k — +oo, which is a contradiction.
Thus problem (2.12) (or (2.13)) only has trivial solution. So we can get unique

solvability for problem (2.1). Using Lemma 2.1, the estimates (2.9) can be
proved by a standard method. O

We can rewrite problem (1.16) as following
“AG— (2 — 1)K (\y\)W2h—A2¢ N() + I

+ Zl ZZI (CeU%,‘AQZgj + CgUZfZej) in RN, (2.14)
p€eR, T
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where
N(6) = K (D) [(Wona +0)" 7 w20 - @ - ywZ2].
and

k
|y| 2% 1 2% —1 2% —1
L= K (L)w?, - (vt +uzt).

Jj=1

Next, we will use the Contraction Mapping Principle to show that problem
(2.14) has a unique solution in the set that ||¢]|« is small enough. Before that,
we will give the estimate of N(¢) and 1.

Lemma 2.3. Suppose N > 5. There exists C' > 0 such that
IN@)[l.r < Cllgfl ™ 742,
forall p € E.
Proof. The proof is similar to that of Lemma 2.4 in [31]. Here we omit it. O
We next give the estimate of 1.

Lemma 2.4. Suppose K(|y|) satisfies (H) and N > 5, (r,h,A) € #. There
exists ko and C' > 0 such that for all k > kg

1 1
11k []sxe < C’max{

— k(N 7271. )(N+2 N— 2 m

where €1 is small constant given in (1.14).

Proof. We can rewrite 1, as

k
=k w3 (o7 v )]
j=1
k
+Z[ (|y‘) }(U§Jx7\1+Uz2j,7\1) = 51+ 5.
Assume that y € ], then we get

=K (St +00)
< CK('y‘)[ (ZUM +Zk:ij7A> + (ZUTM +ZU£]_)A)2*,1].

2" —1
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Thus, we have

S <C

k
y—T1|) — y—x
<1+| |Z_3 (L] J|

k
+C
(1+|y—x1 4; 1+|y—:v D=

k 548018
(Z 1+\y—m|N 2) = 511 + O12 + O13.

Jj=2

We first consider the case N = 5. It is easy to get that

k
S <C
11|N=5 G +|y—x1 ;+sz:2|arj—x1|3
1 k3
<C _ (7) (2.16)
(L4 |y —[)zF7 \r

When N > 6, similar to the proof of Lemma B.1, for any 1 < a; < N — 2, we
have

k k
C 1
2 ¥z < Ve D e
= 1+|y—%) (1+ [y — 1) LS [T e
Since 7 € (A2 N22m 4 ¢ we can choose o satisfies
N+2 N-2—-m N+2
2 N—2 Mmoo T
Then
S
11|N>6 = (1+|y—T|)N+2o Z |z, _x1|a1

- C ( k )al
T (It ly =T )N Ap /1 — h2

1 kiR A
<C e (; . (2.17)

(I+ly—m))

Then combining (2.16) and (2.17), we can get

N+2 N-2-m
N

O _3 if N>6,
C(E) if N=5

r

[1S11 s < (2.18)
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For Si2, we can rewrite it as following

k
1 1 1
Spy=C +
2= Oy Ty Dy rEriie d
k

1 1 1
<C
- (1+|y—f1|)4[(1+|y—§1\)N*2 }

+

Similarly to (2.16), we can obtain

1 kN3
512‘1\,:5 = C(1+|y—fl‘)%+f (;) '

For N > 6 and the same oy as in (2.18), it is easy to derive that

1 1
Aty =z A+ |y — 2z V2
1 N 1 } 1
Aty =z NF2me - (I |y —ay )V Jay — 7|
C 1

<
T (I y —T[)NF2er ()
1
<c (< :
(I+y *31|)N;2+T r

N+2 N—2-m _
k 2 N—2 €1

where we have used the fact hr > C'1-. Thus, we can obtain that

N+4+2 N-2-m

C(E) TN N>,

1Siallee < 4 \F ; (2.19)
c(t), it N=s
Next, we consider Si3. For y € QT,
k k
1 1
DR DY -
j=2 Yy J j=2 (1+‘y—$1|) (1+‘y_x]|) 2
k
C 1
< Z N-2_N-2_ _ N-2_
i=2 T =T 2 2T (T4 |y —7) N2

Thus we have

Si3

IN
/N
-
=
\
>
[\
N—
=
+
<
|
]
=
N
+
3
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Since (MF2 — NZom _ 61)|N:5 > 3 for m € [2,3), then we have
N;—ZiNI—VQ—zm,iel
C(%) 2 i N>,
[S1alls < 3 (2.20)
c(t), it N=s
Combining (2.18), (2.19), (2.20), we obtain
Ni2_ N-_2-m_,
C(g) 2 i N>,
111l < (2.21)

O(k)g, if N=5.

r

We now consider the estimate of S5. For y € QT, we have

| /\

5223 [K(4) -1]ozy
2 () ) e v (2) -

=2

=591 + Saa.

o If |‘rl‘ — 1] > 61, where 6 > ¢; > 0, then

1
ly =z = [lyl = x| = [r = [71]] = Sour.

As a result, we get

2*—1 |y C 17277
vz K () -1 = e
(14 ly —z])
C k N;—Z N_2-m_
SN —.

