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Abstract
In this paper, we introduce a proximal point-type of viscosity iterative method with double
implicit midpoint rule comprising of a nonexpansive mapping and the resolvents of a mono-
tone operator and a bifunction. Furthermore, we establish that the sequence generated by our
proposed algorithm converges strongly to an element in the intersection of the solution sets
of monotone inclusion problem, equilibrium problem and fixed point problem for a nonex-
pansive mapping in complete CAT(0) spaces. In addition, we give a numerical example of
our method each in a finite dimensional Euclidean space and a non-Hilbert space setting to
show the applicability of our method . Our results complement many recent results in the
literature.

Keywords Viscosity iterative method · Implicit midpoint rule · Monotone inclusion
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1 Introduction

A curve c (or simply a geodesic path) joining x to y is an isometry c : I = [0, d(x, y)] → X
such that c(0) = x , c(d(x, y)) = y and d(c(t), c(t ′)) = |t − t ′| for all t, t ′ ∈ I . The image
of a geodesic path is called the geodesic segment, which is denoted by [x, y] whenever it is
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unique. We say that a metric space X is a geodesic space if for every pair of points x, y ∈ X ,
there is aminimal geodesic from x to y. A geodesic triangle�(x1, x2, x3) in a geodesicmetric
space (X , d) consists of three vertices (points in X ) with unparameterized geodesic segment
between each pair of vertices. For any geodesic triangle, there is a comparison (Alexandrov)
triangle �̄ ⊂ R

2 such that d(xi , x j ) = dR2(x̄i , x̄ j ) for i, j ∈ {1, 2, 3}. A geodesic space X is
a CAT(0) space if the distance between arbitrary pair of points on a geodesic triangle � does
not exceed the distance between its pair of corresponding points on its comparison triangle
�̄. If � is a geodesic triangle and �̄ is it comparison triangle in X , then � is said to satisfy
the CAT(0) inequality for all points x, y of � and x̄, ȳ of �̄, if

d(x, y) = dR2(x̄, ȳ). (1.1)

Let x, y, z be points in X and y0 be the midpoint of the segment [y, z], then the CAT(0)
inequality implies

d2(x, y0) ≤ 1

2
d2(x, y) + 1

2
d2(x, z) − 1

4
d(y, z). (1.2)

Inequality (1.2) is known as CN inequality of Bruhat and Titus [12]. A geodesic space X is
said to be a CAT(0) space if all geodesic triangles satisfy the CAT(0) inequality. Equivalently,
X is called a CAT(0) space if and only if it satisfies the CN inequality. Examples of CAT(0)
spaces includes Hilbert space, Hadamard manifold, R-trees [28], pre-Hilbert space [11],
hyperbolic spaces [42], and Hilbert ball [21].

Monotone operator theory remains one of the most important aspects of nonlinear and
convex analysis. It plays essential role in optimization, variational inequalities, semigroup
theory and evolution equations. One of the vital problems in monotone operator theory is the
following nonlinear stationary problem:

Find x ∈ D(A) such that 0 ∈ A(x), (1.3)

where A is a monotone operator and D(A) is the domain of A defined by D(A) = {x ∈ X :
Ax �= ∅}. Problem (1.3) is called Monotone Inclusion Problem (MIP) and its solution set
denoted by A−1(0) is closed and convex. The MIP is known to be very useful in solving
somewell knownproblems like theminimization problemandvariational inequality problem.
Therefore, it is of great importance in convex and nonlinear analysis, and optimization theory.

An equally significant optimization problem is the Equilibrium Problem (EP) which also
extends and unifies other optimization problems such as the minimization problems, vari-
ational inequality problems, Nash equilibrium problems, complementarity problems, fixed
point problems among others (see [2, 3, 38, 39, 48] and the references therein). Thus, the
EPs are of high importance in optimization theory. Let D be a nonempty subset of X and
f : D × D → R be a bifunction. The EP for f is to find x∗ ∈ D such that

f (x∗, y) ≥ 0, ∀ y ∈ D. (1.4)

The point x∗ for which (1.4) is satisfied is called an equilibrium point of f and we denote the
solution set of problem (1.4) by EP( f , D). Several types of bifunctions for EPs have been
studied extensively in Hilbert, Banach and topological vector spaces, as well as in Hadamard
manifolds by many researchers (see [10, 13, 14, 22, 35, 40, 49] and other references therein).
In an attempt to study the EP in complete CAT(0) spaces, Kumam and Chaipunya [30]
introduced the resolvent of the bifunction f associated with the EP (1.4) (see also [23]).
Define a perturbed bifunction f̄ x̄ : D × D → R of f by

f̄ x̄ (x, y) := f (x, y) − 〈−→x x̄,−→xy〉, x, y ∈ D and x̄ ∈ X .

123



A modified viscosity iterative method... Page 3 of 23    23 

The perturbed bifunction f̄ x̄ has a unique equilibrium called the resolvent operator J f :
X → 2D defined by

J f (x) := EP( f̄ x̄ ) = {z ∈ D : f (z, y) − 〈−→zx ,
−→zy 〉 ≥ 0, y ∈ D}, x ∈ X . (1.5)

It was established in [30] that F(J f ) = EP( f , D), J f is well defined, single valued and
D(J f ) = X , under some assumptions.

The Proximal Point Algorithm (PPA) is one of the most effective methods for finding
solutions of optimization problems. The PPA was introduced by Martinet [33] in Hilbert
spaces. Later, Rockafellar [43] developed it and proved that it converges weakly to a zero of a
monotone operator. The PPAwas first studied by Bačák [7] in complete CAT(0) spaces to find
minimizers of proper, convex and lower semicontinuous functionals and he established the
�-convergence of the PPA. Khatibzadeh and Ranjbar [27] also studied the PPA in complete
CAT(0) spaces for approximating solutions of (1.3). They established that the PPA involving
a monotone operator �-converges to a zero of the monotone operator in complete CAT(0)
spaces. Very recently, Dehghan et al. [15] proposed a Halpern-type PPA for approximating a
common solution of a finite family of MIPs. They proved that the proposed PPA converges
strongly to an element in the set of solutions of the MIPs. The PPA was also studied by
Kumam and Chaipunya [30] for approximating solutions of (1.4) in CAT(0) spaces.

The Viscosity Iterative Method (VIM) is another reliable iterative method because of it
advantage over other iterative methods. In fact, the Halpern iterative method is a particular
case of the VIM. In 2000, the VIM was introduced by Moudafi [34] in a real Hilbert space
where he used a strict contraction to regularize a nonexpansive mapping for the sole aim of
obtaining a fixed point of the nonexpansive mapping. Since then, many researchers have also
obtained convergence results with the use of VIM in some more general spaces than Hilbert
spaces (see for example [24, 26, 31, 56] and other references therein). The VIM have also
been studied extensively in the framework of complete CAT(0) spaces (see [5, 23, 46, 53,
54]). Like other types of iterative methods, the PPA type of VIM have also been studied in
the setting of CAT(0) spaces. For instance in [19], Eskandani and Raeisi studied the PPA type
of VIM associated with product of finitely many resolvents of monotone operators to find a
common zero of a finite family of monotone operators. They obtained the strong convergence
of the PPA under appropriate conditions. Also in [23], Izuchukwu et al. introduced a PPA
type of VIM, which comprises of a nonexpansive mapping and a finite sum of resolvent
operators associated with monotone bifunctions. They proved a strong convergence theorem
for approximating solutions of a finite family of equilibriumproblems andfixed point problem
for a nonexpansive mapping in a complete CAT(0) space.

