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1. Introduction

Cluster algebras were introduced by Fomin and Zelevinsky as a tool in the
study of Lusztig’s dual canonical bases. Since their inception they have found
application in a variety of different areas in mathematics, nevertheless a fun-
damental problem in the theory remains constructing bases with “good” prop-
erties.

Over time several bases for cluster algebras have been described in
different generalities [1–11]. All of their elements share the property of be-
ing “pointed”; this turned out to be a desirable feature for a basis to have
and a natural question is to find all bases enjoying this property. Recently Qin
studied the deformability of pointed bases whenever the cluster algebra has
full rank [12]. As no explicit calculation is carried out in his work, we aim here
at describing explicitly the space of deformability for pointed bases in rank
two, i.e. when clusters contain a pair of mutable cluster variables. By doing
so we shed more light on the combinatorial structure of such bases. In this
setting, frozen variables do not carry any additional information so we will
work in the coefficient-free case.

Fix integers b, c > 0. The cluster algebra A(b, c) is the Z-subalgebra of
Q(x0, x1) generated by the cluster variables xm, m ∈ Z, defined recursively
by

xm−1xm+1 =

{
xb

m + 1 if m is even;
xc

m + 1 if m is odd.
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Figure 1. The dominance region Pλ, the opposite dominance
region P ′

λ, and the maximal support region Sλ for λ = (4,−3)
when b = 3 and c = 2. Highlighted lattice points in the re-
gion bounded by solid black lines and dashed lines represent
the maximal support of an element pointed at λ; the dotted
lines indicate which lattice points are in the support of the
corresponding greedy basis element

By the Laurent Phenomenon [13], each xm is actually an element of Z[x±1
k , x±1

k+1]
for any k ∈ Z. Moreover, these Laurent polynomials are known to have positive
coefficients [6,7,14].

An element of A(b, c) has g-vector λ = (λ0, λ1) ∈ Z
2, with respect to the

embedding A(b, c) ↪→ Z[x±1
0 , x±1

1 ], if it can be written in the form

xλ0
0 xλ1

1

∑
α0,α1≥0

ρα0,α1x
−bα0
0 xcα1

1 (1)

with ρ0,0 = 1 and ρα0,α1 ∈ Z. This definition agrees with the notion of g-
vector from [15] defined for cluster variables. An element of A(b, c) is pointed
if an analogous structure reproduces after expanding in terms of any pair
{xk, xk+1}; a basis is pointed if it consists entirely of pointed elements.

Important examples of pointed elements are the cluster monomials of
A(b, c), i.e. the elements of the form xαk

k x
αk+1
k+1 for some k ∈ Z and αk, αk+1

non-negative integers. Indeed, by [12, Lemma 3.4.12] cluster monomials are
part of any pointed basis in any (upper) cluster algebra of full rank. We achieve
the same conclusion in our setting by elementary calculations (cf. Lemma 4.1).

Elements of any pointed basis are parametrized by Z
2 thought of as the

collection of possible g-vectors. Qin introduced a partial order � on g-vectors
called the dominance order, refining the order used in [16, Proposition 4.3],
and showed that it provides a characterization of pointed bases. We restate
his results in the generality needed for this paper and using our notation.
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Theorem 1.1. [12, Theorem 1.2.1] Let {xλ} and {yλ} be pointed bases of A(b, c).
Then for each λ ∈ Z

2, there exist scalars qλ,μ for μ ≺ λ such that

yλ = xλ +
∑
μ≺λ

qλ,μxμ.

Moreover, having fixed a reference pointed basis {xλ}, any choice of scalars
qλ,μ as above provides a pointed basis of A(b, c).

When bc ≤ 3, the cluster algebra A(b, c) will be of finite-type and cluster
monomials form its only pointed basis. We therefore assume that bc ≥ 4.
Write I ⊂ R

2 for the imaginary cone (positively) spanned by the vectors(
2b,−bc±√

bc(bc − 4)
)
. Lattice points outside of I are precisely the g-vectors

of cluster monomials in A(b, c).
We give an explicit description of the dominance relation among g-

vectors. Specifically, we show that the g-vector λ dominates the collection
of g-vectors of the form λ+(bα0, cα1), α0, α1 ∈ Z, inside its dominance region
Pλ (cf. Definition 3.1).

Theorem 1.2. If λ lies outside of I, then the dominance region Pλ is the point
λ. Otherwise the dominance region Pλ of the g-vector λ = (λ0, λ1) is the poly-
gon consisting of those μ = (μ0, μ1) ∈ R

2 satisfying the following inequalities:

0 ≤ bc − √
bc(bc − 4)
2b

(μ0 − λ0) + (μ1 − λ1) ≤ −cλ0 − bc +
√

bc(bc − 4)
2b

bλ1;

0 ≤ −bc − √
bc(bc − 4)
2b

(μ0 − λ0) + (μ1 − λ1) ≤ cλ0;

0 ≤ −(μ0 − λ0) − bc − √
bc(bc − 4)
2c

(μ1 − λ1) ≤ bc +
√

bc(bc − 4)
2c

cλ0 + bλ1;

0 ≤ −(μ0 − λ0) +
bc − √

bc(bc − 4)
2c

(μ1 − λ1) ≤ −bλ1.

Remark 1.3. Empirical calculations reveal that for certain pairs of notable
bases (e.g. greedy and triangular) most of the coefficients qλ,μ are zero. Un-
derstanding this phenomenon might be worth further study.

Corollary 1.4. There are six classes of dominance polygons.
1. If λ lies outside of I, then Pλ is the point λ.
2. If λ lies in the cone spanned by the vectors (2b,−bc − √

bc(bc − 4)) and

(2,−c), then Pλ is the trapezoid with vertices λ,
(
0,

bc+
√

bc(bc−4)

2b λ0+λ1

)
,

− bc+
√

bc(bc−4)

2c

( bc+
√

bc(bc−4)

2b λ0 + λ1, 0
)
, and bc+

√
bc(bc−4)

2
√

bc(bc−4)

( − (bc − 2)λ0 −
bλ1, cλ0 + 2λ1

)
.

3. If λ lies on the ray spanned by (2,−c), then Pλ is the triangle with vertices

λ,
(
0,

bc+
√

bc(bc−4)

2b λ0 + λ1

)
, and

(
λ0 + bc+

√
bc(bc−4)

2c λ1, 0
)
.

4. If λ lies in the cone spanned by the vectors (2,−c) and (b,−2), then Pλ

is the kite with vertices λ,
(
0,

bc+
√

bc(bc−4)

2b λ0 + λ1

)
, bc+

√
bc(bc−4)

2
√

bc(bc−4)
(2λ0 +

bλ1, cλ0 + 2λ1), and
(
λ0 + bc+

√
bc(bc−4)

2c λ1, 0
)
.
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5. If λ lies on the ray spanned by (b,−2), then Pλ is the triangle with vertices

λ,
(
0,

bc+
√

bc(bc−4)

2b λ0 + λ1

)
, and

(
λ0 + bc+

√
bc(bc−4)

2c λ1, 0
)
.

