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Abstract
In this paper, we focus on the existence of positive solutions to the following planar
Schrödinger–Newton system with general critical exponential growth{−�u + u + φu = f (u) in R

2,

�φ = u2 in R
2,

where f ∈ C1(R, R). We apply a variational approach developed in [36] to study the above
problem in the Sobolev space H1(R2). The analysis developed in this paper also allows
to investigate the relation between a Riesz-type of Schrödinger–Newton systems and a
logarithmic-type of Schrödinger–Poisson systems. Furthermore, this approach can overcome
some difficulties resulting from either the nonlocal term with sign-changing and unbounded
logarithmic integral kernel, or the critical nonlinearity, or the lack of monotonicity of f (t)

t3
.

We emphasize that it seems much difficult to use the variational framework developed in the
existed literature to study the above problem.
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1 Introduction and results

1.1 Overview

Consider the following nonlinear Schrödinger–Newton system⎧⎨
⎩

i�
∂ψ

∂t
= �

2

2m
�ψ + W (x)ψ + λφψ − f (ψ) in R

d × R,

�φ = |ψ |2 in R
d × R,

(1.1)

where λ ∈ R, i is the imaginary unit, � is the Planck constant. For d = 3,m > 0 stands for the
mass of the particle, ψ : R

3 × [0, T ] → C is a wave function, W is a real external potential
and such a system often appears in quantum mechanics models and semiconductor theory
(see [33]) and also arises, for example, as a model of the interaction of a charged particle with

the electrostatic field (see [7]). It is well known that ψ(x, t) = u(x)e− i Et
� , x ∈ R

d , t ∈ R is
a standing wave solution of (1.1) if and only if u : R

d → R satisfies⎧⎨
⎩− �

2

2m
�u + (W (x) − E)u + λφu = f (u) in R

d ,

�φ = u2 in R
d .

(1.2)

The second equation in system (1.2) can be solved by

φ(x) = �d(x) ∗ u2(x) =
∫
Rd

�d(x − y)u2(y)dy,

where �d is the Newtonian kernel in dimension d , which is expressed by

�d(x) =
{

1
2π ln |x |, d = 2,

1
d(2−d)ωd

|x |2−d , d ≥ 3.

Hereωd is the volume of the unit d-ball. Under such a formal inversion of the second equation
in (1.2), we obtain the following non-local equation

− �u + V (x)u + λ(�d ∗ |u|)u = f (u) in R
d , (1.3)

where V = W − E . The cases λ > 0 and λ < 0 denote respectively two very different
physical situations(see [22]). In particular,whenλ > 0, (1.3) stands for one attractive case of a
Newton-Poisson coupling for gravitational mean-field models. When λ < 0, (1.3) represents
one d-dimensional case of repulsive electrostatic forces. Problem (1.3) is variational formally,
and its associated energy functional is given by

Id(u) = 1

2

∫
Rd

(|∇u|2 + V (x)u2) dx + λ

4

∫
Rd

∫
Rd

�d (|x − y|) u2(x)u2(y)dxdy

−
∫
Rd

F(u)dx .

In the case d = 3, Id is well defined and of C1 class in H1(Rd) when V ∈ L∞(Rd). In
the literature, by exploring the variational methods and topological methods, the existence,
nonexistence,multiplicity and concentration of solutions to (1.3) have been investigatedwhen
f and V satisfy various assumptions, see e.g. [5, 7, 26, 28, 34, 38, 41] and so on.

123



A planar Schrödinger–Newton system with Trudinger–Moser… Page 3 of 31   122 

Throughout this paper, we assume λ
2π = 1, and consider the following Schrödinger–

Newton equation

− �u + V (x)u + (ln(| · |) ∗ |u|2)u = f (u) in R
2, (1.4)

whose formal energy functional can be given by

I (u) = 1

2

∫
R2

(|∇u|2 + V (x)u2) dx + 1

4

∫
R4

ln (|x − y|) u2(x)u2(y)dxdy −
∫
R2

F(u)dx .

Since �̃(x) := ln |x | is sign-changing and presents singularities at zero and infinity, compared
with the higher dimensional case d ≥ 3, the associated energy functional with (1.4) seems
much more delicate. In particular, functional I is not well-defined on H1(R2) because of the
appearance of the singular convolution term∫

R2

∫
R2

ln(|x − y|)u2(x)u2(y)dxdy,

which is not well defined for all u ∈ H1(R2). Therefore, the approaches dealing with higher
dimensional cases seem difficult to be adapted to the case d = 2. So the rigorous study of the
planar Schrödinger–Newton system had remained open for a long time. Recall that Choquard,
Stubbe andVuffray [19] proved the existence of a unique positive radially symmetric solution
to (1.4) with V (x) ≡ 1 and f (x, u) = 0 by applying a shootingmethod. To consider problem
(1.4) with d = 2 and V (x) ≡ 1, Stubbe [39] introduced the following weighted Sobolev
space

X :=
{

u ∈ H1(R2) :
∫
R2

ln(1 + |x |)|u(x)|2dx < +∞
}

,

endowed with the norm

‖u‖2X =
∫
R2

(|∇u|2 + |u|2) dx +
∫
R2

ln(1 + |x |)|u(x)|2dx,

which yields that the associated energy functional is well-defined and continuously differen-
tiable on the space X . More precisely, thanks to the Hardy–Littlewood–Sobolev inequality
[29], for any u ∈ X , ∫

R2

∫
R2

ln(|x − y|)u2(x)u2(y)dxdy

can be controlled by ∫
R2

ln(1 + |x |)u2(x)dx .

Consequently,within the underlying space X above,Cingolani andWeth [20] studied problem
(1.4) with f (u) = |u|p−2u, p ≥ 4 and obtained the existence and multiplicity of solutions.
In studying planar Schrödinger–Newton systems in the underlying space X , one of main
obstacles is that the norm ‖ · ‖X lacks translation invariance. This makes problems tough in
verifying the compactness via the concentration-compactness principle. In [20, Lemma 2.1],
it is shown that this difficulty can be overcome via a symmetric bilinear form∫

R2

∫
R2

ln (1 + |x − y|) u(x)v(y)dxdy.
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In a similar fashion, a sequence of higher energy solutions was obtained in [20] for p ≥ 4 in a
periodic setting,where the corresponding energy functional is invariant underZ2-translations.
Later, Du and Weth [23] extended the above results to the case p ∈ (2, 4). Under the above
variational framework in [20, 39], Chen and Tang in [16] considered the planar Schrödinger–
Newton system in the axially symmetric setting. By using Jeanjean’s monotonicity trick [27]
and a Nehari-Pohozaev manifold argument, they proved that there exists at least a ground
state solution to (1.4). For some other related works to the two dimensional case, see [6,
9, 13, 17, 18, 21, 42] and the references therein. In all the results mentioned above for the
planar Schrödinger–Newton system, it is obvious that the weighted function space X plays
a fundamental role in ensuring that the energy functional is well defined and continuously
differentiable.

Different from the variational frameworks above, the authors in [36] introduce a novel
variational approach to study problem (1.4) by considering a perturbation problem defined in
H1(R2). We aim to use a variational approach established in [36] to problem (1.4) involving
the critical exponential growth in the sense of Trudinger–Moser, see [37, 40]. We now recall
a notion of criticality which is totally different from the Sobolev type.

( f0) there exists θ0 > 0 such that

lim|t |→∞
f (t)

eθ t2
= 0, ∀θ > θ0, lim|t |→∞

f (t)

eθ t2
= +∞, ∀θ < θ0,

whichwas introduced byAdimurthi andYadava [2] and see also de Figueiredo,Miyagaki and
Ruf [24].We stress that Alves and Figueiredo [4] investigated the existence of positive ground
state solutions for (1.4) when V (x) ≡ 1 and f satisfies ( f0) and the following conditions:

( f1) f ∈ C(R, R) and f (t) = o(t) as t → 0.
( f2)

f (t)
t3

is increasing in (0,∞);
( f3) there exists μ > 2 such that 0 < μF(t) ≤ f (t)t for all t > 0, where F(t) =∫ t
0 F(s)ds;
( f4) there exist constants p > 4 and λ0 > cp for some positive constant cp depending
on p.

And later, Chen and Tang [17] studied the existence of nontrivial solutions to (1.4) when f (u)

is replaced by f (x, u) ∈ C(R2 ×R, R)which is required to satisfy the following conditions:

(F1) f (x, t) = o(t) as t → 0 uniformly for x ∈ R
2; f (x, t) = f (x1, x2, t) =

f (|x1|, |x2|, t) for all (x, t) ∈ R
2 × R.

(F2) f (x, t)t > 0 for all (x, t) ∈ R
2 × (R \ {0}) and there exist M0 > 0 and t0 > 0 such

that

F(x, t) ≤ M0| f (x, t)|, ∀x ∈ R
2, |t | ≥ t0,

where F(x, t) = ∫ t
0 F(x, s)ds.

(F3) lim inf t→∞ t2F(x,t)

eθ0 t2
≥ κ > 2

θ20 ρ2 , where ρ ∈ (0, 1/2) such that ρ2 max|x |≤ρ V (x) ≤
1.

(F4) For all x ∈ R
2, the mapping (0,∞) � t 
→ f (x, t) − V (x)t

t3
is non-decreasing.

1.2 Main result

Since we study the planar Schrödinger–Newton system with critical exponential nonlinear-
ities in the sense of Trudinger–Moser, we first recall the 2D-Pohozaev–Trudinger–Moser
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inequality, which was established by Cao [12], see also [1, 11, 14, 15]. This result is crucial
in estimating the subcritical or critical nonlinearity of Trudinger–Moser type.

Lemma 1.1 [12] If θ > 0 and u ∈ H1(R2), then∫
R2

(
eθu2 − 1

)
dx < ∞.