In the same vein, the Implicit Midpoint Rule (IMR) is one of the most potent techniques
for solving differential algebraic equations and Ordinary Differential Equations (ODE) due
to it ability to eliminate stability errors of system of ODE (see [6, 8, 44, 47, 52] for details).
Therefore, the implicit midpoint rule is known to improve numerical method by adding a
midpoint in the step which increases the accuracy by one order. Consider an ODE

x ′(t) = g(t) with initial condition x(t) = x(0), (1.6)

where g : RN → R
N is a continuous function. The IMR (see [4]) is a recursion procedure

that generates the sequence {xn} by
xn+1 = xn + hg

( xn + xn+1

2

)
, n > 0, (1.7)

where h > 0 is the step size. It is generally known that if g is Lipschitz continuous and
sufficiently smooth, then the sequence {xn} converges to an exact solution of (1.6) as h → 0
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uniformly over t ∈ [0, T ] for any fixed T > 0. In 2015, Xu et al. [57] introduced a unification
of the VIM and IMR associated with a nonexpansive mapping in a real Hilbert space. They
established that the sequence generated from the unification converges to a fixed point of
the nonexpansive mapping which is also a unique solution of some variational inequality
problem. Based on the work of Xu et al. [57], Zhao et al. [58] proposed a VIM for IMR in
complete CAT(0) spaces as follows:

{
x1 ∈ D,

xn = αng(xn) ⊕ (1 − αn)T
( xn⊕xn+1

2

)
, ∀ n ≥ 1. ∀ n ∈ N,

(1.8)

where g is a contraction,αn ∈ (0, 1) and T is a nonexpansivemapping on D.They established
that (1.8) converges to a fixed point of the nonexpansive mapping T . Ahmad and Ahmad [1]
also proposed a VIM type of IMR as follows: For arbitrary initial point x1 ∈ D, the sequence
{xn} is generated by

⎧
⎪⎨
⎪⎩

wn = xn⊕xn+1
2,

yn = αn(wn) ⊕ βng(wn) ⊕ γnT (wn),

xn+1 = T (yn), n ≥ 1,

(1.9)

where {αn}, {βn} and {γn} are sequences in (0, 1), g is a contraction with a coefficient
θ ∈ [0, 1) and T is a nonexpansive mapping on D. They also obtained that (1.9) converges
strongly to a fixed point of the nonexansive mapping which is also the unique solution of
some variational inequality.
Motivated by the results of Khatibzadeh and Ranbar [27], Kumam and Chaipunya [30],
Izuchukwu et al. [23], Zhao et al. [58], Ahmad and Ahmad [1], we introduce a PPA-type
of VIM with a double IMR comprising of a nonexpansive mapping and the resolvents of
a monotone operator and a bifunction. With a double midpoint in our method, it tends to
have better accuracy than (1.8) and (1.9). We establish that the sequence generated by our
proposed algorithm converges strongly to an element in the intersection of the solution sets of
MIP, EP and fixed point problem for nonexpansive mapping in complete CAT(0) spaces. In
addition, we give a numerical example of our method each in a finite dimensional Euclidean
space and a non-Hilbert space setting to show the applicability of our method. Our results
complement many recent results in the literature.

2 Preliminaries

We state some known and useful results which will be needed in the proof of our main results,
(see [36, 51] for details). In the sequel, we denote strong and �-convergence by “→” and
“⇀” respectively.

Definition 2.1 Let {xn} be a bounded sequence in X and r(·, {xn}) : X → [0,∞) be a
continuous functional defined by r(x, {xn}) = lim sup

n→∞
d(x, xn). The asymptotic radius of

{xn} is given by r({xn}) := inf{r(x, {xn}) : x ∈ X},while the asymptotic center of {xn} is the
set A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}. It is well known that in an Hadamard space
X , A({xn}) consists of exactly one point. A sequence {xn} in X is said to be �−convergent
to a point x ∈ X if A({xnk }) = {x} for every subsequence {xnk } of {xn}. In this case, we
write � − lim

n→∞ xn = x .
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Remark 2.2 The notion of �−convergence is weaker than usual metric convergence but it is
equivalent to the weak convergence in Hilbert spaces.

Definition 2.3 [9] Let a pair (a, b) ∈ X × X , denoted by
−→
ab, be called a vector in X × X .

The quasilinearization map 〈., .〉 : (X × X) × (X × X) → R is defined by

〈−→ab,−→cd〉 = 1

2
(d2(a, d) + d2(b, c) − d2(a, c) − d2(b, d)),∀ a, b, c, d ∈ X . (2.1)

It is easy to see that 〈−→ba,
−→
cd〉 = −〈−→ab,−→cd〉, 〈−→ab,−→cd〉 = 〈−→ae,−→cd〉+〈−→eb,

−→
cd〉 and 〈−→ab,−→cd〉 =

〈−→cd ,
−→
ab〉 for all a, b, c, d, e ∈ X . Furthermore, a geodesic space X is said to satisfy the

Cauchy-Schwarz inequality if

〈−→ab, −→cd〉 ≤ d(a, b)d(c, d) ∀ a, b, c, d ∈ X .

It is known from [18] that a geodesically connected space is a CAT(0) space if and only if it
satisfies the Cauchy-Schwarz inequality.

The notion of duality in CAT(0) space was introduced by Kakavandi and Amini [25] as
follows:

Definition 2.4 Let (X , d) be a complete CAT(0) space. Consider the map� : R× X × X →
C(X ,R) defined by

�(t, a, b)(x) = t〈−→ab,−→ax〉 ∀ t ∈ R, a, b, x ∈ X , (2.2)

where C(X ,R) is the space of all continuous real-valued functions on X . The pseudometric
space (R × X × X ,D) is a subspace of the pseudometric space (Lip(X ,R), L) of all real-
valued Lipschitz functions. Also, D defines an equivalence relation on (R× X × X), where
the equivalence class of (t, a, b) is

[t−→ab] = {s−→cd : t〈−→ab,−→xy〉 = s〈−→cd ,
−→xy〉 ∀ x, y ∈ X}. (2.3)

The set X∗ = {[t−→ab] : (t, a, b) ∈ R × X × X} is a metric space with metric D, and the pair
(X∗,D) is the dual space of X .

Definition 2.5 Let (X , d) be a metric space and D be a nonempty closed and convex subset
of X . Let T be a nonlinear mapping on D into itself. Denote by F(T ) = {x ∈ D : T x = x}
the set of fixed points of T . The mapping T is said to be nonexpansive, if

d(T x, T y) ≤ d(x, y) ∀ x, y ∈ X ,

and firmly nonexpansive (see [27]), if

d2(T x, T y) ≤ 〈−−−→
T xT y,−→xy〉 ∀ x, y ∈ X .

Definition 2.6 Let X be a complete CAT(0) space and X∗ be its dual space. A multivalued
operator A : X → 2X

∗
is monotone, if for all x, y ∈ D(A) with x �= y, we have

〈x∗ − y∗,−→yx〉 ≥ 0, ∀ x∗ ∈ Ax, y∗ ∈ Ay. (2.4)

The graph of the operator A : X → 2X
∗
is the set

Gr(A) = {(x, x∗) ∈ X × X∗ : x∗ ∈ A(x)}.
The monotone operator A is called a maximal monotone operator if Gr(A) is not properly
contained in the graph of any other monotone operator.
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Definition 2.7 [41] Let X be a complete CAT(0) space and X∗ be its dual space. The resolvent
of a monotone operator A of order λ > 0 is the multivalued mapping J A

λ : X → 2X defined
by

J A
λ (x) := {

z ∈ X : [1
λ

−→zx ] ∈ Az
}
. (2.5)

The multivalued operator A is said to satisfy the range condition if D(J A
λ ) = X , for every

λ > 0.

