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Abstract
This work introduces a novel approach for data-driven model reduction of time-
dependent parametric partial differential equations. Using a multi-step procedure
consisting of proper orthogonal decomposition, dynamic mode decomposition, and
manifold interpolation, the proposed approach allows to accurately recover field solu-
tions from a few large-scale simulations. Numerical experiments for the Rayleigh-
Bénard cavity problem show the effectiveness of such multi-step procedure in two
parametric regimes, i.e., medium and high Grashof number. The latter regime is par-
ticularly challenging as it nears the onset of turbulent and chaotic behavior. A major
advantage of the proposed method in the context of time-periodic solutions is the
ability to recover frequencies that are not present in the sampled data.
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1 Introduction

Surrogate modeling, also known as reduced order modeling (ROM), is an invaluable
tool for parameter studies of complex dynamical systems that has gained widespread
use in recent decades (see [1–3]). In this work, we use a non-intrusive (i.e., data-
driven) ROM approach, in the sense that only the field solutions of the equations
governing the dynamical system at different time steps and parameter values are used
to compute the surrogate model. Proper orthogonal decomposition (POD), dynamic
mode decomposition (DMD), and manifold interpolation are combined into a novel
multi-step approach, which allows to recover field solutions at parameters of interest.
As is common for ROM methods, our approach adopts the offline-online decompo-
sition. This means that during a time-intensive offline phase, all quantities needed
for a fast evaluation of solutions over the parameter range are pre-computed from
a few high-fidelity sample solutions. The offline phase can be performed on a high
performance cluster, for example. The online phase, which computes the solution for
parameters of interest that are not among the sample parameters, can be performed
on a laptop or tablet.

To test and validate our ROM approach, we choose the Rayleigh-Bénard cavity
problemwith fixed aspect ratio and variable Grashof number (Gr), i.e., the nondimen-
sional number that describes the ratio of buoyancy forces to viscous forces. Although
this problem features only one physical parameter, it exhibits a wide range of pat-
terns. At low Grashof numbers, the system has unique steady-state solutions. As Gr
is increased, the system undergoes several Hopf bifurcations and multiple solutions
arise for the same value of the Grashof number. Such solutions past the Hopf bifur-
cations are time-dependent: they are time-periodic at medium Grashof numbers and
exhibit turbulent, chaotic behavior at very high Gr. A particular difficulty in apply-
ing a ROM approach to the Rayleigh-Bénard cavity over a large range of Gr is the
following: the frequencies of time-periodic solutions at online parameters of inter-
est are different from the frequencies at the sample solutions. We have tried several
existing ROMs to address this difficulty and have not been successful. This motivated
the work presented in this paper. The particular methodology we propose is targeted
to problems featuring one or more Hopf bifurcations in the parameter domain of
interest, the Rayleigh-Bénard cavity flow being one challenging example of such
problems.

In the setting of bifurcating solutions, ROMs were first considered in [4–7] for
buckling bifurcations in solid mechanics. More recently, in [8, 9], a reduced basis
method is used to track solution branches from bifurcation points arising in natu-
ral convection problems. Reduced basis methods are also used in [10] to investigate
Hopf bifurcations in natural convection problems and in [11] for symmetry break-
ing bifurcations in contraction-expansion channels. Recent works consider ROMs
for bifurcating solutions in structural mechanics [12–14] and physics of condensates
[15]. Finally, we would like to mention that machine learning techniques based on
sparse optimization have been applied to detect bifurcating branches of solutions in



Surrogate modeling for NSE with DMD and manifold interpolation Page 3 of 27    22 

[16, 17] for a two-dimensional laterally heated cavity and Ginzburg-Landau model,
respectively.

The work in this paper builds on our prior work [18, 19] and focuses on time-
dependent solutions at higher Grashof number than previously investigated. At first,
we tried the same approach as in [18], which uses artificial neural networks (ANNs)
with multilayer perceptrons and different activation functions (like, e.g., ReLU) to
improve the localized ROMs introduced in [19] (see also [20, 21] for more on POD
with ANNs). However, it turned out that the time evolution of POD coefficients could
not be well represented by this widely used class of ANNs. Then, we tried neural
ODEs [22] and sparse identification of nonlinear dynamics [23], but still failed to
recover the correct dynamics.

