
Partial Differential Equations and Applications            (2023) 4:14 
https://doi.org/10.1007/s42985-023-00231-5

ORIG INAL PAPER

An energy-based deep splitting method for the nonlinear
filtering problem

Kasper Bågmark1 · Adam Andersson1,2 · Stig Larsson1

Received: 12 May 2022 / Accepted: 1 March 2023
© The Author(s) 2023

Abstract
The purpose of this paper is to explore the use of deep learning for the solution of the nonlinear
filtering problem. This is achieved by solving the Zakai equation by a deep splitting method,
previously developed for approximate solution of (stochastic) partial differential equations.
This is combined with an energy-based model for the approximation of functions by a deep
neural network. This results in a computationally fast filter that takes observations as input
and that does not require re-training when new observations are received. The method is
tested on four examples, two linear in one and twenty dimensions and two nonlinear in
one dimension. The method shows promising performance when benchmarked against the
Kalman filter and the bootstrap particle filter.

Keywords Filtering problem · Zakai equation · Stochastic partial differential equation ·
Splitting scheme · Deep learning · Energy-based method

Mathematics Subject Classification 60G35 · 62F15 · 62G07 · 62M20 · 65C30 · 65M75 ·
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1 Introduction

Nonlinear filtering is a topic intertwined between Bayesian statistics, stochastic analysis and
numerical analysis. It concerns finding the conditional distribution of an unknown state, given
noisy observations. There are many domains of applications for the filtering problem, e.g.,
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finance [8, 12], chemical engineering [41], weather forecasts [10, 14], and target tracking [7,
19]. Themost common approaches to approximating the nonlinear filtering problem involves
extended and unscented Kalman filters as well as particle filters [27, 40, 43]. Extended and
unscented Kalman filters are useful in settings with unimodal, symmetric and approximately
Gaussian densities but perform poorly when dealing with multimodal models. Particle fil-
ters are useful when dealing with more complex distributions but the number of required
particles, and thus the computational complexity, scales poorly in the number of dimensions
of the state space [40]. The normalized optimal filter is known from theory to solve the
Kushner–Stratonovich equation, a nonlinear Stochastic Partial Differential Equation (SPDE)
[32]. The unnormalized optimal filter solves the Zakai equation which is a linear SPDE.
These theoretically appealing facts have not been extensively used to derive practical algo-
rithms, mostly because of the computational load associated with approximating SPDEswith
classical methods such as finite element or finite difference methods. Following the recent
years’ extensive developments in solving PDEs and SPDEs with deep neural networks [3, 4,
11, 47], new opportunities arise. In [4] the authors present a deep splitting method for high-
dimensional PDEs. It relies on operator splitting and deep learning. This grid-free method
was demonstrated by approximating solutions to PDEs in up to 10,000 dimensions. In the
follow up paper [3] the method was applied successfully to SPDEs in up to 50 dimensions. In
particular, it was applied to the Zakai equation for nonlinear filtering with a fixed observation
sequence and a quite peculiar dynamics, chosen to admit an analytic benchmark solution.

Other deep learning based approaches that can be used to estimate the filtering density
involve parameter optimization for a family of distributions, which is a common technique for
estimating probability densities in regression problems [28, 33]. A limitation of this approach
is that it is sometimes difficult to find parameterized families of distributions that are flexible
enough to fit the data well. A successful alternative to parameterizing the distributions is
given by energy-based methods. This family of methods has shown excellent performance
on regression problems [20, 34, 46]. The energy-based models are commonly trained by
minimizing thenegative log-likelihood.Other common techniques are basedon theKullback–
Leibler divergence, noise contrastive estimation and score-matching, see [20, 21, 25, 46].

In the present exploratory work we take a step towards fast and scalable nonlinear filters.
We do this by combining an energy-based approach with the deep splitting method of [3]
applied to the Zakai equation. In this way we use a sound probabilistic model that is flexible
and does not allow negative values. A main contribution is that we allow the observation
sequences as input to the model, avoiding re-training for every new sequence. We demon-
strate our model on two linear and Gaussian examples and on two nonlinear examples. The
performance ismeasuredwith themean absolute error, a firstmoment error, and theKullback–
Leibler divergence. Our method shows promising performance when benchmarked against
the Kalman filter and the bootstrap particle filter. There are no contributions to the error
analysis in the present paper, however, in a future work we investigate the convergence order
of this method theoretically.

The paper is structured as follows. In Sect. 2 we present a background on the filtering
problem and its solution by the Zakai equation. The deep splitting method and our extension
of it is derived in Sect. 3. The energy-based approach and the full algorithm is presented
in Sect. 4. It also contains a discussion of two previous approaches to solving the optimal
filtering problem with deep splitting methods [3, 11]. In Sect. 5 we present our numerical
results.

123



Partial Differential Equations and Applications             (2023) 4:14 Page 3 of 27    14 

2 Preliminaries

In this section we present the notation that we use, the filtering problem, and the Zakai
equation that solves it. The presentation is formal and is valid under suitable conditions.
Details are omitted.

2.1 Notation

We denote by 〈·, ·〉 and ‖ · ‖ the inner product and norm on the Euclidean space R
d . The

space of functions on [0, T ] ×R
d → R, that are once continuously differentiable in the first

variable and twice continuously differentiable in the second variable with no cross derivatives
between thefirst variable and the secondvariable, is denotedC1,2([0, T ]×R

d ;R). Probability
distributions over Rd are all assumed to have a probability density function with respect to
Lebesgue measure. We follow the convention in Bayesian modelling to denote densities p
and let their arguments specifywhich one ismeant. For a stochastic processY : N×� → R

d ′
,

we denote by Yk:n the d ′ × (n − k + 1)-matrix (Yk, Yk+1, . . . , Yn), where k < n.

2.2 The filtering problem

Filtering aims at finding the conditional distribution of an unobserved state variable, given
noisy measurement of the state. In the setting of this paper both state and measurements are
modeled by Stochastic Differential Equations (SDE). We denote by (�,A, (Ft )0≤t≤T ,P) a
complete filtered probability space. The filtration F := (Ft )0≤t≤T is defined with respect to
W and V , which are two d- respectively d ′-dimensional independent Brownian motions. For
a drift coefficient μ : Rd → R

d and a diffusion coefficient σ : Rd → R
d×d , regular enough,

the process X : [0, T ] × � → R
d , commonly referred to as the signal process or latent state

process, is the process that for all t ∈ [0, T ], P-a.s., satisfies

Xt = X0 +
∫ t

0
μ(Xs) ds +

∫ t

0
σ(Xs) dWs . (1)

The initial condition X0 is F0-measurable, independent of W and V , with a distribution p0.
In addition, for a sufficiently regular measurement function h : Rd → R

d ′
, we define the

observation process Y : [0, T ] × � → R
d ′
satisfying for all t ∈ [0, T ], P-a.s.,

Yt =
∫ t

0
h(Xs) ds + Vt . (2)

The filtering problem consists of finding the conditional probability density of the state Xt

given the observations (Ys)0≤s≤t . This is commonly referred to as the filtering density. More
precisely, the filtering density π is at time t and observation (Ys)0≤s≤t the function, that for
all measurable sets B ⊂ R

d , satisfies

P(Xt ∈ B | (Ys)0≤s≤t ) =
∫
B

πt (x | (Ys)0≤s≤t ) dx .

Since Y is stochastic, in fact, πt is a density-valued stochastic process (under suitable reg-
ularity assumptions). On the basis of the Kallianpur–Striebel formula, one can derive an
associated SPDE whose solution is an unnormalized version of the filtering distribution.
This equation is known as the Zakai equation and is first derived in weak form. Additional
conditions guarantee that the distribution has a density with respect to Lebesgue measure,
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in which case the density, p, is a solution to the strong form of the Zakai equation. These
derivations together with rigorous assumptions can be found in [2].

