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Abstract
We consider the transcendental entire function f (z) = z +e−z , which has a doubly parabolic
Baker domain U of degree two, i.e. an invariant stable component for which all iterates con-
verge locally uniformly to infinity, and for which the hyperbolic distance between successive
iterates converges to zero. It is known from general results that the dynamics on the boundary
is ergodic and recurrent and that the set of points in ∂U whose orbit escapes to infinity has
zero harmonic measure. For this model we show that stronger results hold, namely that this
escaping set is non-empty, and it is organized in curves encoded by some symbolic dynamics,
whose closure is precisely ∂U . We also prove that nevertheless, all escaping points in ∂U
are non-accessible from U , as opposed to points in ∂U having a bounded orbit, which are
all accessible. Moreover, repelling periodic points are shown to be dense in ∂U , answering
a question posted in (Barański et al. in J Anal Math 137:679–706, 2019). None of these
features are known to occur for a general doubly parabolic Baker domain.

1 Introduction

We consider a transcendental entire function f : C → C and denote by { f n}n∈N its iterates,
which generate a discrete dynamical system in C. Then, the complex plane is divided into
two totally invariant sets: the Fatou set F( f ), defined to be the set of points z ∈ C such
that { f n}n∈N forms a normal family in some neighbourhood of z; and the Julia set J ( f ),
its complement. Another dynamically relevant set is the escaping set I( f ), where points
converge to infinity, the essential singularity of the function. For background on the iteration
of entire functions see e.g. [10].
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The Fatou set is open and consists typically of infinitely many connected components,
called Fatou components. Due to the invariance of the Fatou and the Julia sets, Fatou compo-
nents are periodic, preperiodic or wandering. For entire functions, periodic ones are always
simply connected [1], so the Riemann map can be used as a uniformization. More precisely,
let U be a invariant Fatou component of f and let ϕ be a Riemann map from the open unit
disk D onto U . Then,

g : D −→ D, g := ϕ−1 ◦ f ◦ ϕ

is an analytic self-map of D, and f|U and g|D are conformally conjugate by ϕ. Therefore, the
study of holomorphic self-maps of D is a good approach to analyze the dynamics of f|U .

The Denjoy–Wolff Theorem (see Sect. 2) asserts that, whenever a holomorphic self-map
g ofD is not conjugate to a rotation, all orbits converge to the same point p ∈ D (the Denjoy–
Wolff point of g). From this celebrated result, the classification theorem of invariant Fatou
components of entire maps can be deduced, which was proved earlier by Fatou [26] using
different techniques. Indeed, a given invariant Fatou component is either a Siegel disk (when
it is conjugate to an irrational rotation), an attracting basin (when all orbits converge to the
same point in U ) or a parabolic basin or a Baker domain (when all orbits converge to the
same point in ∂U ). The difference between the last two possibilities comes from the nature
of the convergence point: for Baker domains it is the essential singularity, so f is not defined
at it; whereas for parabolic basins, it is a fixed point of multiplier 1.

One may ask if the previous conjugacy with a holomorphic self-map of D can be used to
describe the dynamics of f in the boundary of U . First, from the fact that f (∂U ) ⊂ ∂U , it
can be deduced that g is an inner function, i.e. an analytic self-map of ∂D such that the radial
limits belong to ∂D for almost every point in ∂D. Hence, a boundary extension

g∗ : E ⊂ ∂D → ∂D

can be defined using radial limits, where E is a set of full measure in ∂D, and it induces a
dynamical system defined almost everywhere on ∂D. One may expect a priori that f|∂U and
g∗
|∂D share dynamical properties. Nevertheless, this is not always the case. The main obstacle

is that the Riemann map cannot be assumed to extend continuously to the boundary. In fact,
this is the usual case for unbounded Fatou components of transcendental entire functions
(compare [2, 8]). Therefore, ϕ is no longer a conjugacy in ∂D and properties of g∗

|∂D do not
transfer to f|∂U in general. However, successful results have been obtained in some cases.

First, Devaney and Goldberg studied the exponential family λez with 0 < λ < 1
e , [21],

whose Fatou set consists of a totally invariant attracting basin U . From the explicit com-
putation of the inner function, accesses to infinity were characterized, and the boundary of
U , which is precisely the Julia set, was shown to be organized in curves of escaping points
and their endpoints, the latter being the only accessible points from U . Such results were
generalized to a larger family of functions having a totally invariant attracting basin [3, 7].

On the basis of this successful example, inner functions have been used systematically to
understand the dynamics on the boundary of Fatou components. On the one hand, results of
[2, 5, 8] describe the topology of the boundary of unbounded Fatou components and their
accesses to infinity. On the other hand, the revealing work in [22], further developed in [6,
38], describe their ergodic properties.

We focus on a precise type of periodic Fatou components,Baker domains, inwhich iterates
converge locally uniformly to infinity.Maps possessingBaker domains are not hyperbolic, nor
bounded type (i.e. the set of singularities of the inverse branches of the function is unbounded
[23]). In contrast with the other periodic Fatou components, in which the dynamics around
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the convergence point can be conjugate to some predetermined normal form, three different
asymptotics are possible for Baker domains (see Theorem2.4 andRemark 2.11). This leads to
a further classification according to their internal dynamics into doubly parabolic, hyperbolic
and simply parabolic Baker domains, which also present different boundary properties.

Even though all orbits in a Baker domain tend to infinity, it is still unknown whether a
single escaping point always exists in ∂U . For hyperbolic and simply parabolic univalent
Baker domains this question was answered affirmatively by Rippon and Stallard [38], who
showed that the set of boundary escaping points has full harmonic measure with respect to
the Baker domain. This result was generalized to finite degree Baker domains and to infinite
degree under certain assumptions [6, Thm. A].

On the contrary, for doubly parabolic Baker domains of finite degree the set of escaping
boundary points is known to have zero harmonic measure [6, Thm. B]. This connects with the
fact that, for the corresponding inner function, no point in ∂D converges to the Denjoy–Wolff
point. However, the boundaries of such Baker domains are always non-locally connected
[8, Thm. 3.1], so the Riemann map cannot be used to rule out the existence of escaping
boundary points. Other unanswered questions about the boundaries of such Baker domains
concern periodic points, which are not known to exist in general, or the connection between
the accessibility of boundary points and their dynamics.

In this paper, we present a detailed analysis of the dynamics of the transcendental entire
function f (z) = z + e−z , which possesses countably many doubly parabolic Baker domains
of degree two. It is our belief that a good understanding of this model will throw some
light about the correspondence between the inner function and the boundary map, in a more
explicit way than the abstract existence of measurable sets. In our work, other interesting
properties of both the inner function and the boundary of the Baker domain arise, and are
susceptible to hold for a wider family of functions.

The function we consider, f (z) = z + e−z , is one of the few explicit examples having
doubly parabolic Baker domains of finite degree. Because of that, it was studied previously
in [2, 6, 25]. However, many aspects concerning boundary dynamics are still unexplored,
and are the object of this paper (Fig. 1).

First, Baker and Domínguez [2, Thm. 5.1] and Fagella and Henriksen [25, Example 3]
proved, using different arguments, the existence of a doubly parabolic Baker domain Uk of
degree two in each strip Sk := {(2k − 1)π ≤ Im z ≤ (2k + 1)π}, for all k ∈ Z. Since the
dynamics in all of them are the same, we consider only the Baker domainU := U0 in the strip
S := S0 = {−π ≤ Im z ≤ π}. In [2, Thm. 5.2], the associated inner function is computed
explicitly.

The topology of ∂U is addressed in [2, Section 6], where it is deduced that ∂U is non-
locally connected and preimages of infinity by the Riemann map ϕ (in the sense of radial
limits) are dense in the unit circle. Going one step further, they proved that the impression
of the prime end corresponding to 1 is precisely ∂S ∪ {∞}. Using this, accesses to infinity
from U were characterized in terms of the inner function.

Finally, in [6, Example 1.2], they describe some dynamical sets in ∂U in terms of measure,
as an application of a general theorem [6, Thm. B]. More precisely, they show that almost
every point with respect to the harmonic measure has a dense orbit in ∂U . Therefore, the
escaping points in ∂U have zero harmonic measure. Moreover, they conjectured that all
escaping points in ∂U are non-accessible from U and accessible repelling periodic points
are dense in ∂U . In this paper we prove both conjectures.
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Fig. 1 Dynamical plane for f (z) = z + e−z . In red, the Julia set of f . In beige, the Baker domain contained
in the strip {−π < Im z < π}. In black, the rest of the Fatou set of f . The only critical point on the strip (0)
is also marked, as well as the corresponding critical value (1) (color figure online)

Statement of results

Following the approach of [6], we aim to give an explicit description of the sets of full and
zero harmonic measure which appear as a result of the general ergodic theorems.