A major obstacle during the online phase is the correct interpolation of periodicity
lengths at intermediate Gr. With increasing Grashof number, the periodicity length of
the POD coefficients becomes smaller and the amplitude becomes larger. The asso-
ciated flow becomes more complex in general, until it reaches chaotic and turbulent
behavior at very large Gr. In principle, the DMD algorithm (see, e.g., [24–26]) is
well-suited to resolve time-periodic evolution in a data-driven fashion [26]. However,
the DMD solutions can not be interpolated to intermediate parameter configura-
tions in a straightforward manner. In [27], the DMD is combined with a k-nearest
neighbor regression to solve for new parameters of interest, while [28] considers sev-
eral instances of DMD to solve for parametric problems. Other approaches [29, 30]
use different approximation techniques (e.g., polynomial interpolation) and active
subspaces to interpolate to new parameters. As mentioned earlier, the issue is that dif-
ferent frequencies are present at intermediate parameters than at the training samples.
We propose to fix this issue by using manifold interpolation based on the DMD oper-
ators and DMD modes for interpolation at the new parameter values. With tangential
interpolation based on [31], it is indeed possible to find intermediate frequencies reli-
ably over a wide range of Grashof numbers, which is crucial to accurately recover
the time-periodic solutions. A schematic of the method is reported in Fig. 1.

The rest of the paper is structured as follows. Section 2 introduces the varia-
tional formulation of the Navier-Stokes equations governing the Rayleigh-Bénard
cavity and its discretization with the spectral element method. Section 3 explains the
model reduction approach and Section 4 provides numerical results. In Section 5, we
provide concluding remarks and further perspectives.

2 Rayleigh-Bénard cavity flow

We consider Rayleigh-Bénard cavity flow, introduced in [32] and widely studied
since then (see, e.g. [10, 19, 33]) because of its rich bifurcating behavior, which
includes several Hopf-type bifurcations. This flow is related to the Rayleigh-Bénard
instability that arises in, e.g., semiconductor crystal growth [34]. Thus, although
simplified, the Rayleigh-Bénard cavity flow is related to a practical engineering
problem.
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Fig. 1 Schematic of the proposed three-stage ROM

2.1 Model description

The computational domain � is a rectangular cavity with height 1 and length 4,
i.e., with aspect ratio A = 4, filled with an incompressible, viscous fluid. The bottom
left corner of the cavity is chosen as the origin of the coordinate system. The vertical
walls are maintained at constant temperatures T0 (left wall) and T0 +�T (right wall)
with �T > 0, whereas the horizontal walls are thermally insulated.

This system over a time interval of interest (0, T ) is governed by the incompress-
ible Navier-Stokes equations

∂u
∂t

+ u · ∇u = −∇p + ν�u + (0, gβ�T (x/A)ey)
T in � × (0, T ), (1)

∇ · u = 0 in � × (0, T ), (2)

where u is the vector-valued velocity, p is the scalar-valued pressure, and ν is the
kinematic viscosity. Moreover, in (1), g denotes the magnitude of the gravitational
acceleration, β is the coefficient of thermal expansion, x is the horizontal coordinate,
and ey is the unit vector directed along the vertical axis. Problem (1)–(2) is endowed
with boundary and initial conditions

u = 0 on ∂� × (0, T ), (3)

u = u0 in � × 0, (4)

with u0 given.
The Grashof number

Gr = gβ�T

Aν2
(5)
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characterizes the flow regime. The Grashof number describes the ratio of buoyancy
forces to viscous forces. For large Grashof numbers (i.e., � 1), buoyancy forces are
dominant over viscous forces and vice versa. Note that with (5) we can write the
last term in (1) as (0,Grν2x)T . The Prandtl number for this problem is zero and the
viscosity ν is set to one.

As the Grashof number is increased, the sequence of events is as follows [32, 33].
For low Grashof number, a steady-state solution exists, which is characterized by a
single primary circulation, also referred to as roll or convective cell. At a first bifurca-
tion point, the steady-state single roll solution turns into a time-periodic solution and
also a steady-state two roll solution appears around the same Gr. At higher Grashof
number, the two roll solutions also turn from steady-state to time-periodic and a
three roll steady-state solutions appear. With increasing Gr, this three roll steady-state
solution will become time-dependent: time-periodic at first and then chaotic (i.e.,
without an obvious periodicity) upon a further increasing of Gr. The exact values of
the Grashof number where the bifurcations occur depend on the aspect ratio A and
other parameters, such as the Prandtl number.

2.2 Discretization

For the numerical solution of the eqs. (1)–(2), we adopt the PDE solver Nektar++.
It employs a velocity correction scheme, which advances the nonlinear part explicitly
in time and the linear part implicitly. This time-stepping is also known as a splitting
scheme or IMEX (IMplicit-EXplicit) scheme [35, 36].

The computational domain is divided into 24 quadrilateral elements as shown in
Fig. 2. We use modal Legendre ansatz functions of order 16, leading to 6321 global
degrees of freedom for each scalar variable (i.e., horizontal velocity, vertical velocity,
and pressure ansatz space, this is a standard option in Nektar++), which means a
total of 18963 degrees of freedom.