Next, we present the strong form of the Zakai equation [49]. We denote an unnormalized
filtering density by (pt )0≤t≤T . To introduce the equation, we recall the differential operator
A associated to the process X as well as its formal adjoint A∗, which are defined, with
a := σσ�, for ϕ ∈ C∞

0 (Rd ;R), as

Aϕ = 1

2

d∑
i, j=1

ai j
∂2ϕ

∂xi∂x j
+

d∑
i=1

μi
∂ϕ

∂xi
and

A∗ϕ = 1

2

d∑
i, j=1

∂2

∂xi∂x j
(ai jϕ) −

d∑
i=1

∂

∂xi
(μiϕ).

The operator A is associated to the deterministic PDE known as the Kolmogorov backward
equation and the adjoint operator A∗ is associated to the Kolmogorov forward equation. The
latter is also called the Fokker–Planck equation, which models the (unconditional) density of
the signal process X [39], while the Zakai equation models the (conditional) filtering density.

The drift coefficient μ, the diffusion coefficient σ , and the measurement function h are
assumed to be regular enough so that a solution to the Zakai equation exists for any initial
density p0. The strong form of the Zakai equation is to find a function p such that for
t ∈ [0, T ], P-a.s.

pt (x) = p0(x) +
∫ t

0
A∗ ps(x) ds +

∫ t

0
ps(x)h(x)� dYs, x ∈ R

d . (3)

See [2] for details on the derivation of the equation. Following [3], we consider amore general
equation of the form

pt (x) = p0(x) +
∫ t

0
Aps(x) ds +

∫ t

0
f (x, ps(x),∇ ps(x)) ds

+
∫ t

0
b(x, ps(x),∇ ps(x)) dYs, x ∈ R

d ,

(4)

with coefficients f : Rd × R × R
d → R and b : Rd × R × R

d → R
d ′
. By expanding the

derivative A∗ we see that the Zakai equation (3) is of this form with

f (x, u, v) =
d∑

i, j=1

∂ai j (x)

∂xi
v j + 1

2

d∑
i, j=1

∂2ai j (x)

∂xi∂x j
u −

d∑
i=1

∂μi (x)

∂xi
u − 2

d∑
i=1

μi (x) vi ,

b(x, u, v) = uh(x)�.

In addition to letting (4) represent a more general SPDE, the main reason for rewriting (3) in
this way is that equations with leading operator A admit Feynman–Kac type representations
of solutions. This is used in the next section in the derivation of the deep splitting scheme.

It is important to note that if the system of SDEs (1)–(2) have a linear drift coefficient μ,
constant diffusion coefficient σ , as well as a linear measurement function h, then the exact
density of the filter is tractable. The problem is then solved by an evolution of Gaussian
densities known as the Kalman–Bucy filter, see [43] for details. Otherwise there are few
closed form filters, one such exception is the Beneš filter which solves a bistable model with
a tanh drift. See [2, 6] for details.
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3 Deep splittingmethod

The deep splitting method was originally derived in [4] for a class of parabolic PDEs and
it was extended in [3] to SPDEs on the form of (4). The aim of this section is to provide a
derivation of the proposed modified recursive optimization problem. In this section, we make
the tacit assumption that both f and b are regular enough so that (4) has a unique strong
solution. We start by deriving the original method, contributing with a complement to the
presentation in [3], and continue by deriving an extension. The section begins by applying
a splitting scheme and continues by deriving a Feynman–Kac representation. Finally, we
obtain a modified version of the method derived in [3], which is later used in the numerical
examples.

3.1 A splitting scheme for the SPDE

We introduce a partition of [0, T ] into 0 = t0 < t1 < · · · < tM = T and note that (4) can be
written for n = 0, . . . , M − 1, P-a.s.,

pt (x) = ptn (x) +
∫ t

tn
Aps(x) ds +

∫ t

tn
f (x, ps(x),∇ ps(x)) ds

+
∫ t

tn
b(x, ps(x),∇ ps(x)) dYs, t ∈ (tn, tn+1].

(5)

In the next step we split (5) into two equations. The idea behind this splitting is to treat the
operator term differently than the terms involving f and b. We define q and q̂ recursively on
(tn, tn+1], for n = 0, . . . , M − 1, as the solutions to

qt (x) = q̂tn (x) +
∫ t

tn
f (x, qs(x),∇qs(x)) ds +

∫ t

tn
b(x, qs(x),∇qs(x)) dYs, t ∈ (tn, tn+1],

(6)

q̂t (x) = qtn+1(x) +
∫ t

tn
Aq̂s(x) ds, t ∈ (tn, tn+1], (7)

q̂0(x) = p0(x). (8)

Note that q and q̂ are piecewise smooth with respect to t . This splitting method is constructed
such that q̂tn+1 ≈ ptn+1 for n = 0, . . . , M−1 and is investigated in, e.g., [22, 23] where strong
convergence order 1 in time is shown. We further approximate (6) with an Euler–Maruyama
scheme, which in general is of strong order 0.5 in time. Merging the equations (6)–(7), after
Euler–Maruyama approximation, into one formula we obtain the following approximation
of (5), where we keep the notation of q̂,

q̂t (x) = q̂tn (x) +
∫ t

tn
Aq̂s(x) ds + f (x, q̂tn (x),∇q̂tn (x))(tn+1 − tn)

+ b(x, q̂tn (x),∇q̂tn (x))(Ytn+1 − Ytn ), t ∈ (tn, tn+1],
q̂0(x) = p0(x).

In preparation for the final algorithm we consider, for fixed ω ∈ �, deterministic input y =
(Ytn (ω))Mn=0 ∈ R

d×(M+1) and define an approximation p̂t (x) = p̂t (x, y0:n+1) recursively on
(tn, tn+1] for n = 0, . . . , M − 1, by
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p̂t (x) = p̂tn (x) +
∫ t

tn
A p̂s(x) ds + f (x, p̂tn (x),∇ p̂tn (x))(tn+1 − tn)

+ b(x, p̂tn (x),∇ p̂tn (x))(yn+1 − yn), t ∈ (tn, tn+1],
p̂0(x) = p0(x).

(9)

This is a splitting approximation of p, where the idea is to first approximate (6) with the
Euler–Maruyama scheme and then solve the equation with respect to the generator A exactly
in the second step in (7). There exists a unique solution p̂ to the Cauchy problem (9), which
belongs to C1,2((tn, tn+1] ×R

d ;R) [16, Chapter 1, Theorem 10]. In Sect. 3.4 this method is
extended to a Milstein scheme in the special case d = 1. In the next subsection we derive an
optimization problem based on this splitting scheme.

3.2 Derivation of a local optimization problem

In this subsection we fix n ∈ {0, . . . , M − 1} and let N ∈ {n + 1, . . . , M} be arbitrary. We
will derive a Feynman–Kac formula for p̂ |(tn ,tn+1]. We begin by noting that, from (9), it is
clear that

∂

∂t
p̂t (x) = A p̂t (x), t ∈ (tn, tn+1].