If, moreover, u ∈ H1(R2), ‖∇u‖22 ≤ 1, ‖u‖22 < M < ∞ and θ < 4π , then there exists a
constant CM,θ which depends only on M, θ such that∫

R2

(
eθu2 − 1

)
dx ≤ CM,θ .

For this purpose, we make the following assumptions on the nonlinearity f ∈ C1(R, R).

( f5) f (t)t > 0 for all t ∈ R \ {0}, and there exist M0 > 0 and t0 > 0 such that

F(t) ≤ M0| f (t)|, ∀|t | ≥ t0,

where F(t) = ∫ t
0 f (s)ds.

( f6) lim inf t→∞ t2F(t)

eθ0 t2
≥ κ > 1

4
√

θ0πρ2 for ρ ∈ (0, 1/2), where θ0 is given in ( f0).

( f7) The function
f (t)t−F(t)

t3
is nondecreasing in (0,+∞).

Remark 1.2 It follows from conditions ( f1), ( f5) and ( f7) that 0 < 3F(s) ≤ f (s)s for s > 0.

Since we aim at finding positive solutions of equation (1.4), we always assume f (s) ≡ 0 for
s ≤ 0, throughout this paper.

Our main results states as follows.

Theorem 1.3 Assume that hypotheses ( f0)–( f1) and ( f5)–( f7) hold. Then equation (1.4)with
V (x) ≡ 1 has at least a positive solution u ∈ H1(R2) satisfying∣∣∣∣

∫
R2

∫
R2

ln |x − y|u2(x)u2(y)dxdy

∣∣∣∣ < +∞. (1.5)

Remark 1.4 Observe from [4] that the monotonicity condition ( f2) is often used to guarantee
the boundedness of the Palais–Smale sequence {un}. With the aid of ( f4), the authors in [4]
established directly an upper estimate on the H1(R2)-norm of Palais–Smale sequence {un}.
Then thanks to the Trudinger–Moser inequality, the compactness is recovered. However, as
a global condition, ( f4) requires f (t) to be super-cubic for all t ≥ 0, which seems a little
bit strict especially for t > 0 small. Observe that condition ( f4) does not reveal the essential
features of the exponential growth given in ( f0). As mentioned in [17], there exist many
model nonlinearities without satisfying ( f2) or ( f4) which are required in [4].

Observe that Chen and Tang in [17] obtained the existence of nontrivial solutions under
(F1)-(F4) which are weaker than those in [4]. Moreover, the authors in [17] introduced
conditions (F2) and (F3) to state an upper estimate for the minimax-level using the Moser
type sequence, so that vanish does not occur for the Cerami sequence {un}. However, in order
to prove that the weak limit function ū of Cerami sequence {un} is a solution of system (1.4),
one need to show directly

lim
n→∞

∫
R2

∫
R2

ln(|x − y|)u2
ndyunφdx =

∫
R2

∫
R2

ln(|x − y|)ū2dyūφdx, ∀φ ∈ C∞
0 (R2)

(1.6)
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and

lim
n→∞

∫
R2

f (x, un)(un − ū)dx = 0 (1.7)

without ( f2) or ( f4), which seems tough to establish in the weight space X , even if un → ū in
Ls(R2) for s ∈ [2,+∞). And so, (F4) in [17] was introduced to guarantee that the associated
energy functional can be studied in Nehari-type manifold, and then use some energy estimate
method together with Fatou’s lemma to recover compactness in space X . We emphasize that
(F4) in [17] plays an essential role in proving the existence of nontrivial solution.

In the present paper, we also need ( f5) and ( f6) to establish a similar upper estimate as [17]
by using the Moser type sequence. However, ( f7) is weaker than (F4), when we consider
autonomous nonlinearity f . One can not restrict functional I on Nehari-type manifold to
study directly, since ( f7) results in that I has no lower bound at Nehari-type manifold. It
even seems difficult to find some suitable manifold in the weighted space X to use constraint
variational approaches to obtain (1.6) and (1.7) under condition ( f7).

Remark 1.5 Very recently, Albuquerque et al., [3] investigated the existence of solutions to
the planar non-autonomous Schrödinger–Poisson system

{
−�u + V (|x |)u + γφK (|x |)u = λQ(|x |) f (u), x ∈ R

2,

�φ = K (|x |)u2, x ∈ R
2,

(1.8)

where γ, λ are positive parameters, V , K , Q are continuous potentials, which can be
unbounded or vanishing at infinity. By assuming that the nonlinearity f (t) satisfies ( f0),
( f2) and

( f̃1) f (s) = o
(|s|γ−1

)
as s → 0, where

γ := max{2, 2(2 + 2b − a)/(a + 2)} =
{

2 if − 2 < b ≤ a,

2(2 + 2b − a)/(a + 2) if − 2 < a < b,

( f̃2) there exists θ > max{γ, 4} such that 0 < θ F(s) ≤ f (s)s for all s ≥ 0,
( f̃3) there exists q > γ such that lim infs→0+ F(s)/sq > 0,

under a similar variational framework as that in [20], they derived the existence of a ground
state solution to system (1.8) for λ large enough. Compared with [3], we use the different
variational framework to weaken the conditions ( f̃2) and ( f2).

1.3 Main difficulty and strategy

In the present paper,we employ the variational framework established in [36] to studyproblem
(1.4) in the standard Sobolev space H1(R2) by variational methods. In order to overcome the
difficulty that the sign-changing property of the Newtonian kernel �d(x) = 1

2π ln |x | leads
to failure in setting the variational framework in H1(R2), as in [36], we modified equation
(1.4) as follows

− �u + u − 1

α
(Gα(| · |) ∗ u2)u = f (u) in R

2, (1.9)

where α ∈ (0, 1) is a parameter and

lim
α→0+ Gα(x) := lim

α→0+
|x |−α − 1

α
= ln |x |
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for x ∈ R
2 \ {0}. The corresponding energy functional to (1.9) is well defined in H1(R2) for

fixed α ∈ (0, 1), which enables us to use minimax methods to study the existence of positive
solutions for (1.9). By passing to the limit, a convergence argument within H1(R2) allows
us to get positive solutions of the original problem (1.4).
In the limit process above as α → 0+, the main difficulties are two-fold. Firstly, there is the
lack of compactness due to the effect of critical exponential nonlinearity and the appearance
of singularity at α = 0. Secondly, the boundedness of the Palais–Smale sequences is not
easy to get, since 4-Ambrosetti–Rabinowitz condition does not hold. Moreover, Jeanjean’s
monotonicity trick [27] seems not to work at our problem, since the singularity at α = 0 leads
to failure at giving a uniform upper bound to the corresponding minimax value as α → 0+.

In order to overcome these obstacles, in the proof of Theorem 1.3 we firstly adopt the
perturbation introduced in [36](see also [34, 35]) to obtain the boundedness of the Palais–
Smale sequences. Secondly, we need to use Moser type sequence together with some refined
analysis to establish an upper estimate as a threshold to recover compactness locally. Thirdly,
we use the concentration-compactness principle to establish a compactness splitting lemma
of critical exponential version, and then to prove the modified equation (1.9) has a positive
mountain pass solution uα . Moreover, the mountain pass value cα is uniformly bounded
from below and above as α → 0+. Lastly, it follows from the moving plane arguments that
uα is radially symmetric, and then one exponential decay of uα at infinity can be obtained
uniformly for α > 0 small. Therefore, the Lebesgue dominated convergence theorem enables
us to get the Frechet derivative of the corresponding energy functional is weakly sequence
continuous and then get compactness.

Among other things our results will give the following findings and consequences:

• We use a variational approach (see also [36]) to study system (1.4) directly in the usual
Sobolev space H1(R2), which is totally different from the one established in [20, 39].
Compared with solutions obtained in the weighted space X in the literature, we obtain
solution u of system (1.4) in H1(R2) directly. Moreover, in our arguments we can find
a relation between a Riesz-type of Schrödinger–Newton systems and a logarithmic-type
of Schrödinger–Poisson systems.

• Asmention in Remark 1.4, it seems tough to prove (1.6) and (1.7) directly in the weighted
space X in our setting. That is to say, it seems difficult to use the variational approach
established in [20] to prove Theorem 1.3. Therefore, this shows that the variational
approach established in [36] can also be used to deal with some cases in which the
variational approach [20] seems not easy to be adopted for us.

This paper is organized as follows. Some preliminaries are given in Section 2, and Section
3 is devoted to the existence of mountain pass type solutions to the modified equation. Then
in Section 4, we complete the proof of Theorem 1.3.

2 Preliminary results

Let us fix some notations. The letter C will be repeatedly used to denote various positive
constants, whose exact values may be irrelevant. Denote infinitely small quantities o(1)
and o(α) by o(1) → 0 as n → ∞ and o(α) → 0 as α → 0+, respectively. For every
1 ≤ s ≤ +∞, we denote by ‖ · ‖s the usual norm of the Lebesgue space Ls(R2). The
function space

H1(R2) := {u ∈ L2(R2) : |∇u| ∈ L2(R2)}
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is the usual Sobolev space endowed with the norm

‖u‖ :=
(∫

R2
(|∇u|2 + u2)dx

) 1
2

.

In what follows, we recall the Hardy–Littlewood–Sobolev inequality (see [29]), which
will be frequently used throughout this paper.

Lemma 2.1 (Hardy–Littlewood–Sobolev inequality [29]) Let s, r > 1 and α ∈ (0, d) with
1/s + α/d + 1/r = 2, f ∈ Ls(Rd) and h ∈ Lr (Rd). There exists a sharp constant Cs,d,α,r

independent of f , h, such that∫
Rd

[ 1

|x |α ∗ f (x)]h(x)dx ≤ Cs,d,α,r‖ f ‖s‖h‖r .

If r = s = 2d
2d−α

, then

Cs,d,α,r = Cd,α = πα/2 �
( d
2 − α

2

)
�(d − α

2 )

{
�
( d
2

)
�(d)

}−1+ α
d

,

and if d = 2, α ∈ (0, 1], then C2,α ≤ 2
√

π .