We treat the Grashof number Gr as a parameter and assume it ranges over two
intervals: [100e3, 150e3] and [650e3, 700e3]. In both intervals, three roll solutions
are typically encountered. The velocity vector field at Gr = 100e3 is shown in Fig. 3.
Upon visual inspection of the flow field, no time-dependence can be detected. How-
ever, it is hard to determine numerically whether this solution is nearing a steady

Fig. 2 The 24 spectral elements used in the simulations, resulting in 18963 degrees of freedom
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Fig. 3 Velocity vector field at Grashof number 100e3. Color and length of a vector indicate velocity
magnitude

state or is time-periodic since the convergence speed close to the critical value of
Gr for the bifurcation point is very slow and a time-periodic pulsation with a very
small amplitude around a mean field might also be possible. Figure 4 shows the time-
periodic solution at Gr = 700e3 for about two periods. Periodicity is easy to observe
from the numerical solution. As the Grashof number increases, the period becomes
shorter. For Gr > 700e3, chaotic behavior can be already observed. For example, at
Gr = 1000e3, we observed that the POD coefficient of the first dominant mode can
only be described as “noise,” which supports the impression from the velocity time
evolution as chaotic. Of course, these are only numerical observations. There is no
analytical proof.

Our numerical studies will focus on two distinct parameter domains. First, we will
look at the interval [100e3, 150e3], where the periods are rather large and the three
roll time-dependent solutions have just occurred. A full-order solution is computed
at Gr = 150e3 over a long time interval to ensure that the limit cycle is reached. Then,
each solution of interest in the interval [100e3, 150e3] is initialized with the solu-
tion at Gr = 150e3. The time step is set to 1e−6 and 2e5 time steps are computed.
However, the first 1e5 time steps are disregarded in order to ensure that the solution
is sufficiently close to its limit cycle for each parameter of interest. Next, we will
consider interval [650e3, 700e3], where the periods are short and the simulations are
close to becoming chaotic. Thus, a smaller time step size of 5e−7 is used. We com-
pute 3e5 time steps and disregard the first 1e5 time steps. In this second parameter
interval, we first compute the full-order solution at Gr = 650e3 and use it to initialize
all the other solutions of interest.

3 Amodel order reduction approach

The offline phase of our model order reduction approach is articulated into two steps:
(i) proper orthogonal decomposition (POD) briefly explained in Section 3.1 and (ii)
dynamic mode decomposition (DMD) described in Section 3.2. For the online phase,
we adopt manifold interpolation as explained in Section 3.3.
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Fig. 4 Time-periodic velocity vector field at Grashof number 700e3. Color and length of a vector indicate
velocity magnitude. Shown are approximately two periods
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3.1 Proper orthogonal decomposition

At each Grashof number, we collect the velocity field solutions at every time step in
the time interval of interest. These real vectors of dimension N (N referring to size
of the spatial discretization) form the trajectory for the given Grashof number. Our
first goal is to find a projection matrix to reduce the large dimension N to a lower
dimension N . We achieve this through POD, which computes a projection space XN

used to project the trajectories for all parameters in the parameter domain of interest.
Because of the very small time steps required by the cavity simulations, POD is just
an initial data reduction step. A second reduction step is needed in order to contain
the storage requirements for the trajectories (see Section 3.2).

The POD is based on an operator eigenvalue problem that reduces to the singular
value decomposition for discrete data. Given a sample matrix S ∈ R

N×N ,
compute the singular value decomposition as

S = U�V T ,

where � ∈ R
N×N is a diagonal matrix with the (non-negative) singular values on

the diagonal and U ∈ R
N×N and V ∈ R

N×N are orthogonal. Assuming that the
singular values are ordered in decreasing order, then the first columns of U , called
left singular vectors, constitute the dominant POD modes. The most dominant POD
modes are then used as basis functions for the reduced order projection space XN .
For the sake of brevity, we do not report here further details and refer the interested
reader to textbooks, such as, [37].

The number of PODmodes that are retained is typically determined by a threshold
on the percentage of the sum of the singular values, e.g., 99%. In particular, if the
prescribed threshold is met by the sum of the L largest singular values, but not by the
sum of the L−1 largest singular values, then the L leftmost columns of U are used in
the reduced order ansatz spaceXN (see, e.g., [38], for more details and computational
insights on POD in computational fluid dynamics).

The sample matrix S needs to cover the features of the time-dependent solutions
over the parameter range in order for the resulting projection space XN to retain such
features. Because the problem under consideration leads to simulations with large
time trajectories, we derive the sample matrix S in an adaptive fashion. For each full-
order simulation, we first generate an intermediate matrix by following an adaptive
snapshot selection strategy from [39]: we collect samples by adding time instants
only if the angle to the already chosen time instants is over a given threshold.