° If|@ — 1] < 43, then
m om
() <l =€ o
r r r
cm _m _ m
<< [l =ml|™ + [zl x|

Cm . m ].
S? U|y\—|$1|| +W]
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Thus, we can get, if m > 3,

oz k(%) -1

L. Duan, M. Musso, and S. Wei

NoDEA

cm _m 1 C
e L Rl o meini
m _ . mt3
O =)
=5 (1+|y—51|)N+2
| 1
T I kgm—,zm]
(1+]y—ml)
m—+3
C 2 1 1 1
S? N = — Nf2___ m%3 — N+2]
(Q+ly-—m]) = 7 (L+ly-m]) ? = (L+ly—ml)
< 17n;»3 C
= Niz_ 0
To(+fy—m)) T T
the last inequality holds due to N; 2 _r— mT+3 > 0.
On the other hand, if m < 3, we have
- |
oz ()
cm m 1 C
<= [lwl-ml" + 5]
r kom (1+\y—§1|)N+2
- Cm[ 1 1
>~ N+2 N+2
oy eml) T g —ml) T
+ ! ]
— \N+2
(1+ 1y —m)
- cm 1
= NEE =
T Q+ly-m)) T
since%—7—m>0. Thus we have

. ‘y C«min{m7 5
v () -1 =%

As a result,

)
r

So1 < Cmax{(r

]i)) %_%_61 1 min{m,

m+3 }

1

(I+ly—m

7n;~3 }

‘)¥+T ’

1

Since y € QT, then for j = 2,...,k, there holds

T1 — 75| < |y —T1| + |y — 75| < 2y — 75

k

Lty -7 )5+
(2.22)
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Therefore, it is easy to derive that

1 k 1
SQQSC N2 Nt2
(14 ]y —T1|) 2 ;(Hly—@l) 2
k
1 1
u+w—@wyﬂz;m—@ﬁf4

J
C kN2 —"~—=z —@
< — . .

‘<r+w—fm¥¥“(r) 22

Combining (2.22) with (2.23), we obtain

N+2 N-2-m_ 1 min{m’mTH}

.1 2 e (£) 7T I

3
If N =5, we can check that %m = (%) . Thus, we can rewrite (2.21) as

k N+2_ N—2-m _ 1 min{m, m;.g

}
2 N-—-2
< =z = .
HSlH**_CHIaX{(r) 'r }
Therefore, we showed (2.15). O

The solvability theory for the projected problem (2.14) can be provided
in the following:

Proposition 2.5. Suppose that K(|y|) satisfies (H) and N > 5, (r,h,A) € 7.
There exists an integer kg large enough, such that for all k > ko problem (2.14)
has a unique solution ¢ which satisfies

1 1
< Cmax{ : } 2.24
”(ZSKH* = k( ,ZL,m)(N;2*N;;2:2m*€1)7k(ij;fm)min{mym;d} ) ( )
and
C
< -
leel < (14 dpor)
1
, 1 £=1,2,3.
max{k (N _NEm ) k<N§—3m>rnin{m,—m;3}} Jor
(2.25)

Proof. We first denote

1 1
B:= :veE « < C , .
{v v ||v|| = max{k(mﬂﬁfqu) k( N-—2 )min{m,m;?’}}}

2 N—2 N—-2—m

From Proposition 2.2, we know that problem (2.14) is equivalent to the fol-
lowing fixed point problem

¢ = Lip(N(¢) + 1) =: A(¢),

where Ly is the linear bounded operator defined in Proposition 2.2.
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From Lemmas 2.3 and 2.4, we know, for ¢ € B

IA@) < C(IN@)llve + 1]l )
< O(ll¢l) )

1 1
+ max { ( N2 N—2—m J N m+3 }

L(x=5==) k(W’fm) min{m, ™

1 1
< max { ) : }
- (7= (P2 -5 —a) | (5225 min{m, 22}
So the operator A maps from B to B. Furthermore, we can show that A is a
contraction mapping. In fact, for any ¢1, ¢o € B, we have

|A(f1) — A(92)]l+ < C|IN(p1) — N(h2)||5x-

Since N(¢) has a power-like behavior with power greater than one, then we
can easily get

[A(¢1) — A(¢2)ll« < o(1)[[¢1 — 2]l

A direct application of the contraction mapping principle yields that problem
(2.14) has a unique solution ¢ € B. The estimates for ¢,, £ = 1,2,3 can be got
easily from (2.6). O

3. Proof of Theorem 1.1
Proposition 3.1. Let ¢, 5 A be a function obtained in Proposition 2.5 and
F(r,h,A) .= I(W,p A+ &rhn)-
If (r,h, A) is a critical point of F(r, h,A), then
u=Wrna~+ drha
is a critical point of I(u) in H*(RY). O

We will give the expression of F'(r, h, A). We first note that we employ the
notation C(r, A) to denote functions which are independent of h and uniformly
bounded.

Proposition 3.2. Suppose that K(|y|) satisfies (H) and N > 5, (r,h,A) € %%.
We have the following expansion as k — oo

F(r,h,A)
1
= I(Wypa) + kO
(Weina) 80 r(RE=R2=p +v))
k B4]€N—2 Bsk
= kA, - [ + ]
AN=2L (p/T = RZ)N=2  pN-2pN=3,/T —}2
A A C(r,A) ”
b =R e RO R = GO
mlN—2—m m— N—-2—m N—-2—m
C(r,A) 1
et k0<k(s¢<§-f,z+2<§-f> +o) )
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where Ay, As, Az, By, Bs are positive constants.
Proof. The proof of Proposition 3.2 is similar to that of Proposition 3.1 in [31].
We omit it here. O

r,h,A OF (r,h,A
(dA ) and (dh )

Next, we will give the expansions of or

Proposition 3.3. Suppose that K(|y|) satisfies (H) and N > 5, (r,h,A) € %
We have the following expansion for k — oo
OF (r, h, A)
OA
k(N —-2) [ BykN—2 . Bsk }
AN (T RZ)N-2 N2 N-3T B2
_ k‘|: mA2 (m 2)A3

1
2
At N + A1 2 (r—r) } + kO (kzwizi)“)

(3.1)

where Ao, A3, By, Bs are positive constants.

Proof. The proof of this proposition can be found in [31]. We omit it here.
O

Proposition 3.4. Suppose that K (|y|) satisfies (H) and N > 5, (r,h,A) € S%.
We have the following expansion

OF(r,h,A)
oh
N-2
:7L|:(N72) B4k 7(]\]73) B5k‘ ]
AN=2 rN=2(\/1 — h2)N rN=2pN=2/1 — p2
1
+k0<k(7;(1\2, Ty 3>+a))’ (3.2)

where By, By are positive constants.