First we describe the escaping set in ∂U . Recall that it is known to have zero harmonic
measure so, a priori, it is unknown whether it is non-empty. We prove that escaping points
do exist in ∂U and are organized in curves (known as dynamic rays or hairs) encoded by
some symbolic dynamics, as it is not uncommon for transcendental entire functions. All
escaping points are proved to belong to such curves, while non-escaping points are in their
accumulation sets. This leads to the following description of the boundary of U .

Theorem A (The boundary of U ) Every escaping point in ∂U can be connected to ∞ by a
unique curve of escaping points in ∂U. Moreover, ∂U is the closure of such curves.

The existence of these dynamic rays follows fromgeneral results of [39] applied to h(w) =
we−w , semiconjugate to f by w = e−z . From these general results it is deduced that h, and
therefore f , are criniferous functions, i.e. that all points in the escaping set can be connected to
infinity by a curve of escaping points: the dynamic ray. Criniferous functions were introduced
in [9], and further studied in [30]. Nevertheless, in order to have a better control on the
geometry of the dynamic rays and their relation with the boundary of U , we choose to prove
Theorem A with an explicit construction, which gives us additionally a parametrization and
certain continuity properties.

Other remarkable properties are observed, such as that all points in ∂U escape to ∞ in
a different “direction” than that of the dynamical access. This connects with the fact that,
for the inner function, there is no escaping point (in the sense that there are no boundary
orbits converging to the Denjoy–Wolff point, apart from the preimages of itself). Moreover,
escaping orbits in ∂U converge to ∞ exponentially fast, while points in U do so in a slower
fashion, being the map close to the identity.
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Next, we study the landing properties of the dynamic rays mentioned above. More pre-
cisely, we prove the following.

Theorem B (Landing and non-landing dynamic rays) There exist uncountably many dynamic
rays which land at a finite end-point, and there exists uncountably many dynamic rays which
do not land. The accumulation set (on the Riemann sphere) of such a non-landing ray is an
indecomposable continuum which contains the ray itself.

This contrasts with the exponential maps λez , with 0 < λ < 1
e , where all dynamic rays land,

due to hyperbolicity.
On the other hand, indecomposable continua were shown to exist in the Julia set of some

non-hyperbolic exponential maps Eκ (z) = ez +κ , for some values of κ , first in [17] and later
on [18, 19], although not as the accumulation set of a dynamic ray. It was shown by Rempe
[32, 33] that indecomposable continua appear as the accumulation set of a dynamic ray in
exponential maps Eκ , for some values of κ . More precisely, he proves that if the singular κ

is on a dynamic ray, then there exist uncountably many dynamic rays whose accumulation
set is an indecomposable continuum. However, for the exponential maps Eκ , if the singular
value is on a dynamic ray, then J (Eκ ) = C or the Fatou set consists of Siegel disks and
preimages of them (see e.g. [20]). Contrastingly, we find these indecomposable continua in
the boundary of a Baker domain (and in the boundary of the projected parabolic basin, see
Sect. 3).

We also address the problem of relating the previous sets, of escaping and non-escaping
points, with the set of accessible boundary points from U . Again, symbolic dynamics play
an important role, in this case to connect the dynamics in the unit circle with the behaviour
in ∂U .

Theorem C (Accessible points) Escaping points in ∂U are non-accessible from U, while
points in ∂U having a bounded orbit are all accessible from U.

Finally, we study periodic points in ∂U . We show that g|∂D is conjugate to the doubling
map (see Sect. 6), so periodic points for g are dense in ∂D. Moreover, Theorem C asserts that
periodic points in ∂U , if they exist, are accessible. Both things suggest that periodic points
might be dense in ∂U , which is indeed proven in the following theorem.

Theorem D (Periodic points) Periodic points are dense in ∂U.

We observe that first statement in TheoremC corresponds to the first part of the conjecture
in [6], while the second statement together with Theorem D provide a positive answer to the
second part.
Structure of the paper. Section2 is devoted to reviewing some general results on the dynam-
ics of Fatou components, and in particular, of Baker domains, as well as to state other
preliminary results needed in the rest of the paper. In Sect. 3 one finds the auxiliary results
about the dynamics of f (z) = z + e−z , which are used recurrently in the following sec-
tions. For completeness, a sketch of the general dynamics of f is included, summarizing the
ideas of [2] and [25]. Section4 is devoted to studying the escaping set and its organization
in dynamic rays, proving Theorem A. The landing properties of such rays are discussed in
Sect. 5, together with the proof of Theorem B. Theorems C and D are proved in Sects. 6 and
7, respectively.

Notation.Throughout this article,C and̂C denote the complex plane and theRiemann sphere,
respectively. The positive and negative real axis are indicated by R+ and R−, respectively;
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while the upper and the lower half-plane are indicated by H+ and H−, respectively. The
following notation is used for the horizontal strips of width 2π

Sk := {(2k − 1)π ≤ Im z ≤ (2k + 1)π} .

We denote by Uk the unique Baker domain contained in the strip Sk . We shall denote by S
the central strip S0, and by U its Baker domain, just to lighten the notation.

Given a set A ⊂ C, we denote by A and ∂ A, its closure and its boundary taken in C; and
bŷ∂ A, its boundary when considered in ̂C. We denote by dist(·, ·) the Euclidean distance
between two points, and for z ∈ C and X , Y ⊂ C we write

dist(z, X) = inf
x∈X

dist(z, x), dist(X , Y ) = inf
x∈X ,y∈Y

dist(x, y).

2 Preliminaries

Inner function associated to a Fatou component

Let U be an invariant Fatou component of a transcendental entire function f : C → C. Such
component is always simply connected [1], so one may consider a Riemannmap ϕ : D → U .
Then,

g : D −→ D, g := ϕ−1 ◦ f ◦ ϕ,

is an inner function, i.e. a holomorphic self-map of the unit disk D such that, for almost every
θ ∈ [0, 2π), the radial limit g∗(eiθ ) belongs to ∂D (see e.g. [24, Sect. 2.3]). Then, g is called
the inner function associated to U . Although g depends on the choice of ϕ, inner functions
associated to the same Fatou components are conformally conjugate, so we can ignore the
dependence on the Riemann map.

The dynamics of g|D are completely described by the results of Denjoy,Wolff and Cowen,
being valid not only for inner functions, but for any holomorphic self-map ofD. The Denjoy–
Wolff Theorem describes the asymptotic behaviour of iterates (see e.g. [14, Thm. IV.3.1.]).

Theorem 2.1 (Denjoy–Wolff) Let g be a holomorphic self-map of D, not conjugate to a
rotation. Then, there exists p ∈ D, such that for all z ∈ D, gn(z) → p. The point p is called
the Denjoy–Wolff point of g.

For a more precise description of the dynamics, the concepts of fundamental set and
absorbing domain are needed. Although sometimes both notions are used interchangeably,
we shall make a distinction between them.

Definition 2.2 (Absorbing domain) A domain V ⊂ U is said to be an absorbing domain
for f in U if f (V ) ⊂ V and for every compact set K ⊂ U there exists n ≥ 0 such that
f n(K ) ⊂ V .

Definition 2.3 (Fundamental set) Let U be a domain in C and let f : U → U be a holomor-
phic map. An absorbing domain V ⊂ U is said to be a fundamental set for f in U if it is
simply connected and f|V is univalent.

Clearly, fundamental sets are absorbing domains, but the converse is not true. The existence
of fundamental sets (and, therefore, of absorbing domains) is ensured by Cowen’s theorem.
Moreover, his results leads to a classification of the self-maps of D having the Denjoy–Wolff
point in ∂D in terms of the dynamics in the fundamental sets.
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Theorem 2.4 (Cowen’s classification of self-maps of D, [15]) Let g be a holomorphic self-
map of D with Denjoy–Wolff point p ∈ ∂D. Then, there exists a set V ⊂ D, a domain � equal
to C or H = {Re z > 0}, a holomorphic map ψ : D → �, and a Möbius transformation
T : � → �, such that:

(a) V is a fundamental set for g in D,
(b) ψ(V ) is a fundamental set for T in �,
(c) ψ ◦ g = T ◦ ψ in D,
(d) ψ is univalent in V .

Moreover, up to a conjugacy of T by a Möbius transformation preserving �, one of the
following three cases holds:

• � = C, T = idC + 1 (doubly parabolic type),
• � = H, T = λidH, for some λ > 1 (hyperbolic type),
• � = H, T = idH ± 1 (simply parabolic type).

In view of this theorem, we say that a Baker domain U (or f|U ) is of doubly parabolic,
hyperbolic or simply parabolic type if the same holds for the associated inner function.

Assuming that f has finite degree on U , as in our example, g is always finite Blaschke
product, so g is well-defined and holomorphic in ∂D, and g(∂D) = ∂D.