Lemma 2.2 (Moser-Trudinger inequality[1, 12]) For any β ∈ (0, 4π) there exists C = Cβ >

0 such that for every u ∈ H1(R2) satisfying
∫
R2 |∇u|2 ≤ 1, one has∫

R2
min{1, u2}eβ|u|2 ≤ Cβ

∫
R2

|u|2.
We recall the following elementary lemma which is of use in doing energy estimate.

Lemma 2.3 [44, Lemma 2.1] For any β ∈ (0,∞), there exists Cβ > 0 such that

s−α − 1

α
≤ Cβs−β, s > 0

holds for all α ∈ (0, β).

3 Themodified problem

Since the fact that I is not well defined on H1(R2), we use the perturbation technique (see
[36]) to overcome this difficulty by modifying Schrödinger–Newton systems. We state the
following modified problem

− �u + u − 1

α
(Gα(x) ∗ u2)u = f (u), x ∈ R

2, (3.1)

where α ∈ (0, 1) is a parameter and Gα(x) = |x |−α−1
α

, x �= 0. Its associated functional is

Iα(u) = 1

2
‖u‖2 − 1

4

∫
R2

(Gα(x) ∗ u2)u2dx −
∫
R2

F(u)dx, u ∈ H1(R2).

By virtue of the definition of Gα , it follows from the Hardy-Littleword-Sobolev inequality
that for any given α, the perturbation functional Iα is well-defined on H1(R2), of C1-class
and

I ′
α(u)v =

∫
R2

(∇u∇v + uv)dx −
∫
R2

(Gα(x) ∗ u2)uvdx −
∫
R2

f (u)vdx
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for u, v ∈ H1(R2). Since the conditions of Theorem 1.3 do not include the well-known 4-
Ambrosetti–Rabinowitz condition, the boundedness of the Palais–Smale sequence is not easy
to get. In order to overcome this difficulty, we add another perturbation technique developed
in [34, 35] to equation (3.1). We now give more details to describe such a technique. Set

λ ∈
(
0,min

{
1, 4

√
θ0

5π

})
, r ∈ (4,+∞).

Let us consider the following modified problem

− �u + u − (Gα(x) ∗ u2)u + λ

(∫
R2

u2dx

) 1
4

u = f (u) + λ|u|r−2u, u ∈ H1(R2). (3.2)

The associated functional with (3.2) is given by

Iα,λ(u) = 1

2
‖u‖2 − 1

4

∫
R2

(Gα(x) ∗ u2)u2dx + 2λ

5
‖u‖

5
2
2 −

∫
R2

F(u)dx − λ

r
‖u‖r

r .

It is not hard for fixed α > 0 to show that functional Iα,λ is well-defined on H1(R2), of
C1-class and

I ′
α,λ(u)v = I ′

α(u)v + λ‖u‖
1
2
2

∫
R2

uvdx − λ

∫
R2

|u|r−2uvdx

for u, v ∈ H1(R2). For any critical point u ∈ H1(R2) of Iα,λ, the following Pohozaev
identity holds

Pα,λ(u) := ‖u‖22+ 1

α
‖u‖42− 4 − α

4α
Q(u)+λ‖u‖

5
2
2 −2

∫
R2

(
F(u) + λ

r
|u|r

)
dx = 0, (3.3)

where Q(u) = ∫
R2

(
1

|x |α ∗ u2
)

u2dx .

Lemma 3.1 Suppose ( f0)–( f1) and ( f5)–( f7) hold, then
(i) there exist ρ, δ0 > 0 (independent of α, λ) such that Iα,λ|Sρ (u) ≥ δ0 for every u ∈ Sρ =
{u ∈ H1(R2) : ‖u‖ = ρ};
(ii) there is e ∈ H1(R2) (independent of α, λ) with ‖e‖ > ρ such that Iα,λ(e) < 0.

Proof (i) From ( f0)-( f1), we have for any ε > 0, there exists Cε > 0 such that

|F(t)| ≤ ε|t |2 + Cε|t |3(eθ0t2 − 1). (3.4)

Take u ∈ H1(R2) and ‖u‖2 < 2π/θ0. Obviously,
∫
R2 |∇u|2dx < 2π/θ0. So by Lemma 1.1,

one has ∫
R2

F(u)dx ≤ ε

∫
R2

|u|2dx + Cε

∫
R2

|u|3(eθ0u2 − 1)dx

≤ ε‖u‖2 + Cε

[∫
R2

(e2θ0u2 − 1)

]1/2
‖u‖36

≤ ε‖u‖2 + Cε‖u‖3.

(3.5)
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It follows from (3.5), Lemma 2.3, and Hardy–Littlewood–Sobolev’s inequality that

Iα,λ(u)

= 1

2
‖u‖2 − 1

4

∫
R2

∫
R2

|x − y|−α − 1

α
u2(y)u2(x)dydx

−
∫
R2

F(u)dx + 2λ

5
‖u‖

5
2
2 − λ

r
‖u‖r

r

≥ 1 − 2ε

2
‖u‖2 − 1

4

∫ ∫
|x−y|≤1

|x − y|−α − 1

α
u2(y)u2(x)dydx − Cε‖u‖3 − λ

r
‖u‖r

r

≥ 1 − 2ε

2
‖u‖2 − C

4
‖u‖4 − Cε‖u‖3 − C

1

r
‖u‖r .

(3.6)
Letting ε ∈ (0, 1

2 ) and ‖u‖ = ρ > 0 small enough, it is clear that there exists δ0 > 0 such
that Iα(u) ≥ δ0 for every u ∈ Sρ .
(ii) The proof is very similar to that of Lemma 3.3 in [36]. For the reader’s convenience,
we give the details. Take e0 ∈ C∞

0 (R2) such that e0(x) ≡ 1 for x ∈ B 1
8
(0), e0(x) ≡ 0 for

x ∈ R
2\B 1

4
(0) and |∇e0(x)| ≤ C . Note that

s−α − 1

α
≥ ln

1

s
, for s ∈ (0, 1].

It then follows from the definition of Iα,λ that for t > 0,

Iα,λ(te0)

≤ t2

2
‖e0‖2 + 2t5/2

5
‖u‖

5
2
2 − t4

4

∫
R2

∫
R2

|x − y|−α − 1

α
e20(y)e20(x)dydx −

∫
R2

F(te0)dx

≤ t2

2
‖e0‖2 − t4

4

∫
|x |≤ 1

4

∫
|y|≤ 1

4

|x − y|−α − 1

α
e20(y)e20(x)dydx

≤ t2

2
‖e0‖2 − t4

4

∫
|x |≤ 1

4

∫
|y|≤ 1

4

ln
1

|x − y|e20(y)e20(x)dydx

≤ t2

2
‖e0‖2 − t4 ln 2

4

(∫
R2

e20(x)dx

)2

,

(3.7)
which implies that there exists t0 > 0 large enough such that Iα,λ(t0e0) < 0. ��

Based on the mountain pass theorem without the Palais–Smale condition (see [43]), there
exists a (PS)cα,λ sequence {un} ⊂ H1(R2), that is,

Iα,λ(un) → cα,λ and I ′
α,λ(un) → 0. (3.8)

Here cα,λ is the mountain pass level characterized by

cα,λ = inf
γ∈�

max
t∈[0,1] Iα,λ(γ (t)) (3.9)

with

� := {γ ∈ C1([0, 1], H1(R2)) : γ (0) = 0 and Iα,λ(γ (1)) < 0}.
Remark 3.2 Observe from Lemma 3.1 that there exist two constants a, b > 0 independently
of α, λ such that a < cα,λ < b.
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Lemma 3.3 Let {un} ⊂ H1(R2) be a (PS)cα,λ sequence of Iα,λ for fixed α, λ ∈ (0, 1), then
{un} is bounded in H1(R2).

Proof Observe that there exists C1, C2 > 0 such that

C1 + C2‖un‖
≥ Iα,λ(un) − 1

4
I ′
α,λ(un)un

= 1

4
‖un‖2 + 3λ

20
‖un‖

5
2
2 +

∫
An∪{R2\An}

(
1

4
f (un)un − F(un)

)
dx + r − 4

4r
λ

∫
R2

|un |rdx

≥ 1

4
‖un‖2 + 3λ

20
‖un‖

5
2
2 −

∫
An

(
F(un) − 1

4
f (un)un

)
dx + r − 4

4r
λ

∫
R2

|un |rdx,

(3.10)
where An := {x | 1

4 f (un)un − F(un) ≤ 0}. Recalling ( f1) and ( f5), we can take t∗ =
max{t0, 4M0} so that there exists Ct∗ > 0 such that∫

An

(F(un) − 1

4
f (un)un)dx

=
∫

An∩{|un |≤4t∗}

(
F(un) − 1

4
f (un)un

)
dx +

∫
An∩{|un |≥4t∗}

(
F(un) − 1

4
f (un)un

)
dx

≤ Ct∗
∫

An∩{|un |≤4t∗}
u2

ndx +
∫

An∩{|un |≥4t∗}

(
M0 − 1

4
un

)
f (un)dx

≤ Ct∗‖un‖22.
(3.11)

Since for any large B1 > 0, there exists B2 > 0 such that 3
20‖un‖

5
2
2 ≥ B1‖un‖22 − B2. So

combining (3.10) and (3.11) we have

C1 + C2‖un‖ + λB2 ≥1

8
‖un‖2 +

∫
R2

[
(λB1 − Ct∗)|un |2 + r − 4

4r
λ|un |r

]
dx . (3.12)

We can obtain

(λB1 − Ct∗)t
2 + r − 4

4r
λtr ≥ 0

for t ≥ 0, by letting B1 can be chosen arbitrary large. Thus, it follows from (3.12) that
‖un‖ ≤ C for some C independently of n. ��

Let us define Moser type functions wn(x) supported in Bρ(0) as follows:

wn(x) = 1√
2π

⎧⎪⎨
⎪⎩

√
log n, 0 ≤ |x | ≤ ρ/n,

log(ρ/|x |)√
log n

, ρ/n ≤ |x | ≤ ρ,

0, |x | ≥ ρ,

where ρ is given in ( f6). An estimation yields

‖wn‖2 =
∫

Bρ(0)

(|∇wn |2 + w2
n

)
dx

= 1 + ρ2
(

1

4 log n
− 1

4n2 log n
− 1

2n2

)

=: 1 + ρ2δn,

(3.13)
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and

2λ

5
‖wn‖

5
2
2 = 2λ

5
ρ5/2

(
1

4 log n
− 1

4n2 log n
− 1

2n2

)5/4

= 2λ

5
ρ5/2δ

5/4
n . (3.14)

Moreover,

1

4

∫
R2

(Gα(x) ∗ w2
n)w2

ndx = 1

4

∫
R2

∫
R2

|x − y|−α − 1

α
w2

n(x)w2
n(y)dxdy

= 1

4

∫
Bρ(0)

∫
Bρ(0)

|x − y|−α − 1

α
w2

n(x)w2
n(y)dxdy

≥ 0.