Proof. Notice that F(r,h,A) = I(W,.pa + ¢rp.a), there holds

oh
OWrna + or
= <I/(Wr.,h,A + QZ/)T,;%A)’ ( ’h’/:?h ¢ 7h»A)>
aw, o0,
= <I/(Wr,h7A + ¢T,h,A), 8}’Lh’A> + <I/(Wr7h,/\ + ¢T.7h,A)7 qba}f"/\>
oW,
= <I/(Wr,h,A + (/j)r,h7A)7 a}’Lh’A>
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Since fRN U;_jI\QZgjgbr?hyA = IRN v _QZ@(JST na =0, we can get easily

vz Obrna _ [ O nTe)
Uz, A Zej; oh = o ,Orh A ) s

R U2 32 Zyj)
<Uw2j,A2ZZj’ (ba};b,[\ > = - <32Ja¢7‘,h,A .

Then
k
o . 0
(3 (w2 - gz, >>
j=1 '
Zh)
< Clerllérmalls Z/

Sl wrar)
Tl )T ()

Jj=1
< Cleg||ér,n,all«

r(1+ Gpor)
S e

s o)
A+ly—F) T+ Q+ly—g) Tt

1 1
- .
< Cr max { (N2 2N_Zm 5.y’ k‘( o2 ) min{2m,m+3} } (3 4)

where we used the estimates (2.24)-(2.25) and the inequalities

r(1+ dpor)
(I +Jy =z )N+2

On the other hand, we have

fori=1,...,k,0=1,2,3.

‘ 0 (Ug:’XQZZi)
oh

, oW,
<Iﬂ%@A+@wAL a;”>

= V(Wrna + ¢rna) VIVr pa — /
RN R

OW,r hoA ly| 2% 1 OWrn A
- rh —_— = K r rh, >
oy VWrnaV=—g, /RN () W+ 6r) oh

31( rhA) * |?J| 2% 2 OWr poA
T4—(2 —1)/RNK(T>WMA ¢’rh/\+0 ¢rhA

ly] 2% —1 OWr oA
N <r)(thA+¢h ) —on

(3:5)
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For the second term in (3.5), using the decay property of K(|y|) and orthogo-
nality of ¢, A, we can show this term is small. In fact, we have

«_gOWphp,
Lo (w2 oms

B /RN KU%) {thii Wghh = ; (U2 3L+ U A2Z2z):| Grn,A

+ z - [ (8 1) 027 02 ) b
k
_o OW,. . om .
ok | K (Y [w2, 2 Ve S (02 32T 4 U2 7200) 60
1 i=1
+ 2k /RN [K(Li/_') - 1:|UE2:,7\2221¢r,h,A-
According to the expression of W, j, o, we can obtain that

| N 11% -
LR (M) w2 - S (02 0+ U2 3o
i=1

k k k k
<o [U;j;f (Z Za; + ZZQJ-) + (Z U2 2T + ZUjiAQZ%) ]Qbr,h,A

$2 j=2 j=1 i=2 i=1
kN X2 —r r
< C( - ? / ¢7’,h,A
(r) aF (1+|y—f1|)%+2+7
ky 52 r
S C(;) ||¢’T7h,1\||* ;r (1 + ‘y _z |) > t2+7
k
1 1
X + =
<Zl[(1+|y_x3|) AT (1+|?J_Ej )¥+TD

J:
oy NE2 o Jor A2 N-2-m
< Cr(;> el < Cr<;> -5

. o . m+3
N42_ N—2-m _ 1mm{m, 3

ma{(7) T )

1 1
<
_Crmax{k(N m)(Nte—28Em o)’ k<N -2 )mm{2mm+3}}

—e1

And it’s easy to show that

Lo () 1)
R

1 1
< Crmax { (v ) (V228325 —261) 7 (520 min{2m,m+3} }
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Combining all above, we can get
OF (r,h, \) 8[( rhA)

oh oh
1 1
+ 50 (v ma { f (v (N2 28525 000) 1 (20 min{2m,m 3 )
(3.6)
Combing (3.6), Proposition A.6 and Lemma B.6, we can get (A.28) O
Remark 3.5. The expansions of BF(Q: A) and 6F(g Ah A) would be applied in the
proof of Proposition 3.6, which is essentlal for proving the existence critical
point of F'(r,h,A). In order to get a proper expansion of M, we need
g oh
accurate estimates for ¢, a. O
Rewritten the expansion of the energy functional.
Let Ag be
(N —2)By 1 v=2=m
Moo= (3.7)
Then it solves
B4(N — 2) A2m -
AN=-1 — Am+1 =0.
Denote
BykN—2 Bsk
G(h) = 4 + > ;
VI " N3 /T2
then
o (VI =h2%)N AN-2,/1 — 2 hN=4(1 — hz)%
= (N —2)BskN2h[14 O(h?)]
Bsk 9 Bsk 9
— (N - 3)hN S[1+0(%)] + e —— 1+ 0(h?)]
Bsk k
_ N—2 5
= (V= 2Bk 2 — (N - 3) 2] +0(hN 4)
and
B4k‘N_2 B4/€N_2h2
G'(h) =(N -2)———+ (N -2)N— o ——
B5k‘ BSk
N-3)(N-2)————- (N-3)——M
o ) )thlm ( )hN—3(1—h2)%
Bsk Bsk
- (N - 4) > 3 k > 5
MN=3(1—h2)2  RN-5(1—h?)2
_ (N = 2Bk + (N = 3)(N - 2)2F L omN ) 1o F
—( - ) 4 ( )( )hN 1+ ( )+ (thS)’
3.8)
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and
G" (h) = o(i). (3.9)
hN
Let h be a solution of
~ Bsk
[(N —9)BykN"2h — (N — 3) hN—Q} —0,
then
B (N — 3)Bs %5
h= th B = 3.10
Py W [(NJ)BJ (3.10)
Define
2 1 N‘7—27n i _ 1
Sy = {(r,h,A)|r€ {kw—z—m - kT ké}, Ae {Ao oot k%}

ve[ (- 5) 0+ 5]}

for 0 is a small constant such that 6 < 10 In fact, Sy is a subset of 7. We
will find a critical point of F(r,h,A) in Sg.