When the degree of f|U is infinite, the associated inner function does not extend holomor-
phically to all points in ∂D, which complicates considerably the definition of a dynamical
system in ∂D. Since this is not the case of our example, we shall skip the details and refer to
[22] for a wide exposition on the topic.

Behaviour of the Riemannmap

Let U � C be a simply connected domain and let ϕ : D → U be a Riemann map. The
behaviour of the Riemann map in the boundary plays a crucial role for describinĝ∂U , and
hence ∂U . Herewe state somebasic definitions and resultswhichweuse.Ageneral exposition
on the topic can be found in [29, Sect. 17] and [31].

By Carathéodory’s Theorem, ϕ extends continuously to D if and only if ̂∂U is locally
connected. When this is not the case, radial limits, radial cluster sets and cluster sets replace
the notion of image for points in ∂D, and are the key tools to study the behaviour of ϕ in ∂D.

Definition 2.5 Let ϕ : D → U be a Riemann map and let eiθ ∈ ∂D.

• The radial limit of ϕ at eiθ is defined to be ϕ∗(eiθ ) := lim
r→1− ϕ(reiθ ).

• The radial cluster set Clρ(ϕ, eiθ ) of ϕ at eiθ is defined as the set of values w ∈ ̂C for
which there is an increasing sequence {tn}n ⊂ (0, 1) such that tn → 1 and ϕ(eiθ tn) → w,
as n → ∞.

• The cluster set Cl(ϕ, eiθ ) of ϕ at eiθ is the set of values w ∈ ̂C for which there is a
sequence {zn}n ⊂ D such that zn → eiθ and ϕ(zn) → w, as n → ∞.

The well-known Fatou, Riesz and Riesz Theorem on radial limits [29, Thm. 17.4] states
that the radial limit ϕ∗(eiθ ) ∈ ̂∂U exists for Lebesgue almost every θ ; but, if we fix any
particular point v ∈ ̂∂U , then the set of eiθ ∈ ∂D such that ϕ∗(eiθ ) = v has Lebesgue
measure zero.

The cluster set Cl(ϕ, eiθ ) can be seen to be equivalent to the impression of the prime end
of U corresponding to eiθ by the Riemann map ϕ [31, Thm. 2.16]. Therefore, we use both
notions indistinguishably.

123



95 Page 8 of 36 N. Fagella, A. Jové

When̂∂U is non-locally connected, accessible points and accesses play an important role,
since not all points in ∂U can be reached from inside U . They can be characterized by means
of the Riemann map.

Definition 2.6 (Accessible point) Given an open subset U ⊂ ̂C, a point v ∈ ̂∂U is accessible
from U if there is a path γ : [0, 1) → U such that lim

t→1
γ (t) = v. We also say that γ lands

at v.

Moreover, we say that a curve γ : [0, 1) → U lands at +∞ (resp., −∞), if Re γ (t) →
+∞ (resp. −∞), as t → 1, and Im γ (t) is bounded for t ∈ [0, 1).

Definition 2.7 (Access) Let z0 ∈ U and let v ∈ ̂∂U be an accessible point. A homotopy class
(with fixed endpoints) of curves γ : [0, 1] → ̂C such that γ ([0, 1)) ⊂ U , γ (0) = z0 and
γ (1) = v is called an access from U to v.

Theorem 2.8 (Correspondence Theorem, [5]) Let U ⊂ ̂C be a simply-connected domain,
ϕ : D → U a Riemann map, and let v ∈ ̂∂U. Then, there is a one-to-one correspondence
between accesses from U to v and the points eiθ ∈ D such that ϕ∗(eiθ ) = v. The correspon-
dence is given as follows.

(a) If A is an access to v ∈ ̂∂U, then there is a point eiθ ∈ ∂D with ϕ∗(eiθ ) = v. Moreover,
different accesses correspond to different points in ∂D.

(b) If, at a point eiθ ∈ ∂D, the radial limit ϕ∗ exists and it is equal to v ∈ ̂∂U, then there
exists an access A to v. Moreover, for every curve η ⊂ D landing at eiθ , if ϕ(η) lands at
some point w ∈ ̂C, then w = v and ϕ(η) ∈ A.

Harmonic measure

The Riemann map ϕ : D → U induces a measure in ̂∂U , the harmonic measure, which
is the appropriate one when dealing with the boundaries of Fatou components. Indeed, we
now define harmonic measure in̂∂U in terms of the pullback under a Riemann map of the
normalized measure on the unit circle ∂D, following the approach of [13, Chapter 7].

Definition 2.9 (Harmonic measure) LetU � C be a simply connected domain, z ∈ U , and let
ϕ : D → U be a Riemann map, such that ϕ(0) = z ∈ U . Let (∂D,B, λ) be the measure space
on ∂D defined by B, the Borel σ -algebra of ∂D, and λ, its normalized Lebesgue measure.
Consider the measurable space (̂∂U ,BU ), where BU is the σ -algebra defined as

BU := {

B ⊂ ∂U : (ϕ∗)−1(B) ∈ B}

.

Then, given B ∈ BU , the harmonic measure at z relative to U of the set B is defined as:

ωU (z, B) := λ((ϕ∗)−1(B)).

We note that the σ -algebraBU defined in̂∂U does not depend on the chosen Riemannmap
ϕ nor on the base point z. Indeed, any two Riemann maps ϕ1, ϕ2 : D → U are equal up to
precomposition with an automorphism of D, and automorphisms of D send Borel sets of ∂D

to Borel sets of ∂D. Hence, if for some Riemann map ϕ : D → U , it holds (ϕ∗)−1(B) ∈ B,
then it also holds for all Riemann maps ϕ : D → U .

We also note that the definition of ωU (z, ·) is independent of the choice of ϕ, provided it
satisfies ϕ(0) = z, since λ is invariant under rotation.

We refer to [13, 27, 31] for equivalent definitions and further properties of the harmonic
measure. We only need the following simple fact.
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Lemma 2.10 (Sets of zero and full harmonic measure) Let U � C be a simply connected
domain. Consider the measure space (̂∂U ,BU ) defined above, and let B ∈ BU . If there
exists z0 ∈ U such that ωU (z0, B) = 0 (resp. ωU (z0, B) = 1), then ωU (z, B) = 0 (resp.
ωU (z, B) = 1) for all z ∈ U. In this case, we say that the set B has zero (resp. full) harmonic
measure relative to U, and we write ωU (B) = 0 (resp. ωU (B) = 1).

Finally, we note that, by the Fatou, Riesz and Riesz Theorem stated above, it holds
ωU ({∞}) = 0. Hence, for every measurable set B ⊂ ̂∂U and z ∈ U , we have

ωU (z, B) = ωU (z, B ∩ C).

Dynamics on the boundary of Baker domains

For transcendental entire functions,Baker domains are defined as periodic Fatou components
in which iterates converge uniformly towards infinity, the essential singularity of the function.
Such Fatou components have been widely studied [4, 6, 25, 28, 34–37], although here we
only state the results we need to deal with our example.

Without loss of generality, let us assume that U is an invariant Baker domain. Since all
points in U escape to ∞ under iteration, U is clearly unbounded and infinity is accessible
from it. Indeed, given any point z ∈ U and a curve joining z and f (z) within U , then the
curve γ := ∪n≥0 f n(γ ) is unbounded and lands at infinity, defining an access which is called
the dynamical access to infinity.

Remark 2.11 (Classification ofBaker domains) Cowen’s classification (Theorem2.4) implies
that dynamics inside a Baker domain can be eventually conjugate to idC + 1, or to λidH,
λ > 1, or to idH + 1. Indeed, all types are possible [28] and thus, this gives a classification
of Baker domains. Let us remark that this is not the case for parabolic basins, which can be
proved to be always of doubly parabolic type using extended Fatou coordinates (see e.g. [29,
Sect. 10]).

The following results describe the boundary of Baker domains, both from a topological
and dynamical points of view.

Theorem 2.12 (Boundary of doubly parabolic Baker domains, [2, 8]) Let f : C → C and U
be a Baker domain of f of doubly parabolic type. Let ϕ : D → U be a Riemann map. Then,

{

eiθ : ϕ∗(eiθ ) = ∞} = ∂D.

In particular, ∂U is non-locally connected.

Theorem 2.13 (Dynamics on the boundary of Baker domains, [6, 38]) Let f : C → C be a
transcendental entire function and U be a Baker domain of f , such that f|U has finite degree.
Then, the following holds.

(a) If U is hyperbolic or simply parabolic, then I( f ) ∩ ∂U (the set of escaping points in
∂U) has full harmonic measure.

(b) If U is doubly parabolic type, then the set of points in ∂U whose orbit is dense in ∂U
has full harmonic measure. In particular, I( f ) ∩ ∂U has zero harmonic measure.