6. If λ lies in the cone spanned by the vectors (b,−2) and (2b,−bc +√
bc(bc − 4)), then Pλ is the trapezoid with vertices λ, bc+

√
bc(bc−4)

2
√

bc(bc−4)

(
2λ0+

bλ1,−cλ0 − (bc − 2)λ1

)
, − bc+

√
bc(bc−4)

2b

(
0, λ0 + bc+

√
bc(bc−4)

2c λ1

)
, and(

λ0 + bc+
√

bc(bc−4)

2c λ1, 0
)
.

Remark 1.5. Note that the rays which separate the regions inside I correspond
exactly to the columns of the associated Cartan matrix. Moreover the expres-
sion for the dominance regions along those rays coincide. These unexpected
coincidences are one of our reasons for deciding to write down these results.
Unfortunately, at the moment, we are unable to explain the reason behind it.

Given a Laurent polynomial in Z[x±1
0 , x±1

1 ], its support is the set of its
exponent vectors inside Z

2. Given a g-vector λ, in the next result we identify
a polygon Sλ whose lattice points of the form λ + (bα0, cα1) for α0, α1 ∈ Z

give the maximum possible support of a pointed basis element xλ. See Fig. 2
for an illustration.

Theorem 1.6. Let λ = (λ0, λ1) ∈ Z
2 be the g-vector for a pointed basis

element xλ.

1. If λ lies outside of I, then the support of xλ is precisely the points of the
form λ + (bα0, cα1), α0, α1 ∈ Z, inside the region Sλ given as follows:
(a) If 0 ≤ λ0, λ1, then Sλ is just the point λ = λ′.
(b) If λ1 < 0 and 0 ≤ λ0 + bλ1, then Sλ is the segment joining λ and

λ′ = (λ0 + bλ1, λ1).
(c) If λ0 < 0 and 0 ≤ λ1, then Sλ is the segment joining λ and λ′ =

(λ0,−cλ0 + λ1).
(d) If λ0, λ1 < 0, then Sλ has vertices λ, (λ0 + bλ1, λ1), λ′ =

(
λ0 +

bλ1,−cλ0 − (bc − 1)λ1

)
, and (λ0,−cλ0 + λ1).

(e) If λ0 > 0, λ0 + bλ1 < 0, and −cλ0 − (bc − 1)λ1 ≤ 0, then Sλ has
vertices λ, (λ0 + bλ1, λ1), λ′ =

(
λ0 + bλ1,−cλ0 − (bc − 1)λ1

)
, and(

(bc + 1)λ0 − b2cλ1,−cλ0 − (bc − 1)λ1

)
.

(f) If λ0 > 0, λ0 + bλ1 < 0, and 0 < −cλ0 − (bc − 1)λ1, then Sλ

has vertices λ, (λ0 + bλ1, λ1), λ′ =
(
λ0 + bλ1,−cλ0 − (bc − 1)λ1

)
,

and (0, 0). Here the point (0, 0) and its adjacent open segments are
excluded from Sλ while both λ and λ′ are included.

2. If λ lies inside of I, then the support of xλ is contained in Sλ with vertices

λ, (λ0+bλ1, λ1), λ′ =
(
λ0+bλ1,−cλ0−(bc−1)λ1

)
, and bc+

√
bc(bc−4)

2
√

bc(bc−4)

(
2λ0+

bλ1,−cλ0 − (bc − 2)λ1

)
. This last point and its adjacent open segments

are excluded from Sλ while both λ and λ′ are included.
Moreover, there is an element pointed at λ whose support is precisely the
points of the form λ + (bα0, cα1), α0, α1 ∈ Z, inside Sλ.
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Figure 2. The maximal supports Sλ as described in The-
orem 1.6 with λ marked by a black dot and λ′ by a white
dot. Dashed edges indicate the maximal support of an ele-
ment pointed at λ while dotted edges indicate the support of
the corresponding greedy basis element. The imaginary cone
I is dashed; the shaded cones correspond to the cases in The-
orem 1.6

The paper is organized as follows. In Sect. 2, we collect useful results
related to two-parameter Chebyshev polynomials which support our main cal-
culations. Section 3 contains calculations related to the transformation of g-
vectors under mutations. Section 4 proves Theorem 1.2. Section 5 proves Corol-
lary 1.4. Section 6 proves Theorem 1.6. The paper ends with Sect. 7 interpret-
ing the dominance polygons in terms of generalized minors in the cases where
b = c = 2.

2. Chebyshev Polynomials

Define two-parameter Chebyshev polynomials uε
i for i ∈ Z and ε ∈ {±} recur-

sively by uε
0 = 0, uε

1 = 1, and

uε
i+1 =

{
bu−

i − u+
i−1 if ε = +;

cu+
i − u−

i−1 if ε = −.

Remark 2.1. Observe that, by easy inductions, we have uε
−i = −uε

i for i ∈ Z

and u+
2j+1 = u−

2j+1 for j ∈ Z.

Lemma 2.2. For i, � ∈ Z and ε ∈ {±}, we have

uε
i+� =

{
uε

�+1u
−ε
i − u−ε

� uε
i−1 if � is odd;

u−ε
�+1u

ε
i − uε

�u
−ε
i−1 if � is even.

(2)
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Proof. We work by induction on � for all i simultaneously, the cases � = 0, 1
being tautological and reproducing the defining recursions, respectively. Using
the claim for � > 0 and then the defining recursion twice, uε

i+�+1 can be
rewritten for � odd as

uε
�+1u

−ε
i+1 − u−ε

� uε
i = uε

�+1(u
−ε
2 uε

i − u−ε
i−1) − u−ε

� uε
i

= (u−ε
2 uε

�+1 − u−ε
� )uε

i − uε
�+1u

−ε
i−1

= u−ε
�+2u

ε
i − uε

�+1u
−ε
i−1

and for � even as

u−ε
�+1u

ε
i+1 − uε

�u
−ε
i = u−ε

�+1(u
ε
2u

−ε
i − uε

i−1) − uε
�u

−ε
i

= (uε
2u

−ε
�+1 − uε

�)u
−ε
i − u−ε

�+1u
ε
i−1

= uε
�+2u

−ε
i − u−ε

�+1u
ε
i−1.