Next, we reparameterize with time t �→ tN − t , so that tN − t ∈ (tn, tn+1], which yields

∂

∂t
p̂tN−t (x) + A p̂tN−t (x) = 0, t ∈ [tN − tn+1, tN − tn), (10)

with final condition

p̂tN−(tN−tn)−(x) = p̂t+n (x) = p̂tn (x) + f (x, p̂tn (x),∇ p̂tn (x))(tn+1 − tn)

+ b(x, p̂tn (x),∇ p̂tn (x))(yn+1 − yn),
(11)

where p̂tn is defined on the previous interval (tn−1, tn], and we note that t+n and (tN −
tn)− denote a right and left limit, respectively. We see that the approximation p̂ satisfies
a Kolmogorov backward equation (10). Such equations are studied in [16, 17], where it is
shown that there exists a unique solution p̂ ∈ C1,2((tn, tn+1] ×R

d ;R), which together with
its first spatial derivatives satisfies a polynomial growth bound in space. We refer to the
material in Sects. 4 and 5 leading up to Theorem 6.5.3 in Chapter 6 of [17].

We introduce a new Itô process X̃ defined with respect to a d-dimensional Brownian
motion W̃ independent of W and V . The Brownian motion W̃ is adapted with respect to the
filtration F̃ := (F̃t )0≤t≤T . The process X̃ satisfies, P-a.s.,

X̃t = X̃0 +
∫ t

0
μ(X̃s) ds +

∫ t

0
σ(X̃s) dW̃s, t ∈ [0, T ],

where X̃0 is F̃0-measurable, independent of W , V and W̃ , with distribution p0. Since X̃ is
defined with respect to the generator A, we obtain A in the integrand when applying Itô’s
formula. Using the fact that p̂ ∈ C1,2((tn, tn+1] × R

d ;R), Itô’s formula can be applied to
p̂tN−t (X̃t ) which gives P-a.s.
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p̂tN−t (X̃t ) = p̂tn+1(X̃tN−tn+1) +
∫ t

tN−tn+1

〈∇ p̂tN−s(X̃s), σ (X̃s) dW̃s〉

+
∫ t

tN−tn+1

( ∂

∂s
p̂tN−s(X̃s) + A p̂tN−s(X̃s)

)
ds, t ∈ [tN − tn+1, tN − tn).

Inserting (10) into the right hand side yields

p̂tN−t (X̃t ) = p̂tn+1(X̃tN−tn+1) +
∫ t

tN−tn+1

〈∇ p̂tN−s(X̃s), σ (X̃s) dW̃s〉. (12)

The polynomial growth bounds on p̂, ∇ p̂ and the assumptions on σ guarantee that
∫ tN−tn

tN−tn+1

E

[∥∥σ(X̃s)
�∇ p̂tN−s(X̃s)

∥∥2] ds < ∞

and hence the Itô integral in (12) is a square integrable martingale with respect to F̃ . The
conditional expectation with respect to the filtration F̃ gives

E

[ ∫ t

tN−tn+1

〈∇ p̂tN−s(X̃s), σ (X̃s) dW̃s〉
∣∣∣∣ F̃tN−tn+1

]
= 0. (13)

Now, as X̃ is F̃-adapted, we can combine (12) and (13) to get, for t ∈ [tN − tn+1, tN − tn),

E
[
p̂tN−t (X̃t )

∣∣ F̃tN−tn+1

] = E
[
p̂tn+1(X̃tN−tn+1)

∣∣ F̃tN−tn+1

] = p̂tn+1(X̃tN−tn+1). (14)

We recall from the final condition (11) that, for all x ∈ R
d , we have,

p̂tN−t (x) → p̂tn (x), as t ↑ (tN − tn),

and P-a.s.

X̃t → X̃tN−tn , as t ↑ (tN − tn).

Combining these, we get, by the polynomial growth bounds via dominated convergence, that

lim
t↑(tN−tn)

E

[∣∣∣ p̂tN−t (X̃t ) − p̂tn (X̃tN−tn ) + f (X̃tN−tn , p̂tn (X̃tN−tn ),∇ p̂tn (X̃tN−tn ))(tn+1 − tn)

+ b(X̃tN−tn , p̂tn (X̃tN−tn ),∇ p̂tn (X̃tN−tn ))(yn+1 − yn)
∣∣∣2

]
= 0.

Now, we take the left limit t ↑ (tN − tn) in (14) to obtain the L2(�)-limit

p̂tn+1(X̃tN−tn+1)

= E

[
p̂tn (X̃tN−tn ) + f (X̃tN−tn , p̂tn (X̃tN−tn ),∇ p̂tn (X̃tN−tn ))(tn+1 − tn)

+ b(X̃tN−tn , p̂tn (X̃tN−tn ),∇ p̂tn (X̃tN−tn ))(yn+1 − yn)
∣∣ F̃tN−tn+1

]
. (15)

To evaluate this recursion numerically we approximate the underlying stochastic X̃ on the
time grid 0 = t0 < t1 < · · · < tM . The approximation, denoted (X̃n)

M
n=0, with initial value

X̃0 ∼ p0, is given by the Euler–Maruyama method:

X̃n+1 = X̃n + μ(X̃n)(tn+1 − tn) + σ(X̃n)(W̃tn+1 − W̃tn ). (16)

For simplicity of notation, we use a uniform mesh with tn = n�t . This allows us to use the
same mesh for X̃ , as in the splitting method, because tN−n = tN − tn and hence X̃ N−n ≈
X̃tN−tn .
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We exchange F̃tN−tn+1 for S(X̃ N−(n+1)) ⊂ F̃tN−tn+1 , with the tower property, substitute
(16) for X̃ , and obtain an approximation pn of p̂tn defined by

pn+1(X̃ N−(n+1))

= E

[
pn(X̃ N−n) + f (X̃ N−n, pn(X̃ N−n),∇ pn(X̃ N−n))(tn+1 − tn)

+ b(X̃ N−n, pn(X̃ N−n),∇ pn(X̃ N−n))(yn+1 − yn)
∣∣∣S(X̃ N−(n+1))

]
.

(17)

We thus introduced an additional Euler–Maruyama approximation with strong convergence
order 0.5. This representation is an approximate Feynman–Kac formula for the solution of
(10)–(11) for a fixed y = Y (ω), ω ∈ �. See [39] for more details on the Feynman–Kac
formula and [3] for more details on the derivation of this numerical scheme.

The formula in (17) expresses the approximation p(X̃ N−(n+1)) as a conditional expec-
tation with respect to S(X̃ N−(n+1)). On the other hand, the conditional expectation can be
computed using the L2-minimality property [30, Corollary 8.17] as a minimization problem
over L2(�,S(X̃ N−(n+1))). With an additional argument, see [5, Proposition 2.7], this can be
expressed as a minimization over C(Rd ;R). In the context of (17) we have that, for N ≤ M
and n = 0, . . . , N − 1,

(pn+1(x))x∈Rd = argmin
u∈C(Rd ;R)

E

[∣∣∣u(X̃ N−(n+1)) −
(
pn(X̃ N−n)

+ f (X̃ N−n, pn(X̃ N−n),∇ pn(X̃ N−n))(tn+1 − tn)

+ b(X̃ N−n, pn(X̃ N−n),∇ pn(X̃ N−n))(yn+1 − yn)
)∣∣∣2

]
,

p0(x) = p0(x).

(18)

We recall that the solution to (18) gives an approximation to (4) for one fixed realization y.
This is the final form of the original recursive optimization problem introduced in [3]. To
solve and find good approximators u ∈ C(Rd ;R) the authors of [3] employ a deep learning
framework to (18), hence it is called a “deep splitting method”. This optimization is done in
[3] for each specific realization y = Y (ω).