Indecomposable continua

Finally, we include the definition of indecomposable continuum and the following result,
which gives a sufficient condition for the accumulation set of a curve to be an indecomposable
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continuum. Here, we shall understand simple curve as the continuous, one-to-one image of
the non-negative real numbers.

Definition 2.14 (Indecomposable continuum) We say that X ⊂ ̂C is a continuum if it is
compact and connected. A continuum is indecomposable if it cannot be expressed as the
union of two proper subcontinua.

Theorem 2.15 (Curry, [16, Thm. 8]) Let X be a one-dimensional non-separating plane con-
tinuum which is the closure of a simple curve that limits upon itself. Then X is indecomposable.

3 Basic properties of the dynamics of f

In this section we gather some of the properties of the function f (z) = z + e−z , as well as
its dynamics, which are used recurrently during the proofs of the main theorems. First, we
include a quick description of the general dynamics of f , summarizing the ideas of [2, 25].
From there, it will be deduced that only the study of f on the strip S := {z ∈ C : |Im z| ≤ π}
is needed.

General dynamics of f

To give a first approach to the dynamics, one may consider the semiconjugacy w = e−z

between f (z) = z + e−z and h(w) = we−w . Observe that w = 0 is a fixed point of
multiplier 1, and h(w) = w − w2 +O(w3) near 0, implying that 0 is a parabolic fixed point
having one attracting and one repelling direction. From the fact that R is invariant by h and
from the action of h inR, it is deduced that the repelling direction isR−, which belongs to the
Julia set J (h), and the attracting direction is R+, which belongs to the immediate parabolic
basin of 0, and hence to the Fatou setF(h). See Fig. 2. We denote byA0 the immediate basin
of 0.

We note that all preimages of R− are in the Julia set and, since 0 is an asymptotic value,
they separate the plane into infinitely many components. It follows that the Fatou set F(h)

has infinitely many connected components.
It is not hard to see that the only two singular values of h are 0 and e−1, the latter being

contained in the immediate parabolic basin A0. Therefore, the Fatou set F(h) is precisely
A0 and its preimages under h. Indeed, since h has only a finite number of singular values,
it cannot have Baker nor wandering domains [23, Sect. 5], and the presence of any other
invariant Fatou component (either a basin or a Siegel disk) would require an additional
singular value (see e.g. [10, Thm. 7]). Since there are infinitely many Fatou components for
h, A0 has infinitely many preimages, separated by the preimages of R−.

We lift these results to the dynamical plane of f , using Bergweiler’s result [11], which
ensures that the Fatou and Julia sets of f and h are in correspondence under the projection
w = e−z . Preimages of R+ under e−z , which are precisely the forward invariant horizon-
tal lines {Im z = 2kπ i}k∈Z, are in the Fatou set and their points escape to ∞ to the right.
Preimages of R− under the exponential projection are the forward invariant horizontal lines
{Im z = (2k + 1)π i}k∈Z, which are in the Julia set and whose points escape to−∞ exponen-
tially fast. The horizontal strips Sk := {(2k − 1)π ≤ Im z ≤ (2k + 1)π} contain a preimage
Uk of A0 which, in turn, contains a preimage of R+ under e−z , that is {Im z = 2kπ i}. Such
horizontal line is forward invariant, so this implies that Uk is forward invariant and iterates
tend to ∞, so Uk is a Baker domain.
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Fig. 2 In the left, a shows the plot of the real function h(x) = xe−x (green), together with the diagonal
y = x (grey dotted line). The point x = 0 is a parabolic fixed point. Points in R+ (red) are attracted to 0, so
R+ ⊂ A0 ⊂ F(h), while points in R− (blue) converge to −∞ exponentially fast and R− ⊂ J (h). In the
right, b shows in red the preimages of the positive real line R+; and, in blue, the preimages of the negative
real line R−. By the invariance of the Fatou and the Julia sets, all red lines are contained in the Fatou set,
while the blue ones are in the Julia set. One deduces that the immediate parabolic basinA0 is contained in the
region bounded by the two blue lines lying in the strips {π < y < 2π} and {−2π < y < −π} respectively
(color figure online)

Moreover, we note that F( f ) is precisely the union of these Baker domains Uk and their
preimages under f . Indeed, any Fatou component V of f must project by w = e−z to a
preimage of A0, implying that V is mapped to some Uk in a finite number of steps. Hence,
the presence of wandering domains is ruled out.

Finally, we note that the function f satisfies the relation f (z + 2kπ i) = f (z) + 2kπ i ,
for all z ∈ C and k ∈ Z, so it is enough to study it in the central strip S := S0 and the
corresponding Baker domain U := U0. To do so, we consider the conformal branch of the
semiconjugacy w = e−z , defined on IntS, i.e.

E(z) := e−z : IntS −→ C � R−,

E−1(w) := −Log(w) : C � R− −→ IntS,

where Log : C � R− → IntS denotes the principal branch of the logarithm. Since U ⊂ Int S
and A0 ⊂ C � R−, this gives a conformal conjugacy between f|U and h|A0 . Hence, we
deduce that the Baker domain U is of doubly parabolic type and of degree two (Fig. 3).

Remark 3.1 Althoughworkingwith the function h may seemeasier, for having afinite number
of singular values and being postsingularly bounded, the fact that one asymptotic value lies
in the Julia set reduces this advantage. In general, we shall work with f , its logarithmic lift.

Action of f in the strip S

As seen before, it is enough to consider f in the strip S = {z ∈ C : |Im z| ≤ π}, delimited
by the horizontal lines L± := {z : Im z = ±π}. See Fig. 4.
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Fig. 3 Schematic representation of the dynamics of h and f and how the exponential projection w = e−z

relates both of them. In the left, R+ (in pink) is contained in the immediate parabolic basinA0. Its preimages
by w = e−z , the lines {Im z = 2kπ i}k∈Z (also in pink), lie each of them in a Baker domain Uk . In blue, in
the left there is R− ⊂ J (h). Its preimages {Im z = (2k + 1)π i}k∈Z lie in J ( f ) and separate the plane into
the strips Sk (color figure online)

Fig. 4 Schematic representation of how f acts on the strip S and of the absorbing domain V (color figure
online)

Observe that, to the left, f behaves like the exponential and, to the right, like the identity.
Moreover, if one writes f as

f (x, y) = (x + e−x cos y, y − e−x sin y),

preimages of L± can be computed explicitly as the curves of the form
{

y − e−x sin y = ±π
}

.
In S they consist precisely of two bent curves converging to −∞ in both ends, being asymp-
totic to R and to L∓ (see Fig. 4). The region delimited by these curves is mapped outside S
in a one-to-one fashion. On the other hand, the map f : f −1(S) ∩ S → S is a proper map of
degree two, which can be deduced for instance by computing the preimages of R in S.

Next, we define the set

̂S := {

z ∈ S : f n(z) ∈ S, for all n
}

.

Clearly,U ⊂ ̂S, sinceU is forward invariant under f .Moreover, since both f : f −1(S)∩S →
S and f|U have degree 2, there cannot be preimages of U in S other than itself. Therefore,
F( f ) ∩ ̂S = U . On the other hand, ∂U ⊂ J ( f ) ∩ ̂S. The other inclusion, which is going to
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be proved in Proposition 4.4, cannot be claimed directly to be true, for the possible existence
of buried points in ̂S, i.e. points in J ( f ) which are not eventually mapped to the boundary
of any Baker domain Uk .

Absorbing domains and expansion of f

Let us define the following set

V :=
{

z ∈ S : Re z > −1, |Im z| <
π

2

}

.

Lemma 3.2 The set V is an absorbing domain for f in U.

Proof Clearly, V is open and connected. For the forward invariance, consider z = x+iy ∈ V ,
so x > −1 and |y| < π

2 , then

Re f (x + iy) = x + e−x cos y > x > −1,

|Im f (x + iy)| <

∣

∣

∣

π

2
− e−x

∣

∣

∣ <
π

2
.

Finally, the fact that V is absorbing, i.e. that all compact sets in U must eventually enter in
V , can be deduced from the dynamics on the conjugate parabolic basinA0. Indeed, E(V ) is
the following forward invariant set,

E(V ) =
{

w ∈ C : |w| <
1

e
, |arg w| <

π

2

}

.

Observe that E(V ) is an circular sector of angle π
2 containing the real interval (0, e), which is

in the attracting direction of the parabolic pointw = 0. Hence, E(V ) is a parabolic petal (see
e.g. [41, p. 74]), so all compact sets in A0 must eventually enter in E(V ). Hence, applying
back the conjugacy, we get that V is an absorbing domain for f in U . �
Remark 3.3 Since it contains the critical point 0, V is not a fundamental set. It can be turned
into one making it smaller, for instance taking

{

z ∈ S : Re z > 0, |Im z| < π
2

}

. On the other
hand, fundamental sets, and absorbing domains, can be chosen bigger, although we have no
need to do that. In fact, using local theory around parabolic fixed points (see e.g. [41, p.74]),
there exist fundamental sets which approach tangentially L±.