A direct Taylor expansion gives that

G() =G(h) +G'(W)(h — h) + 26" (m)(h ~ h)* + O(G" (h+ (1~ 0)h) ) (h — h)°,

(3.11)

where

_ N-2 N-2 2 4 B5kN*3 1.5 4

G(h) = Bk [1+Th +O(h )} + [1+§h +0O(h )},
, kN_4
G'(h) = O(H )
and
N—-1
G"(h) = (N; 2 [Bak™ =2+ (N - 3)%5"3 | +omRN-2).

Since G(h),G"”(h) are independent of h,r, A, for simplicity, in the following,
we will denote

G(h) = B4kN 2 4 %M*%Q + h%i, (3.12)
¢'(my = & - 2D (B2 4 (N — 3)%]%1] (3.13)
Then combining (3.11), (3.12), (3.13), we can get
G(h) =B4k"N 72 + V=25, _22)34 kN=2n? + BT"’]CN% - O(EN%) (h—h)
+ (N; 2 (B2 4 (N — 3)%N_1} (h—h)? + O(£N>(h NES
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Therefore, we get
2 N-2
N—2 (N —2)ByB’ Bs k
Q(h) = Buk + [ 2 + B,N73} kz(]\l;ljla)
(N —2) 2 (N —=3)Bs7 kN2 1
+ 5 [B4B/ + V-3 Lf(ﬁrv__f) (1—h""h)
kN72 1.3
+0(k2(ﬂ)( —h ')
N-—-1
N2 kN 2 k‘N 2 L
= Bk +B(’k2(N 3) +B7k2(N 3)( —h” h)
k,N—Q 3
+ O(]{;2(N73> )( h 1h)3’ (314)
N—1
where
N —2)B4B" Bs N — N —3)Bs
BG = ( 2) 4 B/N 3 B7 = ( 9 |:B4B/2 ( /N)3
Since
1 N-2 1
r€|:k-N m_ké’ kN= 7m+k0}’
then
_ (N—2)2 C(r,A
o4
N—-—2—m
We now rewrite
BykN—2 n Bsk
(r 1 _ h2)N -2 rN—2pN=3./1 — h2
B4 B6 C(T A)
= ]{;SVN 22)7n + k(NfQZ)n7+2(J<[V:13) + k(z\l?nm o
By 1 _
+ P UES TG ( )? +O(W)(l h™'h)%.
N—-2—m —1 N—-2—m —1
Then we can express F(r, h, A) as
By Bg
A) = kA, — [
(T h ) kA k AN- QkNN 22)m + AN— Qk(N_22)2+2%\7_—13)
By _1
1-h~'n }
+ AN Qk(N722)::L+2(J£]\I:13) ( )
AS C( A) o
2)m ( ) :| + kk%\f 22)m - T)2+
1
(m(N 2)+2<]\z,v:13> +U)

A
- T =
Am— 2k;N 32—

+ k {Amk EVN:QQ,)
1

+ 50—
Lk N—2=m

h™ h)3+k0( -
k\N=2=m

) (
N—-1

). (3.15)
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And similarly, we have

81'71(1"7 h, A) (N - 2)B4 mA2
o (r, i, A) :k[ i - }
oA AN-1EN—=2—m Am+1kN 5
m—2)A 1 -
2R (e 1?80 (e (- 1)
Am— 1]<}N 2— kN—2—m
and from (A.28), by using some calculations, we have
OF(rhA) 2B, »
oh = AN—2[AN 2k(N 2)m,+(N 3)( —h h)}
1 1732
#ro( (FE2+9=2) Ja-nn
1
+ kO . 3.16
(k(ziﬁ_fz+<x_f)+a)) (3:16)
Now define
F(r,h,A) = —F(r,h,A), (3.17)
and
As B, 1 1
2= HA ) h:k<ﬁ%_(A?_A§2>k$?m_k?7%+?)’

where 77 > 0 small. We also define the energy level set
ﬁ:{mmAﬂ@hmesh Fr,h,A) < }

We consider the following gradient flow system

& =_F, t>0;
%Z—Fh, t>0;
%Z*FA, t>0;

(r7h,A)|t=0 € F}.
The next proposition would play an important role in the proof of Theorem 1.1.
Proposition 3.6. The flow would not leave Sy, before it reaches F¥.

Proof. There are three positions that the flow tends to leave Sy:

position 1. |r —r| = 1%9 and |1 —h™!h| < 1

position 2. |1 —h~1h| = ke when |r —r| <

m\"—' -

9 36

position 3. [A — Ag| = ﬁ when |r —r| < k97 |1 —h*1h| < i.

& We now consider p051t10n 1. Since |A — Ag| < 39 , it is easy to derive that

~ (55~ fi) +0(353)

(3.18)
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Combining (3.15), (3.17), (3.18), we can obtain that, if (r, h, A) lies in position
1,

F(r,h,A) = —kA, + /c[ B Az,z)m }

AN S5 Amp RS
A3
By _ 4 0( ) <ty
A’m Qk_%\] 22)2-"-20 king 2)m+59 !

® On the other hand, we claim that it’s impossible for the flow (r(t), h(t), A(t))

leaves Sy, when it lies in position 2. If 1 —h~'h = k—e, then from (3.16) and
(3.17), we have
OF (r,h,\) k 2By 1

Oh T AN-2 |:AN 2]{;ng —2)m | (N=3) 3)+9:| +O(k§VN —2m N3 9_) < 0.

