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Abstract
We develop an exact cutting plane solution algorithm for a special class of bilevel
programming models utilized for optimal price-bidding of energy producers in day-
ahead electricity markets. The proposed methodology utilizes a suitable reformulation
in which a key prerequisite for global optimality, termed bilevel feasibility, is relaxed.
Solving the problem to global optimality involves finding the price-offers of the strate-
gic producer (upper-level decision variables) which maximize his self-profit upon
clearing of the market and identification of the optimal energy quantity distribution
(lower-level decision variables). To exclude fromconsideration the encountered bilevel
infeasible solutions, the algorithm employs a special type of valid cuts drawn from
the theory of integer parametric programming. The generation of these cuts involves
finding the truly optimal lower-level solution using the strategic price-offers at the
bilevel infeasible solution subject to exclusion and devising range intervals for these
offers such that the optimality of this solution is retained when each of them lies in
its corresponding interval. Each cut imposes a suitable part of this solution, under
the condition that each price-offer belongs to its associated interval, which renders
the bilevel infeasible solution invalid. We establish the theoretical framework for the
development of the proposed algorithm, we illustrate its application on a small case
study, and we present extensive computational results demonstrating its behavior and
performance on random problem instances. These results indicate that the algorithm
is capable of solving to global optimality considerably larger problems than those
that a previous elementary version of the same algorithm could solve. This constitutes
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significant research contribution, considering the lack of generic optimization soft-
ware for bilevel programming, as well as the fact that the applicability of specialized
algorithms on problems of realistic size is rather limited.

Keywords Bilevel programming · Optimal bidding offers · Energy producers ·
Day-ahead electricity markets · Integer parametric programming · Cutting planes

Mathematics Subject Classification 90-08 · 90-10

1 Introduction

We develop an exact cutting plane solution algorithm for a class of bilevel program-
ming models utilized in day-ahead electricity markets for optimal price-bidding of
energy producers. Typically, the upper-level of these models is controlled by a single
producer, so called strategic, who aims to devise optimal price-offers for maximiz-
ing his profit upon clearing of the market. Given the price-offers of the participating
producers, an independent system operator (ISO) controls the lower-level problem,
aiming to find the energy distribution that satisfies the demand at minimum total bid-
cost. A key characteristic of these models, distinguishing them from general bilevel
programming formulations, is that the upper-level variables affect the objective but
not the feasibility of lower-level solutions. This holds true due to the fact that the
upper-level variables appear at the lower-level objective but not in any lower-level
constraint.

The proposed methodology utilizes the widely used high-point relaxation, which
does not guarantee a key condition for global optimality termed bilevel feasibility.
This condition states that the values of the lower-level variables must comprise an
optimal lower-level solution for the corresponding values of the upper-level variables.
Special optimality conditions are embedded into the model formulation for excluding
a-priori certain energy distributions that cannot be part of an optimal solution. The
correctness of these conditions is based on special properties proven to hold true at
the problem’s global optimum. Utilizing cutting planes for additionally excluding
the encountered bilevel infeasible solutions in successive iterations, the algorithm
succeeds in identifying the global optimumupon termination. The validity of these cuts
is justified by key fundamental results drawn from integer parametric programming
theory.

An exact solution algorithm for the single-period version of the problem under
consideration has been proposed in [23]. The extension to the multi-period planning
horizon considered in the current work adds a strongly combinatorial nature to the
problem, increasing substantially its complexity. This is due to the fact that the unit
commitment decisions increase the size of the feasible region in a combinatorial fash-
ion. The theoretical groundwork we develop in the present work extends that of [22],
both in terms of the problem characteristics embedded within the model formulation,
as well as in terms of the key features the proposed algorithm is equipped with. With
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respect to the problem definition, the current model setting includes additionally min-
imum up/down times and ramp-up/down constraints for the generation units, which
comprise important realistic problem characteristics.

As far as the solution methodology is concerned, the current algorithmic version
embodies special optimality conditions into the model formulation, which render
a-priori infeasible a large collection of suboptimal lower-level solutions. For the exclu-
sion of the bilevel infeasible encountered solutions, an enhanced integer parametric
programming technique is utilized, which imposes optimal lower-level unit commit-
ments, as well as upper bounds on the strategic producer energy quantities. Moreover,
a significantly enhanced search procedure for the generation of these cuts is imple-
mented, which succeeds in eliminating an increased number of such solutions at each
iteration.

In order to establish the validity of these algorithmic enhancements, we prove sev-
eral key theoretical results in what follows. The new version of the solution algorithm
exhibits significantly improved computational performance compared to the previ-
ous one, as clearly demonstrated by the extended computational results on random
problem instances that we report. These results reveal that it is capable of handling
medium-sized problems quite efficiently, which constitutes significant contribution,
considering the inevitable lack of generic optimization software for the treatment of
bilevel problems with this purely integer special structure, as well as the fact that
the applicability of specialized solution methodologies on problems of realistic size
appears rather limited.

The remainder of thiswork is organized as follows. In Sect. 2, we review the existing
related literature, while, in Sect. 3, we present the model formulation, elaborating
on its special structure. In Sect. 4, we develop the proposed solution methodology,
while in Sect. 5, we illustrate its application on a small case study, and we present
computational results demonstrating its behavior and performance. In Sect. 6, we
discuss some interesting model variations, and finally, in Sect. 7, we summarize the
research contribution of this work, and we suggest interesting directions for future
research.

2 Literature Review

2.1 Bilevel Programming in EnergyMarkets

One of the most common approaches for handling bilevel optimization models in the
context of energy markets is their reformulation as single-level models using the KKT
optimality conditions of the lower-level problem [4, 33]. The inevitable nonlinearities
this transformation involves are typically handled with clever integer programming
modeling techniques. KKT-based solution approaches are also the ones that have been
proposed in [19, 26], with the nature of the underlying methodologies of these two
works being heuristic.

Gross and Finlay [17] consider a fully competitive energy pool with application
in the England and Wales power markets. By exploiting a Lagrangian relaxation,
they develop a solution methodology that succeeds in identifying the global optimal
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bidding strategy. Fernández-Blanco et al. [14] formulate a mixed integer nonlinear
bilevel program for a day-ahead electricity market with locational marginal pricing.
The proposed solution approach is based on a single-level model reformulation that
exploits duality theory of linear programming, KKT optimality conditions and integer
algebra.

The most crucial difference the present work exhibits with respect to the above
ones is that it considers a purely integer model formulation. This makes typically
employed techniques such as the KKT-approach or linear programming duality not
directly applicable. Similar formulations with the one that we address in the current
work are those that have been studied in [13, 32], but the lower level of these models
is also purely continuous, which allows their reformulation as single-level problems
through the KKT optimality conditions. The authors employ clever integer program-
ming modeling techniques to eliminate the ensuing nonlinearities and transform the
problem into a mixed integer linear program which they then solve with generic opti-
mization software.

Kwon and Frances [25] recently published a review on mathematical programs
modeling the optimal bidding problem faced by power producers participating in
day-ahead electricity auction markets. This review considers both price taking and
non-price taking energy producers, deterministic and stochastic problem settings, as
well as a large collection of modeling approaches such as linear/nonlinear integer
programming and mathematical programs with equilibrium constraints. The review
focuses primarily on models that combine price-offer with self-scheduling decisions.

The development of bilevel programming solutionmethodologies for energymarket
optimization models is also considered in [6]. After presenting a general background
on the operation of energy markets and on existing solution techniques for bilevel
optimization, the author addresses a bilevel programming model in which both the
primal and the dual lower-level optimal solutions affect the upper-level objective. For
this model formulation, a parametric programming solution methodology is proposed
[7], which, under suitable conditions, enables the decomposition of the lower-level
problem and the reformulation of the original problem as a mixed integer linear pro-
gram.

2.2 SolutionMethodologies for Integer Bilevel Programming

One of the earliest specialized methodologies for integer bilevel programming is the
branch and bound algorithm byMoore andBard [31]. The authors also elaborate on the
key theoretical properties of single-level integer programming that do not carry over
to multi-level integer programming. Being one of the first successful attempts for the
unified treatment of this problem, this algorithm is considered seminal; nevertheless, it
necessitates substantial branching in our case, which inevitably needs to be performed
repetitively on the same variables due to the presence of the general integralities.

Gümüs and Floudas [18] develop various solution methodologies for the treat-
ment of several classes of bilevel optimization models, which, among others, employ
enumeration techniques,model reformulations, and valid inequalities.Mitsos [30] pro-
poses a global optimization solution methodology for mixed integer nonlinear bilevel
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programming, which utilizes fixed value and optimal value function reformulations.
Kleniati and Adjiman [21] develop a branch and bound algorithm for mixed integer
bilevel programming, which performs branching on both leader and follower decision
variables. The above works illustrate the application of the proposed methodologies
on test problem instances which are considerably smaller than those considered in the
current work.

Köppe et al. [24] develop a parametric solution procedure for pure and mixed
integer bilevel programming, while Domínguez and Pistikopoulos [12] develop a solu-
tion methodology for integer bilevel programming which tries to identify the global
optimum through the parametric incorporation of the lower-level problem into the
upper-level problem. The elimination of the general integer variables is a task that
poses considerable difficulties on the application of these algorithms for our problem.

DeNegre and Ralphs [11], Caramia and Mari [9], and Fischetti et al. [15] develop
solution methodologies for integer bilevel programming, which apply valid cuts on
the high-point relaxation. Although these works exhibit some similarities with respect
to the current one, the nature of the cuts they employ is significantly different and
somewhat more standardized than the ones we utilize in our proposed algorithm.