One of the advantages of choosing V as we have done is that the map is expanding outside
it (although not uniformly expanding). Indeed, a simple computation yields:

f ′(x + iy) = 1 − e−x cos y + ie−x sin y,
∣

∣ f ′(x + iy)
∣

∣ =
√

1 + e−2x − 2e−x cos y.

Therefore,
∣

∣ f ′(x + iy)
∣

∣ > 1 if and only if e−x − 2 cos y > 0. This last inequality is satisfied
if π

2 < |y| < π or if x < −1. Therefore,
∣

∣ f ′(z)
∣

∣ > 1 for all z ∈ S � V .
Since S � V is not convex, in order to apply the expansion of f as an augmenter of the

distance between points, we need to consider a more appropriate distance than the Euclidean
one. To this aim, we define the following metric.

Definition 3.4 (ρ-distance in S � V ) Given z, w ∈ S � V , let us define its ρ-distance as:

ρ(z, w) := inf l(γ ),
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Fig. 5 Action of the inverses φ0 and φ1 on the strip S (color figure online)

where the infimum is taken over all paths γ ⊂ S � V with endpoints z and w, and l denotes
the length of the path with respect to the Euclidean metric.

Given a set K ⊂ S � V , we denote by diamρ(K ) the diameter of K with respect to the
ρ-distance, i.e.

diamρ(K ) = sup
x,y∈K

ρ(x, y).

Observe that the Euclidean distance is always smaller than the ρ-distance, i.e.

|z − w| ≤ ρ(z, w), for all z, w ∈ S � V ,

with equality if both z and w are contained in a convex subset of S � V .
Notice also that the ρ-distance between two points can be arbitrarily large, although the

Euclidean distance between them remains bounded. However, we are going to restrict the
use of the ρ-distance to particular subsets of S � V , where we do have an upper bound for
the ρ-distance in terms of the Euclidean one (see Lemma 3.10).

Remark 3.5 Let us observe that, instead of considering the dynamical system defined by f
in C, we can restrict to the one given by f in̂S. For it we have a similar situation that the one
for λez , 0 < λ < 1

e , in [21], and the corresponding generalization in [3, 7]: a unique Fatou
component which contains the postsingular set. Mainly, two things distinguish our situation
from theirs. First, f in̂S has degree two, and the functions they are dealing with have infinite
degree. Second, they have uniform expansion (at least in the logarithmic tracts), while our
expansion is not uniform (compare with Proposition 3.7). Hence, the results on next sections
are meant to overcome this difficulty.

Itineraries in̂S and symbolic dynamics

Recall that f : f −1(S) ∩ S → S has degree two and the critical value is 1. Therefore, the
two branches of the inverse of f in S, say φ0 and φ1, are well-defined in S � [1,+∞). More
precisely

φ0 : S � [1,+∞) → �0 := S ∩ H+,

φ1 : S � [1,+∞) → �1 := S ∩ H−,

where H+ and H− denote the upper and the lower half plane, respectively (see Fig. 5).
We claim that φ0 and φ1 do not increase the ρ-distance between points, as shown in the

following proposition.
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Proposition 3.6 (Contraction and uniform contraction in S � V ) The following properties
hold true.

(a) Let z, w ∈ S � V . Then, for i ∈ {0, 1},
ρ(φi (z), φi (w)) ≤ ρ(z, w).

(b) Let k ∈ R and let Sk := {

z = x + iy ∈ S � V : x ≤ k
}

. Then, there exists λ := λ(k) < 1
such that, if z, w ∈ S � V , then, for i ∈ {0, 1},

ρ(φi (z), φi (w)) ≤ λρ(z, w).

Moreover, if K ⊂ Sk is a compact set, then

diamρ(φi (K )) ≤ λdiamρ(K ).

Proof (a) As observed above, it holds
∣

∣ f ′(z)
∣

∣ > 1 for all z ∈ S �V . Therefore, if γ ⊂ S �V
is a geodesic (in S � V ) joining z and w, then φi (γ ) is a curve joining φi (z) and φi (w),
and

ρ(φi (z), φi (w)) ≤
∫

φi (γ )

ds =
∫

γ

∣

∣φ′
i (s)

∣

∣ ds <

∫

γ

ds = ρ(z, w),

as desired.
(b) We start by noticing that

∣

∣ f ′∣
∣ is uniformly bounded in S � V . Indeed, on the one hand,

for all z = x + iy with x ≤ −1, it holds

∣

∣ f ′(x + iy)
∣

∣ =
√

1 + e−2x − 2e−x cos y ≥
√

1 + e2 − 2e > 1.

On the other hand, assuming k > −1 and −1 < x < k, necessarily π
2 ≤ |y| ≤ π , so

∣

∣ f ′(x + iy)
∣

∣ =
√

1 + e−2x − 2e−x cos y ≥
√

1 + e−2x ≥
√

1 + e−2k > 1.

Hence, there exists a constant λ, depending only on k, such that
∣

∣ f ′(z)
∣

∣ ≥ λ, for all
z ∈ {

z = x + iy ∈ S � V : x ≤ k
}

. Hence, the first statement follows applying the same
reasoning as in (a). Finally, let K ⊂ Sk and denote by λ the constant of contraction in
Sk . Then, for all z, w ∈ φi (K ), we have f (z), f (w) ∈ K , and

ρ(z, w) ≤ λρ( f (z), f (w)) ≤ λdiamρ(K ).

Hence, diamρ(φi (K )) ≤ λdiamρ(K ), as desired.
�

Remark 3.7 (Expansion and uniform expansion in S � V ) We note that, as a direct conse-
quence of Proposition 3.6 (a), if z, w ∈ �i and f (z), f (w) ∈ S � V , then

ρ(z, w) ≤ ρ( f (z), f (w)).

Likewise, the expansion is uniform in any half-strip Sk . In particular, if K is a compact
set such that diamρ(K ) > 0 and f n(K ) ⊂ Sk ∩�in , in ∈ {0, 1}, then diamρ( f n(K )) → ∞,
as n → ∞.

Next, we use this subdivision of the strip in �0 and �1 to define the itinerary for points in
̂S, where �2 denotes the space of infinite sequences of two symbols, taken to be 0’s and 1’s.
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Fig. 6 Graphic representation of the regions �i j , i, j ∈ {0, 1} (color figure online)

Definition 3.8 (Itineraries in ̂S) Let z ∈ ̂S be such that f n(z) /∈ R, for all n ≥ 0. The
sequence I (z) = s = {sn}n ∈ �2 satisfying f n(z) ∈ �sn is called the itinerary of z.

Remark 3.9 For points in ̂S which are eventually mapped to R, the itinerary is not defined.
However, this can be neglected because they are in the Baker domain and their dynamics are
already understood.

We will need a further subdivision of the strip. Let us define the regions

�i j := φi (φ j (S)) � V .

For instance, the region�00 has to be seen as the set of points in�0 which remain in�0 after
one iteration of the function, while points in �01 are the points which change to �1. Clearly,
if z ∈ ̂S belongs to �00, its itinerary starts with 00; while if z ∈ �01, then I (z) begins with
01. The absorbing domain V is removed from the regions for practical use: this has no effect
on the study of ∂U , since its points are never in V , but it allows us to give better estimates
on the function. See Fig. 6.

Lemma 3.10 (Properties of the regions �i j ) The following properties hold true.

(a) �01,�10 ⊂ {z ∈ S : Re z < 0}. Therefore, if z ∈ S � V with Re z > 0, either z ∈ �00

or z ∈ �11.
(b) If z ∈ S � V with −π

2 < Im z < π
2 and f (z) ∈ S, then either z ∈ �01 or z ∈ �10.

(c) For z ∈ �i i , i ∈ {0, 1}, we have |Im z| > π
2 . In particular, Re f (z) < Re z and, if

z /∈ L±, |Im f (z)| < |Im z|.
(d) For z, w ∈ �i j , i, j ∈ {0, 1}, it holds |z − w| ≤ ρ(z, w) ≤ |z − w| + π .

Proof The proof is direct from the definition of the regions. See also Fig. 6. �

4 The escaping set in @U: proof of Theorem A

This section is devoted to the proof of Theorem A, which asserts that escaping points in ∂U
are organized in curves, and ∂U is precisely the closure of these curves. To do so, a detailed
study of the escaping set is required, which is carried out in a several number of steps. First,
it is proven that all escaping points in ∂U are left-escaping (Lemma 4.1), and sufficiently to
the left, curves of escaping points with the same itinerary are constructed (Proposition 4.2).
Afterwards, these curves are enlarged by the dynamics to collect all points in S with the same
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itinerary (Theorem 4.3); and, finally, all this construction is used to prove a characterization
of ∂U (Proposition 4.4), which is of independent interest. As indicated in the end of the
section, Theorem A will follow from Theorem 4.3 (a) and Proposition 4.4 (b).