The following results depict the relationship between monotone operators and their resol-
vents in the settings of CAT(0) spaces.

Lemma 2.8 [27] Let X be a CAT(0) space and J A
λ be the resolvent of a multivalued mapping

A of order λ. Then

(i) for any λ > 0, R(J A
λ ) ⊂ D(A) and F(J A

λ ) = A−1(0), where R(J A
λ ) is the range of

J A
λ ,

(ii) if A is monotone, then J A
λ is a single-valued and firmly nonexpansive mapping,

(iii) if 0 < λ1 ≤ λ2, then d(J A
λ2
x, J A

λ1
x) ≤ λ2−λ1

λ2+λ1
d(x, J A

λ2
x), which implies that

d(x, J A
λ1
x) ≤ 2d(x, J A

λ2
x) ∀ x ∈ X .

Remark 2.9 If X is a CAT(0) space and A : X → 2X
∗
is a multivalued monotone mapping,

then

d2(J A
λ x, x) ≤ d2(x, v) − d2(J A

λ x, v) (2.6)

for all v ∈ A−1(0), x ∈ D(J A
λ ) and λ > 0 (see [50]);

and

d(J A
λ2
x, J A

λ1
x) ≤

√
1 − λ1

λ2
d(x, J A

λ2
x), for 0 < λ1 ≤ λ2 (see [5]). (2.7)

Definition 2.10 Let X be a CAT(0) space and D be a nonempty closed and convex subset of
X . A function f : D × D → R is called monotone if

f (x, y) + f (y, x) ≤ 0 ∀ x, y ∈ D.

Lemma 2.11 [30] Let D be a nonempty closed and convex subset of a CAT(0) space X .

Suppose that f is monotone and D(J f ) �= ∅. Then, the following properties hold:

(i) J f is single-valued.
(ii) If D(J f ) ⊃ D, then J f is nonexpansive restricted to D.

(iii) If D(J f ) ⊃ D then F(J f ) = EP( f , D).

Remark 2.12 [23] It follows easily from (1.5) that the resolvent J f
μ of the bifunction f and

order μ > 0 is given as

J f
μ (x) := EP( f̄x , D) = {z ∈ D : f (z, y) + 1

μ
〈−→xz,−→zy 〉 ≥ 0, y ∈ D}, x ∈ X , (2.8)

where f̄ is defined in this case as

f̄ x̄ (x, y) := f (x, y) + 1

μ
〈−→̄xx,−→xy〉, ∀ x, y ∈ D, x̄ ∈ X . (2.9)
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Lemma 2.13 [23] Let D be a nonempty, closed and convex subset of a complete CAT(0)
space X and f : D × D → R be a monotone bifunction such that D ⊂ D(J f

μ ) for μ > 0.
Then, the following hold:

(i) J f
μ is firmly nonexpansive restricted to D.

(ii) If F(Jμ) �= ∅, then

d2(J f
μ x, x) ≤ d2(x, v) − d2(J f

μ x, v) ∀ x ∈ D, v ∈ F(J f
μ ).

(iii) If 0 < μ1 ≤ μ2, then d(J f
μ2 x, J

f
μ1x) ≤

√
1 − μ1

μ2
d(x, J f

μ2 x), which implies that

d(x, J f
μ1x) ≤ 2d(x, J f

μ2 x) ∀ x ∈ D.

Theorem 2.14 [30, Theorem 5.2] Let D be a nonempty, closed and convex subset of a
complete CAT(0) space X. Suppose that f has the following properties

(i) f (x, x) = 0 for all x ∈ D,

(ii) f is monotone,
(iii) for each x ∈ D, y �→ f (x, y) is convex and lower semicontinuous.
(iv) for each x ∈ D, f (x, y) ≥ lim supt↓0 f ((1 − t)x ⊕ t z, y) for all x, z ∈ D.

Then D(J f ) = X and J f single-valued.

Remark 2.15 [23] If the bifunction f satisfies assumption (i)-(iv) of Theorem 2.14, then the
conclusions of Lemma 2.13 hold in the whole of X .

Definition 2.16 Let D be a nonempty closed and convex subset of a CAT(0) space X . The
metric projection is a mapping PD : X → D which assigns to each x ∈ X , the unique point
PDx ∈ D such that

d(x, PDx) = inf{d(x, y) : y ∈ D}.
Lemma 2.17 [18, 36] Let X be a CAT(0) space. Then for all x, y, z ∈ X and all t, s ∈ [0, 1],
we have

(i) d(t x ⊕ (1 − t)y, z) ≤ td(x, z) + (1 − t)d(y, z),
(ii) d2(t x ⊕ (1 − t)y, z) ≤ td2(x, z) + (1 − t)d2(y, z) − t(1 − t)d2(x, y),
(iii) d2(z, t x ⊕ (1 − t)y) ≤ t2d2(z, x) + (1 − t)2d2(z, y) + 2t(1 − t)〈−→zx ,

−→zy 〉,
(iv) d(tw ⊕ (1 − t)x, t y ⊕ (1 − t)z) ≤ td(w, y) + (1 − t)d(x, z),
(v) d(t x ⊕ (1 − t)y, sx ⊕ (1 − s)y) ≤ |t − s|d(x, y).

Lemma 2.18 [36] Every bounded sequence in a complete CAT(0) space has a �-convergent
subsequence.

Lemma 2.19 [16] Let D be a nonempty, closed and convex subset of a CAT(0) space X ,

x ∈ X and u ∈ D. Then u = PDx if and only if 〈−→xu,
−→yu〉 ≤ 0 for all y ∈ D.

Definition 2.20 Let D be a nonempty, closed and convex subset of a complete CAT(0) space
X . A mapping T : D → D is said to be �-demiclosed, if for any bounded sequence {xn} in
X , such that � − lim

n→∞ xn = x and lim
n→∞ d(xn, T xn) = 0, then x = T x .

Lemma 2.21 [17] Let X be a complete CAT(0) space and T : X → X be a nonexpansive
mapping. Then T is �-demiclosed.
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Lemma 2.22 [55] Let {an} be a sequence of non-negative real numbers satisfying

an+1 ≤ (1 − αn)an + δn, n ≥ 0,

where {αn} and {δn} satisfy the following conditions:

(i) {αn} ⊂ [0, 1], �∞
n=0αn = ∞,

(ii) lim supn→∞ δn
αn

≤ 0 or �∞
n=0|δn | < ∞.

Then limn→∞ an = 0.

3 Main results

We begin with the following Lemma which is crucial in establishing our main result.

Lemma 3.1 Let D be a nonempty, closed and convex subset of a complete CAT(0) space X.
Let X∗ be the dual space of X and A : X → 2X

∗
be a multivalued monotone operator which

satisfies the range condition. Let f : D × D → R be a bifunction satisfying assumptions
(i)-(iv) of Theorem 2.14 and T : X → X be a nonexpansive mapping. If F(T ) ∩ F(J A

λ2
) ∩

F(J f
μ2) �= ∅, then for 0 < λ1 ≤ λ2 and 0 < μ1 ≤ μ2, we have that F(T ◦ J A

λ2
◦ J f

μ2) =
F(T ) ∩ F(J A

λ1
) ∩ F(J f

λ1
).