Xu and Wang [37] develop a branch and bound algorithm for mixed integer linear
bilevel programming, in which each branching decision is associated with several sub-
problems.Branch andbound algorithms for bilevel integer linear programming are also
the ones proposed by Wang and Xu [35] and Liu et al. [27]. The former methodology,
termed watermelon algorithm, utilizes disjunctive cuts to eliminate bilevel infeasible
solutions, while the latter one utilizes an enhanced branching rule in order to keep
the size of the search tree manageable. On the other hand, our proposed algorithm
involves no branching, due to the fact that the solution of the employed relaxation is
always integer.

Yue et al. [38] present a reformulation and decomposition algorithm for mixed
integer linear bilevel programming, which implements a column and constraint gen-
eration methodology on a projection-based single-level problem reformulation. The
absence of continuous variables limits considerably the applicability of this algorithm
in our case. Finally, Lozano and Smith [29] present an exact solution algorithm for
mixed integer bilevel programming, which implements a single-level value function
reformulation in order to obtain bounds on the optimal objective.

3 ProblemDefinition andModel Formulation

We consider a multi-period day-ahead electricity market, in which the energy demand
is satisfied by a set of generation units. The market is regulated by an ISO, who is
responsible for collecting the energy price-offers (bids) of the producers and fairly
clearing the market at the minimum total bid-cost. After the optimal energy plan is
determined, the system compensates each energy producer by fully paying his start-
up cost, as well as a market clearing price for each energy unit he contributes. This
price is equal to the corresponding price-offer submitted. Aiming to maximize his own
profit upon clearing of the market, each individual producer must select his optimal
price-offers for each time period of the planning horizon. Under the assumption that
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an individual producer has full knowledge of the market’s technical parameters and
has come up, in some way, with the exact price-offers his competitors have submitted
(we comment on how realistic this assumption is in the following paragraphs), the
problem he is faced with is a bilevel optimization problem. The upper-level objective
of this problem maximizes the producer’s profit, subject to the restriction that the total
bid-cost for energy satisfaction is minimized at the lower level.

The mathematical notation and formulation of the optimization problem the ISO is
faced with are as follows:

Sets:

I production units, indexed by i.

Parameters:

T number of time periods of the planning horizon,
pi,t unit price-offer of producer i for energy in time period t (i ∈ I , t � 1,…,T ),
si startup cost of unit i (i ∈ I),
mi technical minimum of unit i (i ∈ I),
Mi technical maximum of unit i (i ∈ I),
dt demand for energy in time period t (t � 1,…,T ),
zi,0 binary parameter denoting the status of unit i in the last time period of the

previous planning horizon (i ∈ I),
qi,0 energy quantity of unit i in the last time period of the previous planning horizon

(i ∈ I),
yi,k binary parameter denoting if unit i was switched on in time period k which is

part of the previous planning horizon or not (i ∈ I , k � 0, − 1,…),
oi,k binary parameter denoting if unit i was switched off in time period k which is

part of the previous planning horizon or not (i ∈ I , k � 0, − 1,…),
mui minimum uptime (number of time periods) of unit i (i ∈ I),
mdi minimum downtime (number of time periods) of unit i (i ∈ I),
rui ramp-up value for energy quantity of unit i (i ∈ I),
rdi ramp-down value for energy quantity of unit i (i ∈ I),

Decision Variables:

qi,t energy quantity of unit i in time period t (i ∈ I , t � 1,…,T ),
zi,t status or commitment of unit i in time period t: binary variable that takes the

value 1 if the energy quantity of unit i in time period t is positive, and 0 otherwise
(i ∈ I , t � 1,…,T ),

yi,t binary variable that takes the value 1 if unit i is switched on in time period t while
being off in time period t-1, and 0 otherwise (i ∈ I , t � 1,…,T ),

oi,t binary variable that takes the value 1 if unit i is switched off in time period t while
being on in time period t-1, and 0 otherwise (i ∈ I , t � 1,…,T ).

Independent System Operator Optimization Problem (ISOOP):

Min f �
∑

i∈I

T∑

t�1

(
pi,t qi,t + si yi,t

)
(1)
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s.t.
∑

i∈I
qi,t � dt , t � 1, ..., T (2)

mi zi,t ≤ qi,t ≤ Mi zi,t , i ∈ I , t � 1, . . . , T (3)

yi,t ≥ zi,t − zi,t−1, i ∈ I , t � 1, . . . , T (4)

yi,t ≤ zi,t , i ∈ I , t � 1, . . . , T (5)

yi,t ≤ 1 − zi,t−1, i ∈ I , t � 1, . . . , T (6)

oi,t ≥ zi,t−1 − zi,t , i ∈ I , t � 1, . . . , T (7)

oi,t ≤ zi,t−1, i ∈ I , t � 1, . . . , T (8)

oi,t ≤ 1 − zi,t , i ∈ I , t � 1, . . . , T (9)

zi,t ≥
t∑

k�t−mui+1

yi,k , i ∈ I , t � 1, ..., T (10)

zi,t ≤ 1 −
t∑

k�t−mdi+1

oi,k , i ∈ I , t � 1, ..., T (11)

qi,t − qi,t − 1 + (mi − 0.5rui )zi,t−1 ≤ mi + 0.5rui , i ∈ I , t � 1, . . . , T (12)

qi,t−1 − qi,t + (mi − 0.5rdi )zi,t ≤ mi + 0.5rdi , i ∈ I , t � 1, . . . , T (13)

yi,t , zi,t , oi,t binary, i ∈ I , t � 1, . . . , T (14)

qi,t ∈ Z+, i ∈ I , t � 1, . . . , T (15)

Objective (1) minimizes the total system bid-cost for the energy demand satisfac-
tion. Constraint set (2) ensures that the total energy production equals the total energy
demand. Constraint set (3) limits the energy dispatch of each generation unit based on
its technical characteristics. It ensures that the energy dispatch of a unit is 0 when this
unit is off, and at least equal to its technical minimum but not greater than its technical
maximum when it is on. Constraints (4)–(6) ensure correct values for variables yi,t
modeling the start-up of generation unit i in time period t. Variable yi,t should be equal
to 1 when unit i is switched on in time period t after being off in period t-1, and this
is correctly imposed by constraint (4). In any other case, variable yi,t should be equal
to 0 and this is ensured by constraints (5) and (6). In an identical way, constraints
(7)–(9) ensure correct values for variables oi,t modeling the shut-down of generation

123



Journal of Optimization Theory and Applications

unit i in time period t. Constraints (10) and (11) impose the minimum up/down times
of the generation units. More specifically, constraint (10) states that generation unit
i must be on in time period t if it has been switched on within the last (including
t) mui time periods. Similarly, constraint (11) states that generation unit i must be
off in time period t if it has been switched off within the last (including t) mdi time
periods. Constraints (12) and (13) impose the ramp-up/down limits on the unit energy
quantities. More specifically, constraints (12) dictate that if unit i is active both in time
periods t-1 and t, then qi,t cannot exceed qi,t-1 by more than rui units. On the other
hand, they ensure that if unit i is switched on in time period t, then qi,t cannot exceed
mi + 0.5rui, a typical adjustment of the restriction for that case. In any other case, these
constraints are redundant. Similarly, constraints (13) dictate that if unit i is active both
in time periods t-1 and t, then qi,t-1 cannot exceed qi,t by more than rdi units. In a
similar fashion with the ramp-up case, they also ensure that a unit can be switched
off in time period t only if qi,t-1 does not exceed mi + 0.5rdi. In any other case, these
constraints are redundant. Finally, the lower-level decision variables are constrained
to binary and non-negative integer values by constraints (14) and (15), respectively.
In the above formulation, parameters mi, Mi, rui, rdi, pi,t and dt always take positive
integer values for all i and t, with 1 < mi < Mi. In what follows, we call generation
unit i active in time period t if and only if zi,t � 1.

The additional mathematical notation and the formulation of the profit maximizing
bilevel optimization problem the strategic producer is faced with are as follows:

Parameters:
C1: price cap for the price-offers of the strategic producer,
c1: unit variable production cost of the strategic producer,

Decision Variables:
P1,t : price-offer of the strategic producer for one unit of energy in time period t (t

� 1,…,T ).
Strategic Producer Bilevel Optimization Problem (SPBOP):

Max
p1,t

F1 �
T∑

t�1

(
p1,t − c1

)
q1,t (16)

s.t . c1 ≤ p1,t ≤ C1, t � 1, . . . , T (17)

p1,t ∈ Z+, t � 1, . . . , T (18)

ISOOP(1)−(15)

TheSPBOP includes as part of its constraint set the ISOOP.Theproducermaximizes
his individual profit at the upper-level (16), having control of his price bids only, since
his energy quantities are determined at the lower-level. The start-up costs do not appear
at the upper-level objective, since energy producers are typically compensated in full
for them. Constraint set (17) states that the price-offers of the strategic producer cannot
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be lower than his unit production cost and cannot exceed a value, also known as price-
cap, determined by the market’s regulator. The price-offers are additionally restricted
to non-negative integer values by constraint set (18). Although the energy producers
can manipulate strategically their technical characteristics aiming to achieve greater
profits, the problem definition requires truthful associated values for all generation
units. This requirement is ensured by the regulating authority through the imposition
of the consensus to auditable technical characteristics as an absolute prerequisite for
market participation.

The SPBOP is a purely integer model. In practice, variables p1,t and/or q1,t do not
undeniably need to be integer, but may be allowed to be continuous, in which case the
problem fits the mixed integer bilevel model setting. In this work, we restrict these
variables to integer values for two main reasons. On the one hand, it makes the model
more elegant, since the occurrence of continuous values for these variables appears
rather odd in practice, and almost always necessitates some proper form of rounding,
especially in the presence of many decimals. Someone could claim that this mimics, in
some sense, the choice of imposing integralities. On the other hand, the pool of solution
methodologies for pure integer bilevel programming is quite more limited than that for
mixed integer. Thus, our pure integer framework could potentially assist the treatment
of similar problems fitting in this special setting for which fewer algorithmic options
stand available. Of course, this comes at a not negligible price, since the solution of
the problem becomes naturally much harder. Nevertheless, it should be indicated at
this point that the proposed solution algorithm exploits wisely the integrality of the
decisions variables.