This gives the claimed recursion for � + 1. These calculations can be reversed
to show the result for � < 0. �

Lemma 2.3. We have

lim
i→∞

u−
i

u+
i−1

=
bc +

√
bc(bc − 4)
2b

= lim
i→−∞

u−
i−1

u+
i

;

lim
i→∞

u−
i−1

u+
i

=
bc − √

bc(bc − 4)
2b

= lim
i→−∞

u−
i

u+
i−1

.

Moreover, the limits in the first line converge monotonically from above and
the limits in the second line converge monotonically from below.

Remark 2.4. The analogous limits with ε = + and ε = − reversed are obtained
from these by interchanging the roles of b and c.

Proof. When bc = 4 it is easy to compute closed formulas for uε
i and the

claimed limits follow; we thus concentrate on the case bc > 4.
The standard Chebyshev polynomials (normalized, of the second kind)

are defined by the recursion u0 = 0, u1 = 1, ui+1 = rui − ui−1, which can be
computed explicitly as

ui(r) =
1

2i
√

r2 − 4

((
r +

√
r2 − 4

)i − (
r −

√
r2 − 4

)i
)

.

An induction on i shows that

uε
i =

⎧⎪⎨
⎪⎩

√
b√
c
ui(

√
bc) if i is even and ε = +;

√
c√
b
ui(

√
bc) if i is even and ε = −;

ui(
√

bc) if i is odd.

It follows that uε
i can be computed explicitly as

uε
i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
b

2i
√

c(bc−4)

((√
bc +

√
bc − 4

)i − (√
bc − √

bc − 4
)i

)
if i is even and ε = +;

√
c

2i
√

b(bc−4)

((√
bc +

√
bc − 4

)i − (√
bc − √

bc − 4
)i

)
if i is even and ε = −;

1
2i

√
bc−4

((√
bc +

√
bc − 4

)i − (√
bc − √

bc − 4
)i

)
if i is odd.
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For any i 
= 1, we have(√
bc +

√
bc − 4

)i − (√
bc − √

bc − 4
)i(√

bc +
√

bc − 4
)i−1 − (√

bc − √
bc − 4

)i−1

=

(√
bc +

√
bc − 4

) ·
(

1 −
(√

bc−√
bc−4√

bc+
√

bc−4

)i
)

1 −
(√

bc−√
bc−4√

bc+
√

bc−4

)i−1
.

It follows that

lim
i→∞

u−
i

u+
i−1

= lim
i→∞

⎛
⎜⎜⎝

√
c

2
√

b
·
(√

bc +
√

bc − 4
) ·

(
1 −

(√
bc−√

bc−4√
bc+

√
bc−4

)i
)

1 −
(√

bc−√
bc−4√

bc+
√

bc−4

)i−1

⎞
⎟⎟⎠

=
√

c

2
√

b
· (√

bc +
√

bc − 4
)
,

which is equivalent to the desired expression. Similarly, for i 
= 0 we have(√
bc +

√
bc − 4

)i−1 − (√
bc − √

bc − 4
)i−1(√

bc +
√

bc − 4
)i − (√

bc − √
bc − 4

)i

=

(√
bc − √

bc − 4
) ·

(
1 −

(√
bc−√

bc−4√
bc+

√
bc−4

)i−1
)

4
(

1 −
(√

bc−√
bc−4√

bc+
√

bc−4

)i
) ,

so that

lim
i→∞

u−
i−1

u+
i

= lim
i→∞

⎛
⎜⎜⎝2

√
c√
b

·
(√

bc − √
bc − 4

) ·
(

1 −
(√

bc−√
bc−4√

bc+
√

bc−4

)i−1
)

4
(

1 −
(√

bc−√
bc−4√

bc+
√

bc−4

)i
)

⎞
⎟⎟⎠

=
√

c

2
√

b
· (√

bc − √
bc − 4

)
,

which is again equivalent to the desired expression. This proves the claim for
i → ∞, the cases i → −∞ follow from these using uε

−i = −uε
i .

For the final claim, observe that u−ε
i+1
uε

i
<

u−ε
i

uε
i−1

and u−ε
i−1
uε

i
<

u−ε
i

uε
i+1

are both

equivalent to u−ε
i+1u

ε
i−1 < u−ε

i uε
i . This inequality is then immediate, for i > 0,

from the following inductions:

u−
i+1u

+
i−1 = (cu+

i − u−
i−1)u

+
i−1 = cu+

i u+
i−1 − u−

i−1u
+
i−1

< cu+
i u+

i−1 − u+
i u−

i−2 = u+
i (cu+

i−1 − u−
i−2) = u+

i u−
i ;

u+
i+1u

−
i−1 = (bu−

i − u+
i−1)u

−
i−1 = bu−

i u−
i−1 − u+

i−1u
−
i−1

< bu−
i u−

i−1 − u−
i u+

i−2 = u−
i (bu−

i−1 − u+
i−2) = u−

i u+
i .

Again the case i < 0 then follows from uε
−i = −uε

i . �
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3. g-Vector Mutations

We begin by studying transformations of R2 which determine the change of
g-vectors when expanding an expression of the form (1) in terms of a cluster
{xk, xk+1}. This adapts the notation from [12, Definition 2.1.4] to our setting,
see also [17, Definition 4.1].

Write φ0 : R2 → R
2 for the identity map and define piecewise-linear maps

φ±1 : R2 → R
2 as follows:

φ1(λ) :=

{
(−λ0, cλ0 + λ1) if λ0 ≥ 0;
(−λ0, λ1) if λ0 < 0;

(3)

φ−1(λ) :=

{
(λ0,−λ1) if λ1 ≥ 0;
(λ0 + bλ1,−λ1) if λ1 < 0.

For k ∈ Z with |k| > 1, define piecewise-linear maps

φk :=

{
(φ−1

−1φ1)j if k = 2j;
φ1(φ−1

−1φ1)j if k = 2j + 1.

These determine the dominance region as we paraphrase from [12, Section 3.1].

Definition 3.1. For λ = (λ0, λ1) ∈ Z
2 and k ∈ Z, define cones

Ck(λ) :=

{
{(λ0 − r, λ1 + s) : r, s ∈ R≥0} if k = 2j;
{(λ0 + r, λ1 − s) : r, s ∈ R≥0} if k = 2j + 1.

The dominance region Pλ is the intersection
⋂

k∈Z
φ−1

k Ck(φkλ). When μ ∈ Pλ,
we say λ dominates μ.

We record here a few useful calculations relating to the tropical transfor-
mations φk. First observe the following explicit expression for φ2:

φ2(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
(bc − 1)λ0 + bλ1,−cλ0 − λ1

)
if λ0 ≥ 0 and cλ0 + λ1 ≥ 0;

(−λ0,−cλ0 − λ1) if λ0 ≥ 0 and cλ0 + λ1 < 0;
(−λ0 + bλ1,−λ1) if λ0 < 0 and λ1 ≥ 0;
(−λ0,−λ1) if λ0 < 0 and λ1 < 0.