(3.15)

Lemma 3.4 sup
α∈(0,1),λ∈(0,λ∗)

cα,λ < 2π
θ0

, where λ∗ := min

{
1, 4
√

θ0
5π

}
.

Proof Recalling ( f6), for

ε ∈
(
0, κ − 1

4ρ2
√

πθ0

)
, (3.16)

there exists tε > 0 such that,

t2F(t) ≥ (κ − ε)eθ0t2 , for t ≥ tε. (3.17)

We proceed the proof by considering three cases.

Case 1. t ∈
[
0,
√

2π
θ0

]
, then by (3.13)-(3.15), we have for large n

Iα,λ(twn)

≤ t2

2
‖wn‖2 − t4

4

∫
R2

∫
R2

|x − y|−α − 1

α
w2

n(y)w2
n(x)dydx −

∫
R2

F(twn)dx + 2

5
‖twn‖

5
2
2

≤ t2

2
‖wn‖2 + 2t

5
2

5
‖wn‖

5
2
2

≤ 2π

θ0

[
1

2
‖wn‖2 + 2

5

√
2π

θ0
‖wn‖

5
2
2

]

<
2π

θ0
.

(3.18)
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Case 2. t ∈
[√

5π
θ0

,+∞
)
. According to the definition of wn , we have for large n ∈ N,

twn(x) ≥ tε for x ∈ Bρ/n . From (3.13)–(3.17), we deduce that for large n,

Iα,λ(twn)

≤ t2

2
‖wn‖2 − t4

4

∫
R2

∫
R2

|x − y|−α − 1

α
w2

n(y)w2
n(x)dydx −

∫
R2

F(twn)dx + 2

5
‖twn‖

5
2
2

≤ t2

2
‖wn‖2 + 2t

5
2

5
‖wn‖

5
2
2 − 2π2(κ − ε)ρ2

n2t2 log n
e

θ0 t2 log n
2π

= 1 + δnρ2

2
t2 + 2

5
t
5
2 ρ

5
2 δ

5
4
n − 2π2(κ − ε)ρ2

n2t2 log n
e

θ0 t2 log n
2π

< t2 + 2

5
ρ

5
2 t

5
2 − 2π2(κ − ε)ρ2

n2t2 log n
e

θ0 t2 log n
2π .

(3.19)
Define

g(n) := 2π2(κ − ε)ρ2

n2t2 log n
e

θ0 t2 log n
2π = 2π2(κ − ε)ρ2

n2t2 log n
n

θ0
2π t2 ,

then

g(n) ≥ 2π2(κ − ε)ρ2

4t2 log 2
2

θ0
2π t2 (3.20)

for large n. It then follows from (3.19) and (3.20) that

Iα,λ(twn) < t2 + 2

5
ρ

5
2 t

5
2 − 2π2(κ − ε)ρ2

4t2 log 2
2

θ0
2π t2

→ −∞, as t → ∞,

(3.21)

which implies that

Iα,λ(twn) <
2π

θ0
. (3.22)

Case 3. t ∈
[√

2π
θ0

,

√
5π
θ0

]
. According to the definition of wn , we have for large n ∈ N,

twn(x) ≥ tε for x ∈ Bρ/n . Since λ ∈
(
0,min

{
1, 4
√

θ0
5π

})
, it then follows from (3.13)-(3.17)

that for large n

Iα,λ(twn)

≤ t2

2
‖wn‖2 − t4

4

∫
R2

∫
R2

|x − y|−α − 1

α
w2

n(y)w2
n(x)dydx −

∫
R2

F(twn)dx + 2λ

5
‖twn‖

5
2
2

<
t2

2
‖wn‖2 + 2λt

5
2

5
‖wn‖

5
2
2 − 2π2(κ − ε)ρ2

n2t2 log n
e

θ0 t2 log n
2π

<
t2

2
‖wn‖2 + 2λt

5
2

5
‖wn‖

5
2
2 − 2πθ0(κ − ε)ρ2

5n2 log n
e

θ0 t2 log n
2π

<
t2

2
‖wn‖2 + 2t2

5
‖wn‖

5
2
2 − 2πθ0(κ − ε)ρ2

5n2 log n
e

θ0 t2 log n
2π := ψn(t).

(3.23)
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Then there exists tn > 0 such that ψn(tn) = maxt>0 ψn(t) and

t2n = 4π

θ0

⎡
⎢⎢⎣1 +

log

(
1 + ρ2δn + 4

5ρ
5
2 δ

5
4
n

)
− log

(
2πθ0(κ − ε)ρ2

)+ 2 log
√

5π
θ0

2 log n

⎤
⎥⎥⎦ .

(3.24)

Obviously, we can easily see that tn ∈
[√

2π
θ0

,

√
5π
θ0

]
for large n. Then, by (3.23) and (3.24)

we have

ψn(t) ≤ψn(tn)

=
(
1

2
‖wn‖2 + 2

5
‖wn‖

5
2
2

)
t2n −

π

(
‖wn‖2 + 4

5‖wn‖
5
2
2

)

θ0 log n

=4π

θ0

(
1

2
+ ρ2δn

2
+ 2

5
ρ

5
2 δ

5
4
n

)
⎡
⎢⎢⎣1 +

log

(
1 + ρ2δn + 4

5ρ
5
2 δ

5
4
n

)

2 log n

−
log
(
2θ0(κ − ε)ρ2

√
5π
θ0

)
2 log n

− 1

2 log n

⎤
⎥⎦

≤4π

θ0

(
1

2
+ ρ2δn

2
+ 2

5
ρ

5
2 δ

5
4
n

)
⎡
⎢⎢⎣1 +

log

(
1 + ρ2δn + 4

5ρ
5
2 δ

5
4
n

)

2 log n
− 1

2 log n

⎤
⎥⎥⎦ ,

(3.25)

which, together with the definition of δn , implies that

ψn(t) ≤4π

θ0

[
1

2
+ ρ2

8 log n
+ o(1)

log n
− 1

4 log n

]

<
2π

θ0
, for n large.

(3.26)

Combining (3.18), (3.22) and (3.26), we have Iα,λ(twn) < 2π
θ0
. It follows from (3.21) that,

for fixed n large enough, there exists t0 > 0 such that Iα,λ(t0wn) < 0. Define γ (t) = t t0wn

for t ∈ [0, 1], then γ ∈ �. Therefore, the conclusion follows immediately. The proof is
complete. ��

In the following, we establish a critical exponential version of splitting lemma to the
Palais–Smale sequences of Iα,λ.

Lemma 3.5 Assume that {un} is a bounded (PS)cα,λ sequence of Iα,λ for fixed α and λ. Then
there exist B ∈ R and a number k ∈ N ∪ {0}, and a finite sequence

(u0, w
1, ..., wk) ⊂ H1(R2), w j > 0, for j = 1, ..., k (if k ≥ 1)
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of critical points for the following functional

JB,α,λ(u) :=1

2
‖u‖2 + B2

2α

∫
R2

u2dx + λB1/2

2

∫
R2

u2dx

−
∫
R2

F(u)dx − 1

4α

∫
R2

(
1

|x |α ∗ u2
)

u2dx − λ

r
‖u‖r

r .

and k sequences of points {y j
n } ⊂ R

2, 1 ≤ j ≤ k, such that

(i) |y j
n | → +∞, |y j

n − yi
n | → +∞ if i �= j, n → +∞,

(ii) ‖un‖2 = ‖u0‖2 +
k∑

j=1
‖w j‖2 + o(1),

(iii) cα,λ + B4

4α + B5/2λ
10 = JB,α,λ(u0) +

k∑
j=1

JB,α,λ(w
j ),

(iv) B2 = ‖u0‖22 +
k∑

j=1
‖w j‖22.

Otherwise, if k = 0, then un → u0 in H1(R2).