While the above formulation is aimed to model the strategic bidding problem an
energy producer participating in an electricity market is faced with, it should be made
clear that it does not address every possible aspect a realistic problemmay exhibit. For
example, network constraints, recovery schemes, block-bids, step-wise offers, etc.,
may also be present in practice. Nevertheless, we believe that the inherent complexity
of the problem under consideration combined with the difficulties introduced by its
bilevel structure demonstrates significant research interest and can serve as the basis
for future research endeavors pursuing the development of bilevel solution algorithms
to even more complex models than the above.

Although it is rarely the case that a particular producer will have full knowledge
of the other producers’ price-offers, in practice each competing producer may end-up
solving several optimization problems such as the above, each time with different
input parameters and assumptions, in order to comparatively evaluate alternative self-
bidding strategies and scenarios. In the course of doing so, he may choose to estimate
his competitors’ bids based on educated values from historic data. Additionally, the
optimization model introduced above could also be a valuable tool for discovering
equilibrium points within an iterative game setting, in which each producer responds
to the last set of bids submitted by the other producers by devising and announcing in
return his optimal set of self-bids. The pursuit of such a research endeavor appears to
exhibit significant research interest, which is, nevertheless, beyond the scope of this
work.

The mathematical model defined above belongs to the bilevel programming
modeling framework, which consists of optimization problems including a second
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optimization problem in their constraint set. Distinct sets of decision variables, as well
as distinct decision makers, are associated with each of these two problems. In our
application context, the first one, termed upper-level optimization problem, is the one
controlled by the strategic producer, also called upper-level decision maker or leader.
The second one, termed lower-level optimization problem, is the one controlled by
the ISO, also called lower-level decision maker or follower.

In our case, the ISOOP is nonconvex, as a consequence of the integralities. In
the absence of these constraints, however, the feasible region of this problem would
be convex, since the constraint set is comprised of linear functions only. The fact
that the feasible region is closed and compact while all decision variables have finite
bounds ensures the existence of the optimal solution to the lower-level problem. Under
suitable assumptions, the existence of the optimal solution to the bilevel problem is
also ensured. Note that, since all decision variables are constrained to integer values
with finite bounds, the feasible set of both the upper-level and that of the lower-level
optimization problem are of finite cardinality.

A key characteristic of the above bilevel formulation is the absence of upper-level
decision variables from the lower-level constraint set; this implies that the leader’s
decisions do not influence the feasible set of the lower-level problem. On the other
hand, the price-offers of the strategic producer appear as coefficients of his energy
quantities in the lower-level objective; thus, the leader’s decisions affect the effec-
tiveness of alternative lower-level solutions. In bilevel programming theory, the term
reaction set refers to the lower-level optimal solution(s) for a particular set of upper-
level decision variable values. The term inducible region (IR) is used to denote the set
over which the leader may optimize his objective, i.e., the set of every upper-level fea-
sible solution and its corresponding reaction set. Solutions which belong to the IR, i.e.,
pairs of upper-level feasible values and corresponding lower-level optimal solutions,
are called bilevel feasible. The objective of the upper-level problem is quadratic. The
same is true for the objective of the lower-level problem, too, which becomes linear
though once the upper-level decision variable values become known.

Note that the optimal solution of a bilevel problem may not exist even under the
assumption of a non-empty and compact feasible region. It iswidely known [5] that this
pitfall may arise in bilevel programming when the lower-level problem has multiple
optimal solutions, since fundamental bilevel programming theory [8] disallows any
cooperation,whatsoever, between the two decisionmakers. This implies that the leader
has no way of forcing the follower to select a specific lower-level optimal solution
and thus may not be able to attain his maximum profit. In the related literature, many
alternative techniques have been suggested for overcoming this difficulty by slightly
altering the problem definition and its corresponding mathematical formulation. One
of themost commonones, termed optimistic (pessimistic) approach, has been proposed
in [28]. It involves the selection of the most (least) favorable lower-level solution to
the upper-level decision maker. In the case of our problem, this is not an issue of
concern. More specifically, since both the lower- and the upper-level problems are
discrete optimization problems and the feasible region is bounded, the upper-level
objective is optimized over a discrete set in both the optimistic and the pessimistic
setting; consequently, optimal solutions exist [10].
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In the particular application context under study, such conflicts are typically
resolved by favoring the lowest production cost unit, since this leads to lower system
costs and motivates the units to become more price-competitive. For the remainder of
the present work, we adopt the optimistic approach for resolving such conflicts. Note
that adopting alternatively the pessimistic approach [36] would only alter the optimal
solution returned by the algorithm, and not the validity of the proposed methodol-
ogy. Although the ISOOP needs proper adjustments for identifying as optimal the
least favorable to the strategic producer in case multiple optimal lower-level solutions
exist, the procedure for the identification of the range intervals with unchanged opti-
mal ISOOP solutions remains unaltered; of course, these intervals will be naturally
different than those identified in the optimistic version of the problem in such a case.

4 SolutionMethodology

4.1 Relaxing Bilevel Feasibility

One of the most common relaxations of a bilevel optimization model is the one in
which bilevel feasibility is suppressed. In our application context, bilevel feasibility
translates to the requirement that the set of unit commitments and energy quantities
over the planning horizonmust comprise an optimal ISOOP solution for the associated
set of strategic price-offers. Many specialized bilevel programming algorithms utilize
this relaxation. The most typical way of formulating it is the suppression of the lower-
level objective, which transforms the problem into a single-level optimization model.
The following is a key-related result exploited by the solutionmethodologywe develop
next for the treatment of the problem:

Corollary 4.1 The optimal objective value of the single-level problem that results after
suppressing the ISO objective from the SPBOP is a valid upper bound on the optimal
SPBOP objective.

Proof The validity of this corollary stems from the fact that the resulting problem is
the high-point relaxation for which this result is well known in the context of general
bilevel programming theory, see also [31]. �

Naturally, the optimal solution to this relaxation may fail to include truly optimal
active producers or energy quantities for the ISOOP. Although these two discrepancies
are equivalent due to the fact that a non-optimal unit commitment designates a non-
optimal associated energyquantity, too, eachof them is accommodated in a separate but
similar manner by the proposed solution methodology, as illustrated in what follows.

4.2 Single Period Necessary Optimality Conditions

In this subsection, we develop special optimality conditions pertaining to the energy
distribution of any single time period of the planning horizon in isolation. Despite
not being sufficient for global optimality, these conditions are nevertheless necessary,
expediting considerably the search for the optimal solution. Their incorporation into
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themodel formulation reduces significantly the cardinality of the feasible region, since
it eliminates in advance a large number of energy distributions that cannot be part of
an optimal solution. In order to express these conditions, we introduce the following
additional decision variables:

wi,t binary decision variable that takes the value 1 if and only if the energy quantity
of unit i in time period t is strictly greater than mi, and 0 otherwise, i ∈ I , t �
1,…,T ,

νi,t binary decision variable that takes the value 1 if and only if the energy quantity
of unit i in time period t is strictly less than Mi, and 0 otherwise, i ∈ I , t �
1,…,T .

Constraints (19)–(22) ensure correct values for variables wi,t and vi,t , for i ∈ I and
t � 1,…,T:

qi,t ≤ (Mi − mi )wi,t + mi (19)

qi,t ≥ (mi + 1)wi,t (20)

qi,t ≤ Mi − νi,t (21)

qi,t ≥ Mi
(
1 − νi,t

)
. (22)

Constraints (19)–(20) ensure that wi,t is equal to 0 if and only if 0 ≤ qi,t ≤ mi, while it
is equal to 1 if and only if mi + 1 ≤ qi,t ≤ Mi. Similarly, constraints (21)–(22) ensure
that vi,t is equal to 0 if and only if qi,t � Mi, while it is equal to 1 if and only if 0 ≤
qi,t ≤ Mi-1. We also introduce the following decision variables:

IRui,t binary decision variable that takes the value 1 if and only if the ramp-up
constraint of unit i in time period t is binding, and 0 otherwise, i ∈ I , t �
1,…,T ,

IRdi,t binary decision variable that takes the value 1 if and only if the ramp-down
constraint of unit i in time period t is binding, and 0 otherwise, i ∈ I , t �
1,…,T .

Constraints (23)–(26), introduced for i ∈ I and t � 1,…,T , ensure correct values
for variables IRui,t and IRdi,t :

IRui,t ≥ qi,t − qi,t−1 − rui + 1 − (mi − 0.5rui )
(
1 − zi,t−1

)
(23)

IRui,t ≤ qi,t − qi,t−1 + Mi + (mi − 0.5rui )(zi,t + zi,t−1 − 1)

Mi + mi + 0.5rui
(24)

IRdi,t ≥ qi,t−1 − qi,t − rdi + 1 − (mi − 0.5rdi )
(
1 − zi,t

)
(25)

IRdi,t ≤ qi,t−1 − qi,t + Mi + (mi − 0.5rdi )(zi,t + zi,t−1 − 1)

Mi + mi + 0.5rdi
. (26)
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Consider the case that zi,t � zi,t-1 � 1 first. Constraints (23) impose the restric-
tion IRui,t ≥ qi,t-qi,t-1-rui + 1, while constraints (24) impose the restriction IRui,t ≤
qi,t−qi,t−1+Mi+mi−0.5rui

Mi+mi+0.5rui
. Thus, IRui,t is equal to 1 if and only if qi,t-qi,t-1 � rui. Con-

sider now the case zi,t � zi,t-1 � 0. Constraints (23) impose the restriction IRui,t
≥-mi-0.5rui + 1, while constraints (24) impose the restriction IRui,t ≤ Mi−mi+0.5rui

Mi+mi+0.5rui
.