(4)

By an eigenvector of a piecewise-linear map φ, we will mean a vector λ
such that there exists a positive scalar ν so that φ(λ) = νλ.

Lemma 3.2. Any nonzero eigenvector of φ2 is a positive multiple of one of the
vectors

(
2b,−bc ± √

bc(bc − 4)
)
.

Proof. First observe that, by equation (4), the equation φ2(λ) = νλ cannot be
satisfied with a positive ν unless λ0 ≥ 0 and cλ0 +λ1 ≥ 0. In this region, φ2 is

linear with eigenvalue ν satisfying ν2−(bc−2)ν+1 = 0, i.e. ν = bc−2±
√

bc(bc−4)

2 .
We thus require

bc − 2 ± √
bc(bc − 4)

2
λ0 = (bc − 1)λ0 + bλ1
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and
bc − 2 ± √

bc(bc − 4)
2

λ1 = −cλ0 − λ1,

or equivalently

−bc ± √
bc(bc − 4)
2b

λ0 = λ1 and
−bc ∓ √

bc(bc − 4)
2c

λ1 = λ0.

As these represent the same relationship, the result immediately follows by
inspection. �

Observe that the imaginary cone I is spanned by the eigenvectors of φ2

and that φ2 is linear in I.

Lemma 3.3. For j ∈ Z and λ ∈ I, we have φ2j(λ) ∈ I.
Proof. Since φ2j = φj

2, the result follows from the case j = 1 which is imme-
diate. �

It will be useful to have explicit expressions for φk(λ) for λ ∈ I.

Lemma 3.4. For j ∈ Z and λ ∈ I, we have

φ2j(λ) = (u−
2j+1λ0 + u+

2jλ1,−u−
2jλ0 − u+

2j−1λ1);

φ2j+1(λ) = (−u−
2j+1λ0 − u+

2jλ1, u
−
2j+2λ0 + u+

2j+1λ1).

Proof. We work by induction on j, the case j = 0 being clear from the defini-
tions. For λ ∈ I, the action of φ2 from (4) can be rewritten as

φ2(λ) = (u−
3 λ0 + u+

2 λ1,−u−
2 λ0 − u+

1 λ1).

Therefore, after applying the equivalences for odd Chebyshev polynomials from
Remark 2.1, we have

φ2j+2(λ) = φ2φ2j(λ)

=
(
(u−

3 u+
2j+1 − u+

2 u−
2j)λ0 + (u−

3 u+
2j − u+

2 u−
2j−1)λ1,

− (u−
2 u+

2j+1 − u+
1 u−

2j)λ0 − (u−
2 u+

2j − u+
1 u−

2j−1)λ1

)
= (u+

2j+3λ0 + u+
2j+2λ1,−u−

2j+2λ0 − u−
2j+1λ1),

where the last equality uses (2) with i = 2j + 1 and � = 2. Using Remark 2.1
again, this is equivalent to the desired expression.

Similarly, using φ1(λ) = (−λ0, u
−
2 λ0 + u+

1 λ1) for λ ∈ I together with the
basic Chebyshev recursion and the equality φ2j+1 = φ1φ

j
2 gives the claimed

formula for φ2j+1 from that of φ2j . �

4. Proof of Theorem 1.2

Here we explicitly compute the dominance regions Pλ. The following Lemma
proves Theorem 1.2 for λ 
∈ I.

Lemma 4.1. If λ ∈ Z
2\I, then Pλ = {λ}.
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Proof. Any such λ is the g-vector of a cluster monomial, say xαk

k x
αk+1
k+1 . In this

case, the intersection

φ−1
k−1Ck−1(φk−1λ) ∩ φ−1

k+1Ck+1(φk+1λ)

is precisely {λ}. Indeed, for k odd, the cone Ck−1(φk−1λ) lies entirely within a
domain of linearity for φ−1

k−1. In particular, φ−1
k−1Ck−1(φk−1λ) is a cone contain-

ing λ directed away from the origin (with walls parallel to the boundary of the
domain of linearity containing λ). Next, again for k odd, the cone Ck+1(φk+1λ)
intersects the domain of linearity for φ−1

k+1 containing φk+1λ in a (possibly
degenerate) convex quadrilateral with corners at the origin and φk+1λ. In par-
ticular, the intersection of φ−1

k+1Ck+1(φk+1λ) with the cone containing λ is a
(possibly degenerate) convex quadrilateral with corners at the origin and λ.
Combining these observations proves the result for k odd, the case of even k
is similar. �

Next we aim to understand how inequalities transform under the action
of a piecewise-linear map. The following well known fact about linear maps
will suffice.

Lemma 4.2. Let M be an invertible 2 × 2 matrix. Under the left action of M ,
say Mμ = μ′ for μ, μ′ ∈ R

2, the region inside R
2 defined by the inequality

〈α, μ〉 ≤ t with α ∈ R
2 and t ∈ R is transformed into the region defined by the

inequality

〈M−T α, μ′〉 ≤ t.

Proof. This is immediate from the equalities

〈α, μ〉 = αT μ = αT M−1Mμ = (M−T α)T Mμ = 〈M−T α, μ′〉.
�

The following calculation is key to our main result.

Lemma 4.3. For k ∈ Z, k 
= 0, and λ ∈ I, the region φ−1
k Ck(φkλ) ⊂ R

2 is
determined by the following inequalities when k > 0:

u−
k μ0 + u+

k−1μ1 ≤ u−
k λ0 + u+

k−1λ1; (5)

u−
k+1μ0 + u+

k μ1 ≤ u−
k+1λ0 + u+

k λ1; (6)

−u−
k−1μ0 + u+

k μ1 ≤ u−
k+1λ0 + u+

k λ1; (7)

−u−
k−1μ0 − u+

k−2μ1 ≤ u−
k+1λ0 + u+

k λ1; (8)

and by the following inequalities when k < 0:

u−
k+1μ0 + u+

k μ1 ≤ u−
k+1λ0 + u+

k λ1;

u−
k μ0 + u+

k−1μ1 ≤ u−
k λ0 + u+

k−1λ1;

u−
k μ0 − u+

k+1μ1 ≤ u−
k λ0 + u+

k−1λ1;

−u−
k+2μ0 − u+

k+1μ1 ≤ u−
k λ0 + u+

k−1λ1.

See Fig. 3 for an illustration.
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Figure 3. Two examples of the regions in Lemma 4.3. Each
inequality is represented by a shaded halfspace, darker regions
consist of points satisfying multiple inequalities

Proof. We prove the claim for k > 0, the proof for k < 0 is similar or can be
deduced from the other case by a symmetry argument. Following Lemma 3.4,
we consider even and odd sequences of mutations separately.