Proof Recall that {un} is a bounded sequence in H1(R2), then, up to subsequence, there exist
u0 ∈ H1(R2) and B ∈ R such that un⇀u0 weakly in H1(R2) and

∫
R2 |un |2dx → B2 as

n → ∞. According to Remark 3.2, it follows from (3.10) and (3.11) that there exists C1 > 0
such that ∫

Ãn

(
1

4
f (un)un − F(un)

)
dx ≤ C1, (3.27)

where Ãn := {x | 1
4 f (un)un − F(un) ≥ 0}. Let M > max{20M0, t0}, then from ( f5) and

(3.27), we conclude that

1

5

∫
|un |≥M

f (un)undx

≤
∫

|un |≥M

1

4
f (un)un − M0| f (un)|dx

≤
∫

|un |≥M

1

4
f (un)un − F(un)dx

≤
∫

Ãn

1

4
f (un)un − F(un)dx

< C1,

(3.28)

which implies by ( f1) that f (un)un is bounded in L1(R2). So we can infer that f (un) →
f (u0) in L1(BR(0)) for any R > 0 and then (see [24])

∫
R2

f (un)ϕdx →
∫
R2

f (u0)ϕdx, ϕ ∈ C∞
0 (R2). (3.29)

Then J ′
B,α,λ(u0) = 0 for any fixed α, λ. Observe that

Iα,λ(un) = JB,α,λ(un) − B4

4α
− B5/2λ

10
+ o(1),
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and so JB,α,λ(un) → cα,λ + B4

4α + B5/2λ
10 and J ′

B,α,λ(un) → 0 in H−1 as n → ∞. Moreover,

v1n⇀0 in H1(R2) if we define v1n := un − u0. It follows from the Brezis-Lieb lemma [10]
that

‖un‖2 = ‖v1n‖2 + ‖u0‖2 + o(1),∫
R2

(
1

|x |α ∗ u2
n

)
u2

ndx =
∫
R2

(
1

|x |α ∗ u2
0

)
u2
0dx +

∫
R2

(
1

|x |α ∗ (v1n)2
)

(v1n)2dx + o(1),

(3.30)
where the second identity can be proved similarly as that of Lemma 2.2 in [25] and we omit
it. Using ( f0) and ( f5), we can also verify

∫
R2

F(un)dx =
∫
R2

F(u0)dx +
∫
R2

F(v1n)dx + o(1). (3.31)

Combining (3.31) with (3.30), we immediately get

JB,α,λ(un) − JB,α,λ(u0)

= 1

2
‖v1n‖2 + B2

2α

∫
R2

|v1n |2dx + λB1/2

2

∫
R2

|v1n |2dx,

−
∫
R2

(
1

|x |α ∗ (v1n)2
)

(v1n)2dx − λ

r
‖v1n‖r

r −
∫
R2

F(v1n)dx + o(1)

= JB,α,λ(v
1
n) + o(1).

(3.32)

Recalling J ′
B,α,λ(u0) = 0 whose corresponding Pohozaev identity is

PB,α,λ(u0) :=
(
1 + B2

α
+ λB1/2

)
‖u0‖22 − 4 − α

4α

∫
R2

(
1

|x |α ∗ (u0)
2
)

(u0)
2dx

−2
∫
R2

(
F(u0) + λ

r
|u0|r

)
dx = 0,

we can define

BB,α,λ(u0) := 2J ′
B,α,λ(u0)u0 − PB,α,λ(u0)

= 2‖∇u0‖22 +
(
1 + B2

α
+ λB1/2

)
‖u0‖22 − 4 + α

4α

∫
R2

(
1

|x |α ∗ u2
0

)
u2
0dx

− (2 − 2

r
)λ‖u0‖r

r + 2
∫
R2

[F(u0) − f (u0)u0]dx = 0,

which yields that

4JB,α,λ(u0) = 4JB,α,λ(u0) − BB,α,λ(u0)

=
(
1 + B2

α
+ λB1/2

)
‖u0‖22 + 1

4

∫
R2

(
1

|x |α ∗ u2
0

)
u2
0dx

+ 2
∫
R2

[ f (u0)u0 − 3F(u0)]dx +
(
2 − 6

r

)
λ‖u0‖r

r .

(3.33)

Consider sequence {v1n}. We claim that either

(v1) v1n → 0 in H1(R2) as n → ∞, or
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(v2) there exist m > 0 and {y1n } ⊂ R
2 such that

lim inf
n→∞

∫
B1(y1n )

|v1n |2dx ≥ m > 0. (3.34)

If (3.34) does not occur, then by Lions’ vanishing lemma (see [30, 31]), we have v1n →
0 in Ls(R2) for all s > 2. And so, using the Hardy–Littlewood–Sobolev inequality, we
have

∫
R2

( 1
|x |α ∗ (v1n)2

)
(v1n)2dx = o(1). Moreover, arguing similarly as in [24], we have∫

R2 F(v1n)dx = o(1). Here we consider two cases:
Case 1. u0 ≡ 0. That is, v1n ≡ un . Combining (3.32) with (3.33) we have

JB,α,λ(un) =1

2
‖un‖2 + B2

2α

∫
R2

|un |2dx + λB1/2

2

∫
R2

|un |2dx + o(1)

≥1

2
‖un‖2 + B4

2α
+ λB5/2

2
+ o(1),

(3.35)

which implies by cα,λ < 2π
θ0

that supn∈N ‖un‖2 < 4π
θ0
. Then there exists ε0 > 0 small such

that

‖un‖2 <
4π

θ0
(1 − 5ε0), (3.36)

and then there exists s ∈ (1, 2) such that

(1 + ε0)(1 − 5ε0)s < 1.

For any ξ > 0, there exists Cξ > 0 such that

| f (t)|s ≤ ξ |t | + Cξ [eθ0(1+ε0)t2 − 1], t ≥ 0. (3.37)

From Lemma 1.1, (3.36) and (3.37), Hölder’s inequality, we deduce that

∫
R2

f (un)undx ≤ ξ‖un‖2 + Cξ

(∫
R2

| f (un)|sdx

)1/s

‖un‖s′

≤ ξ‖un‖2 + Cξ

(∫
R2

[eθ0(1+ε0)s|un |2 − 1]dx

)1/s

‖un‖s′

≤ ξ‖un‖2 + Cξ

(∫
R2

[e‖un‖2θ0(1+ε0)s
|un |2
‖un‖2 − 1]dx

)1/s

‖un‖s′

≤ ξ‖un‖2 + Cξ‖un‖s′ = o(1).

(3.38)

Here, s′ = s
s−1 ∈ (2,+∞). Thus,

lim
n→∞

∫
R2

f (un)undx = 0. (3.39)

From J ′
α,B,λ(un)un = o(1), we deduce that un → 0 in H1(R2) which contradicts the fact

that

JB,α,λ(un) → cα,λ + B4

4α
+ B5/2λ

10

as n → ∞. Thus (v2) holds true for {v1n}.
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Case 2. u0 �≡ 0. That is, ‖u0‖ > 0. In order to prove that (v1) holds for {v1n}, and Lemma
3.5 holds with k = 0, we only need to show that

‖un‖2 → ‖u0‖2 as n → ∞. (3.40)

Indeed, by Fatou’s lemma, we have

Iα,λ(u0) =1

2
‖u0‖2 + 1

4α
‖u0‖22 + 2λ

5
‖u0‖42

− 1

4α

∫
R2

(
1

|x |α ∗ (u0)
2
)

(u0)
2dx −

∫
R2

(F(u0) + λ

r
|u0|r )dx

≤ lim inf
n→∞

(
1

2
‖un‖2 + 1

4α
‖un‖22 + 2λ

5
‖un‖42

− 1

4α

∫
R2

(
1

|x |α ∗ (un)2
)

(un)2dx −
∫
R2

(
F(un) + λ

r
|un |r

)
dx

)

= lim inf
n→∞ Iα,λ(un) = cα,λ.

(3.41)

If Iα,λ(u0) = cα,λ, by (3.41)we obtain immediately (3.40) holds true.Otherwise if Iα,λ(u0) <

cα,λ, then we have

‖u0‖2 + 1

2α
‖u0‖42 + 4λ

5
‖u0‖52

< 2cα,λ + 2
∫
R2

F(u0)dx + 1

2α

∫
R2

(
1

|x |α ∗ u2
0

)
u2
0dx + 2λ

r
‖u0‖r

r .

(3.42)

In view of the definition of Iα,λ, we also have

lim
n→∞

(
‖un‖2 + 1

2α
‖un‖42 + 4λ

5
‖un‖52

)

= 2cα,λ + 2
∫
R2

F(u0)dx + 1

2α

∫
R2

(
1

|x |α ∗ u2
0

)
u2
0dx + 2λ

r
‖u0‖r .

(3.43)

Take

wn = un(‖un‖2 + 1
2α ‖un‖42 + 4λ

5 ‖un‖52
)1/2

and

w0 = u0√
2cα,λ + 2

∫
R2 F(u0)dx + 1

2α

∫
R2

(
1

|x |α ∗ u2
0

)
u2
0dx + 2λ

r ‖u0‖r
r

.

It then follows from (3.42) and (3.43) that ‖wn‖ ≤ 1, wn⇀w0, and ‖w0‖ < 1. Similarly to
Lions [32], one has that

sup
n∈N

(∫
R2

e4π pw2
n − 1

)
dx < ∞ (3.44)

for all

p < p̄ := 1

A − ‖w0‖2 = 2
cα,λ + ∫

R2 F(u0)dx + 1
4α

∫
R2

(
1

|x |α ∗ u2
0

)
u2
0dx + λ

r ‖u0‖r

‖un‖2 − ‖u0‖2 + o(1),
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where A = limn→∞ ‖wn‖2. Recalling (3.32) with (3.33), we have

cα,λ + B4

4α
+ B5/2λ

10
= JB,α,λ(un) + o(1)

= JB,α,λ(u0) + 1

2
‖v1n‖2 + B2

2α

∫
R2

|v1n |2dx + λB1/2

2

∫
R2

|v1n |2dx + o(1)

≥ 1

4

(
B2

α
+ λB1/2

)
‖u0‖22 + 1

2
‖v1n‖2 + B2

2α

∫
R2

|v1n |2dx + λB1/2

2

∫
R2

|v1n |2dx + o(1)

≥ 1

4

(
B2

α
+ λB1/2

)
‖un‖22 + 1

2
‖v1n‖2 + o(1),

= 1

4

(
B4

α
+ λB5/2

)
+ 1

2
‖v1n‖2 + o(1),

(3.45)
which implies by cα,λ < 2π

θ0
that supn∈N ‖v1n‖2 < 4π

θ0
. And so,

θ0

2π
<

2

D − ‖u0‖2 = lim
n→∞

2

‖v1n‖2 ,

where D = limn→∞ ‖un‖2. Then recalling (3.43), we can always choose q > 1 sufficiently
close to 1 and ε > 0 small such that

q(θ0 + ε)