(3.19)

On the other hand, if 1 —h~'h = —%
OF (r,h,A)  k 2By 1

oh - AN-2 [AN 2 N+ = 3)+0} + O(k%+%+2é) >0

(3.20)

So it’s impossible for the flow leaves Sy when it lies in position 2.
# Finally, we consider position 3. If A = Ag+ —L, from (3.1) and (3.17), there
k2

exists a constant Cy such that

% k[cl “"2}’“+~"9+O(k“\’21“”+29>} >0

On the other hand, if A = Ag — —L, there exists a constant Cy such that
k2

OF (r,h,A) 1 1
oA _k[ _C2k7§v{}232+%§ +O(k7m 2m 120 )] <0
Hence the flow (r(t), h(t), A(t)) does not leave S; when [A — Ag| = —L.
k2
Combining above results, we conclude that the flow would not leave Sy,
before it reach Ff. O

Now we give the proof of Theorem 1.1.

Proof of Theorem 1.1. : According to Proposition 3.1, in order to show The-
orem 1.1, we only need to show that function F(r,h,A), and thus F(r, h,A),
has a critical point in Sy.

Define
I'= {7 : W(Ta th) = ("}’1(7“, h7A)772(r7 h7A),"}/3(’f'7 h7A)) € Sk:7 (T7 h7A) € Sk;
. 1
A b A) = (b, A), i | = x| = 5 )

Let

= inf F h,A)).
€7 08D (rhhyes, (r(r 2, 1))
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We claim that c is a critical value of F(r,h,A) and can be achieved by
some (r,h, A) € Sk. By the minimax theory, we need to show that

(i) t1 <C<t2;_
(ii) SUPy—p|= 1 F(y(r,h,A)) <ty, Vy€T.

Using the results in Proposition 3.6 we can prove (i) and (ii) easily.
Finally, for every k large enough, we get the critical point (rg, hg, Ag) of
F(r,h,A). O
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Appendix A: Expansions for the energy functional
This section is devoted to the computation of the expansion for the energy

functional I (W, o). We first give the following Lemma.

Lemma A.1. N >5 and (r,h,A) € . We have the following expansions for
k — oo:

kN_2

k
1
Zz:; |T1 — 7| V-2 - (r T2 h2)N*2(

By +01(k)), (A.1)


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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) Bk (14 gy hy) + 2B
— —5 g2 D e
— |7 —x,|N"2 T pN-2pN-3/T _ )2 (/I T2 h2)N 2
(A.2)
where
2 =1 1 oo 1
Bl = — N — Pl B2 = f‘/ - N_9 dS, (A.3)
(27T)N 2 ; ZN 2 oN 35 o (52 i 1)¥
and
k)= O V20 o). ()
W o), Nes 7 - @
Proof. In fact, for § < ¢z < ¢4 <1, we have
T Loam i . k
c;;zgsngczlz, forze{l,...,g}.

Without loss of generality, we can assume k is even. It is easy to derive that

Nk

|71 — 7|V 2_¢:1 27"\/1—hQsin%r

k
2

||
N

3

k N-2
:Z(Qrmsm ) + Z <2T\/wgm ) .

— k
i=1 z§+1

Direct computations show that

x

2 1 N-2
; <2TW sin i—” )
[5]

Oﬁ\w
[N

N—2 1 N-2
+ Y (o)
2r 1—h281n ) ) 2ry/1 — h%sin

1 1= ]+1

] 2

1(W)M(HO(;}

3

ol

ol

1 )0l

_ (le_iiﬁ)jm(pl +ou(k)), (A.5)

where Dy = 2771%,,2 pya iNl,z and o1 (k) is defined in (A.4). Using symmetry
of function sin z, we can easily show

k _
> (m>N = (le_7h2>w (D1t ),

i=£+41

Thus we proved (A.1).
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Similarly, we can obtain

> -y 1
= _ g |N-2
el 2 x|

= (QT[(l — h2)sin? =07 1)7r _HLQ}%)N 3

th N— 22 ((1 o (i 1)12772 +1) N3 +01(k)0((“/%7h2)N—2>.

72
Consider O((hk)™") = o(1) as k — oo. Since

5 k
1 - /2 1 .
x
j=1 ((A=h?) (G=1)27% | 4 7T 0 (1=h?) g272 | 4 N2
B R =R = +
2 1 541 1
= ~—z dz + N-—2
0 ((1}’12):102772_'_1) 2 ((1’}12)M+1>T
then we have
k
> 1
N —
=1 () h%MH)Tz
k
B 1
:/ 2 dz + 1+ o(1)
0 ((1h? )mz 2 +1)
hk T 1
4h
ds+1+o0(1)

:\/1—h27r 0 (52+1)N§2

hk Feo 1 _
:m/o st(1+0((kh) 1)).

Combining above calculations, we can obtain that

T~ T G
> e = e i o) o (TW)M)’

where By and o9 are defined in (A.3), (A.4). O

Lemma A.2. We have the expansion, for k — oo

* By 1
U2 MUz, p = +O( )
/RN ToA TEA T AN g, [N-2 |71 — 7| N <0 )’

and

By 1
U2 U, A = o( )
/]RN z,A Yz, A AN—2|§1 _£i|N—2 + B _%|N—e0

where By = fRN %Nu and €qy s constant small enough.
1422) 2
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Proof. Let dj = [T, —T|, d; = |71 — z;] for j =1,..., k. We consider
/ Uizrj\lUTiyA
RN ’
/ AT AT
ey (L Ny - m ) (L Ay - Ef)
Bg, (T1) RN\Bg, (Z1)
4 4
AT AT
N+2 N—-2 " (A6)
T+ Ay =7 ?) 2" (1+ A2y —73?) =
First, we have
A AT
/Bwn (1+ A2y — 3 [2) "2
4

1+ Ay —z[2) T

1 1
= Nt2
B

g, @ (1 422)73° (14 22 4202, @1 — Ti) + A2[T1 — Tif2) 7
4

_ 1 / 1 17N721+z2+2A<z,flffi)
ANZ2|Ty — 3| V2 B g, (0) (1 +22)7%" 2 ATy — 7|2

4
1—|—2’2—|—2A<Z,fl —fi> 2
+O(< A2‘51—f¢|2 > ) ’
It is easy to check that
1 O( 1 (1+22+2A<z,f1—fi)>2)
AN—Q|§1 _ fi‘N—Q B N;»2

az, © (1+22) A7y =i
4
1
.
|71 — |V

(A7)