Proof It is obvious that F(T ) ∩ F(J A
λ1

) ∩ F(J f
μ1) ⊆ F(T ◦ J A

λ2
◦ J f

μ2). We only need to

show that F(T ◦ J A
λ2

◦ J f
μ2) ⊆ F(T ) ∩ F(J A

λ1
) ∩ F(J f

μ1). Let x ∈ F(T ◦ J A
λ2

◦ J f
μ2) and

y ∈ F(T ) ∩ F(J A
λ2

) ∩ F(J f
μ2). Then by nonexpansivity of T , we have

d(x, y) = d(T (J A
λ2

(J f
μ2
x)), y)

≤ d(J A
λ2

(J f
μ2
x), y). (3.1)

From (2.6) and (3.1), we have

d2(J A
λ2

(J f
μ2
x), J f

μ2
x) ≤ d2(J f

μ2
x, y) − d2(J A

λ2
(J f

μ2
x), y)

≤ d2(x, y) − d2(J A
λ2

(J f
μ2
x), y)

≤ d2(J A
λ2

(J f
μ2
x), y) − d2(J A

λ2
(J f

μ2
x), y),

which implies

J A
λ2

(J f
μ2
x) = J f

μ2
x . (3.2)

Similarly, from Lemma 2.13(ii), (3.1) and (3.2) we have

d2(J f
μ2
x, x) ≤ d2(x, y) − d2(J f

μ2
x, y)

= d2(x, y) − d2(J A
λ2

(J f
μ2
x), y)

≤ d2(J A
λ2

(J f
μ2
x), y) − d2(J A

λ2
(J f

μ2
x), y),

which implies

J f
μ2
x = x . (3.3)

From (3.2) and (3.3), we obtain that

x = J A
λ2

(J f
μ2
x) = J A

λ2
x, (3.4)
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which implies that

x = T (J A
λ2

(J f
μ2
x)) = T x . (3.5)

Furthermore, from (2.8) and Lemma 2.11 we have

f (J f
μ1
x, J f

μ2
x) + 1

μ1
〈−−−→
x J f

μ1
x,

−−−−−−→
J f
μ1
x J f

μ2
x〉 ≥ 0 (3.6)

and

f (J f
μ2
x, J f

μ1
x) + 1

μ2
〈−−−→
x J f

μ2
x,

−−−−−−→
J f
μ2
x J f

μ1
x〉 ≥ 0. (3.7)

Adding (3.6) and (3.7), and using the fact that f is monotone, we obtain

〈−−−→
J f
μ1
xx,

−−−−−−→
J f
μ2
x J f

μ1
x〉 ≥ μ1

μ2
〈−−−→
J f
μ2
xx,

−−−−−−→
J f
μ2
x J f

μ1
x〉. (3.8)

Using the quasilinearization properties on (3.8), we obtain
(μ1

μ2
+ 1

)
d2(J f

μ2
x, J f

μ1
x) ≤

(
1 − μ1

μ2

)
d2(x, J f

μ2
x) +

(μ1

μ2
− 1

)
d2(x, J f

μ1
x).

Since μ1
μ2

≤ 1, we have that
(μ1

μ2
+ 1

)
d2(J f

μ2
x, J f

μ1
x) ≤

(
1 − μ1

μ2

)
d2(x, J f

μ2
x),

which implies that

d2(J f
μ2
x, J f

μ1
x) ≤

√
1 − μ1

μ2
d2(x, J f

μ2
x). (3.9)

By triangle inequality and (3.9), we obtain that

d(x, J f
μ1
x) ≤ 2d(x, J f

μ2
x). (3.10)

Therefore from (3.3), we obtain that x ∈ F(J f
μ1). By similar argument as in (3.6)–(3.10), we

obtain that x ∈ F(J A
λ1

) and then we have that F(T ◦ J A
λ2

◦ J f
μ2) ⊆ F(T ) ∩ F(J A

λ1
) ∩ F(J f

μ1).

Hence, this completes the proof. ��
Theorem 3.2 Let D be a nonempty, closed and convex subset of a complete CAT(0) space X,
X∗ be the dual space of X and A : X → 2X

∗
be a multivalued monotone operator satisfying

the range condition. Let f : D × D → R be a bifunction satisfying assumption (i)-(iv) in
Theorem 2.14. Let T : X → X be nonexpansive mapping and g : X → X be a contraction
mapping with coefficient θ ∈ (0, 1). Suppose that � := F(T ) ∩ A−1(0) ∩ EP( f , D) �= ∅
and for arbitrary x1 ∈ X , the sequence {xn} is generated by

⎧
⎨
⎩
yn = J A

λn
◦ J f

μn

(
xn⊕xn+1

2

)
,

xn+1 = αng
(
xn⊕xn+1

2

)
⊕ (1 − αn)T yn ∀ n ≥ 1,

(3.11)

where {αn} ∈ (0, 1)and {λn}, {μn}are sequences in (0,∞) such that the following conditions
are satisfied:

(A1) lim
n→∞ αn = 0 and

∞∑
n=1

αn = ∞,
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(A2)
∑
n=1

|αn+1 − αn | < ∞,

(A3) 0 < λn−1 ≤ λn,
∞∑
n=1

(√
1 − λn−1

λn

)
< ∞ and 0 < μn−1 ≤ μn,

∞∑
n=1

(√
1 − μn−1

μn

)
<

∞ ∀ n ≥ 1.

Then, the sequence {xn} converges to a point x̄ in � which is also a unique solution of the
following variational inequality

〈−−−→
x̄ g(x̄),

−→
px̄〉 ≥ 0, ∀ p ∈ �.

Remark 3.3 With a midpoint at each step of our method, it tends to have better accuracy than
(1.8), (1.9) and other methods with single or no midpoint rule.

Proof STEP 1:We show that {xn} is bounded. Let p ∈ �, then by Lemma 2.17(i) and (3.11)
we have

d(xn+1, p) = d

(
αng

(
xn ⊕ xn+1

2

)
⊕ (1 − αn)T yn, p

)

≤ αnd

(
g

(
xn ⊕ xn+1

2

)
, p

)
+ (1 − αn)d(T yn, p)

≤ αnd

(
g

(
xn ⊕ xn+1

2

)
, p

)
+ (1 − αn)d

(
xn ⊕ xn+1

2
, p

)

≤ αnθd

(
xn ⊕ xn+1

2
, p

)
+ αnd(g(p), p) + (1 − αn)d

(
xn ⊕ xn+1

2
, p

)

= (
1 − αn(1 − θ)

)
d

(
xn ⊕ xn+1

2
, p

)
+ αnd(g(p), p)

≤
(1 − αn(1 − θ)

2

)
(d(xn, p) + d(xn+1, p)) + αnd(g(p), p).

This implies that

d(xn+1, p) ≤ 1 − αn(1 − θ)

1 + αn(1 − θ)
d(xn, p) + 2αn

1 + αn(1 − θ)
d(g(p), p)

= 1 − 2αn(1 − θ)

1 + αn(1 − θ)
d(xn, p) + 2αn(1 − θ)

1 + αn(1 − θ)

(
1

(1 − θ)
d(g(p), p)

)

≤
{
d(xn, p),

1

(1 − θ)
d(g(p), p)

}
,

which implies by mathematical induction that

d(xn+1, p) ≤
{
d(x1, p),

1

(1 − θ)
d(g(p), p)

}
, ∀ n ∈ N.

Thus, {xn} is bounded. Consequently {yn}, {T yn} and
{
g

(
xn⊕xn+1

2

)}
are also bounded.