(
‖un‖2 + 1

2α
‖un‖42 + 4λ

5
‖un‖52

)

≤ 4π p < 4π
1

A − ‖w0‖2

= 8π
cα,λ + ∫

R2 F(u0)dx + 1
4α

∫
R2

(
1

|x |α ∗ u2
0

)
u2
0dx + λ

r ‖u0‖r

‖un‖2 − ‖u0‖2 + o(1)

for some p satisfying (3.44). Based on the above facts, using condition ( f0), we have∫
R2

| f (un)|qdx ≤ C‖un‖q
q + C

∫
R2

[
e

q(θ0+ε)
(
‖un‖2+ 1

2α ‖un‖42+ 4λ
5 ‖un‖52

)
w2

n − 1

]
dx < C

for some C > 0 independently of n. In virtue of the above facts and (3.29), we have∣∣∣∣
∫
R2

f (un)un − f (u0)u0dx

∣∣∣∣
=
∣∣∣∣
∫
R2

f (un)(un − u0) − ( f (un) − f (u0))u0dx

∣∣∣∣
≤
(∫

R2
| f (un)|qdx

) 1
q
(∫

R2
|un − u0|

q
q−1 dx

) q−1
q +

∣∣∣∣
∫
R2

( f (un) − f (u0))u0dx

∣∣∣∣
→ 0, as n → ∞.

By the fact that (J ′
B,α,λ(un) − J ′

B,α,λ(u0))(un − u0) = o(1), we have ‖un − u0‖ = o(1),

which implies that Iα,λ(u0) = cα,λ. This is a contradiction. Hence, ‖v1n‖ → 0 and (v1) holds
for {v1n}, Lemma 3.5 holds with k = 0.

If (v2) holds, namely, (3.34) is true, then there exists w1 ∈ H1(R2) \ {0} such that
v1n(· + y1n )⇀w1 in H1(R2) and un(· + y1n )⇀w1 in H1(R2). Recalling the fact that v1n⇀0
in H1(R2), we find that {y1n } must be unbounded. That is, |y1n | → +∞. Let us now show
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that J ′
B,α,λ(w

1) = 0. Indeed, it suffices to show that J ′
B,α,λ(un(· + y1n ))ϕ → 0 for fixed

ϕ ∈ C∞
0 (R2). Since J ′

B,α,λ(un) → 0 in H−1 as n → ∞, and then J ′
B,α,λ(un)ϕ(· − y1n ) → 0

for any ϕ ∈ C∞
0 (R2). Thus, it follows that as n → ∞,

J ′
B,α,λ(un(· + y1n ))ϕ

=
∫
R2

[∇un(x + y1n)∇ϕ + un(x + y1n )ϕ]dx +
(

B2

α
+ λB1/2

)∫
R2

un(x + y1n)ϕdx

− 1

α

∫
R2

(
1

|x + y1n |α ∗ u2
n

)
un(x + y1n )ϕdx − λ

∫
R2

|un(· + y1n )|r−2un(· + y1n )ϕdx

−
∫
R2

f (un(· + y1n))ϕdx → 0.

So, J ′
B,α,λ(w

1) = 0. Set

v2n(x) = v1n(x) − w1(x − y1n ), (3.46)

then using the fact that v1n(· + y1n)⇀w1 in H1(R2), we have v2n⇀0 in H1(R2). Using again
the Brezis-Lieb lemma that

‖un‖2 = ‖w1‖2 + ‖u0‖2 + ‖v2n‖2 + o(1),∫
R2

(
1

|x |α ∗ u2
n

)
u2

ndx =
∫
R2

(
1

|x |α ∗ u2
0

)
u2
0dx +

∫
R2

(
1

|x |α ∗ (w1)2
)

(w1)2dx

+
∫
R2

(
1

|x |α ∗ (v2n)2
)

(v2n)2dx + o(1),
∫
R2

F(un)dx =
∫
R2

F(u0)dx +
∫
R2

F(w1)dx +
∫
R2

F(v2n)dx + o(1).

(3.47)
By virtue of the above estimates, we deduce that

JB,α,λ(v
2
n) = JB,α,λ(un) − JB,α,λ(u0) − JB,α,λ(w

1) + o(1). (3.48)

Let us now study {v2n}. Since {v2n} is bounded in H1(R2), one of (v1) and (v2) holds for
{v2n}. The similar arguments used before imply that Lemma 3.5 holds with k = 1 if v2n → 0
in H1(R2). Otherwise, (v2) holds for {v2n}. We repeat the arguments above. Iterating this

procedure, there exists sequence {y j
n } ⊂ R

2 such that |y j
n | → +∞, |y j

n − yi
n | → +∞ if

i �= j as n → +∞ and v
j
n = v

j−1
n − w j−1(x − y j−1

n ) (like (3.46)) with j ≥ 2 such that

v
j
n⇀0 in H1(R2), J ′

B,α,λ(w
j ) = 0.

Moreover, by the properties of the weak convergence, we get

(a) ‖un‖2 − ‖u0‖2 −
j−1∑
i=1

‖wi‖2 = ‖un − u0 −
j∑

i=1

wi (· − yi
n)‖2 + o(1),

(b) cα,λ + B4

4α
= Jα,B,λ(u0) +

j−1∑
i=1

Jα,B,λ(w
i ) + Jα,B,λ(v

j
n ) + o(1),

(c) B2 = ‖u0‖22 +
j−1∑
i=1

‖wi‖22 + ‖v j+1
n ‖22 + o(1).

(3.49)

123



A planar Schrödinger–Newton system with Trudinger–Moser… Page 21 of 31   122 

Now, we claim that there exists C > 0 such that ‖wi‖2 ≥ C , i = 1, 2, ..., k. Without loss of
generality, we can assume that ‖wi‖2 < 2π

θ0
for some i . Using (3.4), (3.5), J ′

B,α,λ(w
i )wi = 0,

the Hardy–Littlewood–Sobolev inequality, the Moser-Trudinger inequality and Lemma 2.3,
one finds that for any ε > 0, there exists Cε > 0 such that

‖wi‖2 ≤
∫ ∫

|x−y|≤1

|x − y|−α − 1

α
|wi (x)|2|wi (y)|2dxdy + C‖wi‖3 + C‖wi‖r

r

≤
∫
R2

∫
R2

|wi (x)|2|wi (y)|2
|x − y| dxdy + C‖wi‖3 + C‖wi‖r

≤ C‖wi‖4 + C‖wi‖3 + C‖wi‖r .

Hence, the claim is true. Recall that {un} is bounded in H1(R2), from (3.49)(a) we deduce
that the iteration must stop at some finite index k. And so vk+1

n → 0 in H1(R2) as n → ∞.
The proof is complete. ��

If u ∈ H1(R2) is a critical point of Iα,λ, we have

Bα,λ(u) :=2‖∇u‖22 + ‖u‖22 + 1

α
‖u‖42 + λ‖u‖5/22 − 4 + α

4α

∫
R2

(
1

|x |α ∗ u2
)

u2dx

+ 2
∫
R2

[F(u) − f (u)u]dx −
(
2 − 2

r

)
λ‖u‖r

r = 0,

since Bα,λ(u) = 2I ′
α,λ(u)u − Pα,λ(u). Here, Pα,λ(u) is the associated Pohozaev functional

with I ′
α,λ(u) = 0.

Lemma 3.6 If u ∈ H1(R2) \ {0} satisfies Bα,λ(u) = 0, then there exists γ ∈
C([0, 1], H1(R2)) such that γ (0) = 0, Iα,λ(γ (1)) < 0, u ∈ γ ([0, 1]), 0 /∈ γ ((0, 1]) and

max
t∈[0,1] Iα,λ(γ (t)) = Iα,λ(u).

Proof For t ∈ (0,∞), define ut := t2u(t ·), then we have

g(t) := Iα,λ(ut ) = t4

2
‖∇u‖22 + t2

2
‖u‖22 + t4

4α
‖u‖42 − t4+α

4α

∫
R2

(
1

|x |α ∗ u2
)

u2dx

+ 2λ

5
t5/2‖u‖5/22 − λt2(r−1)

r
‖u‖r

r − t−2
∫
R2

F(t2u)dx,

which implies that for t > 0 large enough

Iα,λ(ut ) < 0.

That is, there exists t0 > 1 such that Iα,λ(ut0) < 0. Take γ (t) := t2t20u(t t0·) for t ∈ (0, 1]
and γ (0) := 0. Then γ ∈ C([0, 1], H1(R2)) and u ∈ γ ([0, 1]). Moreover,

g′(t) =t3
[
2‖∇u‖22 + 1

t2
‖u‖22 + 1

α
‖u‖42 − (4 + α)tα

4α

∫
R2

(
1

|x |α ∗ u2
)

u2dx

+ λt
−3
2 ‖u‖5/22 − 2λ(r − 1)t2(r−3)

r
‖u‖r

r − 2
∫
R2

f (t2u)t2u − F(t2u)

t6u3 u3dx

]
,

which implies by ( f7) that t = 1/t0 is the uniquemaximum point of t 
→ Iα,λ(γ (t)). Namely,
max

t∈[0,1] Iα,λ(γ (t)) = Iα,λ(u). The proof is complete. ��
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Lemma 3.7 Let {un} ⊂ H1(R2) be a (PS)cα,λ sequence of Iα,λ for fixed α, λ, then there exists
u0 ∈ H1(R2)\{0} such that I ′

α,λ(u0) = 0.