(A.8)
and
! / L <1+ 212N (z,T *>)
AN — = N T _ N+2 z 7I — T
A =3 Sy 0 (11207 1
4
_ O(;) (A.9)
- \Jz T[N ) '
Standard calculation implies that
1 / 1 B By
AN=2[g; — 3| N-2 5. 0 (1+ ZQ)NQH T AN2[g; —z|N2
-
1
o(—L ). A0
+ |f1 _ Ei |N ( )

1
where By = [on —— x5z -
Jev
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From (A.7)-(A.10), we get

N+2 N—2

A
/Bﬂ( (14 A2y =7 [) 2 (14 A%y —7f?) =
By 1
= . A1l
ANﬁQ‘fl—fi|N72 +O(‘fl—fi|N760> ( )

When y € RV\Bg, (71), there holds
4

1
ly — 71| > Z|f1 —Til.

It’s easy to get

N+2 N—-2
2

A A% 1
— e — 2 =O<ﬁ>-

w\By, () (14 A2y — 7a?) 2 (1+ A2ly — ) 3 7 -7
' (A.12)

Combining (A.6), (A.11) and (A.12), we can get

* B 1
2% -1 0
/RN U;El, Uﬂiz, AN72|T1 _Ti|N72 + O(W) (A13)

Similarly, we can get
_ By 1
U2 51U, 0 = o ).
/]RN T, A VLA AN=2[z; — g,|N-2 + |7y — ;[N =<0
fori=1,... k. O

Lemma A.3. Suppose that K(|y|) satisfies (H) and N > 5, (r,h,A) € . We
have the expansion for k — oo

](Wr,h,A) :k‘Al /]R Ugl’il(ZUmJ,A +ZU£J-,A)

A 240
+k|:Am m +Am72rm (I‘—T)

C(r AT k\N—eo 1 k\N-2
R (1)) +ro( ()
where C(r, A) denotes functzon independent of h and should be order of O(1),

2 « 2¢ *
A = (1 — 7) / |Uoal*, Az = *0 / 1| UG 1, (A.14)
2 RN 2 RN ’

com(m —1 .
Az = = (2* ) /RN ‘yl|m_2Ug,1» (A.15)

(r— r)ﬂ + k‘@m

and €qy is constant can be chosen small enough.

Proof. Recalling the definition of I(u) as in (1.18), then we obtain that
1 1
1Wen) =3 [ 9Wonal =0 [ x(2)wz
RN RN

::Il —12. (A16)
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According to the expression of W, j, A, we have

Z Z/ Uz;n + Ug, A) (U@,A + UL.,A)

]111

k
_ 2177 2177
_kal/JRN (Ufl’A U‘TJ"A + Usz UIJ"A)
k k
2% 2% 1 o*_1
:k/RN (w3 +;U%A Us,n) + k/RN ZU%A Us, o
— 2% 2 —1
_k/RNUO’l—Hf/R zlA(ZUz]A—kZUz 4)- (A.17)

For I, using the symmetry of function W, p, A, we have

2k ly] N
== K(—)W?
2 2% Q+ r roho A
k

7% |y 2% S 2 -1 2 "
=5 [ RO 2R (S S)
Ql Jj=2 J=1

+oluZ, ZUIJ,A+ZU1A )}

%
== (121 4 Do + 123) (A.18)

For y € QF, from Lemma B.1, we have

k k N

(
(1+y—m) '

with €y > 0 can be chosen small enough. Then we can get

(N—2)eg
~

9%
2

k k
o
123 :O /+ K (|ry|> UT?,A Z UTj,A + Z U£j7A
5 j=2 =1

For I51, we can rewrite it as following
i f e I
21 \/Q le, /QT r U.f()l,A
:/ Uz +/ [K(@) —1}U2 +O(( )N)
ox 0L ot v LA -
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Furthermore, we obtain
[ () ez [ () ez
of r of n{y: |14 125} r
y *
+ / [K(u —1|uZ .
of n{y: |14 -1/<5} r

When [ — 1] > §, there holds
_ _ 1
ly — 71| > Hy\ —r’ — |r— |m1|’ > 551-,

Thus we can easily get

/Qrﬂ{y:'a—lzé} [K(@) “as %

If \@ — 1] < 9, recalling the decay property of K, we can obtain that

/ﬂfﬂ{yrli"1<5} (%) - 1]uz

lm

= —co- —r|" U2
COI' L+ﬂ{y:|yl|<5} ||y‘ r| T
1m+a’ mto .
+O( / - Uz )
r of n{y: |12l -1)<s} It x| oA
mm m ..o mm .
= —co- / Iy — x| UZ +0(/ (|y| +1)UZ )
r Jrny RN\Brx (1) r
1m+o’ - .
vo(y | Iyl =27 02 )
r of n{y: |14 —1<5}

im _ m oo
——ap [ ] =x"UF

m+o o
11‘ /sul*m{y:'i‘—lsé} =l ' Uz, A)+O<(§>N )

Furthermore, recalling |Z1| = r and using the symmetry property, we have

/ lly + 7] — 2| "UZ = / lly + exr| — x| U2,
RN RN

where e; = (1,0,...,0).
We get

+0o( Iy

[ il =1 Ugs
R
m * 1 m— * o
N / 1|7 Uaa + 5m(m — 1)/ " UGA (e = )? - Cr A (r = )* T,
RN RN

here C(r, A) denote functions which are independent of h and can be absorbed

in O(1).
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Similarly, we can also have the following expression

1m+cr mto .
o T2

r /Q{rm{y;|-’;—1§5} “y‘ - r’ II’A)
oy [ m=r ez o((5)")