STEP 2: We show that lim
n→∞ d(xn+1, xn) = 0. From Lemma 2.17(iv),(v) and (3.11) we

have

d(xn+1, xn) = d

(
αng

(
xn ⊕ xn+1

2

)
⊕ (1 − αn)T yn , αn−1g

(
xn−1 ⊕ xn

2

)
⊕ (1 − αn−1)T yn−1

)
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≤ d

(
αng

(
xn ⊕ xn+1

2

)
⊕ (1 − αn)T yn , αn−1g

(
xn ⊕ xn+1

2

)
⊕ (1 − αn−1)T yn

)

+ d

(
αn−1g

(
xn ⊕ xn+1

2

)
⊕ (1 − αn−1)T yn , αn−1g

(
xn−1 ⊕ xn

2

)
⊕ (1 − αn−1)T yn−1

)

≤ |αn − αn−1| d
(
g

(
xn ⊕ xn+1

2

)
, T yn

)
+ αn−1d

(
g

(
xn ⊕ xn+1

2

)
, g

(
xn−1 ⊕ xn

2

))

+ (1 − αn−1) d(T yn , T yn−1)

≤ |αn − αn−1| d
(
g

(
xn ⊕ xn+1

2

)
, T yn

)
+ αn−1θd

(
xn ⊕ xn+1

2
,
xn−1 ⊕ xn

2

)

+ (1 − αn−1) d(yn , yn−1)

= |αn − αn−1| d
(
g

(
xn ⊕ xn+1

2

)
, T yn

)
+ αn−1θd

(
xn ⊕ xn+1

2
,
xn−1 ⊕ xn

2

)

+ (1 − αn−1)d

(
J Aλn ◦ J f

μn

(
xn ⊕ xn+1

2

)
, J Aλn−1

◦ J f
μn−1

(
xn−1 ⊕ xn

2

))
(3.12)

Again, from (2.7) and (3.9) we obtain that

d(yn, yn−1) ≤ d

(
J A
λn

(
J f
μn

(
xn ⊕ xn+1

2

))
, J A

λn−1

(
J f
μn−1

(
xn ⊕ xn+1

2

)))

+ d

(
J A
λn−1

(
J f
μn−1

(
xn ⊕ xn+1

2

))
, J A

λn−1

(
J f
μn−1

(
xn−1 ⊕ xn

2

)))

≤ d

(
J A
λn

(
J f
μn

(
xn ⊕ xn+1

2

))
, J A

λn−1

(
J f
μn

(
xn ⊕ xn+1

2

)))

+ d

(
J A
λn−1

(
J f
μn

(
xn ⊕ xn+1

2

))
, J A

λn−1

(
J f
μn−1

(
xn ⊕ xn+1

2

)))

+ d

(
xn ⊕ xn+1

2
,
xn−1 ⊕ xn

2

)

≤
√
1 − λn−1

λn
d

(
J f
μn

(
xn ⊕ xn+1

2

)
, J A

λn

(
J f
μn

(
xn ⊕ xn+1

2

)))

+ d

(
J f
μn

(
xn ⊕ xn+1

2

)
, J f

μn−1

(
xn ⊕ xn+1

2

))
+ d

(
xn ⊕ xn+1

2
,
xn−1 ⊕ xn

2

)

≤
√
1 − λn−1

λn
d

(
J f
μn

(
xn ⊕ xn+1

2

)
, J A

λn

(
J f
μn

(
xn ⊕ xn+1

2

)))
(3.13)

+
√
1 − μn−1

μn
d

(
xn ⊕ xn+1

2
, J f

μn

(
xn ⊕ xn+1

2

))
+ d

(
xn ⊕ xn+1

2
,
xn−1 ⊕ xn

2

)

≤
√
1 − λn−1

λn
d

(
J f
μn

(
xn ⊕ xn+1

2

)
, J A

λn

(
J f
μn

(
xn ⊕ xn+1

2

)))

+
√
1 − μn−1

μn
d

(
xn ⊕ xn+1

2
, J f

μn

(
xn ⊕ xn+1

2

))
+ [

d (xn, xn−1) + d(xn+1, xn)
]
.

(3.14)
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Substituting (3.13) in (3.12) we have

d(xn+1, xn) ≤ |αn − αn−1| d
(
g

(
xn ⊕ xn+1

2

)
, T yn

)

+ (1 − αn−1(1 − θ)) d

(
xn ⊕ xn+1

2
,
xn−1 ⊕ xn

2

)

+ (1 − αn−1)

[√
1 − λn−1

λn
d

(
J f
μn

(
xn ⊕ xn+1

2

)
, J Aλn

(
J f
μn

(
xn ⊕ xn+1

2

)))]

+ (1 − αn−1)

[√
1 − μn−1

μn
d

(
xn ⊕ xn+1

2
, J f

μn

(
xn ⊕ xn+1

2

))]

≤ |αn − αn−1| d
(
g

(
xn ⊕ xn+1

2

)
, T yn

)

+ (1 − αn−1(1 − θ))

2

[
d

(
xn , xn−1) + d(xn+1, xn

) ]

+ (1 − αn−1)

[√
1 − λn−1

λn
d

(
J f
μn

(
xn ⊕ xn+1

2

)
, J Aλn

(
J f
μn

(
xn ⊕ xn+1

2

)))]

+ (1 − αn−1)

[√
1 − μn−1

μn
d

(
xn ⊕ xn+1

2
, J f

μn

(
xn ⊕ xn+1

2

))]

≤
[
|αn − αn−1| +

√
1 − λn−1

λn
+

√
1 − μn−1

μn

]
B + (1 − αn−1(1 − θ))

2
[
d

(
xn , xn−1) + d(xn+1, xn

) ]
(3.15)

where

B ≥ max

{
sup
n≥1

{
d

(
g

(
xn ⊕ xn+1

2

)
, T yn

)}
, sup

n≥1

{
d

(
xn ⊕ xn+1

2
, J f

μn

(
xn ⊕ xn+1

2

))}
,

sup
n≥1

{
d

(
J f
μn

(
xn ⊕ xn+1

2

)
, J Aλn

(
J f
μn

(
xn ⊕ xn+1

2

)))} }
.

It implies from (3.15) that

d(xn+1, xn) ≤ (1 − αn−1(1 − θ))

(1 + αn−1(1 − θ))
d(xn, xn−1)

+
[
|αn − αn−1| +

√
1 − λn−1

λn
+

√
1 − μn−1

μn

]
2B

1 + αn−1(1 − θ)

=
[
1 − 2αn−1(1 − θ)

1 + αn−1(1 − θ)

]
d(xn, xn−1)

+
[
|αn − αn−1| +

√
1 − λn−1

λn
+

√
1 − μn−1

μn

]
2B

1 + αn−1(1 − θ)
.

Then, by Lemma 2.22, conditions (A2) and (A3), we obtain that

lim
n→∞ d(xn+1, xn) = 0. (3.16)

123



A modified viscosity iterative method... Page 13 of 23    23 

STEP 3: We show that lim
n→∞ d(x̄n, T x̄n) = 0 = lim

n→∞ d(x̄n, T yn), where x̄n = xn⊕xn+1
2 .