For k = 2j, j > 0, and λ ∈ I, we observe that Ck(φkλ) ⊂ R
2 is given by

the inequalities

(†) μ0 ≤ u−
2j+1λ0 + u+

2jλ1 and (‡) − μ1 ≤ u−
2jλ0 + u+

2j−1λ1.

We compute the region φ−1
2j C2j(φ2jλ) using Lemma 4.2 and the equality φ−1

2j =(
φ−1
2

)j
. First observe that φ−1

2 = φ−2 is given as follows:

φ−2(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( − λ0 − bλ1, cλ0 + (bc − 1)λ1

)
if λ1 ≤ 0 and λ0 + bλ1 ≤ 0;

(−λ0 − bλ1,−λ1) if λ1 ≤ 0 and λ0 + bλ1 > 0;
(−λ0, cλ0 − λ1) if λ1 > 0 and λ0 ≤ 0;
(−λ0,−λ1) if λ1 > 0 and λ0 > 0.

(9)

Claim:

For i > 0, φ−1
2i C2j(φ2jλ) is the region determined by the inequalities

u−
2iμ0 + u+

2i−1μ1 ≤ u−
2jλ0 + u+

2j−1λ1; (a)

u−
2i+1μ0 + u+

2iμ1 ≤ u−
2j+1λ0 + u+

2jλ1; (b)

−u−
2i−1μ0 + u+

2iμ1 ≤ u−
2j+1λ0 + u+

2jλ1; (c)

−u−
2i−1μ0 − u+

2i−2μ1 ≤ u−
2j+1λ0 + u+

2jλ1. (d)

We prove the claim by induction on i. We see from (9), that λ ∈ I implies
the boundary ray for C2j(φ2jλ) corresponding to (‡) lies entirely in the region

in which φ−1
2 acts according to the matrix

[−1 −b
c bc − 1

]
. By Lemma 4.2,

the inequality (‡) transforms into the inequality cμ0 + μ1 ≤ u−
2jλ0 + u+

2j−1λ1

which corresponds to (a) with i = 1. Similarly, the boundary ray for C2j(φ2jλ)
corresponding to (†) intersects the three domains of linearity in which φ−1

2
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acts according to the matrices
[−1 −b

c bc − 1

]
,
[−1 −b

0 −1

]
,
[−1 0

0 −1

]
. By

Lemma 4.2, the inequality (†) can be seen to transform by these into each of
inequalities (b), (c), (d) with i = 1. This establishes the base of our induction.

Assuming the inequalities (a)–(d) hold for i, we apply Lemma 4.2 for φ−1
2 .

Both of the boundary rays corresponding to the inequalities (a) and (d) lie

entirely in the region where φ−1
2 acts according to the matrix

[−1 −b
c bc − 1

]
,

also the boundary segment corresponding to (b) intersects this region. Thus
applying Lemma 4.2 to (a) gives the inequality

u−
2i+2μ0 + u+

2i+1μ1 = (u+
3 u−

2i − u−
2 u+

2i−1)μ0 + (u+
2 u−

2i − u−
1 u+

2i−1)μ1

≤ u−
2jλ0 + u+

2j−1λ1,

which is the inequality (a) for i + 1 by Lemma 2; while applying this to (d)
gives the inequality

−u−
2i+1μ0 − u+

2iμ1 = (−u+
3 u−

2i−1 + u−
2 u+

2i−2)μ0 + (−u+
2 u−

2i−1 + u−
1 u+

2i−2)μ1

≤ u−
2j+1λ0 + u+

2jλ1,

which is the inequality (d) for i + 1 again by Lemma 2; finally applying this
to (b) gives the inequality

u−
2i+3μ0 + u+

2i+2μ1 = (u+
3 u−

2i+1 − u−
2 u+

2i)μ0 + (u+
2 u−

2i+1 − u−
1 u+

2i)μ1 ≤ u−
2j+1λ0 + u+

2jλ1,

which is the inequality (b) for i + 1. Similarly, the boundary segment corre-
sponding to (c) lies entirely in the region where φ−1

2 acts according to the

matrix
[−1 0

c −1

]
. Thus applying Lemma 4.2 to (c) gives the inequality

−u−
2i+1μ0 − u+

2iμ1 = (u+
1 u−

2i−1 − u−
2 u+

2i)μ0 + (−u+
0 u−

2i−1 − u−
1 u+

2i)μ1

≤ u−
2j+1λ0 + u+

2jλ1,

which is the inequality (d) for i + 1 by Lemma 2, in particular we see that the
segment determined by (c) and the ray determined by (d) align in the image.
Lastly, the boundary segment corresponding to (b) also intersects the regions

where φ−1
2 acts according to the matrices

[−1 −b
0 −1

]
and

[−1 0
0 −1

]
respec-

tively. Applying Lemma 4.2 to (b) with the first matrix gives the inequality

−u−
2i+1μ0 + u+

2i+2μ1 = (−u+
1 u−

2i+1 + u−
0 u+

2i)μ0 + (u+
2 u−

2i+1 − u−
1 u2i,+)μ1

≤ u−
2j+1λ0 + u+

2jλ1,

which is the inequality (c) for i + 1 by Lemma 2, while applying Lemma 4.2
to (b) with the second matrix gives the inequality

−u−
2i+1μ0 − u+

2iμ1 ≤ u−
2j+1λ0 + u+

2jλ1,

which again reproduces the inequality (d) and aligns with the previous segment
and ray in the image. This completes the induction on i, proving the Claim
and the result for k even.
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For k = 2j + 1, j ≥ 0, and λ ∈ I, we get C2j+1(φ2j+1λ) ⊂ R
2 is given by

the inequalities

(†′) − μ0 ≤ u−
2j+1λ0 + u+

2jλ1 and (‡′) μ1 ≤ u−
2j+2λ0 + u+

2j+1λ1.

Using that φ−1
2j+1 =

(
φ−1
2

)j
φ−1
1 , we compute the image inductively as above.

From (3) and Lemma 3.3, we see that the boundary ray for C2j+1(φ2j+1λ)
corresponding to (†′) lies entirely in the region in which φ−1

1 acts according

to the matrix
[−1 0

c 1

]
. Thus applying Lemma 4.2, the inequality (†′) is

transformed by φ−1
1 into the inequality μ0 ≤ u−

2j+1λ0 + u+
2jλ1. The boundary

ray corresponding to (‡′) intersects both domains of linearity for φ−1
1 and thus

produces the inequalities

cμ0 + μ1 ≤ u−
2j+2λ0 + u+

2j+1λ1 and μ1 ≤ u−
2j+2λ0 + u+

2j+1λ1.