Thus, IRui,t is correctly forced to 0-value, since the ramp-up constraint cannot be bind-
ing in this case. Next, consider the case zi,t � 1, zi,t-1 � 0. Constraints (23) impose the
restriction IRui,t ≥ qi,t-mi − 0.5rui + 1, while constraints (24) impose the restriction
IRui,t ≤ qi,t+Mi

Mi+mi+0.5rui
. Thus, IRui,t is equal to 1 if and only if qi,t � mi + 0.5rui,

which denotes that the ramp-up constraint is binding in this case. Finally, consider
the case that zi,t � 0, zi,t-1 � 1. Constraints (23) impose the restriction IRui,t ≥-qi,t-1
− rui + 1, while constraints (24) impose the restriction IRui,t ≤ −qi,t−1+Mi

Mi+mi+0.5rui
. Thus,

IRui,t is correctly forced to 0-value, since the ramp-up constraint cannot be binding
in this case. Constraints (25)–(26) define correct values for the ramp-down indicating
variables IRdi,t in a similar manner.

With the help of the auxiliary decision variables wi,t , vi,t , IRui,t and IRdi,t , Propo-
sition 4.1 defines the necessary optimality condition for any two generation units i >
1 and j > 1 such that pi,t < pj,t .

Proposition 4.1 If i > 1, j > 1 and pi,t < pj,t , then constraint (27) is satisfied by an
optimal SPBOP solution.

zi,t + z j,t + w j,t + νi,t − IRui,t − IRdi,t+1 − IRd j,t − IRu j,t+1 ≤ 3. (27)

Proof By default, an optimal SPBOP solution will be bilevel feasible. Increasing in
an ISOOP optimal solution the energy quantity of a producer i who is active in time
period t by one unit can only violate the demand constraint of period t (2), his technical
maximum constraint in period t (3), his ramp-up constraint in period t (12), and his
ramp-down constraint in period t + 1 (13). Constraints (4)–(11) are not affected, since
they only involve the status of this producer,which remains unchanged by this increase.
The same is also true for the ramp-up constraint in period t + 1 and the ramp-down
constraint in period t, since qi,t appears with a negative sign in the left hand side of
both these less-or-equal constraints. Similarly, decreasing in the same ISOOP optimal
solution the energy quantity of a producer j who is active in time period t by one unit
can only violate the demand constraint of period t, his technical minimum constraint
in period t, his ramp-up constraint in period t + 1, and his ramp-down constraint in
period t. Clearly, since constraint (27) includes only binary variables, the only way it
can be violated is if zi,t � zj,t � wj,t � vi,t � 1 and IRui,t � IRdi,t+1 � IRdj,t � IRuj,t+1
� 0. From zi,t � 1, vi,t � 1, IRui,t � 0 and IRdi,t+1 � 0, we conclude that it is possible
to increase qi,t by one unit without violating the technical maximum constraint of
unit i in period t, or its ramp-up constraint in period t, or its ramp-down constraint in
period t + 1. Similarly, from zj,t � 1, wj,t � 1, IRdj,t � 0 and IRuj,t+1 � 0, we conclude
that it is possible to decrease qj,t by one unit without violating the technical minimum
constraint of unit j in period t, or its ramp-down constraint in period t, or its ramp-up
constraint in period t + 1. Moreover, exchanging this unit of energy between the two
corresponding producers ensures that the demand constraint will not be violated either.
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Consequently, such an exchange leads to an alternative ISOOP feasible solution. This,
however, contradicts the bilevel feasibility of the associated SPBOP solution, since
the assumption pi,t < pj,t implies that it also leads to an ISOOP solution with lower
cost. Therefore, constraint (27) must be satisfied at an optimal SPBOP solution. �

The incorporation of constraint (27) for any time period t and units i and j such
that i > 1, j > 1 and pi,t < pj,t into the relaxed problem reduces considerably the size
of the feasible region, through the elimination of those solutions that do not comply
with it. Consider now the case of constraint (27) for pairs of generation units which
include the strategic producer. In this case, things become a little trickier, due to the
fact that the strategic producer’s price-offer in time period t is subject to optimization
at the upper-level and thus not known in advance. In order to address this difficulty,
we introduce the following decision variables for each i > 1 and t � 1,…,T :

xi,t binary decision variable that takes the value 1 if and only if pi,t < p1,t , and 0
otherwise.

Correct values for variables xi,t are ensured through the following two constraints:

p1,t ≤ (
C1 − pi,t

)
xi,t + pi,t , i ∈ I : i > 1 : t � 1, . . . , T (28)

p1,t ≥ c1 +
(
pi,t + 1 − c1

)
xi,t , i ∈ I : i > 1 : t � 1, . . . , T . (29)

Constraints (28)–(29) impose the restriction c1 ≤ p1,t ≤ pi,t if and only if xi,t � 0,
and the restriction pi,t + 1 ≤ p1,t ≤ C1 if and only if xi,t � 1. Utilizing variables xi,t ,
Corollary 4.2 extends the optimality conditions of Proposition 4.1 to the case of unit
pairs that include the strategic producer.

Corollary 4.2 An optimal SPBOP solution satisfies the following two constraints for
any i ∈ I: i > 1 and t � 1,…,T:

z1,t + zi,t + xi,t + w1,t + νi,t − I Rui,t − I Rdi,t+1 − I Rd1,t − I Ru1,t+1 ≤ 4 (30)

z1,t + zi,t − xi,t + ν1,t + wi,t − I Ru1,t − I Rd1,t+1 − I Rdi,t − I Rui,t+1 ≤ 3. (31)

Proof If xi,t � 1, then constraint (30) reduces to constraint (27) with unit i being
the one with the lowest price-offer in time period t, while constraint (31) becomes
redundant. Similarly, if xi,t � 0, then constraint (31) reduces to constraint (27) with
unit 1 being the one with the lowest price-offer in time period t, while constraint (30)
becomes redundant. Note that, in alignment with the optimistic assumption, the case
that p1,t � pi,t is treated likewise as the case that p1,t < pi,t . �

4.3 Valid Inequalities for Excluding Bilevel Infeasible Solutions

Consider the problem formulation that results after suppressing the lower-level objec-
tive from the SPBOP and appending the optimality conditions for every pair of
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generation units over the entire planning horizon, as defined above. We call this the
Relaxed Strategic Producer Optimization Problem (RSPOP). If the optimal solution to
this problem is bilevel feasible, it is clearly the exact optimal solution of the SPBOP.
If not, this implies that there exists at least one unit energy quantity (qi,t) which is not
ISOOP optimal for the associated set of strategic producer price-offers. In such a case,
one needs to exclude this solution from further consideration in order to pursue the
search for the optimal SPBOP solution.

Although from a strictly mathematical point of view any incorrect qi,t value renders
aRSPOP solution bilevel infeasible, the identification of the optimal strategic producer
profit necessitates correct values for variables q1,t only. Hence, as soon as the RSPOP
includes optimal q1,t values for the associated p1,t values, the algorithmic procedure
can terminate even if the solution at hand is not bilevel feasible. Of course, this assumes
that the trivial task of finding the truly optimal ISOOP solution will be performed next
separately. In order to eliminate the RSPOP solutions that do not include correct q1,t
values, we employ a suitable modification of the approach that has been proposed for
eliminating bilevel infeasible solutions in [22], as explained below.

The strategic producer price-offers act as objective coefficients of his energy quan-
tities in the ISOOP. One can find the truly optimal ISOOP solution for the strategic
producer price-offer values of the bilevel infeasible solution subject to exclusion. Fun-
damental integer parametric programming theory dictates that this solution remains
optimal for a sufficiently small simultaneous perturbation of the decision variables’
objective coefficients. More specifically, it has been shown [16] that when the objec-
tive coefficients of an integer minimization problem are linearly perturbed through a
single scalar parameter, then its optimal objective is piecewise-linear, continuous, and
concave on its finite domain as a function of this parameter. We utilize this crucial the-
oretical result to find maximum length intervals for the strategic producer price-offers,
such that the ISOOP optimal solution remains unchanged when all these intervals are
respected.

As far as the bilevel feasibility check is concerned, the algorithm inspects the unit
commitments of the strategic producer first. If at least one of them is found to be non-
optimal, it devises the largest price-offer intervals within which their truly optimal
values remain unchanged. Otherwise, it proceeds to inspect the strategic producer
energy quantities, identifying the largest price-offer intervals within which their truly
optimal values remain unchanged if at least one of them is found to be non-optimal.
This is a significant advancement with respect to the previous algorithmic version
[22], in which even a single change of any producer’s energy quantity signified the
end of the corresponding interval, because it avoids the overloading of the RSPOPwith
an excessive number of valid inequalities that can potentially worsen computational
performance.

After detecting the strategic price-offer intervals in question, the algorithm employs
integer programming modeling techniques to generate a valid cut which is appended
to the relaxed model. Not only does each of these cuts exclude the current bilevel
infeasible solution from further consideration, but it also imposes a suitable part of
the truly optimal ISOOP solution for a large number of combinations of the strategic
producer price-offers. The specific details of the procedure for the generation of these
cuts are presented in what follows.
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Let’s assume that, for t � 1,…,T , the strategic producer’s price-offer in time period t
in the current bilevel infeasible solution isp1,tb.We solve the ISOOP to identify optimal
strategic unit commitments or energy quantities (whichever of these two fails, in this
order) for these T values. We then perform a simple bidirectional search to identify
maximum values L and R, such that these values remain optimal for the ISOOP, when
each price-bid p1,t simultaneously decreases by L or simultaneously increases by R.
Of course, we are only interested in integer values in each of these intervals, as well as
values such that p1,tb-L ≥ c1 and p1,tb + R ≤ C1. Once the maximum values by which
the initial price-offers can be simultaneously increased/decreased without altering
the ISOOP optimal solution are discovered, the following crucial result justifies the
validity of the proposed valid inequalities:

Proposition 4.2 The set of strategic producer unit commitments or energy quantities
(whichever of the two fails in this order) of the ISOOP optimal solution for (p1,1b,
p1,2b,…, p1,T b) remains optimal when each price-offer p1,tassumes an integer value
that belongs to the interval [p1,tb-L, p1,tb + R].