First, recall that ∂U ⊂ ̂S, where ̂S consists of all the points in S which never leave S
under iteration; and observe that in̂S there are three distinguished ways to escape to infinity.
Indeed, points can escape to infinity to the left, to the right, or oscillating from left to right.
This leads us to define the following sets:

I+
S := {

z ∈ I( f ) ∩ ̂S : Re f n(z) → +∞}

,

I−
S := {

z ∈ I( f ) ∩ ̂S : Re f n(z) → −∞}

.

By construction, these two sets are disjoint, but they may not contain all the escaping points:
points which escape to ∞ oscillating from left to right belong neither to I−

S nor to I−
S .

However, this possibility is excluded, as it is shown in the following lemma. Intuitively,
oscillations are not possible because, on the right, the map is close to the identity.

Lemma 4.1 (No oscillating escaping points) There are no oscillating escaping points, i.e.

I( f ) ∩ ̂S = I+
S ∪ I−

S .

Moreover, I+
S = U.

Proof Assume z ∈ I( f ) ∩ ̂S. For any r > 0, there exists n0 such that, for all n ≥ n0,
f n(z) ∈ S and | f n(z)| > r . In particular, taking r >

√
π2 + 1, there exists R > 1 such that

Re f n(z) > R or Re f n(z) < −R, for all n ≥ n0. Assuming that Re z > R, we are going
to see that it is not possible to have Re f (z) < −R, so oscillating escaping orbits are not
possible. Indeed,

Re f (x + iy) = x + e−x cos y ≥ x − e−x ≥ R − e−R .

Since R > 1, the right-hand side of the inequality is greater than 0, so it does not hold
Re f (z) < −R, proving the first statement.

To prove the second statement, first observe that U ⊂ I+
S . It is left to show that, for

z ∈ ̂S � U , it cannot hold Re f n(z) → +∞. Indeed, such a point never enters the absorbing
domain, so, when Re f n(z) > 0, either Im f n(z) > π

2 or Im f n(z) < −π
2 . In both cases,

Re f n+1(z) < Re f n(z), so it is impossible for a point which is not in U to belong to I+
S .

�
Next we show that these left-escaping points are organized in curves, which eventually

contain all left-escaping points with the same itinerary. To do so, we adapt the proof of
[21, Prop.3.2] for the exponential maps λez , 0 < λ < 1

e , to our setting. Moreover, the
construction is made in such a way that a parametrization of the curves appears implicitly, as
the one introduced in [12] for the exponential family (see also [32, 33, 40]). Themain attribute
of this parametrization is to conjugate the dynamics on the curve with the model of growth
given by F(t) = t − e−t , t ∈ R. Observe that F : R → R is an increasing homeomorphism
of R without fixed points, where all iterates converge to −∞ under iteration.

Proposition 4.2 (Escaping tails) For every sequence s = {sn}n ∈ �2 there exists a curve
of left-escaping points γs : (−∞,−2] → I−

S , whose points have itinerary s and γs ⊂ ∂U.
Such curve is called escaping tail. The following properties hold.

(a) (Asymptotics and dynamics) It holds that Re γs(t) → −∞, as t → −∞, and
Re f n(γs(t)) → −∞, as n → ∞. Moreover, Re f n(γs(t)) ≤ −2 for all n ≥ 0.
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Fig. 7 Schematic representation of the first three squares
{

D
t,s
n

}

n
, for a given t ≤ −2, showing how they

satisfy D
t,s
n ⊂ f (D

t,s
n−1) (color figure online)

(b) (Uniqueness) Escaping tails are unique, in the sense that if z ∈ I−
S , with I (z) = s, and

Re f n(z) ≤ −2 − π for all n ≥ 0, then z ∈ γs .
(c) (Internal dynamics) For t ≤ −2, it is satisfied

f (γs(t)) = γσ(s)(F(t)),

where σ denotes the shift map and F(t) = t − e−t .

It is worth mentioning that the existence of such curves of escaping points can be deduced
directly from [39, Thm. 1.2] for functions in class B of finite order, applied to h(w) = we−w.
Indeed, both functions f and h are semiconjugate by w = e−z , so left-escaping points for
f correspond to the escaping set of h. Then, if z ∈ I−

S , then w = e−z ∈ I(h) and, by [39,
Thm. 1.2], it is connected to ∞ by a curve � of escaping points. An appropriate lift γ of � is
a curve of left-escaping points connecting z to infinity. It is easy to see that points in γ must
have the same itinerary. Indeed, γ must be contained in either �0 or in �1, since it cannot
intersect R (because it is in the Fatou set) nor L± (since L± separate distinct preimages of
thew-plane underw = e−z). Moreover, this is also true for any iterated image of γ , implying
that all points in γ must have the same itinerary.

However, from this general result, it cannot be deduced which of these curves are in ∂U
and it does not give a parametrization for the curves, which will be important in the following
sections. This is why we choose an alternative proof for Proposition 4.2, based on the more
constructive approach of [21]. On the other hand, we do apply [39, Thm. 1.2] to deduce the
uniqueness of the escaping tails.

Proof of Proposition 4.2 First, let us show that, to every t ≤ −2 and s ∈ �2, we can find a
left-escaping point zt,s , with itinerary s, associated to t . To do so, fix t ≤ −2 and s ∈ �2,
and let D

t,s
0 be the square of side length π located in �s0 and right-hand side at t0 := t . We

construct a sequence of squares
{

D
t,s
n

}

n
, where D

t,s
n is a square of side length π , located

in �sn and right-hand side tn := Fn(t), where F(t) = t − e−t . Observe that tn → −∞, as
n → ∞. Compare with Fig. 7.

Claim The squares
{

D
t,s
n

}

n
satisfy D

t,s
n ⊂ f (D

t,s
n−1), for all n ≥ 1.

Proof of the claim It is enough to show that D
t,s
1 ⊂ f (D

t,s
0 ). Let us denote by ∂− D and ∂+ D,

the left and the right-hand sides of a square D, respectively.

123



A model for boundary dynamics of Baker... Page 19 of 36 95

Fig. 8 Schematic representation of how f acts on the left-side on the strip (color figure online)

First let us observe that, on the left, the map f acts on a similar way than the exponential,
sending vertical segments to circular curves, which start at L+, ends at L− and have an
auto-intersection in the negative real line. Compare with Fig.8.

Moreover, if Re z = t ≤ −2, we have the following inequality controlling the modulus
of the image:

| f (z)| = ∣

∣z + e−z
∣

∣ ≥ ∣

∣e−z
∣

∣ − |z| = e−Re z − |z| >
1

2
e−Re z = 1

2
e−t > −t .

To prove that D
t,s
1 ⊂ f (D

t,s
0 ), it is enough to show that ∂− D

t,s
1 and ∂+ D

t,s
1 are contained

in f (D
t,s
0 ). In fact, we shall see that ∂− D

t,s
1 and ∂+ D

t,s
1 are contained in f (D

t,s
0 ) ∩ S ∩

{Re z < 0}. Compare with Fig. 8.
First we see that ∂+ D

t,s
1 is located more to the left than f (∂+ D

t,s
0 ). Indeed, points in

∂+ D
t,s
1 have real part t − e−t , while for z ∈ ∂+ D

t,s
0 it is satisfied that Re f (z) ≥ t − e−t .

Finally, to see that ∂− D
t,s
1 is contained in f (D

t,s
0 ) ∩ S ∩ {Re z < 0}, we shall see that

∂− D
t,s
1 is located more to the right than f (∂− D

t,s
0 ) ∩ S ∩ {Re z < 0}. For z ∈ ∂− D

t,s
0 and

such that f (z) ∈ S ∩ {Re z < 0}, we have:

Re f (z) ≤ − | f (z)| + π < −1

2
e−Re z + π = −1

2
e−(t−π) + π.

A point z ∈ ∂− D
t,s
1 has real part t − e−t − π , which is easy to see that it is bigger than

our previous bound. Indeed, the real function h(x) = x − e−x + 1
2e−(x−π) − 2π is positive,

when x < 0. Therefore, the claim is proved. �
Now, let us define

Q
t,s
n := φs0 ◦ · · · ◦ φsn (D

t,s
n+1),

zt,s :=
⋂

n≥0

Q
t,s
n .

Notice that zt,s is a unique point. Indeed,
{

Q
t,s
n

}

n
is a sequence of nested compact sets

contained in D
t,s
0 . Its intersection is a connected compact set, and to prove that it consists

precisely of a unique point, we shall see that the diameter of Q
t,s
n tends to 0, as n → ∞.