Proof In view of Lemma 3.3, we know that ‖un‖ ≤ C for some C (independent of n). So
there is u0 ∈ H1(R2) such that un⇀u0 weakly in H1(R2). There also exists B ∈ R such
that

‖un‖22 → B2, as n → ∞, (3.50)

from which we deduce that J ′
B,α,λ(un) → 0 in H−1 and J ′

B,α,λ(u0) = 0. In view of Lemma

3.5, for each nontrivial critical point w j ( j = 1, ..., k) of JB,α,λ, we have

BB,α,λ(w
j ) =2J ′

B,α,λ(w
j )w j − PB,α,λ(w

j )

=2‖∇w j‖22 +
(
1 + B2

α
+ λB1/2

)
‖w j‖22 − 4 + α

4α

∫
R2

(
1

|x |α ∗ (w j )2
)

(w j )2dx

−
(
2 − 2

r

)
λ‖w j‖r

r + 2
∫
R2

[F(w j ) − f (w j )w j ]dx = 0.

(3.51)
Observe from (3.51) that

2‖∇w j ‖22 + ‖w j ‖22 + 1

α
‖w j ‖42 + λ‖w j ‖5/22

≤ 4 + α

4α

∫
R2

(
1

|x |α ∗ (w j )2
)

(w j )2dx +
(
2 − 2

r

)
λ‖w j ‖r

r + 2
∫
R2

[ f (w j )w j − F(w j )]dx .

(3.52)
From (3.52) and ( f7) we deduce that there exists t j ∈ (0, 1] such that

2t4j ‖∇w j‖22 + t2j ‖w j‖22 + t4j
1

α
‖w j‖42 + λt5/2j ‖w j‖5/22

= 4 + α

4α
t4+α

j

∫
R2

(
1

|x |α ∗ |w j |2
)

|w j |2dx +
(
2 − 2

r

)
λt2(r−1)

j ‖w j‖r
r

+ 2t−2
j

∫
R2

[ f (t2j w
j )t2j w

j − F(t2j w
j )]dx,

(3.53)

which implies Bα,λ(w
j
t j
) = 0, w j

t j
(x) := t2j w

j (t j x). Then it follows from Lemma 3.6 that

there exists γ ∈ C([0, 1], H1(R2)) such that γ (0) = 0, Iα,λ(γ (1)) < 0, w j
t j

∈ γ ([0, 1]), 0 /∈
γ ((0, 1]) and

max
t∈[0,1] Iα,λ(γ (t)) = Iα,λ(w

j
t j
).
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As a result, a direct calculation from (3.53) yields

JB,α,λ(w
j ) =JB,α,λ(w

j ) − 1

4
BB,α,λ(w

j )

=1

4

(
1 + B2

α
+ λB1/2

)
‖w j‖22 + 1

16

∫
R2

(
1

|x |α ∗ (w j )2
)

(w j )2dx

+ 1

2

(
1 − 3

r

)
λ‖w j‖r

r + 1

2

∫
R2

[ f (w j )w j − 3F(w j )]dx

≥1

4
‖w j

t j
‖22 + 3λ

20
‖w j

t j
‖5/22 + 1

16

∫
R2

(
1

|x |α ∗ (w
j
t j
)2
)

(w
j
t j
)2dx

+ 1

2

(
1 − 3

r

)
λ‖w j

t j
‖r

r

+ 1

2

∫
R2

[ f (w
j
t j
)w

j
t j

− 3F(w
j
t j
)]dx + B2

4α
‖w j‖22 + λB1/2

10
‖w j‖22

=Iα,λ(w
j
t j
) − 1

4
Bα,λ(w

j
t j
) +

(
B2

4α
+ λB1/2

10

)
‖w j‖22

≥cα,λ +
(

B2

4α
+ λB1/2

10

)
‖w j‖22.

(3.54)

Then from Lemma 3.5 and (3.33), we conclude that

cα,λ + B4

4α
+ B5/2λ

10

= JB,α,λ(u0) +
k∑

j=1

JB,α,λ(w
j )

≥ kcα,λ + B2

4α

∫
R2

|u0|2dx + λB1/2

10
‖u0‖22 +

(
B2

4α
+ λB1/2

10

) k∑
j=1

∫
R2

|w j |2dx

≥ kcα,λ + B4

4α
+ B5/2λ

10
,

(3.55)

where w j �= 0 for j = 1, ..., k. Observe that k > 1 is impossible.

Thus, k = 0, we are done. Then it follows that JB,α,λ(u0) = Iα(u0) + B4

4α + B5/2λ
10 and

un → u0 strongly in H1(R2). Assume k = 1 and u0 �= 0, then the first inequality in (3.55)
strictly holds. This yields a contradiction. If k = 1 and u0 = 0, then by conclusion (iii) of
Lemma 3.5, we get B = ‖w1‖22 and I ′

α,λ(w
1) = 0 in H1(R2). The proof is complete. ��

4 Proof of Theorem 1.3

In view of Lemma 3.1 and 3.7, there is at least a mountain pass type critical point uα,λ of
Iα,λ with Iα,λ(uα,λ) = cα,λ. That is, uα,λ ∈ H1(R2) is a weak positive solution of equation
(3.2).

Choosing a sequence {λn} ⊂ (0, 1] satisfying λn → 0+, we find a sequence of nontrivial
critical points {uλn }(still denoted by {un}) of Iα,λn with Iα,λn (un) = cα,λn . We state the
following lemma to ensure that un converges strongly to some u ∈ H1(R2).
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Lemma 4.1 For fixed α ∈ (0, 1), sequence {un} is bounded in H1(R2).

Proof Multiplying Iα,λn (un), I ′
α,λn

(un)un = 0 and Pα,λn (un) = 0 by 1,−1/2 and 1/4 respec-
tively and adding them up, we get

Iα,λn (un) =1

4

∫
R2

u2
ndx + 1

16
Q(un) + 3λn

20
‖un‖

5
2
2

+ 1

2

∫
R2

[ f (un)un − 3F(un)]dx + (r − 3)λn

2r

∫
R2

|un |rdx,

(4.1)

which implies by Remark 1.2 that {un} is bounded in L2(R2) uniformly for α, n. Moreover,
from (4.1), we have

∫
R2 f (un)undx ≤ C + 3

∫
R2 F(un)dx . Let M > max{4M0, t0}, then

from ( f1) and ( f5), we conclude that∫
R2

f (un)undx ≤ C + 3
∫
R2

F(un)dx

≤ C + 3
∫

{|un |≤M}
F(un)dx + 3

∫
{|un |≥M}

M0 f (un)dx

≤ C + 3C
∫

{|un |≤M}
|un |2dx + 3

∫
{|un |≥M}

1

4
f (un)undx,

(4.2)

which implies that { f (un)un} and {F(un)} are bounded in L1(R2). For t > 0, letting
unt (x) := t2un(t x), we deduce that

Iα,λn (un) − Iα,λn (t
2unt )

= 1 − t4

2
‖∇un‖22 + 1 − t2

2

∫
R2

u2
ndx + λn

2(1 − t5/2)

5
‖un‖5/22

+ 1 − t4

4α
‖un‖42 + 1 − t4(1+α)

4α
Q(un)

+
∫
R2

[
F(t2un)

t2
− F(un)

]
dx − (1 − t2(r−1))λn

r
‖un‖r

r

= 1 − t4

4
[2I ′

α,λn
(un)un − Pα,λn (un)] +

(
3

20
+ t4

4
− 2t5/2

5

)
λn‖un‖5/22

+ (1 − t2)2

4

∫
R2

u2
ndx + 8 + α − 4t4(1+α) − (4 + α)t4

16α
Q(un)

+
∫
R2

[
1 − t4

2
f (un)un + t4 − 3

2
F(un) + 1

t2
F(t2un)

]
dx

+
[

(r − 1)(1 − t4)

2r
− (1 − t2(r−1))

r

]
λn‖un‖r

r .

(4.3)

We now show that {‖∇un‖2} is bounded. By contradiction, suppose that ‖∇un‖2 → ∞.
Take tn = (

√
M/‖∇un‖2)1/2 for some M > 0 large, then tn → 0. Letting t = tn in (4.3),

since {un} is bounded in L2(R2), we have

Iα,λn (un) − Iα,λn (t
2
n untn )

= 1

4

∫
R2

u2
ndx + 8 + α

16α
Q(un) +

∫
R2

[
1

2
f (un)un − 3

2
F(un) + 1

t2n
F(t2n un)

]
dx,

+ r − 3

2r
λn‖un‖r

r + o(1).

(4.4)
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Therefore, it follows from (4.4), Lemma 2.3, the Hardy–Littlewood–Sobolev inequality, and
the Gagliardo-Nirenberg inequality that

cα,λn ≥Iα,λn (t
2
n untn ) + 1

t2n

∫
R2

F(t2n un)dx + o(1)

= t4n
2

‖∇un‖22 + t4n
4α

‖un‖42 − t4+α
n

4α
Q(un)

+ t2n
2

∫
R2

u2
ndx + λn

2t5/2n

5
‖un‖5/22 − t2r−2

n

r
λn‖un‖r

r + o(1)

≥ t4n
2

‖∇un‖22 + t4n
4α

‖un‖42 − t4n
4α

Q(un) + o(1)

≥ t4n
2

‖∇un‖22 − t4n
4

∫ ∫
|x−y|≤1

|x − y|−α − 1

α
u2

n(x)u2
n(y)dxdy + o(1)

≥ M

2
− t4n C

4
‖un‖32‖∇un‖2 + o(1)

≥ M

2
+ o(1),

(4.5)

fromwhich we obtain a contradiction by letting M > 0 large enough. Hence, {un} is bounded
in H1(R2). ��
Remark 4.2 Observe from Lemma 4.1 that {un} is bounded not only uniformly for n, but also
uniformly for α.

Let us assume that cα,λn → cα as n → ∞, then Iα,λn (un) → cα and I ′
α,λn

(un) → 0 in

H−1. It is easy to see from Lemma 3.4 that cα < 2π
θ0
. From Lemma 4.1, we know that {un} is

bounded in H1(R2). Now we take advantage of Lemma 4.1 to get the profile decomposition
of {un}. Thus, arguing similarly as in the proof of Lemma 3.5, we have the following lemma.