POD is performed on the sampled time instants for each parameter location. Then,
the dominant modes resulting from the POD for each parameter location are collected
into a second sample matrix, separately for each velocity component. Then, a second
application of POD defines the actual projection space XN and can be understood
as a compound POD space of the POD spaces for each time-trajectory. At the end
of this first step, we obtain the time-trajectories at each sampled parameter location
projected onto the space XN .
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Fig. 5 Amplitude spectrum of
the first POD mode for three
values of the Grashof number in
the medium Grashof interval
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This two-tier procedure described in this section allows to keep the storage
requirement low, such that the algorithms can even be executed on a common work-
station. In fact, no more than 3 GB of RAM were necessary to hold a sampled time
trajectory.

Figure 5 displays the spectrum of the first POD mode of the horizontal velocity
component for Grashof numbers 100e3, 120e3, and 150e3. We observe that the dom-
inant frequency increases with increasing Grashof number. At higher POD modes,
more frequencies present, but with a smaller amplitude. Thus, they are less impor-
tant for an accurate approximation (see Fig. 6 for the amplitude spectrum of the
fifth and ninth POD mode of the horizontal velocity component for the same three
Grashof numbers). The same conclusions (i.e., the frequencies increase with increas-
ing Grashof number and more small amplitude frequencies are present in higher POD
modes) hold for the high Grashof interval, although in this interval the dominant fre-
quencies are higher and amplitudes are larger than in the medium Grashof interval
(see Figs. 7 and 8). The amplitude spectra for the POD modes of the vertical velocity
component are omitted because they look very similar to Figs. 5, 6, 7, and 8.

Fig. 6 Amplitude spectrum of the fifth (left) and ninth (right) POD mode for three values of the Grashof
number in the medium Grashof interval
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Fig. 7 Amplitude spectrum of the first POD mode for three values of the Grashof number in the high
Grashof interval

3.2 Dynamic mode decomposition

The POD procedure described in the previous section provides a projected trajectory
that will take the role that is typically associated with the full-order trajectory in the
DMD algorithm.

Fig. 8 Amplitude spectrum of the fifth (left) and nineth (right) POD mode for three values of the Grashof
number in the high Grashof interval
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We refer the reader to [24–26] for an introduction to DMD. For its software
implementation, in this work, we use PyDMD1 [40].

Assume the time trajectory is given in the form of state variables (xk)mk=1 ⊂ XN ,
with m being the total number of time steps. The goal of DMD is to obtain a linear

operator A ∈ R
N×N , which approximates the dynamics as

xk+1 ≈ Axk ∀k = 1, . . . , m − 1. (6)

If we arrange the state vectors for k = 1, . . . , m − 1 column-wise in a matrix X and
the state vectors for k = 2, . . . , m column-wise in a matrix Y, then (6) is equivalent to

Y ≈ AX. (7)

A best-fit approach computes A = YX†, where X† denotes the Moore-Penrose pseu-
doinverse of X. The linear predictor A, also called the Koopman operator, allows to
recover an approximate trajectory by evaluating (6) starting from a given x1.

In order to have a reduced order computation of the trajectory, we first compute
the rank r truncated singular value decomposition of X as X ≈ Ur�rV

T
r . The matrix

Ur holds the real-valued DMD modes as columns. The reduced operator Ar ∈ R
r×r

is defined as

Ar = UT
r AUr = UT

r YX†Ur = UT
r YVr�

−1
r UT

r Ur = UT
r YVr�

−1
r , (8)

where we have used the fact that Ur ∈ R
N×r is orthogonal. Matrix Ar is used for the

reduced order computation of the trajectory as follows:

xk+1
r = Arxk

r . (9)

The full-order trajectory can be approximately recovered as xk = Urxk
r .

There are many variants of DMD for different purposes. In this work, we use the
real-valued standard DMD as shown in eq. (8) and (9). In fact, since the initial values
of the provided trajectory samples are either on the limit cycle or close to it, the
standard DMD is sufficient for an accurate reconstruction of the dynamics. However,
if the interest is in recovering the trajectories from a common initial value for all
parameters, then a variant of the DMD such as high-order DMD [41] or Hankel-DMD
[42] can be used (see the PyDMD website for implementations and more details).

3.3 Manifold interpolation

During the online phase, one needs to evaluate the trajectory at a new parameter of
interest. For this, we have to interpolate the reduced DMD operator, which requires
a structure-preserving interpolation on nonlinear matrix manifolds. Manifold inter-
polation has been applied to many problems (see, e.g., [43–50]). Here, we briefly
recapitulate the basics of manifold interpolation following [31].