Claim:

For i ≥ 0, φ−1
2i+1C2j+1(φ2j+1λ) is the region determined by the inequalities

u−
2i+1μ0 + u+

2iμ1 ≤ u−
2j+1λ0 + u+

2jλ1; (a′)

u−
2i+2μ0 + u+

2i+1μ1 ≤ u−
2j+2λ0 + u+

2j+1λ1; (b′)

−u−
2iμ0 + u+

2i+1μ1 ≤ u−
2j+2λ0 + u+

2j+1λ1; (c′)

−u−
2iμ0 − u+

2i−1μ1 ≤ u−
2j+2λ0 + u+

2j+1λ1. (d′)

By essentially the same calculations as above, these inequalities reproduce
under the action of φ−1

2 and this completes the proof. �
We are now ready to prove Theorem 1.2. The dominance region Pλ =⋂

k∈Z
φ−1

k Ck(φkλ) for λ ∈ I is obtained by imposing all of the inequalities from
Lemma 4.3 together with μ0 − λ0 ≤ 0 and 0 ≤ μ1 − λ1 coming from k = 0.

We rewrite the inequalities from Lemma 4.3 using the Chebyshev recur-
sion. For k > 0, we get

u−
k (μ0 − λ0) + u+

k−1(μ1 − λ1) ≤ 0;

u−
k+1(μ0 − λ0) + u+

k (μ1 − λ1) ≤ 0;

−u−
k−1(μ0 − λ0) + u+

k (μ1 − λ1) ≤ cu+
k λ0;

−u−
k−1(μ0 − λ0) − u+

k−2(μ1 − λ1) ≤ cu+
k λ0 + bu−

k−1λ1;

and, for k < 0, we get

u−
k+1(μ0 − λ0) + u+

k (μ1 − λ1) ≤ 0;

u−
k (μ0 − λ0) + u+

k−1(μ1 − λ1) ≤ 0;

u−
k (μ0 − λ0) − u+

k+1(μ1 − λ1) ≤ bu−
k λ1;

−u−
k+2(μ0 − λ0) − u+

k+1(μ1 − λ1) ≤ cu+
k+1λ0 + bu−

k λ1.

The first inequality in each list is redundant so we drop them. Moreover, for
k = 1 the third and fourth inequalities in the first list are the same so we can



D. Rupel and S. Stella

increment k in the last equality without losing any information and similarly
for k = −1 in the second list. This gives

0 ≤ −u−
k+1(μ0 − λ0) + u−

k (μ1 − λ1);

− u−
k−1(μ0 − λ0) + u+

k (μ1 − λ1) ≤ cu+
k λ0;

− u−
k (μ0 − λ0) − u+

k−1(μ1 − λ1) ≤ cu+
k+1λ0 + bu−

k λ1;

for k > 0 and

0 ≤ −u−
k (μ0 − λ0) + u−

k−1(μ1 − λ1);

u−
k (μ0 − λ0) − u+

k+1(μ1 − λ1) ≤ bu−
k λ1;

− u−
k+1(μ0 − λ0) − u+

k (μ1 − λ1) ≤ cu+
k λ0 + bu−

k−1λ1;

for k < 0.
Then, using that −uε

k < 0 for k > 0 and uε
k < 0 for k < 0, we rewrite the

inequalities again as

0 ≤ −(μ0 − λ0) − u+
k

u−
k+1

(μ1 − λ1); (10)

− u−
k−1

u+
k

(μ0 − λ0) + (μ1 − λ1) ≤ cλ0; (11)

− (μ0 − λ0) − u+
k−1

u−
k

(μ1 − λ1) ≤ c
u+

k+1

u−
k

λ0 + bλ1; (12)

for k > 0 and

0 ≤ (μ0 − λ0) +
u+

k−1

u−
k

(μ1 − λ1); (13)

− (μ0 − λ0) +
u+

k+1

u−
k

(μ1 − λ1) ≤ −bλ1; (14)

− −u−
k+1

u+
k

(μ0 − λ0) + (μ1 − λ1) ≤ −cλ0 − b
u−

k−1

u+
k

λ1; (15)

for k < 0. We now study each sequence of inequalities in turn.
For μ1 − λ1 ≥ 0, the inequalities (10) become more restrictive as k gets

larger since the sequence
−u−

k+1

u+
k

of negative slopes is monotonically increasing

(cf. Lemma 2.3). Thus, following Lemma 2.3, in the limit as k → ∞, we obtain
the inequality below determining a boundary of Pλ:

0 ≤ −(μ0 − λ0) − bc − √
bc(bc − 4)
2c

(μ1 − λ1).

Similarly, the inequalities (11) become more restrictive for μ0 ≤ 0 and

μ1 ≥ 0 as k gets larger since the sequence
u−

k−1

u+
k

of positive slopes is monoton-

ically increasing and the intersection with (10) moves lower on the μ1-axis as
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k increases. Thus, following Lemma 2.3, in the limit as k → ∞, we obtain the
inequality

−bc − √
bc(bc − 4)
2b

(μ0 − λ0) + (μ1 − λ1) ≤ cλ0

determining a boundary of Pλ. Observe further that the inequalities μ0−λ0 ≤ 0
and 0 ≤ μ1 − λ1 allow to strengthen this as

0 ≤ −bc − √
bc(bc − 4)
2b

(μ0 − λ0) + (μ1 − λ1) ≤ cλ0.

Finally, the inequalities (12) become more restrictive for μ1 ≤ 0 as k gets

larger since the sequence −u−
k

u+
k−1

of negative slopes is monotonically increasing

(cf. Lemma 2.3) and the intersection with (11) (for k+1) moves to the right on
the μ0-axis as k increases. Thus, following Lemma 2.3, in the limit as k → ∞,
we obtain the inequality below determining a boundary of Pλ:

−(μ0 − λ0) − bc − √
bc(bc − 4)
2c

(μ1 − λ1) ≤ bc +
√

bc(bc − 4)
2c

cλ0 + bλ1.

Similar arguments using (13)–(15) lead to the remaining inequalities de-
termining the boundary of Pλ:

0 ≤ (μ0 − λ0) +
bc +

√
bc(bc − 4)
2c

(μ1 − λ1);

0 ≤ −(μ0 − λ0) +
bc − √

bc(bc − 4)
2c

(μ1 − λ1) ≤ −bλ1;

0 ≤ bc − √
bc(bc − 4)
2b

(μ0 − λ0) + (μ1 − λ1) ≤ −cλ0 − bc +
√

bc(bc − 4)
2b

bλ1.

These can easily be seen to be equivalent to the remaining inequalities from
Theorem 1.2 and this complete the proof.