Indeed, since φsk ◦ · · · ◦ φsn (D
t,s
n+1) ⊂ {Re z < 0} for all n ≥ 0 and k ≤ n, each time we
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apply either φ0 or φ1 we are applying a contraction of constant 1
λ

< 1 with respect to the
ρ-distance (see Proposition 3.6). Recall that, in the half-plane {Re z < −2}, the ρ-distance
and the Euclidean distance coincide. Hence,

diam Q
t,s
n = diamρ Q

t,s
n ≤ 1

λn+1

√
2π → 0, as n → ∞.

The point zt,s satisfies the required conditions. Indeed, zt,s follows the itinerary prescribed
by s and converges to −∞ under iteration. Moreover, we claim that zt,s ∈ ∂U . Indeed, since

f (D
t,s
n+1) intersects U , then D

t,s
n+1 contains points of U , and so does Q

t,s
n . Since the sets

{

Q
t,s
n

}

n
shrink to zt,s , this gives a sequence of points in U approximating zt,s .

Therefore, we associate to any t ≤ −2 and s ∈ �2 the point zt,s . Observe that the resulting
point zt,s depends continuously on t , since the entire construction depends continuously
on t . Hence, letting t → −∞, the points zs,t describing the required curve γs of left-
escaping points with itinerary s. This induces naturally a parametrization on γs : we define
γs : (−∞,−2] → C such that γs(t) := zt,s .

Finally, let us prove that, with this parametrization, the announced properties actually
hold.

(a) (Asymptotics and dynamics) It is clear by the construction of the squares that γs(t) →
−∞, as t → −∞, and, for every t ≤ −2, f n(γs(t)) → −∞, asn → ∞.Moreover, since
the orbit of a point is contained in the corresponding squares, we haveRe f n(γs(t)) ≤ −2
for all n ≥ 0.

(b) (Uniqueness) Uniqueness follows from the results in [39], which imply that every point
in I−

S can be connected to infinity by a curve of left-escaping points with the same
itinerary. Assume, on the contrary, that there exists z0 ∈ I−

S , with I (z0) = s, and
Re f n(z0) ≤ −2−π for all n ≥ 0, but z0 /∈ γs . Then, there would exist another curve γ̃s

of left-escaping pointswith itinerary s connecting z0 to∞. Consider an open setW placed
in the left-unbounded region delimited by γs , γ̃s and {z ∈ S : Re z = Re z0}. We claim
that f n(W ) ⊂ S ∩ {Re z < −2}, for all n ≥ 0. Indeed, note that γs, γ̃s ⊂ {|Im z| > π

2

}

.
Then, W ⊂ S ∩ {|Im z| > π

2

}

. Recall that, for z ∈ S ∩ {|Im z| > π
2

}

, Re f (z) < Re z.
Hence, f (W ) ⊂ S∩{Re z < −2}, and, by continuity, f (W ) is the left-unbounded region
delimited by f (γs), f (γ̃s) and f ({z ∈ S : Re z = Re z0}) ⊂ S ∩ {Re z < −2}. We can
apply the same argument inductively to see that f n(W ) ⊂ S ∩ {Re z < −2}, for all
n ≥ 0, as claimed. Therefore, W is an open set which never enters the Baker domain, so
W ⊂ J ( f ), leading to a contradiction.

(c) (Internal dynamics) We have to prove that, for t ≤ −2,

f (γs(t)) = γσ(s)(F(t)).

First observe that, since F is an increasing map, F(t) < −2 for t ≤ −2, so γσ(s)(F(t)) is

defined. To construct the point γσ(s)(F(t))we use the sequence of squares
{

D
F(t),σ (s)
n

}

n
.

Therefore, the n-th square has right-hand side located at
{

x = Fn(F(t)) = Fn+1(t)
}

and

it is in the half-strip �sn+1 . Hence, D
F(t),σ (s)
n = D

t,s
n+1. Moreover,

Q
F(t),σ (s)
n = φs1 ◦ · · · ◦ φsn+1

(

D
F(t),σ (s)
n+1

)

= φs1 ◦ · · · ◦ φsn+1

(

D
t,s
n+2

)

= f (Q
t,s
n+1).
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Then,

γσ(s)(F(t)) =
⋂

n≥0

Q
F(t),σ (s)
n =

⋂

n≥0

f (Q
t,s
n+1) = f (

⋂

n≥0

Q
t,s
n+1) = f (γs(t)),

as desired. �
Escaping tails are mapped among them following the symbolic dynamics given by its

itinerary: if σ denotes the shift map in �2 and s ∈ �2, we have f (γs) ⊂ γσ(s). Moreover,
we claim that, as a consequence of Proposition 4.2 (c), this last inclusion is strict. Indeed,
recall that, for all t0 ≤ −2, it holds F(t0) < t0. Hence, Proposition 4.2 (c) implies

f (γs({t : t ≤ t0})) = γσ(s)({t : t ≤ F(t0)}) ⊂ γσ(s)({t : t ≤ t0}),
where the last inclusion is strict.

Next, we define the dynamic rays as the natural extension of the escaping tails: we enlarge
a given escaping tail γs by adding to it all points in̂S which are eventually mapped to γσ n(s),
for some n ≥ 0 (see Fig. 9). Next theorem includes the formal definition as well as the
corresponding extension of the dynamical properties of the escaping tails. Moreover, a new
property is proven, showing the continuity of the parametrization the hairs with respect to
the itinerary, analogously to [33, Lemma 3.2].

Theorem 4.3 (Dynamic rays) Let s ∈ �2. Let us define the dynamic ray (or hair) of sequence
s as γ ∞

s : (−∞,+∞) → I−
S such that, if n ≥ 0 with Fn(t) < −2, then

γ ∞
s (t) := φs0 ◦ · · · ◦ φsn−1(γσ n(s)(Fn(t))).

The following properties hold.

(a) (Well-defined) Dynamic rays are well-defined, in the sense that the definition does not
depend on n. Moreover, γ ∞

s is actually a curve and contains all left-escaping points with
itinerary s.

(b) (Internal dynamics) For t ∈ R, it holds

f (γ ∞
s (t)) = γ ∞

σ(s)(F(t)),

where σ denotes the shift map and F(t) = t − e−t .
(c) (Continuity between rays) Let n0 ∈ N and s ∈ �2. Let us denote by �2(s, n0) the set of

all sequences s̃ ∈ �2 which agree with s in the first n0 + 1 entries. Then, for all t0 ∈ R

and ε > 0, there exists n0 such that
∣

∣

∣γ
∞
s (t) − γ ∞̃

s (t)
∣

∣

∣ < ε,

for all t ≤ t0 and s̃ ∈ �2(s, n0).

Proof (a) (Well-defined) Fix s ∈ �2 and t > −2, and let m > n be such that Fm(t) < −2
and Fn(t) < −2. Put m = n + l, with l > 0. We have to see that

φs0 ◦ · · · ◦ φsn−1 ◦ φsn ◦ · · · ◦ φsn+l−1

(

γσ n+l (s)(Fl(Fn(t)))
)

= φs0 ◦ · · · ◦ φsn−1

(

γσ n(s)(Fn(t))
)

.

Since φi , i ∈ {0, 1}, are univalent, this is equivalent to
φn ◦ · · · ◦ φsn+l−1

(

γσ n+l (s)(Fl(Fn(t)))
)

= γσ n(s)(Fn(t)),
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Fig. 9 Construction of the hair γ ∞
s from the escaping tail γs . Intuitively, the process is clear: since the endpoint

of the escaping tail is not mapped to the endpoint of the next escaping tail but to a point further to the left, the
remaining piece of escaping tail can be added to the previous one by pulling back by the inverse. Repeating
the process we get all the points in the ray (color figure online)

and this last equality holds true by the internal dynamics of the escaping tail (Proposi-
tion 4.2(c)). Finally, in view of Proposition 4.2, it is clear that dynamic rays are actually
curves and contain all left-escaping points with the same itinerary, proving statement (a).

(b) (Internal dynamics) We shall assume that t > −2, otherwise the point γ ∞
s (t) is in the

escaping tail, wherewe have already proven the statement. Let n be such that Fn(t) ≤ −2.
Then, applying the known equality for the escaping tails, we have

f (γ ∞
s (t)) = f (φs0 ◦ · · · ◦ φsn−1(γσ n(s)(Fn(t))))

= φs1 ◦ · · · ◦ φsn−1(γσ n−1(σ (s))(Fn−1(F(t)))) = γ ∞
σ(s)(F(t)),

proving statement (b).
(c) (Continuity between rays) Fix s ∈ �2 and t0 ∈ R. The goal is to determine n0 ∈ N such

that if s̃ ∈ �2 which agree with s in the first n0 + 1 entries and t ≤ t0, then
∣

∣

∣γ
∞
s (t) − γ ∞̃

s (t)
∣

∣

∣ < ε.