=LA o((5))

r

Then, we can obtain that

I = /
]RN

€o *
- Ampm /RN |y1|mU02,1

1 Co m—2772* 2
— gmim =g [ "0 )
c(r,A\)™ oio . C(r,A)™H \ N—co
+ TR e 202 +o((;) ) (a20)

Finally, we consider I

Iy :2*/ 517_1(ZU3:],A+ZU§_7,A>
k k
o )
_y / U§17_1(ZU%,A+ZU%,A>
-7 /RN\Q+ 317_1<ZU”7’A+ZUI A>
o Bt ()
Q] j=2 j=1

1= Iao1 + In92 + I223.
For I599, it is easy to derive that

NN

£ o)
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Moreover, we know that

= RN\ )\Bg, /5 (@1)

_ vty vz
Z/(RN\Q )ﬂsz/2<f1> i A Z( S

k
UE**AlUf.,A+o( )
= /(RN\Q+)de PR Z |z1 — l’J\N €

Jj=

k
* 1
UgQ. 7\1U2~,A+O( f)
Z/d ,2(@1)\Bg v ! 2:: |71 — ;[N <o

d2/2(11)

1 1 1
_C; ‘fl _f],'N*Q /B N+2 +O(Z |l’1 — T |N EO)

A7y 2O\ Bagy 2(0) (1+22)72
<05 L o(LYyo(S !
<Y mmamr=0z) T L pm )
5 Kk k
= O(%) Z_: 7 —%j\N—Z *O(; 7 —zljw—so)
NN k
_O(kr )—}—O(;W)a

where d; = [T, — ;| for j =2,... .k and dy = [Ty — 2| = 2rV1 — A?sin T =
O(%) Then we get

Loy = O((%)Nﬁeo). (A.21)

Next, we consider the term I553. In fact, we have

e :/Qfﬂ{yzl’ilm} [K(@) ]U2 _1(ZUL],A + ZUL A)
" /Qf'ﬂ{u |‘%'—1|§5} [K(LZI/'|> N 1} Uz*il(ZUx] AT+ ZUI A)

When |@ — 1] > 6, there hold
_ _ 1
ly —T1| > |ly| — x| = |r = [71]| > 55“

And for y € Qf and |4 — 1] > 6, we have

k k o 1
(2; Us, 4 + Zl Us,a) <C(5) e (A.22)
JI= =

(1+|yf:cl
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with a = (N_2 , NT) Then we can get easily
|y|> :| 2% _1( )
/fvlfﬁ{y;|g|1|>5} |:K< Tr U3717 ZUQLJ,A + ZU£_7‘7A
N—a—e o N
< g O(k) < C(k)
r r
It ‘@ — 1] <9, then
ly| r k
L B 2" —1 a
/Qfm{y:§1|<5} [K( r ) 1} Usi.a (ZU’”%A +ZU£17A>
Cm/ U2 71<
=7 —r Uz Usn+ > Uy, )
r Q{rﬂ{y:ﬂfl‘f'_”ﬁg} “y‘ 1,A Z A Z A
Cm/ 2% —1
T U2
r Qf'ﬂ{y: |‘—i{|—1|§6}ﬂ{y: |y_51‘gs}c,} ||y| } z1,A

k k
(Z Uz .a + Z Ulij)
j=2 j=1
20
r Q+m{y vl

k
(Z Uz; A+ Z Ugj,l\)7
j=2 j=1

N s

where 6; is small constant. If |y — Z;| < ¥, it is easy to derive

52[‘

lyl = x| < |y =] + |7 x| < ==,

for some small d5. Therefore,

m

Iy —r|™ <

km

Hence

cm U2 —1(
< — Us a+S U, )
r /Qfﬂ{y:l‘“"—lléé}ﬂ{y: |y_§1‘§slr} ‘|y| P‘ Z 3o Z ;A

C

<% Jon *_1(2%7“2%0

Sy
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When |y — 71| > &Tr, combing (A.22), we can get easily,

om k k
v _ mUE*—l( Usa+ Y U, )
r /Qfm{yzlﬁl1|<6}m{y:|ym>5}f} ||y| r| o Jz:; ot J; o
SCY(@)I\[—EQ.

r

Thus we can get

=02 ) ro(H(H)") e

Combining (A.17), (A.18), (A.20), (A.19), (A.21) and (A.23), we can get
I(Wyp.a)

~+(1-2) o

k k
Yok [ U (Ut YU n)
RY j=2 j=1

e e ey S Y
ke o)) pro(g() )

O

Combining Lemma A.1-A.3, we can get the following Proposition which
gives the expression of I(W,. . a).

Proposition A.4. Suppose that K(|y|) satisfies (H) and N > 5, (r,h,A) € %%.
Then we have

k BN -2 Bsk
I(Wrnn) =kA; — {(7‘ 1 > }

AN=21 (p/1 = R2)N-2 * PN=2pN-3,/T _ 2
Ay As C(r,A) "
Y P
Amk/’N—Qfm Am_QkN727m kN*Z—'m
C(r,A) 1
s O ) (824

as k — oo, where A;, (i = 1,2,3), By, Bs are positive constants.

Proof. A direct result of Lemma A.1-A.3 is

k B4k‘N_2 B5k’
I(Wyna) =kAr — AN—2 { (/1= hZ)N2 + rN*QhN*fim}
A As 9 C(r,A) 9t
ol s o] €58

C(r,A)

+g +10(() ) +ro((0) )

; ko(%) " ko(rmhﬁ’?jﬁ),
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with By = BygB1, B; = ByBs are positive constants. From the expressions of
o1(k), o2(k) and asymptotic expression of h,r as in (A.4), (1.10) , we can show
that

(71(k)]€N72 O'Q(k)k’

(r/T—n2)Y 2 NN R2
can be absorbed in O( L ) )

k(m(N 2)+2(N 3)+U

N—-2—-m

)

Noting that m > NT_ implies

N -3 - m
N—-1 N-2-m
thus provided with €y, o small enough, we can get

(k‘)N*EU_ 1 1 1

= <C
m(2—eq) m(N—2) — N — .
kN e N-Tm k(%Jr%Jm)

r
Since m > 2, we can check that
1 sk\N-2 C
I ONE -
i P (B2 1)
Thus we can get (A.24). O
F(r,h,A) F(r,h,A)

A T on

To get the expansions of , we need the following expan-

. OI(Wyn,n) OI(Wyh, A)
sions for A o

Proposition A.5. Suppose that K(|y|) satisfies (H) and N > 5, (r,h,A) € S}
We have

OI(Wyna) k(N —2) [ BykN—2 N Bsk ]
OA - AN-1 (rm)N—z rN=2pN=3,/1 _ |2
mA m—2)A
- k[ 2 Ym ( (1\2 z?m (I‘ - 7”)2}

AMH LN Am—1f N
1
+ ko(ikm o +U)
as k — oo, where the constants B;,i = 4,5 and A;,i = 2,3 are defined in
Proposition A.4.