Proof The validity of this result is a direct consequence of the validity of Proposition
3 in [22]. �

As it turns out, the proposed procedure for the generation of the valid inequalities
can be further enhanced to enable the elimination of an even larger number of bilevel
infeasible solutions, thus expediting the performance of the proposed algorithm.More
specifically, consider the left endpoints of the above intervals first, which depend on
the exact value of L. Once the maximum L value defined above has been identified, it
is often the case that the corresponding part of the optimal ISOOP solution remains
unchanged when the values of a proper subset of the strategic producer price-offers
are further decreased for a sufficiently small value. Consequently, at that point, the
proposed algorithm investigates whether any such subset exists. This procedure is
successfully repeated, until the point where it is not possible to decrease even a single
price-offer by one unit without altering the ISOOP optimal solution. This implies that
themaximum perturbation with respect to its original value that will be identified upon
completion may be different for each price-offer. It is typically the case that distinct
maximal such perturbations may exist, depending on the exact order in which alterna-
tive price-offer subsets are considered. Of course, one can consider all possible subsets
and choose the perturbation that results in the elimination of the maximum number of
bilevel infeasible solutions. Nevertheless, in the proposed algorithmic implementation
we do not adopt this approach because it exhibits a combinatorial nature that can poten-
tially lead to performance degradation. Instead, the algorithm considers these subsets
arbitrarily, approving any subset that provides an interval extension without reversing
any intermediate involved decision. The same exact logic is utilized for identifying the
maximum positive perturbations of the strategic price-offers that do not alter the part
of the ISOOP optimal solution. As a consequence of this algorithmic improvement,
the values L and R of Proposition 4.2 are not necessarily equal for all intervals, but
are price-offer specific. Once the maximum Lt and Rt value for each price-offer, p1,t ,
has been identified, Proposition 4.2 can be restated as follows:
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Corollary 4.3 The part of the solutionwhich is optimal to the ISOOP for (p1,1b, p1,2b,…,
p1,T b) remains optimal when each price-offer p1,t takes an integer value that belongs
to the interval [p1,tb-Lt, p1,tb + Rt].

Proof The validity of this corollary is justified through the repetitive application of
Proposition 4.2 on each subset of price-offers approved by the proposed procedure,
assuming that only the coefficients of the corresponding energyquantities are perturbed
in the ISOOP optimization problem from their previous to their current values and that
this perturbation is unidirectional in each repetition. �

Note that, for the remainder of thismanuscript, we use the term extend to denote this
procedure for extending the intervalswithinwhich a part of the bilevel feasible solution
remains unchangedbyconsideringproper subsets of the strategic producer offers.After
the above intervals have been identified, the generation of the valid inequality for the
exclusion of the bilevel infeasible solution is straightforward. In words, it imposes
particular ISOOP optimal unit-commitments or energy quantities, under the condition
that each strategic producer price-offer lies within its associated interval, as prescribed
by Corollary 4.3.

Consider the associated interval [p1,tb-Lt , p1,tb + Rt] of each price-offer p1,t . If
p1,tb-Lt > c1, the generation of the valid cut necessitates the introduction of a binary
variable, call it PLt , denoting whether p1,t is greater or equal to p1,tb-Lt . Otherwise,
p1,tb-Lt � c1 holds, and no such variable is necessary, since p1,t respects the lower
bound c1 by default in any feasible solution. The correct definition of variable PLt is
ensured through the following two constraints:

p1,t ≤
(
C1 − pb1,t + Lt + 1

)
PLt +

(
pb1,t − Lt − 1

)
(32)

p1,t ≥
(
pb1,t − Lt − c1

)
PLt+c1. (33)

More specifically, these constraints impose that PLt � 1 if and only if p1,t ≥ p1,tb –
Lt , which is related to the left endpoint of the interval. If PLt � 0, then constraint (32)
states that p1,t ≤ p1,tb – Lt – 1, while constraint (33) becomes redundant. If PLt � 1,
on the other hand, then constraint (33) states that p1,t ≥ p1,tb – Lt , while constraint
(32) becomes redundant.

Similarly, if p1,tb + Rt < C1, the generation of the valid cut necessitates the intro-
duction of a binary variable, call it PRt , denoting whether p1,t is less or equal to p1,tb

+ Rt . Otherwise, p1,tb + Rt � C1 holds, and no such variable is necessary, since p1,t
respects the upper bound C1 by default in any feasible solution. The correct defini-
tion of variables PRt can be ensured through two constraints similar with (32)–(33).
Alternatively, one can use constraints (32)–(33) to define a binary variable denoting
whether p1,t ≥ p1,tb + Rt + 1, and define PRt as 1 minus this variable.

Note that a PLt or a PRt variable may already be present in the relaxed problem due
to a valid cut added in a previous iteration. If this is the case, then its re-introduction is
naturally skipped. After the introduction of the above auxiliary decision variables for
each time period t, the imposition of a unit commitment equal to 0 for production unit

123



Journal of Optimization Theory and Applications

i in period τ (τ � 1,…,T ) is accomplished through the introduction of the following
constraint:

zi,τ ≤
T∑

t�1

(2 − PLt − PRt ). (34)

Constraint (34) refers to the most general case in which 2 auxiliary decision vari-
ables have been added for each time period of the planning horizon. If the endpoints
of some of the identified intervals coincide with c1 or C1, the number of auxiliary
variables appearing in constraint (34) will obviously be smaller than 2 T . Similarly,
the imposition of a unit commitment equal to 1 for a production unit i in period τ (τ
� 1,…,T ) is accomplished through the introduction of the following constraint:

zi,τ ≥ 1 −
T∑

t�1

(2 − PLt − PRt ). (35)

If all auxiliary decision variables PLt and PRt are equal to 1, then the summation
which appears in both these constraints is eliminated and zi,t is set equal to 0 in
constraint (34), or 1 in constraint (35). If at least one of these variables is equal to
0, then both constraints become redundant. Note that any particular unit commitment
that pertains to a single time period is imposed using a collective combination of the
values of variables p1,t in all time periods.

Introducing suitably such constraints, one can impose a particular unit commitment,
thus eliminating a solution that does not provide the truly optimal strategic producer
profit because it fails in some z1,t value. Consider now the case of a solution for which
this profit is still not optimal although all z1,t values are optimal. In this case, we utilize
the following crucial result:

Proposition 4.3 If the strategic producer profit at the optimal RSPOP solution is not
equal to the one in the truly optimal associated ISOOP solution, then the RSPOP
solution includes at least one larger q1,tvalue for the associated p1,tvalues.

Proof If the two profits are not equal, then the profit at the RSPOP solution will be
greater than that of the ISOOP solution, since the RSPOP is a relaxation of the SPBOP.
This implies that at least one q1,t variable value will be larger in the RSPOP optimal
solution, since the p1,t values are common in both problems. �

Utilizing Proposition 4.3,we introduce the following constraint for each time period
τ (τ � 1,…,T ), in order to exclude a RSPOP solution which does not provide correct
strategic profit, although it includes optimal z1,t values:
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q1,τ ≤ Q1,τ + k(M1 − Q1,τ ) −
T∑

t�1

((M1 − Q1,τ )(PLt + PRt )), (36)

whereQ1,t is the truly optimal ISOOP q1,t value for the associated p1,t values. With k,
we denote the total number of decision variables PLt and PRt in this constraint. If all
of them are equal to 1, then this constraint imposes the upper bound Q1,t on variable
q1,t ; otherwise, the constraint is redundant, since it imposes an upper bound at least
equal to M1. Note that, in contrast with valid inequalities (34) and (35), constraint
(36) imposes an upper bound on q1,t rather than its truly optimal value. Proposition
4.3 justifies the sufficiency of this modeling choice for eliminating a bilevel infeasible
solution.

After the incorporation of the proposed valid inequalities into the model formula-
tion, the relaxed problem is re-solved again so as to discover the next candidate solution
for optimality. The procedure continues similarly, eventually terminating as soon as
the first solution providing correct strategic profit is encountered. A SPBOP global
optimum is comprised of the associated strategic producer price-offers combined with
the corresponding ISOOP optimal solution these offers produce.

4.4 The Proposed Solution Algorithm

The algorithmic methodology we propose for the solution of the problem under con-
sideration is comprised of the various steps described in the above subsections. For
reasons of completeness, we conclude the present section with the pseudocode that
outlines the flow of the proposed implementation. Note that this pseudocode cor-
responds to the default design, since we also consider some alternative designs in
the computational results section. Proposition 4.4 proves that the algorithm returns a
SPBOP global optimal solution after a finite number of iterations.

Cutting Plane Solution Algorithm for the SPBOP
Step 0 (Initialization).
Form the single-level optimization model that results after suppressing the lower-

level objective from the SPBOP.
For each i ∈ I and t � 1,…,T , introduce the binary decision variables wi,t , vi,t ,

IRui,t , and IRdi,t , as well as their definition constraints.
For each i ∈ I: i > 1 and t � 1,…,T such that pi,t < C1, add the binary decision

variables xi,t , as well as their definition constraints.
Add the optimality condition (27) for each pair of units i > 1, j > 1 and t � 1,…,T

such that pi,t < pj,t .
Add the optimality condition (27) for i � 1 and each unit j > 1 and t � 1,…,T such

that pj,t ≥ C1.
Add the optimality conditions (30)–(31) for each unit i > 1 and t � 1,…,T such

that pi,t < C1.
Find the optimal solution to the resulting RSPOP.
For the set of strategic producer price-offers (say p1,tb) in this solution, solve the

ISOOP problem and find the maximum strategic producer profit associated with an
optimal ISOOP solution.