3.3 Extension to non-fixed observation sequence

Up to this point we have derived an optimization problem for fixed observation sequence.
This requires a new training for each new observation sequence and this is very limiting in
applications. Instead of solving the optimization problem in (18) for a fixed input sequence
y = y0:n+1, we now let the input vary over a relevant set of inputs. To achieve this, we could
in principle integrate the objective in (18) with respect to y over some probability measure
ν. In practice, Monte Carlo approximation is required and for this reason it is important
that ν is chosen so that relevant observation sequences are sampled. As we are interested in
approximating the filtering density, the natural choice for our setting is letting y be distributed
according to (2). Since X̃ and Y are independent, the measure P × ν can be replaced by P

when replacing y with Y . In this way we obtain a single approximator of the filtering density
that can be used for any observation sequence, which implies that the network can be applied
to new data without re-training.

We approximate (X , Y ) defined in (1)–(2), on the same time grid as for X̃ and p, with an
Euler–Maruyama method. The approximations (Xn, Yn)Mn=0, with X0 ∼ p0 and Y0 = 0, are
defined by
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Xn+1 = Xn + μ(Xn)(tn+1 − tn) + σ(Xn)(Wtn+1 − Wtn ),

Yn+1 = Yn + h(Xn+1)(tn+1 − tn) + (Vtn+1 − Vtn ).
(19)

To formalize the extended optimization problem, we want to find functions p̃n+1 : Rd ×
R
d×(n+2) → R, for N ≤ M and n = 0, . . . , N − 1, satisfying

( p̃n+1(x, y))(x,y)∈Rd×Rd×(n+2)

= argmin
u∈C(Rd×Rd×(n+2);R)

E

[∣∣∣u(X̃ N−(n+1), Y0:n+1) −
(
p̃n(X̃ N−n, Y0:n)

+ f (X̃ N−n, p̃n(X̃ N−n, Y0:n),∇ p̃n(X̃ N−n, Y0:n))(tn+1 − tn)

+ b(X̃ N−n, p̃n(X̃ N−n, Y0:n),∇ p̃n(X̃ N−n, Y0:n))(Yn+1 − Yn)
)∣∣∣2

]
,

p̃0(x, y) = p0(x).

(20)

Solving (20) implies solving (18) for almost every observation sequence y. This can be seen
by the following argument. The objective function in (20) can be written u �→ E[
(u, X̃ , Y )],
where the reader can identify 
. The minimum is attainable and the objective is zero at the
optimum. Denoting the minimum by u∗ we thus have E[L(X̃ , Y )] := E[
(u∗, X̃ , Y )] = 0.
The discrete processes X̃ and Y are independent and assuming they have densities pX̃ and
pY with respect to Lebesgue measure in the suitable dimensions, we have

E[L(X̃ , Y )] =
∫ ∫

L(x, y)pX̃ (x)pY (y) dx dy = 0.

This implies that

E[L(X̃ , y)] =
∫

L(x, y)pX̃ (x) dx = 0

for almost all y. Thus a solution to (20) solves (18) for almost every y.

3.4 Accounting for a limited number of samples

The next step is to considerMonte Carlo samples of (Yn, X̃n)
N
n=0 to approximate the expecta-

tion in (20). The limitation of having a finite number of samples can, besides classical Monte
Carlo issues, in this context provide an additional problem stemming from distribution mis-
match. To exemplify this, consider a one dimensional example with p0 = N (0, 1), tN = 1,
N = 100 and a system of SDEs (X , Y , X̃), in the same form as (1)–(2), given, for t ∈ [0, 1],
P-a.s., by

Xt = X0 + 10t + Wt ,

Yt = Vt ,

X̃t = X̃0 + 10t + W̃t .

In the first optimization step, n = 0, the aim is to find p̃1 from (20). This step consists of
evaluating p0(X̃ N ) and as can be seen in Fig. 1a the distribution p0 and the distribution of X̃ N

essentially lack overlapping probability mass, being a problem in the finite sample situation
of practical algorithms.

To account for this we opt for a modified approach of (20). The setup presented so far
is structured with a final time tN and having N recursive minimization problems that are
intertwined in the sense that the optimized models depend on training samples from time
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Fig. 1 a The initial density p0 in
blue and Monte Carlo samples
from X̃N in orange. b The initial
density p0 in blue and Monte
Carlo samples from X̃1 in orange
(color figure online)

points potentially far in the future or likewise far back in time. The idea is now to use the
fact that tN ≤ tM is at our disposal in (20). What we aim to do instead is making sure
each optimization problem only depends on the closest neighbours of X̃ in time. Instead of
considering all time intervals of the partition simultaneously, we begin by considering (0, t1].
Consider (20) with N = 1 and n = 0. The optimization problem is then for p̃1 defined by

( p̃1(x, y))(x,y)∈Rd×Rd×2

= argmin
u∈C(Rd×Rd×2;R)

E

[∣∣∣u(X̃0, Y0:1) −
(
p0(X̃1)

+ f (X̃1, p0(X̃1),∇ p0(X̃1))(t1 − t0) + b(X̃1, p0(X̃1),∇ p0(X̃1))(Y1 − Y0)
)∣∣∣2

]
.

By this construction we only need X0 and X1 from the local time interval (0, t1]. In Fig. 1b
we see how the problem of the mismatching distributions is solved, assuming our time step
is sufficiently small. In this illustration the time step is 0.01.

For the second step we consider the time interval (t1, t2]. In this step, with n = 1, we
optimize p̃2 on the samples X̃1 and X̃2 in a similarway. This is achieved by considering N = 3
and n = 1 in (20). We do this at every time interval to obtain a local optimization problem.
For each time step n, we let N = 2n + 1 to obtain the problem on a local interval. Notice
that we can choose M so that we never evaluate p̃ in X̃m for m > M . By this construction,
the obtained local minimization problem becomes for N ≤ M and n = 0, . . . , N − 1

( p̃n+1(x, y))(x,y)∈Rd×Rd×(n+2)= argmin
u∈C(Rd×Rd×(n+2))

E

[∣∣∣u(X̃n, Y0:n+1)−
(
p̃n(X̃n+1, Y0:n)

+ f (X̃n+1, p̃n(X̃n+1, Y0:n),∇ p̃n(X̃n+1, Y0:n))(tn+1−tn)

+b(X̃n+1, p̃n(X̃n+1, Y0:n),∇ p̃n(X̃n+1, Y0:n))

(Yn+1−Yn)
)∣∣∣2

]
. (21)
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By this setup we obtain the same conditions for the filtering problem and we are simply
solving the optimization problems independently. This eliminates the problem previously
mentioned assuming we have continuous process and a small enough time step �t .

In (21) we use the explicit Euler–Maruyama scheme. In the case d = 1 we may instead
use the Milstein scheme [31]. Introducing the notation

fn := f (X̃n+1, p̃n(X̃n+1, Y0:n),∇ p̃n(X̃n+1, Y0:n)),
bn := b(X̃n+1, p̃n(X̃n+1, Y0:n),∇ p̃n(X̃n+1, Y0:n)),

b′
n := ∂

∂ p̃
b(X̃n+1, p̃n(X̃n+1, Y0:n),∇ p̃n(X̃n+1, Y0:n))

the modified recursive optimization scheme reads

( p̃n+1(x, y))(x,y)∈R×Rn+2

= argmin
u∈C(R×Rn+2;R)

E

[∣∣∣u(X̃n, Y0:n+1) −
(
p̃n(X̃n+1, Y0:n)

+ fn(tn+1 − tn) + bn(Yn+1 − Yn) + 1

2
bnb

′
n

(
(Yn+1 − Yn)

2 − (tn+1 − tn)
))∣∣∣2

]
. (22)

4 The energy-based approximation scheme

This section defines the proposedmethod for finding p̃n+1 given by theminimization problem
in (21) or (22). We also make a comparison to two related approaches concerned with the
nonlinear filtering problem. In particular, we consider a deep neural network �

θn
n : Rd ×

R
d×(n+1) → R, parameterized by θn , to approximate the solution of the problem at each time

step tn . The optimization problem (22) can be reformulated as finding θ∗
n for all n = 1, . . . , N

satisfying

θ∗
1 = argmin

θ

E

[∣∣∣�θ
1(X̃0, Y0:1) −

(
p0(X̃1) + f0(t1 − t0)

+ b0(Y1 − Y0) + 1

2
b0b

′
0

(
(Y1 − Y0)

2 − (t1 − t0)
))∣∣∣2

]
,

θ∗
n = argmin

θ

E

[∣∣∣�θ
n(X̃n−1, Y0:n) −

(
�

θ∗
n−1
n−1 (X̃n, Y0:n−1) + fn−1(tn − tn−1)

+ bn−1(Yn−Yn−1)+1

2
bn−1b

′
n−1

(
(Yn−Yn−1)

2−(tn−tn−1)
))∣∣∣2

]
, n = 2, . . . , N .