From Lemma (2.17)(ii) we have

d2(xn+1, p) ≤ αnd
2(g(x̄n), p) + (1 − αn)d

2(yn, p)

≤ αnd
2(g(x̄n), p) + d2(yn, p). (3.17)

Also, from (2.6), we have that

d2(yn, p) ≤ d2(J f
μn x̄n, p) − d2(yn, J f

μn x̄n). (3.18)

Substituting (3.18) in (3.17), we obtain

d2(xn+1, p) ≤ αnd
2(g(x̄n), p) + d2(J f

μn
x̄n, p) − d2(yn, J f

μn
x̄n), (3.19)

which implies

d2(yn, J f
μn
x̄n) ≤ αnd

2(g(x̄n), p) + d2(J f
μn
x̄n, p) − d2(xn+1, p)

≤ αnd
2(g(x̄n), p) + d2(x̄n, p) − d2(xn+1, p)

≤ αnd
2(g(x̄n), p) + 1

2

[
d2(xn, p) − d2(xn+1, p)

]

≤ αnd
2(g(x̄n), p) + 1

2

[(
d(xn, xn+1) + d(xn+1 p)

)2 − d2(xn+1, p)
]

= αnd
2(g(x̄n), p) + 1

2
d2(xn, xn+1) + d(xn, xn+1)d(xn+1, p). (3.20)

Then from (3.16) and condition (A1), we obtain that

lim
n→∞ d2(yn, J f

μn
x̄n) = 0. (3.21)

Similarly, from Lemma 2.13(ii) we have that

d2(J f
μn
x̄n, p) ≤ d2(x̄n, p) − d2(J f

μn x̄n, x̄n). (3.22)

Again, substituting (3.22) in (3.19), we have

d2(xn+1, p) ≤ αnd
2(g(x̄n), p) + d2(x̄n, p) − d2(J f

μn
x̄n, x̄n) − d2(yn, J f

μn
x̄n)

≤ αnd
2(g(x̄n), p) + d2(x̄n, p) − d2(J f

μn
x̄n, x̄n), (3.23)

which also implies

d2(J f
μn
x̄n, x̄n) ≤ αnd

2(g(x̄n), p) + d2(x̄n, p) − d2(xn+1, p). (3.24)

By the same argument as in (3.20), we obtain that

lim
n→∞ d2(J f

μn
x̄n, x̄n) = 0. (3.25)

Hence, from (3.21) and (3.25) we obtain that

d(yn, x̄n) ≤ d(yn, J f
μn x̄n) + d(J f

μn x̄n, x̄n) −→ 0, as n → ∞. (3.26)

Also, from (3.16), we have that

lim
n→∞ d(x̄n, xn) = 0. (3.27)
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Then from (3.16), (3.26), (3.27) and condition (A1), we obtain that

d(x̄n, T x̄n) ≤ d(x̄n, xn) + d(xn, xn+1) + d(xn+1, T yn) + d(T yn, T x̄n)

≤ d(x̄n, xn) + d(xn, xn+1) + αnd(g(x̄n), T yn) + d(yn, x̄n) → 0, as n → ∞.

(3.28)

Also, from (3.26) and (3.28) we have

d(x̄n, T yn) ≤ d(x̄n, T x̄n) + d(T x̄n, T yn)

≤ d(x̄n, T x̄n) + d(x̄n, yn) → 0 as n → ∞. (3.29)

STEP 4:We show that lim sup
n→∞

〈−−−−→
g(x∗)x∗,

−−→
xnx∗〉 ≤ 0, where x∗ = P�g(x∗).

Since {xn} is bounded and X is a complete CAT(0) space, then we obtain from Lemma
2.18 that there exists a subsequence {xni } of {xn} such that�− lim

i→∞ xni = z̄. Thus, by (3.27),

we obtain that � − lim
i→∞ x̄ni = z̄. Also, since T ◦ J A

λn
◦ J f

μn is nonexpansive, then it implies

from Lemma 2.21 that it is demiclosed. Therefore, from Lemma 2.11(iii), Lemma 2.8(i),
Lemma 3.1 and (3.29) we obtain that z̄ ∈ F(T ◦ J A

λn
◦ J f

μn ) ⊆ F(T )∩ F(J A
λ )∩ F(J f

μ ) = �.

Since {xn} is bounded, we can choose without loss of generality, {xni } of {xn} such that
lim sup
n→∞

〈−−−−→
g(x∗)x∗,

−−→
xnx

∗〉 = lim
i→∞〈−−−−→

g(x∗)x∗,
−−−→
xni x

∗〉.

Now, using this and Lemma 2.19 we obtain that

lim sup
n→∞

〈−−−−→
g(x∗)x∗,

−−→
xnx

∗〉 = 〈−−−−→
g(x∗)x∗,

−→
z̄x∗〉 ≤ 0. (3.30)

STEP 5: Finally, we show that xn → x∗ as n → ∞ and then x∗ is also the unique fixed
point of the contraction P� ◦ g. From Lemma 2.17(iii) and (3.11), we have

d2(xn+1, x
∗) = d2

(
αng

(
xn ⊕ xn+1

2

)
⊕ (1 − αn)T yn, x∗

)

≤ αn
2d2

(
g

(
xn ⊕ xn+1

2

)
, x∗

)
+ (1 − αn)

2d2(T yn, x∗)

+ 2αn(1 − αn)
〈−−−−−−−−−−−−→
g

(
xn ⊕ xn+1

2

)
x∗,

−−−→
T ynx

∗〉

≤ αn
2d2

(
g

(
xn ⊕ xn+1

2

)
, x∗

)
+ (1 − αn)

2d2(yn, x∗)

+ 2αn(1 − αn)
〈−−−−−−−−−−−−→
g

(
xn ⊕ xn+1

2

)
x∗,

−−−→
T ynx

∗〉

≤ αn
2d2

(
g

(
xn ⊕ xn+1

2

)
, x∗

)
+ (1 − αn)

2d2(yn, x
∗)

+ 2αn(1 − αn)
〈−−−−−−−−−−−−−−−→
g

(
xn ⊕ xn+1

2

)
g(x∗),

−−−→
T ynx

∗〉

+ 2αn(1 − αn)〈−−−−→
g(x∗)x∗,

−−−→
T ynx

∗〉
≤ αn

2d2
(
g

(
xn ⊕ xn+1

2

)
, x∗

)
+ (1 − αn)

2d2(yn, x∗)
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+ 2αn(1 − αn)d

(
g

(
xn ⊕ xn+1

2

)
, g(x∗)

)
d(T yn, x∗)

+ 2αn(1 − αn)〈−−−−→
g(x∗)x∗,

−−−→
T ynx

∗〉
≤ αn

2d2
(
g

(
xn ⊕ xn+1

2

)
, x∗

)
+ (1 − αn)

2d2(yn, x∗)

+ 2θαn(1 − αn)d

(
xn ⊕ xn+1

2
, x∗

)
d(yn, x∗)

+ 2αn(1 − αn)〈−−−−→
g(x∗)x∗,

−−−→
T ynx

∗〉
≤ αn

2d2
(
g

(
xn ⊕ xn+1

2

)
, x∗

)
+ (1 − αn)

2d2
(
xn ⊕ xn+1

2
, x∗

)

+ 2θαn(1 − αn)d

(
xn ⊕ xn+1

2
, x∗

)
d(

xn ⊕ xn+1

2
, x∗)

+ 2αn(1 − αn)〈−−−−→
g(x∗)x∗,

−−−→
T ynx

∗〉
= (1 − αn)(1 − αn + 2θαn)d

2
(
xn ⊕ xn+1

2
, x∗

)
+ Cn,

where

Cn := α2
nd

2
(
g

(
xn ⊕ xn+1

2

)
, x∗

)
+ 2αn(1 − αn)〈−−−−→

g(x∗)x∗,
−−−→
T ynx

∗〉. (3.31)

Then

d2(xn+1, x
∗) ≤ 1

2
(1 − αn)(1 − αn + 2θαn)

[
d2(xn, x∗) + d(xn+1, x∗)

] + Cn,

which implies that

d2(xn+1, x
∗) ≤

1
2 (1 − αn)(1 − αn + 2θαn

1 − 1
2 (1 − αn)(1 − αn + 2θαn)

d2(xn, x
∗) + Dn, (3.32)

where

Dn = Cn

1 − 1
2 (1 − αn)(1 − αn + 2αn)

. (3.33)

Let k : (0,∞) → R be a function defined by

k(t) = 1

t

{
1 −

1
2 (1 − t)(1 − t + 2θ t)

1 − 1
2 (1 − t)(1 − t + 2θ t)

}
for all t > 0.