As explained in Section 3.2, the DMD provides a reduced order representation
of a trajectory at a fixed Grashof number. The idea is to sample some trajectories
at different Grashof numbers, compute the DMD, and then interpolate the Koopman
operatorA to a newGrashof number of interest. In particular, the DMDmodesUr and

1https://github.com/mathLab/PyDMD

https://github.com/mathLab/PyDMD
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the reduced DMD operator Ar will be interpolated independently2 and then matrix
A will be obtained using the relation

A = UrArU
T
r . (10)

A common picture in reduced basis model reduction is that of the solution man-
ifold, where the solution vectors form a manifold in the ambient discrete space.
Similarly, the reduced DMD operators define a manifold in the space of r × r matri-
ces. In particular, the reduced DMD operators will be understood as elements of the
general linear group, which forms the manifold M. Direct interpolation of matrix
entries typically lead to poor results. Thus, interpolation is done on the tangent space
T M

p for a base point p ∈ M. Since the tangent space is flat, a direct interpolation
with any interpolation algorithm that expresses the interpolant as a weighted sum of
the samples is possible.

Let
LogMp : M �→ T M

p

be the Riemannian logarithm and

ExpMp : T M
p �→ M

the Riemannian exponential.
For a location p ∈ M, the interpolation is performed following these steps:

I1. Given a set of data points {p1, . . . , pk}, choose first a basis point pi .
I2. Check that LogMpi

(pj ) is well-defined for all j = 1, . . . , k and compute vj =
LogMpi

(pj ) for all j . Here, vj = v(Grj ) where Grj is the j th Grashof number
sample location.

I3. Compute v∗ via Euclidean interpolation from the vj , where v∗ corresponds
to the current Grashof number of interest, and interpolate the matrix entries
according to the associated parameters.

I4. Compute p∗ = ExpMpi
(v∗) as the interpolated matrix.

The above algorithm corresponds to Algorithm 7.1 in [31].
The reduced DMD operator is invertible, so a member of the general linear group

of r × r matrices GL(r). Since GL(r) is open in the space of all r × r matrices,
the tangent space is simply the space of all r × r matrices. The simplest choice for
the Riemannian metric is the Euclidean metric, which gives a flat GL(r). With this
choice, the Riemannian exponential of D at a base point Ar ∈ GL(r) is given by

ExpAr
(D) = Ar + D

and the Riemannian logarithm by

LogAr
(D̄) = D̄ − Ar .

Other options are possible for the Riemannian metric but will not be contemplated in
this paper.

2Interpolating A directly does not seem promising. However, a possible alternative is to consider the DMD
over the complex numbers, if the Riemannian metric is available.
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The Grassmann manifold Gr(N, r) is the set of all r-dimensional subspaces U ⊂
R

N :
Gr(N, r) = {U ⊂ R

N | U subspace, dim(U) = r}.
It can be defined as a quotient manifold of the Stiefel manifold

St (N, r) = {U ∈ R
N×r | UT U = Ir},

through
Gr(N, r) = St (N, r)/O(r) = {[U ] | U ∈ St (N, r)},

where O(r) is the set of the orthogonal r ×r matrices and Ir the r ×r identity matrix.
This means that a matrix U ∈ St (N, r) is the matrix representative of the subspace
U ∈ Gr(N, r) if U = range(U). The Grassmann manifold is a typical choice of
manifold for projection matrices such as the matrix with POD modes as columns

because the choice of the basis is irrelevant, what matters is the space spanned by
the vectors. Interpolation of the DMD modes is understood as interpolation on the
Grassmann manifold.

The composition of the Riemannian exponential and logarithm gives the identity
on Gr(N, r). However, for the matrix representatives in St (N, r)/O(r), the identity
does not necessarily hold (see, e.g., [43] for an explanation on this). Thus, a modified
algorithm for the logarithm is needed for the identity to hold at the matrix level. An
example of such modified algorithm is provided in [31], Section 7.4.5.2. It reads as
follows: Given a base point representative U ∈ St (N, r) of U = [U ] ∈ Gr(N, r)

and a point on the manifold ˜U = [˜U ] ∈ Gr(N, r) with representative matrix ˜U ∈
St (N, r)

L1. Compute the SVD of ˜UT U as

�SRT = ˜UT U .

L2. Transition to the Procrustes representative

˜U∗ = ˜U�RT ,

and compute the intermediate matrix L as

L = (IN − UUT )˜U∗,

where IN is the identity matrix.
L3. Compute the SVD of L

Q�V T = L.

L4. Compute the tangent vector LogGr
U (˜U) on the tangent space TUGr(N, r) as

LogGr
U (˜U) := Q arcsin(�)V T .