(23)

Analogously, we can define this optimization scheme with the Euler–Maruyama method
(21), which is used when d �= 1. Deep neural networks have a strong ability to approxi-
mate nonlinearities and are chosen as function approximators for their ability to scale well
in increasing state dimension. In this paper we construct networks with fairly simple but
effective architecture. The goal of this paper and method is not necessarily to find the most
effective architecture for a regression task. Instead we aim to find an effective solver and
approximator of the filtering density by applying the deep learning framework to a well
constructed minimization problem.
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We consider an energy-based method by letting the normalized conditional density be
approximated, for each pair (xn, y0:n) ∈ R

d × R
d×(n+1), by

p(xn | y0:n) ≈ �
θn
n (xn, y0:n)
Z θn
n (y0:n)

,

where

�θn
n (xn, y0:n) = e− f θn

n (xn ,y0:n), Z θn
n (y0:n) =

∫
Rd

e− f θn
n (x,y0:n) dx .

Themain idea behind energy-basedmethods is to let themodel output a scalar f θn
n , commonly

called energy, for each input pair (xn, y0:n). It assigns low energy to input that is likely to
occur (accurate) andhigh energy to unlikely input. The normalizing constant, Z θn

n , is evaluated
after training to obtain the normalized density. We assume that f θn

n is defined in a way that
guarantees that Z θn

n is finite.

4.1 Comparison to related approaches

Deep learning for the filtering problem is not an extensively studied topic. To the best of our
knowledge, there are only two papers, [3, 11], that are based on partial differential equations.
In [3] a deep splitting method is used to solve the Zakai equation, while in [11] the Fokker–
Planck equation is solved by deep splitting.

4.1.1 The original approach based on the Zakai equation

In [3] the function p is approximated, for a fixed observation sequence y0:N , by performing
the minimization in (18) over the parameters of a deep neural network. The model is a fully
connected neural network that can take negative values which would violate the density
property. The performance, after training, is measured by the error of the filtering density
in one specific point x ∈ R

d . This spatial point is selected to be close to the mode of the
unnormalized density. It is shown that the model learns the value of the filter at this point with
small errors at the final time step. The behavior at the other time steps is not demonstrated
but in the previous work [4], in which this deep splitting method is applied to PDEs, there
is a tendency towards accumulation of error. This is inherent in the recursive optimization
procedure as in each step there is remaining error after optimization and in every subsequent
step one optimizes with respect to a non-optimal approximation.

In addition to allowing negative values, a problem is that the unnormalized density is only
trained around typical trajectories of X̃ . Elsewhere, the neural network cannot be expected
to extrapolate or even have finite integral. Therefore, normalizing the approximate solu-
tion becomes meaningless and also impossible. Finally, the networks are trained for a fixed
observation sequence, making filtering in a real-time setting, often important in applications,
impossible.

4.1.2 An approach based on the Fokker–Planck equation

In [11] the authors present a similar approach as in [3]. It also involves a deep splitting scheme
on an underlying equation. But in [11] this is done directly on the Fokker–Planck equation
which gives the unconditional density of X instead. To obtain a corresponding filter estimate,
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a likelihood normalization is applied after each update of the Fokker–Planck approximation.
This likelihood normalization, consists of an update based on the observation Y at the current
time point and a normalization of the density, derived from Bayes’ formula.

Similarly to the approach of the present paper and [3], the authors in [11] use a grid-
free algorithm based on a Feynman–Kac type formulation, approximated by Monte Carlo
simulations. The training procedure in [11] is similar to that of [3] but in addition to the
L2-loss at each time step another term is added to encourage positive outputs of the network
in the following way

L̂(θ) = L(θ) + λmax (0,−�θ).

In this context L(θ) represents another version of the right hand side of (23), derived from
another splitting scheme than the one in the present paper. With weight λ, negative values of
�θ are penalized in order to avoid violation of non-negativity of the approximated density.
This is an improvement over the use of only a scalar output as in [3], but offers no guarantees
in retrieving a non-negative function.

In [11] the authors demonstrate the method on three one-dimensional examples, two of
which are solved by the Kalman filter and a third one solved by the Beneš filter. The model
manages to approximate non-negative densities and the paper demonstrates corresponding
errors for the means of the approximation compared to the true filters. These errors show
an oscillating pattern for the more advanced examples. This means that the method is not
fully consistent in its predictions of the mean. There are no numerical metrics evaluated with
respect to how well the approximation captures the overall distribution, e.g., the tails and
shape of the distribution. Furthermore, this work was extended in [36], where the method
was demonstrated on the Beneš filter with improved accuracy. The main drawback is that the
model is trained for a specific observation sequence and thus would have to be trained again
for new observations, similarly to the model in [3].

5 Numerical examples

In this section we employ the proposed method on four different underlying SDEs. Two
are linear and Gaussian with the Kalman filter as benchmark. The other two examples are
nonlinear SDEs, where we use a particle filter as benchmark. Three of the examples are one-
dimensional and allow us to investigate the scheme for different degrees of non-linearity for
the drift, one linear and two cubic with uni-modal and bi-modal distributions, respectively. To
demonstrate that the method can scale to higher dimensions we finally consider filtering of a
20 dimensional linear spring-mass system. This should be compared to [3, 4] in which 50 and
10,000 dimensional SPDEs and PDEs were solved with the deep splitting method. We stress
that our example does not exhibit symmetry (the variables of solution are not permutation
invariant) as in [3, 4] and is therefore challenging although it has fewer dimensions.

In Sect. 5.1 we describe the reference solutions that we use as benchmarks. In Sect. 5.2
we describe how the model is designed and trained. Performance metrics are presented in
Sects. 5.3 and 5.4 contains our numerical results. In the final part, Sect. 5.5, we briefly discuss
the model.
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5.1 Reference solution

In our four examples we measure performance versus a benchmark solution. All our bench-
marks are in discrete time, since for fixed time discretization we have a discrete system, see
[35]. In the linear Gaussian case we use the Kalman Filter (KF), see, e.g., [27, 43]. This gives
a recursive closed formula for the mean and covariance matrix of the Gaussian distribution
that solves the filtering problem. Below we denote by μKF and pKF the mean and the density
of the Kalman filter.

In the nonlinear examples we employ a Particle Filter (PF) as the benchmark. More
specifically, we use a bootstrap particle filter to estimate the filtering density at each time
step [43]. To find a sufficient number of particles to run, we made an experiment where we
looked at the variance of the estimated mean from the particle filter. This suggested using
100,000 particles to keep the standard deviation at approximately 0.01. In this section we
denote by μPF and pPF the mean and the density of the particle filter.