Proof. The proof of this proposition is standard and the reader can refer to
[31] for details. O

Proposition A.6. Suppose that K(|y|) satisfies (H) and N > 5, (r,h,A) € S.
Then we have

6[( 'rhA) . k B4k‘N_2
oh  AN-2 [( -2 rN=2(/T— )N V=3
B5k :|
rN=2pN=2\/1 — h2
1
+ kO A.25
Er==) e
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as k — oo.

Proof. Recall

= r r
Zo; < Lo; < . A2
v B SOy A
We know that
A(Wypa) 10 s 10 [yl
h 20k Ju Vel T 5e g (r )W”LA

8h/ a?: A1 z;U@,A + ;Umw/\)
k k
S RS SRS S R
j=2 j=1

From (A.27), similar to the calculations in the proof of Proposition A.3, we
can get

AI(Wypa) B > 20 ((* N-eo
Tffk% Uz ZUTJA+ZU¢A + k*O :

(A.28)
Then by some tedious but straightforward analysis, we can get
I (W p.a)
oh
k BykN—2 Bsk
= v | (N =2y g h = (N = 3) —
AN—2 TN72( 1— hQ)N rpN—2pN=2 /1T _ ]2
Bsk kN N—¢o
h [+ro0((%) ). A.29
+ PN=2pN=3(1 — h2)3 + (r ( )
o Bsk
for some €y small enough. In fact, we know that k (E) and h o 5
r rN=2pN=3(1_p2)2
can be absorbed in O( (’"(N*”LN*“H )> provided with m satisfying (1.6)
A\ N—2-m " N-1 "7

and €p, o small enough. In fact, this is the reason why we need the assumption
(1.6). Then we can get (A.25) directly. O

4. Appendix B. Some basic estimates and lemmas

Lemma B.1. Under the condition (r,h,\) € #, for y € QF there exists a
constant C' such that

k k k e} 1
Z Uz; a + Z U&ij <cC <r> — )N727a’
J=2 J=1

1+ |y — 71|

with o = (1, N — 2).



40 Page 42 of 46 L. Duan, M. Musso, and S. Wei NoDEA

Proof. For y € Qf and j = 2,...,k, we have
_ _ _ 1 _ . _ 1 _
=Tl 2 Tl = ly -] 2 g Tl iy -7l < T - T,
and

_ T
‘y_xj|2|y_$1|21|x1_$j‘v lf|y—$1\21|$1—xj|,

1 r
ly— 2l > 3171 — 2| > ()
Then

k k
( Z Usz;a + Z Uﬁjv“)
=2 j=1

> (1+|y751|)N 2—« = 1-|-|y—:vj\) (1+|y_§1|)oz
< ¢ [ : 1 1 }
S Map_n) T A E EE  Eone
C kN«
< (5
(1+ly—z))" (%)

Lemma B.2. Under the condition (r,h,\) € .7, for y € Qf we have

(Y74 m) <o) — T
i=2 =1 r )

(1+|y—x1

with « = (1, N — 1).

Proof. The proof of Lemma B.2 is similar to Lemma B.1. We omit the details
for concise. O

For each fixed i and j, i # j, we consider the following function
1 1

A+ ly — ;) (L |y — @)

where v > 1 and 2 > 1 are two constants.

Gij (y) =

Lemma B.3. (Lemma B.1, [31]) For any constants 0 < v < min{yy,7y2}, there
s a constant C > 0, such that

9ij(y) < ¢ U(( ! + ! )

Tt Ny — ) (L y gy

Lemma B.4. (Lemma B.2, [31]) For any constant 0 < 8 < N — 2, there is a
constant C' > 0, such that

/ 1 1 dz < L
Ry [y — 2[V72 (L4 [2))2H8 77 = (1 + Jy[)#
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Lemma B.5. Suppose that N > 5 and 7 € (0,2),y = (y1,...,yn). Then there
18 a small o > 0, such that when ys > 0,

1 N4—2
/szly—zw2 niA Z e

j:1 1+ ‘Z_QCJD T

k
<C

1
(Lt ly 7))

and when y3 < 0,
k
1 N4
_ - dz
/RN|y*Z|N2 oA ; 1+\z—x|)
<0y

(L4 |y —ay]) 554+

Proof. The proof of Lemma B.5 is similar to Lemma B.3 in [31]. Here we omit
it. O

Lemma B.6. Suppose that N > 5 and m satisfies (1.6). We have

1 1
rmax{ (o )(Nt2 2N 2m ooy (N3 m)mln{2mm+3}}
k k

C

S ) .
provided with o,€1 small enough.
Proof. Tt’s easy to show that
r < C
E(wha2) min{2m,m+3} — k(m&’; DL WN=9) 14)’
for m > 2. In order to get (B.1), we just need to show
N—2
r kN—2=—m
E(v8=m ) (N+2-2 8250 0 ) k(ﬁ)(N—i—Q—Q%—Qel)
C
(B.2)

- k(?'vwé 2>+<N 3)+ )
for some o, €; small. The problem to show (B.2) can be reduced to show that
6 + (% ‘;’) < 3(F52-) + 2853™ for m satisfying (1.6). This inequality
follows by simple computations. This fact concludes the proof. O
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