5. Proof of Corollary 1.4

This follows from basic manipulations finding the intersection points of the
boundary segments determined by the inequalities from Theorem 1.2. Note
that in each of the cases (2), (4), and (6) there are only four inequalities to
consider while in cases (3) and (5) there are only three inequalities to consider.
We leave the details as an exercise for the reader.

6. Proof of Theorem 1.6

We begin observing that, by Lemma 4.1, the dominance region Pλ of any g-
vector λ 
∈ I is just the point λ. Therefore, by Theorem 1.1 the corresponding
pointed element is the cluster monomial whose g-vector is λ. The support of
this element is exactly Sλ by [7, Proposition 4.1].
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Every pointed basis element for A(b, c) admits an opposite g-vector aris-
ing by interchanging the roles of b, c and x0, x1 in (1). One can easily compute
the following correspondence.

Lemma 6.1. Given a g-vector λ, the opposite g-vector λ′ is obtained as follows:
• if λ0, λ1 ≥ 0, then λ′ = λ;
• if λ1 ≥ 0 and λ0 < 0, then λ′ = (λ0,−cλ0 + λ1);
• if λ0 > 0 and λ0 + bλ1 > 0, then λ′ = (λ0 + bλ1, λ1);
• otherwise, λ′ = (λ0 + bλ1,−cλ0 − (bc − 1)λ1).

In particular, we get an opposite dominance region P ′
λ for each g-vector λ.

Lemma 6.2. For λ ∈ I, the opposite dominance polygon P ′
λ pointed at its op-

posite g-vector λ′ = (λ′
0, λ

′
1) is the region consisting of those μ ∈ R

2 satisfying
μ0 ≥ λ′

0, μ1 ≤ λ′
1, and the following inequalities:

0 ≤ bc − √
bc(bc − 4)
2c

(μ1 − λ′
1) + (μ0 − λ′

0) ≤ −bλ′
1 − bc +

√
bc(bc − 4)
2c

cλ′
0

0 ≤ −bc − √
bc(bc − 4)
2c

(μ1 − λ′
1) + (μ0 − λ′

0) ≤ bλ′
1

0 ≤ −(μ1 − λ′
1) − bc − √

bc(bc − 4)
2b

(μ0 − λ′
0) ≤ bc +

√
bc(bc − 4)
2b

bλ′
1 + cλ′

0

0 ≤ (μ1 − λ′
1) − bc − √

bc(bc − 4)
2b

(μ0 − λ′
0) ≤ −cλ′

0

Proof. As stated above, we obtain the opposite g-vector by interchanging b, c
and swapping the roles of λ0, λ1. Translating from Theorem 1.2, it immediately
follows that the opposite dominance region is given by the claimed inequalities.

�
For λ ∈ I, the region Sλ from Theorem 1.6 is determined by the following

inequalities:

λ1 ≤ μ1;

λ′
0 ≤ μ0;

0 ≤ −bc +
√

bc(bc − 4)
2b

(μ0 − λ0) − (μ1 − λ1);

0 ≤ −bc − √
bc(bc − 4)
2b

(μ0 − λ′
0) − (μ1 − λ′

1).

To begin proving that this is the maximal support we claim that Pλ,P ′
λ ⊂ Sλ.

Observe that the last inequality can be rewritten as

bc − √
bc(bc − 4)
2b

(μ0 − λ0) + (μ1 − λ1) ≤ −cλ0 − bc +
√

bc(bc − 4)
2

λ1,

which together with the second to last inequality already gives two of the
boundaries for the dominance region Pλ. Note then that, under the assumption
μ0 ≤ λ0, the inequality

0 ≤ bc − √
bc(bc − 4)
2b

(μ0 − λ0) + (μ1 − λ1)
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defining another boundary of Pλ is more restrictive than the inequality λ1 ≤ μ1

bounding Sλ.
It follows from Corollary 1.4 that the minimum value for μ0 inside Pλ

occurs when μ1 = 0, i.e. either at the point
(
λ0 + bc+

√
bc(bc−4)

2c λ1, 0
)

when

0 ≤ cλ0 + 2λ1 or at the point − bc+
√

bc(bc−4)

2c

( bc+
√

bc(bc−4)

2b λ0 + λ1, 0
)

when
cλ0 + 2λ1 < 0. The second point can be rewritten as(

λ0 − bc +
√

bc(bc − 4)
2c

cλ0 − bc +
√

bc(bc − 4)
2c

λ1, 0

)

but, since cλ0 < −2λ1, the first coordinate is greater than λ0+ bc+
√

bc(bc−4)

2c λ1.

Then, using bc+
√

bc(bc−4)

2c < b and λ1 < 0, we see that the minimum value of μ0

inside Pλ satisfies the inequality λ′
0 = λ0 + bλ1 ≤ μ0. In particular, combining

with the observation above, we see that Pλ ⊂ Sλ.
Similarly, the second to last inequality can be rewritten as

bc − √
bc(bc − 4)
2c

(μ1 − λ′
1) + (μ0 − λ′

0) ≤ −bλ′
1 − bc +

√
bc(bc − 4)
2c

cλ′
0,

which together with the last inequality already gives two of the boundaries
for the opposite dominance region P ′

λ. Note then that, under the assumption
μ1 ≤ λ′

1, the inequality

0 ≤ bc − √
bc(bc − 4)
2c

(μ1 − λ′
1) + (μ0 − λ′

0)

defining another boundary of Pλ is more restrictive than the inequality λ′
0 ≤

μ0 bounding Sλ. As above, the minimum value of μ1 inside P ′
λ occurs when

μ0 = 0, i.e. either at the point
(
0,

bc+
√

bc(bc−4)

2b λ′
0 + λ′

1

)
when 0 ≤ 2λ′

0 + bλ′
1 or

at the point − bc+
√

bc(bc−4)

2b

(
0, λ′

0 + bc+
√

bc(bc−4)

2c λ′
1

)
when 2λ′

0 + bλ′
1 < 0. The

second point can be rewritten as(
0,−bc +

√
bc(bc − 4)
2b

λ′
0 − bc +

√
bc(bc − 4)
2b

bλ′
1 + λ′

1

)

but, since bλ′
1 ≤ −2λ′

0, the first coordinate is greater than bc+
√

bc(bc−4)

2b λ′
0+λ′

1.

Then, using bc+
√

bc(bc−4

2b < c and λ′
0 < 0, we see that the minimum value of

μ1 inside P ′
λ satisfies the inequality λ1 = cλ′

0 + λ′
1 ≤ μ1 and so P ′

λ ⊂ Sλ.
To continue, we compare the support for an arbitrary basis element

pointed at λ ∈ I with the greedy basis elements having g-vector inside the
dominance polygon Pλ.