Both the Kalman filter and the particle filter require knowledge ofμ, σ , h and p0 similarly
to our method, making it a fair comparison. If the problem consisted of unknown coefficients
one would have to do inference over possible coefficients μ, σ , and h, which is out of the
scope of this work. In such parameter estimation, filtering is an integral part.

5.2 Model architecture, training and evaluation

The regression task is one of themost commonapplication of neural networks. In this paperwe
use a simple architecture consisting of a feed-forward fully connected network with 4 hidden
layers with 100 neurons each. Each layer uses batch normalization and ReLU (Rectified
Linear Units) activation functions. A general overview of deep learning is found in [44]. For
details on batch normalization, see the original paper [26] and an investigation of why this
is effective in [42]. In our energy-based approach we adapt the energy f θn

n to each of our
examples, see the corresponding Sects. 5.4.1–5.4.4.

The optimization is performed with the ADAM optimizer together with minibatches.
The latter consists of using subsets of the training data to introduce randomness of the
loss function; this is a small generalization of the true Stochastic Gradient Descent method
(SGD) but with more efficient iterations. Details on SGD and minibatches can be found in
[18]. The ADAM optimizer makes use of the momentum of the gradient from the previous
iterations; details on this can be found in [29]. We use the suggested hyperparameters (β1 =
0.9, β2 = 0.999, ε = 10−8) from the original paper, except for the learning rate which is set
to α = 10−5.

In this paper we have access to the parameters of the underlying processes and we can
generate as many samples of (Yn, X̃n)

N
n=0 as we desire. Recall that X̃ and Y are independent.

In practice it speeds up the training to limit the number of samples and reuse them in different
epochs. We generate 1 million samples of each process, with the Euler–Maruyama method,
and use these in minibatches to train the network. We use a rotation between different sizes
of minibatches in the following order (29, 210, 211, 212, 213, 214) until the loss ceases to
decrease. The rotation of sizes in minibatches creates different stochasticity in the optimizer,
the larger minibatch size the less randomness. We train the network for 5–10 epochs on each
batchsize before switching. The training goes on until validation error increases for 5 epochs
in a row.

After the model is trained appropriately and we have a sequence (θ̂n)
N
n=1, approximating

(θ∗
n )Nn=1, we want to estimate the normalized density and the mean of the density. In the
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low-dimensional case we can approximate the normalizing constant, for each observation
sequence Y0:n and every θ̂n ,

Z θ̂n
n (Y0:n) =

∫
Rd

�θ̂n
n (x, Y0:n) dx

by the use of quadrature. This is not suitable in higher dimensions since these methods do
not scale very well. In the high dimensional case it is more appropriate to use a Monte Carlo
sampler, e.g., a Markov chain Monte Carlo such as the Metropolis–Hastings algorithm [24,
38] or a HamiltonianMonte Carlo (HMC) method [9, 13]. Given the normalization constants
we can evaluate the normalized density and the corresponding mean by

pθ̂n
n (x, Y0:n) = �

θ̂n
n (x, Y0:n)
Z θ̂n
n (Y0:n)

, x ∈ R
d ,

μθ̂n
n (Y0:n) =

∫
Rd

x pθ̂n
n (x, Y0:n) dx .

(24)

In the high-dimensional case we make use of an HMC sampler to find the mean and normal-
izing constant of the approximation. Specifically, we use a step size of 0.1 and a final time
of 1.0 in the leapfrog step of the sampler. More details on this method can be found in [9].

5.3 Metrics

In the previous section, finding the (unnormalized) density was emphasized. However, the
most common estimates in filtering problems are the mode and the mean. In cases where
the filtering density is symmetric and unimodal, or even Gaussian, these two coincide. In
other applications one can argue about which is most relevant but in this context we opt to
primarily measure the mean of the distribution.

In order to approximate the expectation of different metrics that we want to evaluate,
we simulate M coupled state-observation sequences (X , Y )(m) = (X (m)

n , Y (m)
n )Nn=0 for m =

1, . . . , M . We calculate the meanμ
(m)
n and the density p(m)

n of the reference solution for each
time step tn , and sample index m. Similarly, we denote the normalized density and mean of
a generic approximation by

p̂(m)
n (x) = p̂n(x, Y

(m)
0:n ), x ∈ R

d ,

μ̂(m)
n = μ̂n(Y

(m)
0:n ).

In the examples we evaluate these with our method and also with two standard methods
that we consider as baselines for comparison. The first way of using the mean is to directly
measure the Euclidean distance between the empirical mean of the approximation and the
mean from the reference solution. We call this error the First Moment Error (FME). This
metric is defined by

FME = 1

M

M∑
m=1

∥∥μ(m)
n − μ̂(m)

n

∥∥, for n = 1, . . . , N . (25)

The second way is to compare the mean directly with the true state Xn at each time step. This
is a common measurement of how well an approximation performs [1, 15, 25, 37]. Let m(m)

n

denote the mean, either from the true filter or from an approximation. This measurement
is known in the literature as the Mean Absolute Error (MAE). However, it is not an actual
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error since we do not expect it to converge to zero. More precisely, in the evaluation we aim
to achieve almost the same MAE value from our approximation as from the true filter. The
metric is defined by

MAE = 1

M

M∑
m=1

∥∥X (m)
n − m(m)

n

∥∥, for n = 1, . . . , N . (26)

The final, and perhaps the most interesting measurement, is the Kullback–Leibler divergence
between the entire filtering density and the one generated with our method. This shows how
wellwemanage to capture the density in thewhole domain. The distance consists of taking the
expectation of the difference between the logarithms of the two distributions, with respect to
one of the distributions. It is important to note that the divergence is not a metric since it is not
symmetric. One can consider both the forward divergence, in which one takes the expectation
with respect to the true distribution p, and the reverse divergence by taking the expectation
with respect to the approximation p̂. The forward divergence is considered mean seeking
and the reverse divergence is considered mode seeking [50]. In this paper we consider the
forward divergence averaged over M samples.We sample x (k,m)

n from p(m)
n for k = 1, . . . , K

and evaluate the averaged Kullback–Leibler Divergence (KLD) DKL according to

KLD = DKL(pn‖ p̂n) =
M∑

m=1

K∑
k=1

log

(
p(m)
n

(
x (k,m)
n

)
p̂(m)
n

(
x (k,m)
n

)
)

, for n = 1, . . . , N . (27)

In [48] this distance is used to measure how well the distributions match. It is also common
to use the Kullback–Leibler divergence to calculate likelihood ratios in particle filters [37].
It can also be used directly as a loss function during training, such as in [21], where it is used
for unconditional densities in a data driven manner.

In the examples in the next subsection we evaluate these metrics between our proposed
approximation, which we denote by the Energy-Based Deep Splitting (EBDS), and the refer-
ence solution. For comparison we also evaluate these metrics on other approximate solutions.
For the nonlinear examples we employ an Extended Kalman Filter (EKF) as a baseline [43].
We expect the EKF to yield decent estimates when the filtering density is unimodal. In the
linear examples we use particle filters with fewer particles as baseline. These are less exact
but are the most commonly used tool and thus an interesting comparison to our model.

5.4 Examples

In this subsection we test the performance of our model on three different underlying SDEs
with d = 1 in Sects. 5.4.1–5.4.3, and one with d = 20 in Sect. 5.4.4. For the linear examples
we benchmark the model against the Kalman filter which provides the true solution. In the
nonlinear examples we use the bootstrap particle filter. To simplify the comparison between
the four examples we use the same constant time step �t = 0.01 in all examples. In the first
two we have N = 100 and final time tN = 1, while in the last two, we have N = 50 and
tN = 0.5. In all one-dimensional examples the measurement function in (2) is linear and
defined by

h(x) = βx, x ∈ R.