Then lim
t→0

k(t) = 4(1 − θ). Let δ > 0 such that 0 < t < δ and ε = 4(1 − θ) > 0. Then

1

t

{
1 −

1
2 (1 − t)(1 − t + 2θ t)

1 − 1
2 (1 − t)(1 − t + 2θ t)

}
> ε (3.34)

which implies that

1 − αnε >

1
2 (1 − αn)(1 − αn + 2θαn)

1 − 1
2 (1 − αn)(1 − αn + 2θαn)

.
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Since αn → 0 as n → ∞, there exists an integer n ∈ N such that αn < δ for n ≥ N.

From (3.15) and (3.16) we obtain

d2(xn+1, x∗) ≤ (1 − αnε)d
2(xn, x∗) + Dn .

From (3.31) we have

Cn

αn
= αnd

2
(
g

(
xn ⊕ xn+1

2

)
, x∗

)
+ 2(1 − αn)〈−−−−→

g(x∗)x∗,
−−→
ynx

∗〉.

Then by (3.30) and condition (A1) we obtain that

lim sup
n→∞

Cn

αn
≤ 0.

Similarly, from (3.30) and condition (A1) we obtain that

lim sup
n→∞

Dn

αn
≤ 0. (3.35)

By Lemma 2.22, (3.35), and condition (A1) we obtain that

lim
n→∞ d2(xn+1, x

∗) = 0. (3.36)

Hence, (3.36) implies that xn → x∗ as n → ∞. Therefore {xn} converges to x∗ ∈ �. ��

By setting J f
μn ≡ I (where I is an identity mapping) in Theorem 3.2, we obtain the following

result:

Corollary 3.4 Let X be a completeCAT(0) space, X∗ be the dual space of X and A : X → 2X
∗

be a multivalued monotone operator satisfying the range condition. Let T : X → X be
nonexpansive mapping and g : X → X be a contraction mapping with coefficient θ ∈ (0, 1).
Suppose that � := F(T ) ∩ A−1(0) �= ∅ and for arbitrary x1 ∈ X , the sequence {xn} is
generated by

⎧
⎨
⎩
yn = J A

λn

(
xn⊕xn+1

2

)
,

xn+1 = αng
(
xn⊕xn+1

2

)
⊕ (1 − αn)T yn ∀ n ∈ N,

(3.37)

where {αn} ∈ (0, 1) and {λn} is a sequence in (0,∞) such that the following conditions are
satisfied:

(A1) lim
n→∞ αn = 0 and

∞∑
n=1

αn = ∞,

(A2)
∑
n=1

|αn+1 − αn | < ∞,

(A3) 0 < λn−1 ≤ λn and
∞∑
n=1

(√
1 − λn−1

λn

)
< ∞ ∀ n ≥ 1.

Then, the sequence {xn} converges to a point x̄ in � which is also a unique solution of the
following variational inequality

〈−−−→
x̄ g(x̄),

−→
px̄〉 ≥ 0, ∀ p ∈ �.

The following corollaries are single and non-implicit midpoint rule cases of Theorem 3.2.
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Corollary 3.5 Let D be a nonempty, closed and convex subset of a complete CAT(0) space X,
X∗ be the dual space of X and A : X → 2X

∗
be a multivalued monotone operator satisfying

the range condition. Let f : D × D → R be a bifunction satisfying assumption (i)-(iv) in
Theorem 2.14. Let T : X → X be nonexpansive mapping and g : X → X be a contraction
mapping with coefficient θ ∈ (0, 1). Suppose that � := F(T ) ∩ A−1(0) ∩ EP( f , D) �= ∅
and for arbitrary x1 ∈ X , the sequence {xn} is generated by

{
yn = J A

λn
◦ J f

μn (xn),

xn+1 = αng
( xn+xn+1

2

) ⊕ (1 − αn)T yn ∀ n ∈ N,
(3.38)

where {αn} ∈ (0, 1) and {λn}, {μn} are sequences in (0,∞) such that the conditions (A1) -
(A3) of Theorem 3.2 are satisfied. Then, the sequence {xn} converges to a point x̄ in � which
is also a unique solution of the following variational inequality

〈−−−→
x̄ g(x̄),

−→
px̄〉 ≥ 0, ∀ p ∈ �.

Corollary 3.6 Let D be a nonempty, closed and convex subset of a complete CAT(0) space X,
X∗ be the dual space of X and A : X → 2X

∗
be a multivalued monotone operator satisfying

the range condition. Let f : D × D → R be a bifunction satisfying assumption (i)-(iv) in
Theorem 2.14. Let T : X → X be nonexpansive mapping and g : X → X be a contraction
mapping with coefficient θ ∈ (0, 1). Suppose that � := F(T ) ∩ A−1(0) ∩ EP( f , D) �= ∅
and for arbitrary x1 ∈ X , the sequence {xn} is generated by

{
yn = J A

λn
◦ J f

μn (xn),

xn+1 = αng(xn) ⊕ (1 − αn)T yn ∀ n ∈ N,
(3.39)

where {αn} ∈ (0, 1) and {λn}, {μn} are sequences in (0,∞) such that the conditions (A1) -
(A3) of Theorem 3.2 are satisfied. Then, the sequence {xn} converges to a point x̄ in � which
is also a unique solution of the following variational inequality

〈−−−→
x̄ g(x̄),

−→
px̄〉 ≥ 0, ∀ p ∈ �.

Let X be a CAT(0) space. A function h : X → (−∞,∞] is called convex, if

h(λx ⊕ (1 − λ)y) ≤ λh(x) + (1 − λ)h(y) ∀ x, y ∈ X , λ ∈ (0, 1).

h is proper, if D(h) := {x ∈ X : h(x) < +∞} �= ∅. The function h : D(h) ⊆ X →
(−∞,∞] is said to be lower semicontinuous at a point x ∈ D(h), if

h(x) ≤ lim inf
n→∞ h(xn),

for each sequence {xn} ∈ D(h), such that lim
n→∞ xn = x . h is said to be lower semicontinuous

on D(h) if it is lower semicontinuous at any point in D( f ). For any μ > 0, the resolvent of
a proper, convex and lower semicontinuous function h in X is defined as (see [7]) J hμ(x) =
argmin

y∈X
[
h(y) + 1

2μd
2(y, x)

]
.

A minimization problem is to find x ∈ X such that h(x) = min
y∈X h(y). The solution set of

such problem is denoted by argmin
y∈X h(y).