123



Journal of Optimization Theory and Applications

Step 1 (Iteration).
While the set of strategic producer unit commitments and energy quantities in the

relaxed solution does not coincide with that in the ISOOP optimal solution

   do { 
If there is a disagreement in at least one z1,t value  
do { 

Compute the maximum length range-interval [p1,t
b - Lt, p1,t

b + Rt] for 
each p1,t  such that the truly optimal ISOOP strategic producer unit  
commitments remain unchanged. Add binary decision variables PLt

for each t = 1,…,T such that p1,t
b - Lt > c1, and PRt for each t = 1,…,T

such that p1,t
b + Rt < C1, as well as their corresponding definition  

constraints (skip the addition of every variable that alreadyexists in 
the relaxed problem).  
Add valid inequality (34) for each time period t such that z1,t = 0 in 
the ISOOP solution.  
Add valid inequality (35) for each time period t such that z1,t = 1 in  
the ISOOP solution. 

 } end do 
 else if there is a disagreement in at least one q1,t value 

do { 
Compute the maximum length range-interval [p1,t

b - Lt, p1,t
b + Rt] for 

each p1,t such that the truly optimal ISOOP strategic producer energy  
quantities remain unchanged. Add binary decision variables PLt for  
each t = 1,…,T such that p1,t

b - Lt > c1, and PRt for each t = 1,…,T
such that p1,t

b + Rt < C1, as well as their corresponding definition  
constraints (skip the addition of every variable that already exists in  
the relaxed problem).        
Add valid inequality (36) for each time period τ = 1,…,T, where Q1,τ
is the q1,t value in the ISOOP solution.  

 } end do 
Find the optimal solution to the resulting RSPOP. 
For the set of strategic producer price-offers (say p1,t

b) in this solution,  
solve the ISOOP problem and find the maximum strategic producer profit 
associated with an optimal ISOOP solution.  

   } end while 

Step 2 (Report of final solution).
A SPBOP global optimal solution comprises of the strategic producer price-offers

in the last relaxed solution, combined with the optimal solution obtained when the
ISOOP is solved with these price-offers. �

Proposition 4.4 The above algorithm returns a SPBOP global optimum after a finite
number of iterations.

Proof If the strategic producer profit at the optimal solution of the relaxed problem is
not equal to that of the solution obtained when the ISOOP is solved with the associ-
ated strategic price-offers, then the relaxed solution contains at least one non-optimal
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strategic producer energy quantity. The cut generated by the algorithm renders this
solution infeasible for the relaxed problem, both when it imposes optimal unit com-
mitments, as well as when it imposes optimal energy quantities. The validity of the
proposition follows from the fact that the cardinality of the RSPOP feasible region is
finite. �

5 Computational Results

5.1 Computational Considerations

We have implemented the proposed cutting plane algorithm using source code inter-
acting with the Callable Library, which is the C application programming interface of
the commercial optimization software IBM CPLEX [20]. All tests were performed on
an AMD Ryzen 5 3500u processor with 12 GB system memory.

Both optimization problems considered at each iteration of the proposed algorithm
are linearly constrained integer programs. Their objectives, however, are considerably
different in nature, since the RSPOP objective is quadratic, while that of the ISOOP is
linear. Naturally, this difference distinguishes considerably the computational effort
required to reach the optimal solution. Although the RSPOP is nonconvex, CPLEX
succeeds in finding its global optimal solution, utilizing a recent enhancement of the
setting parameter optimality target, which enables the solution of nonconvex quadratic
optimization problems to global optimality even under the presence of integralities.

Good feasible solutions are utilized for warm starting the CPLEX solvers and
enhancing algorithmic performance, so that the software does not initiate from scratch
the search for an optimal solution each time it is invoked. Since the BSPOPmaximizes
the strategic producer profit, for warm-starting the RSPOPwe utilize the strategic pro-
ducer price-offers associated with the maximum such profit that has been identified
so far, as well as the corresponding energy quantities. On the other hand, we utilize
solely the energy quantities for warm-starting the ISOOP. Both solutions are partial
in that they do not include values for all decision variables of the associated optimiza-
tion problem, but this does not constitute an issue of concern, since the values of all
the remaining decision variables are unambiguously determined with this informa-
tion known. Each warm start expedites the solution of the corresponding problem,
eliminating in advance a large number of suboptimal solutions. The computational
benefit becomes significant, when one considers that, for the solution of a single prob-
lem instance, both optimization models are solved numerous times by the proposed
algorithm.

With respect to the price-offer intervals utilized for the generation of the valid
inequalities, their endpoints are not extended by 1 when investigating how large these
intervals can become without altering the current optimal ISOOP solution; binary
search is employed to this end instead, for enhanced computational performance.
The bilevel feasibility check involves finding the maximum strategic profit that can
be attained with a specific set of strategic price-offers. To ensure that the optimistic
assumption is respected, this is carried out by solving the corresponding ISOOP for
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the set of price-offers at hand, and then altering the ISOOP objective to express the
maximization of the strategic profit, while also imposing a constraint ensuring that the
total bid-cost does not exceed this optimal value.

5.2 A Small Case Study

For illustration purposes, we consider first a small case study based on the 3 production
units-4 time periods case study considered in [22]. Note that minimum up/down times
and ramp-up/down constraints were not included in the optimization model studied
in that work. The data of the problem data are presented in Table 1. The values 50
and 70 e/MWh are used for parameters c1 and C1, respectively, while the assumption
that all units were OFF in the last two periods of the previous planning horizon is also
adopted, i.e., that zi,-1 � zi,0 � 0 for i � 1,…,3.

After forming the high-point relaxation of the original formulation, we introduce
the binary decision variables wi,t , vi,t , IRui,t , IRdi,t (i ∈ I , t � 1,…,T ), and xi,t (i ∈ I: i
> 1, t � 1,…,T ), their corresponding defining constraints, as well as the single period
optimality conditions for every time period and generation unit pair, as explained in
Sect. 4.2. The optimal solution to the relaxed problem is shown in Table 2.

Table 1 Case study data

i mi (MW) Mi (MW) si (e) mui mdi rui rdi

1 200 500 1300 2 2 284 284

2 240 480 1500 2 2 228 228

3 100 470 1600 2 2 352 352

t

i 1 2 3 4

2 p2,t (e/MWh) 57 58 65 67

3 p3,t (e/MWh) 64 60 58 62

dt 900 950 800 850

Table 2 Optimal solution to the initial RSPOP of the case study

t � 1 t � 2 t � 3 t � 4

p1,t 70 70 65 67

q1,t 270 216 500 500

q2,t 354 480 300 350

q3,t 276 254 0 0
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The strategic producer profit of this solution is equal to 25,720, which is also a
valid upper bound on the optimal BSPOP objective. It is easy to confirm that this
profit does not correspond to a bilevel feasible solution, since solving the ISOOP for
p1,1 � 70, p1,2 � 70, p1,3 � 65, p1,4 � 67, we get an optimal solution in which q1,t �
(270, 200, 0, 0) with corresponding strategic profit 9400 and optimal ISOOP objective
222,492. Since at least one of the strategic unit commitments is not identified correctly
in the relaxed solution, we focus on devising maximum length p1,t intervals within
which the truly optimal strategic unit commitments remain unchanged. The sensitivity
analysis check shows that even a single-unit simultaneous decrease in the 4 strategic
price-offers alters the ISOOP optimal solution in terms of the unit commitments z1,t . If
procedure extend was not in place, the simultaneous decrease in the price-offers would
conclude at this point, with the corresponding left endpoints fixed at the values 70, 70,
65, and 67, respectively. Employing this enhanced search procedure, however, we next
consider subsets of the 4 price-offers, and we find out that the resulting value-intervals
within which the ISOOP optimal strategic producer unit commitment combination
remains unchanged can be extended by considering first the subset (p1,1, p1,2) with a
11-unit decrease, followed by the subset (p1,1) next with a 9-unit decrease. Thus, the
left endpoints we obtain for the 4 price-offer intervals are 50, 59, 65, and 67. As far as
the increase in the 4 price-offers is concerned, the corresponding right endpoints we
obtain are (70, 70, 70, 70). In summary, when p1,1 ∈ [50, 70] and p1,2 ∈ [59, 70] and
p1,3 ∈ [65, 70] and p1,4 ∈ [67, 70], the ISOOP optimal unit commitment combination
is z1,1 � z1,2 � z2,1 � z2,2 � z2,3 � z2,4 � z3,1 � z3,2 � z3,3 � z3,4 � 1 and z1,3 � z1,4
� 0. A single unit increase/decrease in any of the 4 price-offers outside these intervals
results in a different ISOOP optimal unit commitment combination.