We set β = 1 and it is worth noting that this results in a very large observation noise. In [11]
they have two linear examples with a factor β = 90 in the measurement function h, resulting
in much smaller observation noise. For a similar setting, in [15] they opt for a factor β = 5.5
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in most of their examples. Furthermore, we consider the same diffusion coefficient for X in
all one-dimensional examples, given by

σ(x) = 1, x ∈ R.

Finally, we consider an initial density p0 = N (0, 1) in all one-dimensional examples.

5.4.1 Mean-reverting linear state equation

Here we consider an underlying process (1) with drift coefficient defined by

μ(x) = −x, x ∈ R.

The solution to (1) is an Ornstein–Uhlenbeck process. This process is mean reverting towards
0 and this can be seen in the underlying density. The density at time t , conditioned on X0 = x0,
is given by N (x0e−t , 1

2 (1 − e−2t )). With the prior x0 ∼ N (0, 1), the posterior density is
given by N (0, 1

2 (1 + e−2t )).

In this linear example we use a neural network f̃ θ̂n
n : (xn, y0:n) �→ (xn, ξ1, ξ2) ∈ R

3 and
concatenate it with a layer specifically designed for the problem,

g(xn, ξ1, ξ2) = ξ1 + (xn − ξ2)
21|xn |>ξ2 . (28)

The energy function is then defined as f θ̂n
n = g ◦ f̃ θ̂n

n . The second term is added to guarantee
that the density is integrablewith essentiallyGaussian tails. In this waywe build structure into
the model, based on prior knowledge of the problem. This is further discussed in Sect. 5.5.

We employ our method and present the different metrics in the first column of Fig. 2 over
the 100 time steps. In Fig. 2a, d, we see the (unconditional) density of X and an illustration
of a trajectory as well as the corresponding filter mean and estimated mean. In this example
we also demonstrate the performance of a particle filter with 1000 (PF-1000) particles as a
baseline for comparison. In Fig. 2g we present the MAE (26) with m given by the Kalman
filter as well as with our method and PF-1000. In Fig. 2j we see the FME, the difference
between the true mean of the Kalman filter and the empirical mean of our model, measured
as in (25) with μ = μKF. We also present the FME between the mean from PF-1000 and
the true mean. Finally in Fig. 2m the KLD (27) is presented. We can see that the model
performs well with respect to the MAE but slowly lose accuracy over time. Similarly the
FME and KLD show increasing error over time but decent results compared to PF-1000. In
the example trajectory in Fig. 2d we can see that the mean of our method follows the true
mean very closely in the beginning but loses accuracy toward the final time.

We present our approximation for one arbitrarily chosen observation sequence in Fig. 3.
This illustration was inspired by the figures in [11]. In Fig. 3a we see the time evolution of
the density in blue. On the right, in Fig. 3b–d, we see snapshots at three different times of
the density compared to the true density given by the Kalman filter.

5.4.2 Mean-reverting nonlinear state equation

Here we consider an underlying SDE (1), where the drift coefficient is defined by

μ(x) = −x − x3, x ∈ R.

This process has roughly a similar statistics as the linear process of Sect. 5.4.1.More precisely,
we have a process that is mean reverting towards the long term mean 0. The cubic term
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increases the strength of the mean reversion, compared to the Ornstein–Uhlenbeck process.
This results in a more narrow underlying distribution with smaller tails. One could argue
that this problem constitutes a setting for which the EKF is suitable since the distribution
is unimodal and symmetric, and hence we use it as a baseline comparison. We use a neural
network with the same structure as for the previous example, defined in (28).

We demonstrate our method in the second column of Fig. 2. The figures follows the same
format as for the linear example. In Fig. 2b wee see the density of X at the final time T = 1.
In Fig. 2e we see one trajectory of X together with the corresponding filter estimates. For
the metrics MAE, FME and KLD we use a bootstrap particle filter with 100000 particles as
our benchmark. In addition to evaluating the metrics for our method, we also demonstrate
the performance of the EKF. These errors are presented in Fig. 2h, k, n. Clearly, in all three
metrics our model performs better than the EKF. It is also interesting to note that in this
example we reach a steady error level over time in both FME and KLD.

Similarly to the previous example we present the approximated density in the whole
domain for a single observation sequence in Fig. 4. In these figures the reference solution is
given by a particle filter, presented in the snapshots of Fig. 4b–d, in red.

5.4.3 Bistable nonlinear state equation

In our final example we consider an underlying SDE (1) with the drift coefficient

μ(x) = 2

5
(5x − x3), x ∈ R.

Compared to the mean reverting setting, the two terms have different signs here. This results
in two attracting equilibria, positioned symmetrically around 0, creating a bimodal underlying
distribution. Compared to the mean reverting example we expect the extended Kalman filter
to perform poorly in this setting.

In this bimodal examplewe instead let the neural network be defined by f̃ θ̂n
n : (xn, y0:n) �→

(xn, ξ1, ξ2, ξ3, ξ4, ξ5) ∈ R
6 and concatenate it with a different layer g defined as

g(xn, ξ1:5) = ξ1 + ξ2(xn − ξ3)
21xn<ξ3 + ξ4(xn − ξ5)

21xn>ξ5 .

The energy function is defined as before by the concatenation f θ̂n
n = g ◦ f̃ θ̂n

n . The second
and third term guarantee that the density is integrable. Compared to the architecture for the
linear example (28), we let the exponential decay from these extra terms be non-symmetrical
around 0. We have also introduced ξ2 and ξ4 to increase the flexibility of the model; both of
these are defined as non-negative outputs to guarantee that the model does not explode.

In the right columnof Fig. 2we present themetrics of ourmethod employed on this bistable
SDE. We compare the performance of our model to that of the EKF which we believe to
yield poorer approximations in this setting when the filtering density might not be unimodal.
In Fig. 2c, we see the density of X at the final time T = 0.5. In Fig. 2i, l and o we see that
our method outperforms the EKF in all metrics. In the MAE we see a similar performance
for our model as for the PF. We also note that the FME and KLD increase almost linearly
with time.

Similarly to earlier examples we illustrate the approximation of the filtering density over
time for a single observation sequence. This is seen in Fig. 5, where on the right we see
snapshots of the approximation as well as the reference given by the PF. In the last snapshot
we can see how our method starts to lose accuracy when compared to the PF but still achieves
favorable result to the EKF.
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Fig. 2 The figure presents numerical results for the three examples with respect to time. Left to right: Linear,
mean reverting and bistable example. Top to bottom: Underlying densities of XT , example trajectories, MAE,
FME and KLD. Our method (EBDS) is illustrated in blue, the reference solution in red and a baseline in orange
(color figure online)
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Fig. 3 In a we see the time evolution of the density given by our model in blue, from time t = 0.01 at the top
to t = 1.00 at the bottom. b–d Are snapshots of the true filtering density given by the KF in red, the density
from our model (EBDS) in blue, the PF-1000 in orange as well as the true state Xt in green (color figure
online)

123



Partial Differential Equations and Applications             (2023) 4:14 Page 21 of 27    14 

Fig. 4 In a we see the time evolution of the density given by our model in blue, from time t = 0.01 at the top
to t = 1.00 at the bottom. b–d Are snapshots of the true filtering density given the PF in red, the density from
our model (EBDS) in blue and the EKF in orange as well as the true state Xt in green (color figure online)