For a base point representative U ∈ St (N, r) of U = [U ] ∈ Gr(N, r) and a tangent
vector � ∈ TUGr(N, r), the exponential computes the point [˜U ] on the Grassmann
manifold. The algorithm is as follows:

E1. Compute the SVD of LogGr
U (˜U) as

Q�V T = LogGr
U (˜U).
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E2. Compute [˜U ] as
˜U = UV cos(�)V T + Q sin(�)V T .

4 Numerical results

Asmentioned in Section 2.2, we will consider two parameter domains for the Grashof
number Gr. The first domain is [100e3, 150e3] and the associated solutions show the
onset of time-dependent three roll flow. Since previous works (e.g., [19, 33]) deals
with lower values of Gr, this first interval is referred to as medium Gr range. The
second domain is [650e3, 700e3], with associated solutions that are close to the onset
of turbulent and chaotic flow patterns. We will call this second interval high Gr range.
Since the time of a single period decreases with increasing Gr and the flow becomes
more complex, we expect that the values of Gr between the medium and high ranges
can also be treated with the presented approach.

4.1 Medium Grashof range

The samples in the interval Gr ∈ [100e3, 150e3] are taken every 10e3, i.e., we collect
six samples in total. As explained in Section 3.1, we perform an adaptive POD for
each trajectory and form the compound POD space for all sample trajectories. Both
PODs use a threshold of 99.99% of the singular values, leading to a final dimension
of 37 for the horizontal component of the velocity and 41 for the vertical component.

The DMD algorithm does not use all the POD modes. In fact, the DMD uses the
first N = 30 most dominant POD modes in both velocity directions and reduces the
dimension to k = 10 DMD modes. We found that in some cases a further restriction
gives more accurate results. In particular, we inspected the first POD mode to check
if it shows time-periodic behavior. This can be seen as an indication of accuracy
since we expect to observe time-periodicity. If first POD mode is not time-periodic,
a second DMD was computed with N = 10 modes, which provided accurate results.
The two values N = 30 and N = 10 have been determined empirically. In total, 20
DMDs are computed, i.e., two for each of the ten test samples for the horizontal and
vertical component. The reduction to N = 10 modes was applied in three cases.

As mentioned in Section 3.3, in order to compute the tangential interpolation,
we need to choose a base point (step I1). This is a crucial choice since the results
are quite sensitive to it. In fact, as one can expect, the interpolation is more accu-
rate the closer the base point is to the online parameter of interest. Thus, for each
online test parameter, we choose the closest sample point as base point. As for the
interpolation technique, in principle, one can choose any technique that expresses
the interpolant as a weighted sum of the samples. The first obvious choice to try is
a linear interpolation between the two closest sample points. We found that linear
interpolation gives very accurate results that usually cannot be improved by switch-
ing to a higher order interpolation or radial basis function interpolation. Thus, we
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stuck to linear interpolation, which is actually identical to geodesic interpolation, see
[31], Algorithm 7.2. Geodesic interpolation computes the unique geodesic between
the subspaces corresponding to Grj and Grj+1 for Gr ∈ [Grj ,Grj+1]. In this partic-
ular case, it is possible to use either the subspace corresponding to Grj or Grj+1 as
base point, but care must be taken to use a consistent rotation to arrive at the same
matrix representative.

In order to evaluate the accuracy of the ROM approach, we select psuedo-
randomly ten test points in the interval Gr ∈ [100e3, 150e3]. By “pseudo-randomly,”
we mean that we ensure that no test point coincides with a sample point and that the
test points cover the entire parameter interval. For each test point, we compute the
relative L2(�) and L∞(�) error for the velocity for all time steps with respect to the
full order simulation. We run the simulations for a total time T = 1e−1 with time
step 1e−6. Since the DMD can not properly resolve the swing-in phase (the first 1e5
time steps), that is not considered for the error computations.

In this way, a start value close to the limit cycle is provided at each test point.
Table 1 reports the mean and maximum relative L2(�) and L∞(�) error for the

medium Grashof range and Fig. 9 visualizes the same data. We see that the three test
points in-between sample points (Gr= 113.8e3, Gr= 105.95e3, and Gr= 124.92e3)
have mean L2(�) and L∞(�) errors up to 2.58%. All the remaining test points,
which are closer to a sample point, have mean errors below 1%. The same observation
holds true for the maximum error. In particular, we notice that the maximum L∞(�)

error for Gr= 105.95e3 goes up to 8%. This shows that the distance to the base
point is crucial for the accuracy of our approach, as mentioned above. Thus, we
conclude that the proposed interpolation approach provides accurate approximations
so long as the sample density is appropriate, i.e., there is a base point for the manifold
interpolation near each new parameter value.