To impose the ensuing set of valid inequalities,we add binary variablesPLt for t� 2,
3, 4, such thatPL2 is equal to 1 if andonly ifp1,2 ≥59,PL3 is equal to 1 if andonly ifp1,3
≥ 65, and PL4 is equal to 1 if and only if p1,4 ≥ 67. No binary variables are necessary
for the left endpoint of the p1,1 interval or for any right endpoint of these intervals, since
they coincide with c1 andC1, respectively. Next, the ISOOP optimal unit commitment
combination for the strategic producer is imposed by adding the constraints z1,t ≤ 3−
PL2 − PL3-PL4 for t � 3 and 4. This excludes the current bilevel infeasible solution
from further consideration. Note that, under a slightly different algorithmic design,
the user may choose to also impose correct strategic commitments for time periods
1 and 2 (although these are correct in the relaxed solution), or similar constraints
imposing correct commitments for the remaining producers, too. Continuing similarly
the addition of suitable cuts for excluding the encountered bilevel infeasible solutions,
the algorithm eventually reaches the global optimal solution, which is p1,t* � (70,
60, 69, 62), q1,t* � (270, 478, 330, 500), with f * � 220,164 and F1

* � 22,450.
For the identification of this solution, the algorithm introduced 25 times valid cuts for
imposing unit commitments and twice valid cuts for imposing energy quantity upper
bounds. The total execution time was 58 seconds, whereas the optimal objective of
the initial RSPOP is approximately 14% larger than the truly optimal strategic profit.
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5.3 Randomly Generated Problems

In this subsection, we evaluate the computational performance and behavior of the
proposed cutting plane algorithm using randomly generated problems. We don’t use
collections of existing problem instances from the related literature to this end, simply
because they don’t fit in the special structure our model exhibits. We tested the algo-
rithm on instances with the following sizes expressed as A × B, where A � number
of generation units and B � number of time periods: 3 × 4, 3 × 5, 4 × 3, 4 × 4,
4 × 5, 5 × 3, and 5 × 4. The procedure for the generation of the random problem
instances was as follows. Each generation unit i (i > 1) was assigned randomly the
technical characteristics (price-offers, start-up cost, technical minimum and technical
maximum) of a factual generation unit participating in the operation of the Greek
electricity market, according to the data reported in [3]. The minimum up/down times
were set equal to 2 for all units, while the ramp-up/down limit of each unit i was set
equal to 0.95ri, where ri � Mi − mi, rounded to the closest even integer. Although
this value seems excessive, the rationale behind it is that setting this limit greater or
equal to ri makes the ramp-up/down constraints redundant, but choosing small value
instead limits considerably the size of the feasible space. Therefore, we have chosen
to give to these parameters large enough values that do not render the corresponding
constraints redundant.

As far as the technical parameters of the strategic producer are concerned, they
were generated as follows: Parameter m1 was selected as a random integer in the

range

[
minmi
i >1

,maxmi
i >1

]
, parameter M1 was set equal to m1 + rnd, where rnd is

a random integer in the range[min
i>1

ri ,max
i>1

ri ], parameter s1 was a random integer

in the range

[
min si
i >1

,max si
i >1

]
, parameter c1 was set equal to 0.9 min

i >1, t
pit rounded

to the nearest integer, and parameter C1 was set equal to 1.1 max
i >1, t

pit , rounded

to the nearest integer. Finally, parameter dt was a random integer in the range[∑
i ri + min

i
mi ,

∑
i>1 Mi + m1

]
. The model parameters of the problem instances

generated with these guidelines approximate to some extent those of an actual market
setting. At the same time, they also successfully pose considerable challenge to the
optimization algorithm.

The following analysis provides some insight into the size of the initial RSPOP
formulation. The number of decision variables p1,t is equal to T , while the number
of each of the decision variables zi,t , qi,t , yi,t , oi,t , wi,t , vi,t , IRui,t and IRdi,t is equal
to N*T . Considering that the number of decision variables xi,t is at most equal to (N
− 1)*T , this brings the maximum initial total number of decision variables up to T
+ 8*N*T + (N − 1)*T . Of course, this number pertains to the general case in which
every pi,t (i > 1) is strictly less thanC1.When this is not true, this figure will be slightly
smaller, since the actual number of decision variables xi,t will be smaller than (N −
1)*T .

Similarly, the number of constraints (2) is equal to T , the number of constraints
(3) is equal to 2*N*T , while the number of each of the constraints (4)–(13) and
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Table 3 Maximum number of
decision variables and
constraints of the initial RSPOP
formulation

A × B Variables Constraints

3 × 4 108 280

3 × 5 135 350

4 × 3 108 288

4 × 4 144 384

4 × 5 180 480

5 × 3 135 369

5 × 4 180 492

(19)–(26) is equal to N*T . In the general case, the number of constraints (27) is equal

to

(
N − 1
2

)
T � (N−1)!

2!(N−3)!T , while the number of each of the constraints (28)–(31)

is (N − 1)*T . This brings the maximum initial total number of RSPOP decision
variables up to T + 20*N*T + (N−1)!

2!(N−3)!T + 4*(N − 1)*T . Note that constraints (17) do
not count toward this sum, since they are not added explicitly but are satisfied through
the imposition of proper bounds on variables p1,t instead.

The results of the above analysis are depicted in Table 3, which shows the
(maximum) number of variables and constraints, respectively, of the initial RSPOP
formulation for each of the 7 problem sizes that we consider. Of course, these numbers
pertain to the general case in which there do not exist two units i and j (i, j > 1) such
that pi,t � pj,t for some t, and every pi,t (i > 1) is strictly less than C1. When any
of these two assumptions does not hold true, the actual number of constraints (27)
or (28)–(29), respectively, is smaller, which in turn implies that this figure is slightly
smaller, too. Of course, the number of decision variables and constraints of the RSPOP
do not remain constant but gradually increase during execution, due to the subsequent
addition of the valid inequalities.

We have conducted several experiments in order to thoroughly evaluate the com-
putational performance and behavior of the proposed algorithm, as well as assess how
these are affected by alternative algorithmic designs distinguished by specific combi-
nations of 3 key design parameters. The first parameter determines whether procedure
extend is active or not. The second parameter determines the strategy for the genera-
tion of the valid inequalities, for which three alternative options were considered. The
first one enforces correct values for the variables zi,t of all generation units in case
the unit commitment optimality fails, and valid upper bounds on the qi,t values of the
strategic producer otherwise. The second option enforces correct zi,t values solely for
the strategic producer in case the unit commitment optimality fails, and valid upper
bounds on the qi,t values of the strategic producer otherwise. Finally, the third option
imposes valid upper bounds on the qi,t values of the strategic producer always. The
last design parameter determines whether the optimality conditions are introduced
into the RSPOP for every pair of generation units or only for unit pairs that include the
strategic producer. Note that this choice affects only the performance of the proposed
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algorithm but not its correctness, since these conditions are only added to the relaxed
formulation for assisting the search toward the optimum.

Based on the study of these results, which we do not report here for space consid-
eration, we can reach the following important conclusions. Procedure extend leads to
substantially reduced computational times, an outcome that is not surprising; there-
fore, it should be exploited for enhancing computational performance. As far as the
strategy for the valid inequalities is concerned, the first option appears to lead to supe-
rior computational performance compared to the other two. Finally, adding the single
period optimality conditions for every pair of generation units seems to exhibit supe-
rior performance compared to the option of adding these conditions only for pairs that
include the strategic producer. As a follow-up to this analysis, Tables 4 and 5 present
computational results for the associated design in which these three parameters are
adjusted accordingly, so that the algorithm exhibits the best computational perfor-
mance. The algorithm was tested on 30 random instances for each problem size, with
a time limit of 30 min set on the total execution time of each run. As soon as this limit
was reached, the algorithmic execution was interrupted, with the best identified fea-
sible strategic profit and the corresponding tightest upper bound on its optimal value
being returned as the solution output.

Table 4 presents results for the problem instances which terminated before the
30 min limit was reached. For each problem size shown in the first column, the second
columnof this table presents the correspondingnumber of such instances. Thenext four
columns show the average andmaximum number of decision variables and constraints
upon termination of the algorithm, while the next two columns show the average and
maximum computational times in seconds. Finally, the last four columns show the
average and maximum number of times a bilevel infeasible solution was excluded
through suitable cuts pertaining to zi,t and qi,t values, respectively. Note that the actual
number of constraints added to this end is significantly larger, since a collection of
such constraints is necessitated for excluding a single bilevel infeasible solution. All
the average values have been rounded to the nearest integer, the only exception being
the computational times which have been rounded to the first decimal digit.

The results of Table 5 pertain to the supplementary problem instances which did not
terminate within the 30-min time limit, and their execution was therefore interrupted.
These results are similar to those of Table 4, the main difference being that instead of
the corresponding computational times, columns 7 and 8 (labeled s.p. perc. diff.) show
the average and maximum percentage deviation between the best feasible strategic
profit and the corresponding tightest upper bound on its optimal value at the time of
interruption, rounded to the first decimal point. In few cases, the percentage difference
is equal to 100%, which signifies that, upon interruption, the algorithm had not been
able to identify a better feasible solution than the trivial in which the strategic profit
is equal to 0.

As shown in the above two tables, approximately 60% of the problem instances
tested collectively over all problem sizes terminated before the 30-min time limit was
reached.With respect tomore general observations one canmake based on the study of
the above results, the computational times seem to exhibit significant variance, which
is not surprising, considering the strongly nonconvex nature of the problem under
consideration.This also explains the fact that the recorded computational values (times,
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variables, constraints, etc.) are not necessarily strictly increasing as the problem size
increases. Another important observation pertains to the fact that, when both types of
valid inequalities are in play, the number of the qi,t inequalities is almost always a very
small, almost negligible, percentage of the total number of valid inequalities added.
Thus, the algorithm seems to rely more heavily on valid inequalities imposing unit
commitments for excluding bilevel infeasible solutions, than on those imposing upper
bounds on the energy quantities. Finally, the increase in the number of constraints of
theRSPOP formulation appears to be substantially larger during algorithmic execution
than the corresponding increase in the number of decision variables.

6 Model Variations

In this section, we look at some interesting SPBOP variations, and we illustrate how
the proposed solution methodology can be suitably adjusted to accommodate them.

6.1 Uniform Clearing Scheme

In practice, the exact price with which each producer is compensated for his energy
production depends on the market clearing scheme in effect. The adopted SPBOP
objective definition corresponds to the case that the market operates under a pay-as-
bid clearing scheme, according to which the market clearing price is equal to each
corresponding submitted price-offer for energy. An alternative clearing schemewidely
used in practical applications is the uniform clearing scheme, inwhich all producers are
paid the same value for each unit of energy they contribute to the system. This value,
which is termed system marginal price (smp), represents the marginal cost for energy,
i.e., the extra cost that should be paid for increasing the energy demand by one unit. In
a quite recent work, Akbari-Dibava et al. [1] provide a detailed comparison of the two
alternative clearing schemes, explaining in detail their advantages and disadvantages.