5.4.4 Linear spring-mass

In this example we consider filtering of a high-dimensional equation. Consider a mechanical
system with M masses connected in series with springs and dampers. They move friction-
less and without gravity. The state of the system consists of displacements (from equilibrium
points) and velocities. The spring forces are linear and the resulting system of ordinary
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Fig. 5 In awe see the time evolution of the density given by our model in blue, from time t = 0.01 at the top to
t = 0.50 at the bottom. b–dAre snapshots of the true filtering density given by the PF in red, the density from
our model (EBDS) in blue and the EKF in orange as well as the true state Xt in green (color figure online)

differential equations is linear. We denote the masses mi , i = 1, . . . , M , the stiffness and
damping constants, ki and ci , i = 1, . . . , M + 1, respectively. In this example we consider a
systemperturbed bynoise, e.g., stemming fromvibrations. This results in a 2×M dimensional
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SDE where the first M dimensions represent the displacements and the last M dimensions
represent the velocities. The equation is given by

Xt = X0 +
∫ t

0

[
0M×M IM×M

A21 A22

]
Xs ds +

∫ t

0

[
σ1 IM×M 0M×M

0M×M σ2 IM×M

]
dWs,

where

A21 =

⎛
⎜⎜⎜⎜⎜⎝

− k1+k2
m1

k2
m1

k2
m2

. . .
. . .

. . .
. . . kM

mM−1
kM
mM

− kM+kM+1
mM

⎞
⎟⎟⎟⎟⎟⎠

, A22 =

⎛
⎜⎜⎝

− c1+c2
m1

. . .

− cM+cM+1
mM

⎞
⎟⎟⎠ .

In our example we consider identical masses,mi = 1, stiffness constants ki = 5 and damping
constants ci = 0.1. We also choose the diffusion constants σ1 = σ2 = 1. Thus we have the
same level of noise here as in the previous examples. Note that in the setting of this paper
we have d = 2M and we consider a selection of linear measurements of displacements and
velocities. We let the number of masses be M = 10, and we define an observation process Y
in (2), with d ′ = 10, by a measurement function h : R20 → R

10 with h(x) = Hx , where H
is the 10 × 20 matrix with zero entries except for Hi,2i−1 = Hj,2 j = 1 for i = 1, 2, 3, 4, 5
and j = 6, 7, 8, 9, 10. In other words, we measure five positions and five velocities.

For this example we used a different architecture for the model. Let the input xn
to the network be split as xn = (xposn , xveln ), where the two parts represent the 10-

dimensional vectors of displacements and velocities, respectivly. Let f̃ θ̂n
n : (xn, y0:n) �→

(xposn , xveln , α, ξ1, ξ2, β1, β2, λ1, λ2) define the model, where (α, ξ1, ξ2, β1, β2, λ1, λ2) ∈
R
1×M×M×1×1×1×1. The intuition behind this model is that α fits the training data with

high flexibility. The other outputs are defined to handle domains outside of the support of
the training data similarly to the previous examples. More precisely (ξ1, ξ2) define means
and (β1, β2) variances for the Gaussian tails outside some domain defined by λ1 and λ2. The

network f̃ θ̂n
n is concatenated with

g(xposn , xveln , α, ξ1, ξ2, β1, β2, λ1, λ2)

= α + β1‖xposn − ξ1‖21‖xposn −ξ1‖2>λ1
+ β2‖xveln − ξ2‖21‖xveln −ξ2‖2>λ2

.

The energy function is then defined as f θ̂n
n = g ◦ f̃ θ̂n

n . In this example we construct the
network based on knowledge of the problem and let the model learn different tail properties
for the densities of the positions and of the velocities.

In Fig. 6 we present the metrics of our method employed on this linear spring-mass exam-
ple. We compare it directly to the Kalman filter which provides the true solution. As in the
previous examples we demonstrate the performance with particle filters with fewer particles.
This time we employ three different accuracies to understand the performance by compar-
isons. By doing this we encapsulate the performance of our method for each metric. The
performances in MAE and FME are, considering the low number of particles in the compar-
isons, less satisfactory than for the one-dimensional examples. The performance KLD on the
other hand is much better, in particular for the final time.

To also evaluate the method qualitatively, we compare the marginal densities for a single
observation sequence for the different methods. In Fig. 7 we illustrate four different marginal
densities of our method compared to the KF and a PF with 1000 particles. This is to demon-
strate some of the qualities of the model and should not be used as a reference of howwell the

123



   14 Page 24 of 27 Partial Differential Equations and Applications             (2023) 4:14 

method performs more generally. Clearly the model manages to learn Gaussian tails outside
of the domain of the training data. The model is also flexible enough to match the variance of
the Kalman filter. In this figure one can also observe that the model fits the velocities slightly
better than the positions. This behaviour was observed for most observation trajectories,
which is not shown here.

5.5 Discussion

The approximation method depends on the splitting of the SPDE (5). This is a crucial
step in the derivation and we have not analysed the error caused by this approximation.
Furthermore, the approximation of q in (6) and the stochastic processes (X , Y , X̃) yield
discretization errors. This means that in each local optimization step we commit an error,
even if a global optimum was to be found. Looking at the Kullback–Leibler divergence for
the three one dimensional examples, we see roughly a linear increase in the error over time.
Similar behaviour was observed in [4] for the approximation of PDEs. We believe that this
is mostly due to the accumulation of local errors from each time step tn . In a second part of
this study we will do an error analysis of the different approximations employed here.

For the first few time steps the training was a simple task and convergence was fast. This is
likely due to the simplicity of the problem, i.e., the filtering distribution has not yet deviated
much from the given initial distribution, and also the observations are fewer. At later time
steps, especially for the bistable example, the sought density looks very different for each
observation sequence. For some sequences the density is unimodal throughout every time
step, while for others it might create a bimodal density such as the one seen toward the final
time in Fig. 5a. In the bistable example we chose to stop at N = 50 time steps because
of the increased difficulty of training the models. Similar difficulty was found in the linear
spring-mass example. In particular, the networkswere repeatedly retrained until a satisfactory
solution was found.

In the different examples we also incorporated additional architecture into the model
adapted to the dynamics of the particular example. The main idea with this is to guarantee
that we obtain a function that can be normalized by letting the function go to 0 outside
of the support of the training data. When comparing to a standard R-valued output, which
potentially could yield satisfactory results with respect to the mean but most likely not in the
KLD, one can expect better results with respect to the KLD with this additional architecture
while keeping a good approximation of the mean. Researchers who seek a problem-agnostic

Fig. 6 The figure presents numerical results for the LSM example. Left to right: MAE, FME and KLD.
Our method (EBDS) is shown in blue, the reference solution (KF) in red, and particle filters with different
accuracies in orange, green and black (color figure online)
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Fig. 7 The figure shows the marginal densities, for a single observation sequence, of the Kalman filter in
red, our method (EBDS) in blue and a particle filter with 1000 particles in orange. The left column shows
dimensions that have been observed and the right column shows dimensions which are not observed. The top
row contains positions and the bottom row shows velocities (color figure online)

method might find this unsatisfactory, but we find it a sound approach to understand the
problem at hand and utilize structure from it, known from theory or gained from simulations.

The purpose of our development of the method is to get a filter that scales better than
particle filters. While the latter are performing a better inference with sufficiently many
particles, the neural network of EBDS, after training, are orders of magnitudes faster and
there is a marginal difference in computational time for 1 or 20 dimensions. This was also
demonstrated in [3, 4]. In fact, the number of particles required for a particle filter scales
exponentially in the state dimension [45]. Since we have not optimized our code, or have
a machine for which we have control of the background processes, a direct comparison of
computational times would not do the methods justice. Our work is a first small step towards
non-linear filters in high dimensions, based on partial differential equations and applicable
in a real time setting.
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