The relative L2(�) and L∞(�) errors over time for the best approximated case
(Gr= 129.26e3) and the worst approximated case (Gr= 105.95e3) amongst the test
samples in Table 1 are shown in Fig. 10.

We see that at Gr= 129.26e3, there is no initial growth of the error over time in
contrast to Gr= 105.95e3.

Let us take a look at the approximation of the first POD modes for the horizontal
and vertical component of the velocity for both cases, which are reported in Fig. 11.
In the case of Gr= 129.26e3, the error is dominated by the approximation in the
vertical component since the first POD mode is well approximated for the horizon-
tal component. Indeed, the blue line is superimposed to the red line in the top left
panel in Fig. 11. Also at Gr= 105.95e3, the first POD mode is well approximated for
the horizontal component, although the difference between approximated and refer-
ence mode becomes more evident as time passes. In addition, the mismatch between
approximated and reference mode for the vertical component of the velocity is much
larger at Gr= 105.95e3 than at Gr= 129.26e3. For these two examples, the errors
reported in Table 1 can be understood form the approximation of the first POD mode
as shown in Fig. 11. For other values of Gr, it is necessary to also look at the other
(less dominant) POD modes.
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Fig. 9 Bar plot visualizing the results from Table 1. The samples in the interval [100e3, 150e3] are taken
every 10e3

4.2 High Grashof range

Following what we have done in the medium Grashof range, we take samples every
10e3 in the high Grashof range [650e3, 700e3] for a total of six samples. We repeat
the two-tier POD procedure illustrated in Section 3.1 and set the threshold for both
PODs to 99.99% of the singular values. The final dimensions are 78 for the hori-
zontal velocity component and 82 for the vertical velocity component. Notice that
the dimensions for both velocity components are larger than in the medium Grashof
range.

Fig. 10 Relative errors over time for the velocity at Gr= 129.26e3 (left) and Gr= 105.95e3 (right)
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Fig. 11 Approximation of the first POD mode coefficient (blue) and reference solution (red) for the hor-
izontal (left) and vertical (right) component of the velocity in the best approximation case, i.e., Gr=
129.26e3 (top), and worst approximation case, i.e., Gr= 105.95e3 (bottom)

Just like for the medium Grashof range, the DMD uses the N = 30 of the most
dominant PODmodes in both velocity directions and reduces to k = 10 DMDmodes.
Moreover, if the first POD mode is not showing time-periodic behavior, the DMD
algorithm is applied again with N = 10. This was used eight times out of 20 DMDs
for the 10 test samples with independent DMDs for the horizontal and vertical com-
ponent. Again, the manifold interpolation chooses the closest sample point as base
point and uses linear interpolation in the tangent space.

The ten test points are chosen by shifting the ten random test points used for
medium Gr interval to the high Gr interval Gr ∈ [650e3, 700e3]. For each test point,
we compute the relative L2(�) and L∞(�) error for the velocity for all time steps
with respect to the full order simulation. Once again we remove the swing-in phase
(the first 1e5 time steps) from the error computations, so that for each test point, a
start value close to the limit cycle is provided. The error computation is then per-
formed over another 2e5 time steps with a time step size of 5e−7 for a total time
T = 1e−1.

Table 2 reports the mean and maximum relative L2(�) and L∞(�) error for the
velocity and Fig. 12 visualizes the same data. From this table, it is not easy to guess
when an approximation is more or less accurate. The distance to the bast point in the
manifold interpolation does not seem to play the same obvious role as in the medium
Gr range. For example, the mean L2(�) error is less than 6% for half the test points,
while it goes up to about 15% for Gr= 683.985e3. Similar observations can be made
for the mean L∞(�) error and the maximum errors.
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Fig. 12 Bar plot visualizing the results from Table 2. The samples in the interval [650e3, 700e3] are taken
every 10e3

The relative L2(�) and L∞(�) errors over time for the best approximated case
(Gr= 674.92e3) and the worst approximated case (Gr= 683.985e3) are shown in
Fig. 13. The main qualitative difference is that at Gr= 674.92e3 both the relative
L2(�) and L∞(�) errors oscillate around a fixed values, while at Gr= 683.985e3,
they oscillate around a curved mean. An interesting feature of the errors at Gr=
683.985e3 is that the maximum error is after about 1000 time steps and then the
errors reduce again (see left panel in Fig. 13). This is due to the fact that the phase of
the approximation is most out-of-sync at about time step 1000.