Lemma 4.3 Assume that {un} is a bounded critical point sequence of Iα,λn with energy level
cα for fixed α ∈ (0, 1). Then there exist B̃ ∈ R and a number k ∈ N ∪ {0}, and a finite
sequence

(u0, w̃
1, ..., w̃k) ⊂ H1(R2), w̃ j > 0, for j = 1, ..., k (if k ≥ 1)

of critical points for the following functional

JB̃,α
(u) :=1

2
‖u‖2 + B̃2

2α

∫
R2

|un |2dx − 1

4α

∫
R2

(
1

|x |α ∗ u2
)

u2dx −
∫
R2

F(u)dx

(4.6)
and k sequences of points {ỹ j

n } ⊂ R
3, 1 ≤ j ≤ k, such that

(i) |ỹ j
n | → +∞, |ỹ j

n − ỹi
n | → +∞ if i �= j, n → +∞,

(ii) ‖un − u0 −
k∑

j=1
w̃ j (· − y j

n )‖ → 0, cα + B̃4

4α = JB̃,α
(u0) +

k∑
j=1

JB̃,α
(w j ),

(iii) B̃2 = ‖u0‖22 +
k∑

j=1
‖w̃ j‖22.

Otherwise, if k = 0, then un → u0 in H1(R2).
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Based on Lemma 4.3, we use the similar arguments as Lemma 3.7 to obtain un → uα

in H1(R2) as n → ∞. Moreover, I ′
α(uα) = 0 and Iα(uα) = cα , namely uα is a nontrivial

critical point of Iα . Although we observe from Remark 4.2 that ‖uα‖ is uniformly bounded
forα, it seems difficult tomake use ofMoser’s iteration arguments to prove that uα is bounded
in L∞(R2) uniformly for α, since nonlinearity f is of critical exponential growth in the sense
of Trudinger–Moser. More precisely, the following estimate:

sup
α∈(0,1)

‖∇uα‖22 <
4π

θ0

is not easy to get, so it seems difficult to use the Trudinger–Moser inequality to state a uniform
estimate of f (uα) as α → 0+. For fixed α ∈ (0, 1), arguing as Lemma 3.7 of [36], we can
also obtain that there exist Cα, cα such that

uα(x) ≤ Cα exp (−cα|x |) for x ∈ R
2.

Thus, arguing similarly as Theorem 4.1 in [36], there exists α1 ∈ (0, 1) such that for α ∈
(0, α1), uα is radially symmetric up to translation and strictly decreasing in the distance from
the symmetry center.

We now state exponential decay estimate of uα at infinity uniformly for α.

Lemma 4.4 There exist R, C > 0 (independent of α) such that

uα(x) ≤ C exp

(
−1

2
|x |
)

for |x | ≥ R.

Proof Since uα is a positive function, by equation (3.1) and Lemma 2.3 we obtain

−�uα + uα ≤
∫

|x−y|≤1

|x − y|−α − 1

α
u2

α(y)dyuα(x) + f (uα)

≤ C
∫

|x−y|≤1

u2
α(y)dy

|x − y| uα(x) + f (uα).

(4.7)

Using the similar arguments as Lemma 2.3 in [36], we have
∫

|x−y|≤1

u2
α(y)

|x − y|dy → 0, as |x | → +∞,

uniformly for α ∈ (0, α1), which implies that there exists R1 > 0 such that for |x | ≥ R1∫
|x−y|≤1

u2
α(y)

|x − y|dy ≤ 1

4C
. (4.8)

By recalling Radial Lemma A.IV in [8], there exists C > 0 independent of α such that

|uα(x)| ≤ C |x |−1‖uα‖ ≤ C |x |−1,

which implies that

lim|x |→∞ |uα(x)| = 0 uniformly for α ∈ (0, α1).

Thus, using assumption ( f1), we deduce that there exists R2 > 0 such that

f (uα) ≤ 1

4
uα, |x | ≥ R2. (4.9)
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Combining (4.7)-(4.9), let R = max{R1, R2}, then

−�uα + 1

4
uα ≤ 0, |x | ≥ R. (4.10)

It follows from (4.10) and a comparison principle, there exists constant M ≥ C
R eR/2 such

that

uα(x) ≤ M exp

(
−1

2
|x |
)

for |x | ≥ R.

Here R, M are independent of α. The proof is complete. ��

Up to a subsequence, we assume

uα⇀u0 in H1(R2),

uα → u0 a.e. in R
2,

uα → u0 in Ls(R2) for s ∈ (2,+∞)

as α → 0+. For any ϕ ∈ C∞
0 (R2), we have

I ′
α(uα)ϕ =

∫
R2

∇uα∇ϕdx +
∫
R2

uαϕdx −
∫
R2

∫
R2

|x − y|−α − 1

α
u2

α(y)dyuα(x)ϕdx

−
∫
R2

f (uα)ϕdx .

(4.11)
Similarly to (3.29), we have

∫
R2

f (uα)ϕdx →
∫
R2

f (u0)ϕdx, as α → 0+. (4.12)

Then it follows from Lemma 2.3 that for any fixed ϕ ∈ C∞
0 (R2), we have

∣∣∣∣ |x − y|−α − 1

α
1|x−y|≤1u2

α(y)uα(x)ϕ(x)

∣∣∣∣ ≤
∣∣∣∣ 1

|x − y|u2
α(y)uα(x)ϕ(x)

∣∣∣∣ := hα(x, y).

(4.13)
Since {hα} has a strongly convergent subsequence in L1(R4), we use the Lebesgue dominated
convergence theorem to (4.13) to get

∫ ∫
|x−y|≤1

|x − y|−α − 1

α
u2

α(y)dyuα(x)ϕ(x)dx →

−
∫ ∫

|x−y|≤1
ln(|x − y|)u2

0(y)dyu0(x)ϕ(x)dx . (4.14)

Similarly to the proof of Theorem 1.2 in [36], by Lemma 4.4 and the Lebesgue dominated
convergence theorem, one has

∫ ∫
|x−y|≥1

|x − y|−α − 1

α
u2

α(y)dyuα(x)ϕ(x)dx →

−
∫ ∫

|x−y|≥1
ln |x − y|u2

0(y)dyu0(x)ϕ(x)dx . (4.15)
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Moreover, by Fatou’s lemma, we have∣∣∣∣
∫
R2

∫
R2

ln |x − y|u2
0(y)dyu2

0(x)dx

∣∣∣∣
≤ lim inf

α→0

(∫ ∫
|x−y|≤1

Gα(x − y)u2
α(y)dyu2

α(x)dx −
∫ ∫

|x−y|≥1
Gα(x − y)u2

α(y)dyu2
α(x)dx

)
.

(4.16)
Using Hardy–Littlewood–Sobolev’s inequality and Lemma 2.3, we have∫ ∫

|x−y|≤1
Gα(x − y)u2

α(y)dyu2
α(x)dx < +∞ (4.17)

uniformly for α. So by Remark 3.2, we further deduce that∫ ∫
|x−y|≥1

Gα(x − y)u2
α(y)dyu2

α(x)dx

≤ Iα(uα) +
∫ ∫

|x−y|≤1
Gα(x − y)u2

α(y)dyu2
α(x)dx +

∫
R2

F(uα)dx − 1

2
‖uα‖2

< +∞
(4.18)

uniformly for α. Together (4.16), (4.17) with (4.18), we have∣∣∣∣
∫
R2

∫
R2

ln |x − y|u2
0(y)dyu2

0(x)dx

∣∣∣∣ < +∞. (4.19)

By virtue of (4.14), (4.15) and (4.19), by taking the limit in (4.11), we have I ′(u0) = 0 with
I (u0) < +∞, that is, u0 ∈ H1(R2) solves equation (1.4).

We now claim that u0 �= 0 and uα → u0 in H1(R2). Assume on the contrary that uα⇀0
in H1(R2), and so uα → 0 in Ls(R2) for s ∈ (2,+∞). Similarly to (3.39), we can obtain∫
R2 f (uα)uαdx = oα(1). So by Lemma 2.3 and Hardy–Littlewood–Sobolev’s inequality, we
have

I ′
α(uα)uα = ‖uα‖2 −

∫
R2

∫
R2

Gα(x − y)u2
α(y)u2

α(x)dxdy −
∫
R2

f (uα)uαdx

≥ ‖uα‖2 −
∫ ∫

|x−y|≤1
Gα(x − y)u2

α(y)u2
α(x)dxdy + oα(1)

≥ ‖uα‖2 −
∫
R2

∫
R2

1

|x − y|u2
α(y)u2

α(x)dxdy + oα(1)

≥ ‖uα‖2 − ‖uα‖48
3

+ oα(1),

which means uα → 0 in H1(R2). Then according to Remark 3.2,

a ≤ Iα(uα)

= 1

2
‖uα‖2 − 1

4

∫
R2

∫
R2

Gα(x − y)u2
α(y)u2

α(x)dxdy −
∫
R2

F(uα)dx

= −1

4

∫
R2

∫
R2

Gα(x − y)u2
α(y)u2

α(x)dxdy + oα(1)

= oα(1),

which yields a contradiction and the last identity uses the Lebesgue dominated convergence
theorem with Lemma 4.4. Furthermore, similarly to (4.13), (4.15), by Lemma 4.4 and the
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Lebesgue dominated convergence theorem, we have

∫
R2

∫
R2

|x − y|−α − 1

α
u2

α(y)u2
α(x)dydx → −

∫
R2

∫
R2

ln |x − y|u2
0(y)u2

0(x)dxdy.

Using the similar argument as Case 2 of Lemma 3.5, we conclude that uα → u0 in H1(R2)

as α → 0+. ��
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