Under a uniform clearing scheme, the upper-level objective of the SPBOP is for-
mulated as follows instead:

Max
p1,t

F1 �
T∑

t�1

(λt − c1)q1,t . (37)

Objective (37) differs from objective (16) in that the system marginal price of
each period t has replaced the corresponding price-offer p1,t . Mathematically, λt (t �
1,…,T ) is defined as the dual variable of the corresponding energy balance constraint
(2) in order to properly express the true marginal cost of the associated time period
t. This, however, raises considerable obstacles, since naturally no dual variables are
defined for the ISOOP due to the presence of the integralities. In the related literature,
several approaches have been proposed for overcoming these difficulties and devising
meaningful values for variables λt . Such approaches aim to clear the market fairly and
discourage pricemanipulations by the energyproducers. To attain this, they often resort
to additional uplifts and side-payments in order to address the inevitable inequities
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caused by the discreteness of the problem (see [2, 3], for example). The current work
focuses on the algorithmic aspect of the problem under consideration and does not deal
intentionally with such issues pertaining to the design and operation of the underlying
energy market. For reasons of completeness, it is noted, however, that one of the
most popular approaches for accommodating this involves solving the integer linear
problem (1)–(15) first in order to find the optimal values of the energy variables, and
then re-solving it again as purely continuous, after fixing the integer variables to their
optimal values. According to marginal pricing theory [34], the system marginal price
is set equal to the dual value of the corresponding energy balance constraint in the
optimal solution of this problem.

Under a uniform pricing scheme, it is often the case that a transparent definition of
the system marginal price is not readily available, due to the inevitable integralities,
as well as the fact that the existence of alternative ISOOP optimal solutions may
lead to different such definitions. For this reason, practical markets typically adopt a
transparent set of rules for resolving such ambiguities, should they arise, which they
publish to all interested parties in advance.

A natural difficulty that arises in the case of a uniform clearing scheme is the
fact that the RSPOP lacks an explicit representation of the system marginal price. In
order to circumvent this difficulty, special constraints can be introduced for enforcing
the correct smp definition in each time period of the planning horizon, according to
the actual set of rules in effect. These constraints are appended to the lower-level
constraint set, ensuring correct values for the strategic producer profit. The proposed
solution methodology proceeds similarly as in the case of the pay-as-bid clearing
scheme thereafter. The incorporation of a uniform clearing scheme can be carried out
using the modeling approach outlined in [22], although the absence of ramp-up/down
constraints from that work, which differentiate considerably the associated smp rule
definitions, necessitates the implementation of proper adjustments.

6.2 The Case of No Ramp-Up/Down Constraints

An interestingmodel variation in the SPBOPariseswhen no ramp-up/down constraints
are present. The single-period optimality conditions developed in Sect. 4.2 simplify
considerably in this case. More specifically, constraint (27) is expressed as follows:

zi,t + z j,t + w j,t + νi,t ≤ 3, (38)

while constraints (30)–(31) are expressed as follows:

z1,t + zi,t + xi,t + w1,t + νi,t ≤ 4, i ∈ I : i1 : t � 1, . . . , T (39)

z1,t + zi,t − xi,t + ν1,t + wi,t ≤ 3, i ∈ I : i1 : t � 1, . . . , T . (40)

The important differentiation also partly depicted in these constraints is the fact
that once the optimal unit commitment in a particular time period is identified, then
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the optimal energy distribution of that time period is independent of the energy distri-
butions of other time periods, and in particular of the adjacent ones. As it turns out, an
even stronger result holds true as a result of the absence of the ramp-up/down limits.
More specifically, as the following proposition shows, the above optimality conditions
are also sufficient in that case, in the sense that they ensure an optimal strategic pro-
ducer quantity in each time period, given that the associated set of active producers in
that time period is optimal, too.

Proposition 6.1 Under the assumption that no ramp-up/down constraints are present,
the energy distribution of each time period in the optimal RSPOP solution corresponds
to a truly optimal ISOOP solution for the associated set of active producers.

Proof Under the assumption that no ramp-up/down constraints are present, an optimal
energy distribution for each time period t can be found by solving the following
optimizationproblem, inwhich all variables zi,t arefixed to their correspondingoptimal
values:

Min
∑

i∈I :z∗i,t�1

pi,t qi,t (41)

s.t.
∑

i∈I :z∗i,t�1

qi,t � dt (42)

mi ≤ qi,t ≤ Mi , i ∈ I : z∗i,t � 1 (43)

qi,t � 0, i ∈ I : z∗i,t � 0 (44)

qi,t ∈ Z+, i ∈ I : z∗i,t � 1. (45)

Since constraints (42)–(45) are included in the RSPOP formulation, the energy
distribution identified in an optimal RSPOP solution is feasible to the above model.
The objective function (41) is the weighted sum of the active units’ price-offers with
the corresponding energy quantities. Since the sum of these quantities is always fixed
in any feasible solution, this objective can only be decreased if a unit of energy is
transferred from an active unit i to another active unit j such that pj,t < pi,t . The above
optimality conditions exclude the existence of such a pair; thus, the energy distribution
identified in the optimal RSPOP solution is optimal for the associated set of active
producers. �

The important consequence of Proposition 6.1 is that, in the absence of ramp-
up/down constraints, finding the global optimal SPBOP solution reduces to finding
the optimal set of active producers in each time period. Once these sets are identified
in the RSPOP optimal solution, the associated strategic producer energy quantities
will be the ones that correspond to the optimal SPBOP solution. This is a crucial result
expediting significantly the performance of the proposed solution algorithm, since
it limits the applicability of the bilevel feasibility checks solely on the status of the
generation units. Consequently, the addition of valid inequalities enforcing part of an
ISOOP optimal solution for specific strategic producer price-offers involves the sole
imposition of correct unit commitments.
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When ramp-up/down constraints are present, on the other hand, this crucial result no
longer holds true, since the optimal energy distribution of a single time period becomes
dependent on that of adjacent ones. Thus, it becomes doable for the relaxed problem
to artificially exploit these limits in order to falsely relax the single-period optimality
conditions and produce sub-optimal energy quantities that increase the strategic pro-
ducer profit beyond its optimal value, even when the associated unit commitments are
optimal.

An important related result that arises in the absence of ramp-up/down constraints
pertains to the necessity of the single period optimality conditions. More specifically,
as it turns out, even if the single-period optimality conditions are only imposed for unit
pairs that involve the strategic producer, his energy quantities in the optimal RSPOP
solution will correspond to those of an ISOOP optimal solution for the associated set
of active energy producers. The next proposition establishes the validity of this result.

Proposition 6.2 In the absence of ramp-up/down constraints, consider the optimal
solution to the RSPOP that includes single-period optimality conditions only for gen-
eration unit pairs that include the strategic producer. The strategic producer energy
quantities in this solution will correspond to those of an ISOOP optimal solution for
the associated set of active producers and strategic producer price-offers.

Proof We use the superscript s to denote an ISOOP optimal solution and the super-
script r to denote a RSPOP optimal solution. Suppose that Proposition 6.2 does not
hold true, and, in particular, that q1,t s < q1,t r , which implies that z1,t s � z1,t r � 1
and q1,t s <M1. In conjunction with constraint (2), this implies that there is also some
other unit i > 1, such that qi,t s > qi,t r , which implies that qi,t s > mi. In turn, accord-
ing to Corollary 4.2 and the adoption of the optimistic assumption, pi,t < p1,t must
hold in this case. For theRSPOP, the above imply that xi,t r � 1, q1,t r >m1 (equivalently,
w1,t

r � 1), and qi,t r < Mi (equivalently, vi,t r � 1). This, however, is a contradiction,
since it violates constraint (39). Suppose now that q1,t s > q1,t r , which implies that
q1,t s >m1. In conjunction with constraint (2), this implies that there is also some other
unit i > 1, such that qi,t s < qi,t r , which implies that qi,t s < Mi. In turn, according to
Corollary 4.2, p1,t ≤ pi,t must hold in this case. For the RSPOP, the above imply that
xi,t r � 0, q1,t r < M1 (equivalently, v1,t r � 1), and qi,t r > mi (equivalently, wi,t

r � 1).
This, however, is a contradiction, since it violates constraint (40). Therefore, q1,t s �
q1,t r must hold. �

7 Summary and FutureWork

In the present paper, we formulated an extended optimization model for devising opti-
mal bidding strategies for energy producers participating in multi-period day-ahead
electricity markets, and we developed an enhanced optimization algorithm for its
solution. The optimization model was extended through the inclusion of minimum
up/down times and ramp-up/down constraints for the generation units, while the solu-
tion algorithm was enhanced through the inclusion of special optimality conditions
ensuring optimal single period energy distributions, improved valid inequalities for
the elimination of bilevel infeasible solutions, and enhanced search techniques for the
imposition of these valid inequalities.
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The inclusion of new problem characteristics encountered in actual problem set-
tings has rendered the optimization model more realistic, while the algorithmic
enhancements have rendered the solutionmethodologymore efficient. This is strongly
supported by the computational results that we present, which demonstrate that the
new algorithmic version is capable of solving to global optimality problem instances
of considerably larger size than those that the previous algorithmic version could solve.

The research presented in this work can be fruitfully pursued in many interesting
directions. There are some additional realistic problem characteristics that can be
embedded into the problem formulation, such as block-bids and step-wise offers. As
far as the optimization algorithm is concerned, it would be interesting to investigate
whether optimality conditions pertaining to the status of the generation units can
also be devised. This would constitute a significant enhancement that would expedite
considerably the computational performance of the proposed algorithm, thus enabling
the solution of even larger problems.
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