Once again, it is instructive to look at how the first POD modes for the horizon-
tal and vertical components of the velocity are resolved in both cases (see Fig. 14).
We see that at Gr= 674.92e3, the blue and red curves are practically superimposed

Fig. 13 Relative errors over time for the velocity at Gr= 674.92e3 (left) and Gr= 683.985e3 (right)



Surrogate modeling for NSE with DMD and manifold interpolation Page 21 of 27    22 

Fig. 14 Approximation of the first POD mode coefficient (blue) and reference solution (red) for the hor-
izontal (left) and vertical (right) component of the velocity in the best approximation case, i.e., Gr=
674.92e3 (top), and worst approximation case, i.e., Gr= 683.985e3 (bottom)

for both velocity components, indicating that error is negligible. Upon investigating
the other POD modes, it becomes visible that the fourth mode for the vertical com-
ponent of the velocity dominates the error (see Fig. 15). As for Gr= 683.985e3, the
error originates from the approximation of the first mode in the horizontal compo-
nent as shown in the bottom left panel of Fig. 14. Although this panel shows that

Fig. 15 Approximation of the fourth POD mode coefficient (blue) and reference solution (red) in the
vertical velocity component for Gr= 674.92e3



   22 Page 22 of 27 M.W. Hess et al.

the horizontal component of the velocity at Gr= 683.985e3 will not exhibit a time-
periodic behavior, we could not find a number of POD modes and DMD modes to
avoid this while keeping the same training samples. The accuracy could be improved
by increasing the number of training samples.

Next, we report a qualitative comparison between solutions obtained with the
full order model and our ROM approach at Gr= 674.92e3 (in Fig. 16) and Gr=
683.985e3 (in Fig. 17). Although at Gr= 674.92e3, the mean and maximum errors in
L2 and L∞ norms are between 3.5 and 5%, Fig. 16 shows that all important features
have been captured by the ROM. On the other hand, Fig. 17 shows that the middle
roll given by our ROM is out of phase with respect to the one in the full order solu-
tion. This could justify mean and maximum errors in L2 and L∞ norms of about 14%
and 25%, respectively, as reported in Table 2.

Although the higher accuracy in the medium Grashof range can be attributed to
less complex high-order simulations, some additional comments are in order. Recall
that in the 100e3 − 120e3 Grashof range, the solution is not too far from a steady
state. Comparing the solution at fixed time t = 1e5 produces 2–13% error, while
our ROM method reduces this error to 2–4%, with the 2% lower bound arising from
the POD projection error. In the high Grashof range, the ROM error is 2–15% on
average, while comparing to the solution at fixed time t = 1e5 produces an error of

Fig. 16 Comparison of the velocity vector field obtained with the full order model (top) versus our ROM
approach (middle) and the difference of the two (bottom) at Gr= 674.92e3 and after 13e3 time steps
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Fig. 17 Comparison of the velocity vector field obtained with the full order model (top) versus our ROM
approach (middle) and the difference of the two (bottom) at Gr= 683.985e3 and after 13e3 time steps

2–35%. Thus, relative to the mean field solution, the model reduction works equally
well in the medium and high Gr regimes.

We conclude this section by taking a look at the coefficients of the higher order
modes. Figure 18 shows that such coefficients can have more complex features than
the the coefficients of the most dominant modes. Since the coefficients of the first
modes usually have the largest amplitudes, these higher order modes are not well
approximated by the DMD in general. However, it is more important to strive for

Fig. 18 Evolution of the coefficient of the ninth mode at Gr= 113.8e3 in y-direction (left) and seventh
mode at Gr= 663.8e3 in y-direction (right)
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a low approximation error in the first, most dominant modes than to accurately
reproduce the higher order modes.

5 Conclusions and future perspectives

This work introduces a data-driven ROM approach to compute efficiently complex
time-periodic simulations. There are three main building blocks: proper orthogonal
decomposition, dynamic mode decomposition (DMD), and manifold interpolation.
Our ROM approach is tested and validated on the Rayleigh-Bénard cavity problem
with fixed aspect ratio and variable Grashof number (Gr). We focus on two parameter
domains with time-periodic solutions: a medium Gr range and a high Gr range, which
is close to turbulent behavior. The key feature of our ROM is that it allows to recover
frequencies not present in the sampled high-order solutions. This is crucial to achieve
accurate simulations at new parameter values. Although in some instances of the high
Gr regime, the mean relative error remained above 10%, most simulations achieved
engineering accuracy.

Our multi-stage ROM method could be further improved as follows. Stability of
the DMD algorithm could be enforced by various techniques employed in the DMD
literature. The manifold interpolation might benefit from using non-flat metrics to
interpolate the reduced DMD operator and the use of the complex DMD could be
explored. Finally, it would be interesting to apply the proposed approach to other
practical engineering problems and higher dimensional parameter domains as well as
quasi-periodic systems.
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