Suppose we replace the bifunction f with a proper, convex and lower semicontinuous
function h and g(xn) with u for a fixed u ∈ X in Corollary 3.6, we have the following result
as a consequence.
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Corollary 3.7 Let X be a completeCAT(0) space, X∗ be the dual space of X and A : X → 2X
∗

be amultivaluedmonotone operator satisfying the range condition. Let h : X → [−∞,+∞)

be a proper, convex and lower semicontinuous function and T : X → X be nonexpansive
mapping. Suppose that � := F(T ) ∩ A−1(0) ∩ argmin

y∈X f (y) �= ∅ and for arbitrary x1 ∈ X ,

the sequence {xn} is generated by
{
yn = J A

λn
◦ J hμn

(xn),

xn+1 = αnu ⊕ (1 − αn)T yn ∀ n ∈ N,
(3.40)

where {αn} ∈ (0, 1) and {λn}, {μn} are sequences in (0,∞) such that the conditions (A1) -
(A3) of Theorem 3.2 are satisfied. Then, the sequence {xn} converges to a element x in �.

4 Numerical example

In this section, we present some numerical experiments to illustrate the applicability of the
proposed algorithms.

Example 4.1 Let X = R
2, endowed with the Euclidean norm. For each x̄ ∈ X , we define a

mapping T as follows:

T x̄ = (−x1, x2).

Then, T is nonexpansive. Let A : R2 → R
2 be defined by

A(x̄) = (4x1 − 3x2, x1 + 2x2). (4.1)

Then A is a monotone. We note from [16] that [t−→ab] ≡ t(b− a), for all t ∈ R and a, b ∈ R
2

(see [25]). Therefore, for each x̄ ∈ R
2 we have

J A
λn

(x̄) = z̄,⇐⇒ 1

λn
(x̄ − z̄) = Az̄,⇐⇒ x̄ = (I + λn A)z̄, ⇐⇒ z̄ = (I + λn A)−1 x̄ .

Computing z̄ = J A
λn

(x̄) for (4.1), we have

J A
λn

(x̄) =
([

1 0
0 1

]
+

[
4λn −3λn
λn 2λn

])−1 [
x1
x2

]

=
[
1 + 4λn −3λn

λn 1 + 2λn

]−1 [
x1
x2

]

= 1

1 + 6λn + 5λ2n

[
1 + 2λn 3λn

−λn 1 + 4λn

] [
x1
x2

]

=
(

(1 + 2λn)x1 + 3λnx2
1 + 6λn + 5λ2n

,
−λnx1 + (1 + 4λn)x2

1 + 6λn + 5λ2n

)
.

Thus

J A
λn

(x̄) =
(

(1 + 2λn)x1 + 3λnx2
1 + 6λn + 5λ2n

,
−λnx1 + (1 + 4λn)x2

1 + 6λn + 5λ2n

)
.

Also, let f : D × D → R be a bifunction defined by

f (z̄, ȳ) = z̄ ȳ + 8ȳ + 8z̄ − z̄2. (4.2)
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Then, (4.2) satisfies assumption (i)-(iv) in Theorem 2.14. Let μn = 1 ∀ n ≥ 1, then

J f
1 (x̄) := {z̄ ∈ D : f (z̄, ȳ) + 〈−→̄x z̄,−→̄z ȳ〉 ≥ 0, y ∈ D}. (4.3)

Computing z̄ = J f
1 (x̄) for (4.2), we have

J f
1 (x̄) = z̄ ȳ + 8ȳ − 8z̄ − z̄2 + 〈−→̄x z̄, −→̄

z ȳ〉 = 0

= z̄(ȳ − z̄) + 8(ȳ − z̄) + 〈−→̄x z̄, −→̄
z ȳ〉 = 0

≤ (z̄ + 8)(y − z̄) + d(z̄, x̄)d(ȳ, z̄) = 0

= (z̄ + 8) + (z̄ − x̄) = 0,

which implies that z̄ = 1
2 (x̄ − 8). Hence, J f

1 (x̄) = 1
2 (x1 − 8, x2 − 8).

Let g : R
2 → R

2 be defined by g(x̄) = 3
5 x̄ . We choose αn = 1

100n+1 then conditions
(A1)-(A3) of Theorem 3.2 are satisfied. Hence, for x1 ∈ R

2, Algorithm 3.11 becomes
⎧⎨
⎩
yn = J A

λn

(
J f
1

(
xn+xn+1

2

))
,

xn+1 = 1
100n+1 g

(
xn+xn+1

2

)
+ (1 − 1

100n+1 )T yn ∀ n ∈ N.
(4.4)

Case 1: Take x1 = [0.5, 0.25]T and λn = 1.
Case 2: Take x1 = [2, − 3]T and λn = 1.
Case 3: Take x1 = [0.5, 0.25]T and λn = 4n+1

n+4 .

Case 4: Take x1 = [2, − 3]T and λn = 4n+1
n+4 .

Matlab version R2019a is used to obtain the graphs of errors against number of iterations.

Remark 4.2 Using different choices of the initial points x1 and λ (that is,Case 1-Case 4), we
obtain the above numerical results (Fig. 1). We see that the error values converge to 0 which
implies that choosing arbitrary starting points, the sequence {xn} converges to an element in
the solution set �.

In the following example, we consider a numerical example of our method in a non-Hilbert
space setting.

Example 4.3 [15] Let Y = R
2 be an R−tree with the radial metric dr , where dr (x, y) =

d(x, y) if x and y are situated on a Euclidean straight line passing through the origin and
dr (x, y) = d(x, 0) + d(y, 0) := ‖x‖ + ‖y‖ otherwise. Let p = (1, 0) and X = B ∪ C,

where

B = (h, 0) : h ∈ [0, 1] and C = (h, k) : h + k = 1, h ∈ [0, 1).
Then X is an Hadamard space. Thus, for each [−→tab] ∈ X∗, we obtain that

[−→tab] =

⎧⎪⎨
⎪⎩

s
−→
cd : c, d ∈ B, s ∈ R, t(‖b‖ − ‖a‖) = s(‖d‖ − ‖c‖), a, b ∈ B,

s
−→
cd : c, d ∈ C ∪ {0}, s ∈ R, t(‖b‖ − ‖a‖) = s(‖d‖ − ‖c‖), c, d ∈ C ∪ {0},
t
−→
ab, a ∈ B, b ∈ C .

Now, define A : X → 2X
∗
by

A(x) =
{

{[−→0p]}, x ∈ B

{[−→0p], [−→0x ]}, x ∈ C .
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Iteration number (n)
1 1.5 2 2.5 3 3.5 4 4.5 5

Er
ro

rs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Iteration number (n)
1 1.5 2 2.5 3 3.5 4 4.5 5

Er
ro

rs

0

0.2

0.4

0.6

0.8

1

1.2

Iteration number (n)
1 1.5 2 2.5 3 3.5 4

Er
ro

rs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Iteration number (n)
1 1.5 2 2.5 3 3.5 4

Er
ro

rs

0

0.5

1

1.5

2

2.5

Fig. 1 Errors vs Iteration numbers(n): Case 1 (top left); Case 2 (top right); Case 3 (bottom left); Case 4
(bottom right)

Then A is a multivalued monotone operator and

J A
λn

(x) =
{

{z = (h − λn, 0)}, x = (h, 0) ∈ B,

{z = (h′, k′) ∈ C : (1 + λn)
2(h′2 + k′2 = h2 + k2)}, x = (h, k) ∈ C .

5 Conclusion

In this paper, we introduce a proximal point-type of viscosity iterative method with dou-
ble implicit midpoint rule comprising of a nonexpansive mapping and the resolvents of a
monotone operator and a bifunction in Hadamard spaces. Furthermore, we prove a strong
convergence result under some mild conditions and provide some numerical experiments to
show the accuracy and efficiency of the proposed method in a finite dimensional space and a
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non-Hilbert space. This improves some existing methods on implicit midpoint point rule in
the literature.
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