The support region Gλ of the greedy basis element with g-vector λ is
well-known [7,18]. This is indicated by the solid and dotted lines in Figs. 1
and 2, where dotted lines indicate points that are excluded from the support.
(The actual support of the greedy basis element consists of the points of the
form λ + (bα0, cα1), α0, α1 ∈ Z, inside Gλ.) For our purposes, it is enough to
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observe the following closure property for the greedy support region which is
evident from Fig. 2.

Definition 6.3. A subset S ⊂ R
2 is called �-closed if λ, μ ∈ S implies the

segments joining λ and μ to
(
min(λ0, μ0),min(λ1, μ1)

)
are contained in S.

In particular, (an upper bound for) the greedy support region Gλ can
be found using its g-vector λ and its opposite g-vector λ′. Write Gλ for the
downward scaling of the �-closure of {λ, λ′}, that is Gλ contains the segments
joining λ and λ′ with

(
min(λ0, λ

′
0),min(λ1, λ

′
1)

)
and for any μ ∈ Gλ we have

tμ ∈ Gλ for 0 ≤ t ≤ 1. Clearly, Gλ ⊂ Gλ.
As we saw above, for any g-vector μ ∈ Pλ its opposite g-vector μ′ is also

contained in Sλ. But Sλ is �-closed and closed under downward scaling. It
follows that Gμ ⊂ Sλ for any μ ∈ Pλ and hence, following Theorem 1.1, the
support of any basis element pointed at λ is contained in Sλ.

In particular, Gλ ⊂ Sλ. Note also that the dominance region Pλ contains
the intersection of Sλ with the region R defined by the inequalities μ0 ≥ 0 and
λ1μ0 − λ0μ1 ≥ 0. Similarly, the opposite dominance region P ′

λ contains the
intersection of Sλ with the region R′ defined by the inequalities μ1 ≥ 0 and
−λ′

1μ0 + λ′
0μ1 ≥ 0. But Sλ = Gλ ∪ (Sλ ∩ R) ∪ (Sλ ∩ R′) so Sλ is the maximum

possible support for an element pointed at λ.

7. The Untwisted Affine Case

In this section we compare our main result with the construction of [19] in the
case b = c = 2. To match conventions, in this section, we work over an alge-
braically closed field k of characteristic 0. Because the exchange matrix is full
rank there is no loss of generality in continuing to work in the coefficient-free
case. We will identify the family of bases in Theorem 1.1 with the continuous
family of bases of A(2, 2) constructed in [19] from generalized minors, which
we recast here with the current notation.

Theorem 7.1. ([19, Theorem 4.6]) Choose a point a(n) = (a1, . . . , an) ∈ (k×)n

for each n ≥ 1. Then, together with all cluster monomials, the elements

xa(n)

(n,−n) := x−n
0 x−n

1

∑
0≤k≤�≤n

�∑
r=0

(
� − r

k

)(
n − 2r

� − r

)
Sa(n),r x

2(�−k)
0 x

2(n−�)
1 (16)

with

Sa(n),r =
∑

I,J⊆[1,n]
|I|=r=|J|
I∩J=∅

∏
i∈I ai∏
j∈J aj

form a linear basis of A(2, 2).

We begin by noting that when b = c = 2 the imaginary cone I degenerates
to the ray spanned by (1,−1). For any λ ∈ I, the dominance region Pλ is the
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segment connecting λ to the origin. It follows that g-vectors dominated by
λ = (n,−n) are of the form (n − 2r,−n + 2r) for 0 ≤ r ≤ n/2.

In order to use Theorem 1.1 we need to fix a reference pointed basis
of A(2, 2); to simplify our computations, we choose to work with the generic
basis. This basis consists of the cluster monomials of A(2, 2) together with the
elements

xge
(n,−n) :=

(
x0x

−1
1 + x−1

0 x−1
1 + x−1

0 x1

)n

= x−n
0 x−n

1

∑
0≤k≤�≤n

(
�

k

)(
n

�

)
x
2(�−k)
0 x

2(n−�)
1 .

Proposition 7.2. For n ≥ 0, we have

xa(n)

(n,−n) =
�n/2∑
r=0

Sa(n),r xge
(n−2r,−n+2r).

Proof. To begin, we observe that (16) may be rewritten as

xa(n)

(n,−n) = x−n
0 x−n

1

n∑
k=0

n∑
�=k

�∑
r=0

(
� − r

k

)(
n − 2r

� − r

)
Sa(n),r x

2(�−k)
0 x

2(n−�)
1 .

The first binomial coefficient above is zero if 0 ≤ � − r < k while the second is
zero for � < r ≤ �n/2� or if n − r < �, therefore xa(n)

(n,−n) can be expressed as

xa(n)

(n,−n) = x−n
0 x−n

1

n∑
k=0

�n/2∑
r=0

n−r∑
�=k+r

(
� − r

k

)(
n − 2r

� − r

)
Sa(n),r x

2(�−k)
0 x

2(n−�)
1 .

But then, rearranging terms and replacing � by � + r, this becomes

xa(n)

(n,−n) =
�n/2∑
r=0

Sa(n),r x−n+2r
0 x−n+2r

1

n∑
k=0

n−2r∑
�=k

(
�

k

)(
n − 2r

�

)
x
2(�−k)
0 x

2(n−2r−�)
1

=
�n/2∑
r=0

Sa(n),r xge
n−2r,−n+2r

as desired. �

Remark 7.3. Observe that the expansion coefficients Sa(n),r can be expressed
as the ratio of monomial symmetric functions

m
2(r),1(n−2r)

m
1(n)

evaluated at a(n).

The analogous expansion coefficients when xa(n)

(n,−n) is expressed in terms of
the triangular basis (resp. greedy basis) are the ratios of Schur functions
s
2(r),1(n−2r)

s
1(n)

(resp. ratios of elementary symmetric functions en−r,r

en
) evaluated

at a(n). We leave the details to the reader.

Theorem 7.4. As the points a(n) vary in (k×)n, the bases in Theorem 7.1 re-
cover precisely all the pointed bases of A(2, 2).
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Proof. By Theorem 1.1, in view of Proposition 7.2 and the discussion imme-
diately before it, it suffices to show that as a(n) vary in (k×)n the tuple of
coefficients

(
Sa(n),r

)
1≤r≤�n/2 assume all the values in k

�n/2. (The fact that
Sa(n),0 = 1 is immediate from the definition.)

By Remark 7.3, this is equivalent to the fact that the monomial symmetric
functions in n variables m2(r),1(n−2r) are algebraically independent. But this
follows immediately from the observation that

m2(r),1(n−2r) =
r∑

i=0

γi en−i,i

for some coefficients γi with γr = 1, and the Fundamental Theorem of Sym-
metric Polynomials. �
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