To do so, first assume t0 ≤ −2 and fix ε > 0. Let λ > 1 be the factor of expansion of f
in S ∩ {Re z < 0} (see Remark 3.7). Let n0 be such that 1

λn0

√
2π < ε. We claim that for

s̃ ∈ �2(s, n0) and t ≤ t0 it holds
∣

∣

∣γ
∞
s (t) − γ ∞̃

s (t)
∣

∣

∣ < ε.

Indeed, by construction we have

γ ∞
s (t), γ ∞̃

s (t) ∈
n0−1
⋂

n=0

Q
t,s
n = Q

t,s
n0−1 = φs0 ◦ · · · ◦ φsn0−1(D

t,s
n0 ).

Therefore,

diam Q
t,s
n0 ≤ 1

λn0
diam D

t,s
n0 = 1

λn0

√
2π < ε,
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implying that
∣

∣

∣γ ∞
s (t) − γ ∞̃

s (t)
∣

∣

∣ < ε, as desired. Now assume t0 > −2. Choose n1 such

that Fn1(t0) < −2 (and, hence, Fn1(t) < −2, for all t ≤ t0). By the previous reasoning,

we can find n0 such that
∣

∣

∣γ ∞
σ n1 (s)(t) − γ ∞̃

s (t)
∣

∣

∣ < ε, for s̃ ∈ �2(σ
n1(s), n0) and t ≤ −2.

Take n := n0 + n1 and let us check that the property of the lemma is satisfied. Indeed,
take s̃ ∈ �2(s, n). Then, σ n1 (̃s) ∈ �2(σ

n1(s), n0) and Fn1(t) < −2, so
∣

∣

∣γ
∞
σ n1 (s)(Fn1(t)) − γ ∞

σ n1 (̃s)(Fn1(t))
∣

∣

∣ < ε.

Since applying the inverses φi , i ∈ {0, 1} does not increase the distance between points,
we get
∣

∣

∣γ
∞
s (t) − γ ∞̃

s (t)
∣

∣

∣ =
∣

∣

∣φs0 ◦ · · · ◦ φn1−1(γ
∞
σ n1 (s)(Fn1 (t))) − φs0 ◦ · · · ◦ φn1−1(γ

∞
σ n1 (̃s)(Fn1 (t)))

∣

∣

∣

≤
∣

∣

∣γ
∞
σ n1 (s)(Fn1 (t)) − γ ∞

σ n1 (̃s)(Fn1 (t))
∣

∣

∣ < ε,

ending the proof of statement (c).
�

Observe that, by uniqueness, we have L+ = γ ∞
0

and L+ = γ ∞
1
, implying, in particular, that

L± ⊂ ∂U . Next, we use it to prove new characterization of ∂U , which will be useful in the
sequel.

Proposition 4.4 (Characterizations of ∂U )

(a) The boundary of U consists precisely of the points in J ( f ) which never escape from S,
i.e.

∂U = ̂S ∩ J ( f ).

(b) Every point in ∂U is in the closure of a dynamic ray, i.e.

∂U =
⋃

s∈�2

γ ∞
s .

Proof (a) Let us start by proving statement (a). To do so, we show the following chain of
inclusions:

∂U ⊂ ̂S ∩ J ( f ) ⊂
⋃

n≥0

⋃

s∈�n
2

�s(L±) ⊂ ∂U ,

where �n
2 denotes the space of finite sequences of two symbols, {0, 1}, of length n + 1;

and if s ∈ �n
2 , s = s0 . . . sn , then

�s := φs0 ◦ · · · ◦ φsn .

The first inclusion comes straightforward from the definitions. To prove the second inclu-
sion, consider z ∈ ̂S∩J ( f ) and let W be a neighborhood of z. Without loss of generality,
we can assume z /∈ L± andW ⊂ S. Since z ∈ J ( f ), by the blow-up property, there exists
n > 0 such that f n(W ) �⊂ S. But z ∈ ̂S, so f n(z) ∈ S. Therefore, f n(W ) intersects L±,
and the result follows.
Finally, regarding the third inclusion, it is enough to prove that �s(L±) ⊂ ∂U , for all
s ∈ �n

2 and n ≥ 0. Hence, fix n ≥ 0 and s ∈ �n
2 , and consider z ∈ �s(L±). Since

f n(z) ∈ L± ⊂ ∂U , there exists a sequence of points {wn}n ⊂ U such that wn → f n(z).
Applying �s to the sequence {wn}n , we have �s(wn) → z with �s(wn) ∈ U , since
f −1(U ) ∩ S = U . Therefore, �s(L±) ⊂ ∂U , as desired. See Fig. 10.
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(b) To prove statement (b), it is enough to show that, given an itinerary s ∈ �2, all points in
̂S � U having this itinerary are precisely the ones in γ ∞

s . Let us assume first, that s = 0
and there is z ∈ ∂U with this itinerary and z /∈ L+. Then, Im z < π and, since

Im f (x + iy) = y − e−x sin y,

it follows that there existsn ≥ 0 such that 0 < Im f n(z) < π
2 . Therefore, f n(z) ∈ �01, so

I (z) cannot be constant. The analogous argument works for s = 1 and, taking preimages,
it also proves the statement for eventually constant sequences. Now assume s is a non-
eventually constant sequence and there is z ∈ ̂S, with I (z) = s and z /∈ γ ∞

s . Since γ ∞
s

is closed in C, we have

ρ(z, γ ∞
s ) := inf

w∈γ ∞
s

ρ(z, w) > 0,

where ρ is the distance in S � V defined in Definition 3.4. We note that, since f is
expanding in S � V with respect to ρ, and f n(z) ∈ S � V , f n(γ ∞

s ) ⊂ S � V , for all
n ≥ 0, it holds

ρ( f n+1(z), f n+1(γ ∞
s )) > ρ( f n(z), f n(γ ∞

s )).

Moreover, if both f n(z) and f n(γ ∞
s ) lie in {Re z < 0}, we have uniform expansion by

constant λ > 1 (see Remark 3.7), i.e.

ρ( f n+1(z), f n+1(γ ∞
s )) ≥ λρ( f n(z), f n(γ ∞

s )).

Since s is non-eventually constant, there exists an infinite increasing sequence {nk}k such
that f nk (z), f nk (γ ∞

s ) lie in�01, so in particular they lie in the left half-plane {Re z < 0},
where f expands uniformly by factor λ > 1. Hence, since f is always expanding and
expands infinitely many times uniformly by factor λ > 1, we get that

ρ( f n(z), f n(γ ∞
s )) → ∞, as n → ∞.

Hence, we can choose N > 0 such that ρ( f n(z), f n(γ ∞
s )) > 2 + π and f n(z) ∈ �01,

f n(γ ∞
s ) ⊂ �01. By construction, f N (γ ∞

s ) contains the escaping tail γσ N (s), which
intersects the vertical segment {z ∈ S : Re z = M}. Observe that there are no points in
�01 at a distance greater than 2 + π of γσ N (s), so this leads to a contradiction.

�
We note that the previous proposition allow us to characterize the points in ̂S. Indeed, as

noted in Sect. 3, U ∪ ∂U ⊂ ̂S; and, from the fact that U has no more preimages in S apart
from itself, U ∩ F( f ) = ̂S. The previous proposition characterizes J ( f ) ∩ ̂S, implying the
following corollary.

Corollary 4.5 (Characterization of ̂S) It holds:

̂S = U = U ∪ ∂U .

From the results of this section, we shall deduce Theorem A.

Proof of Theorem A The first statement of Theorem A is deduced from statement (a) of The-
orem 4.3, whereas the second statement of Theorem A corresponds to statement (b) in
Proposition 4.4. �
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Fig. 10 This picture shows the Baker domain (in black) and the regions (in different colors) which are
eventually mapped outside S. The boundaries of these regions are precisely�s (L±), s ∈ �n

2 , for some n ≥ 0.
Proposition 4.4 tells that ∂U is precisely the accumulation of those curves (color figure online)

5 Landing and non-landing rays: proof of Theorem B

We shall discuss now the landing properties of the dynamic rays defined in the previous
section. More precisely, we devote the section to prove Theorem B, which asserts that for
uncountably many sequences the dynamic ray land at some point; while for uncountable
many others the dynamic ray does not land and its accumulation set (in the Riemann sphere)
is an indecomposable continuum.

We proceed as follows. First of all, we define precisely what we mean for a ray to land,
introducing the notion of landing set. We also require the notion of non-escaping set to
relate the accumulation set of a dynamic ray with the non-escaping points having the same
itinerary. Afterwards, we classify the sequences s ∈ �2 according to the nature of its landing
set, resulting in the different landing behaviours claimed in Theorem B.

Definition 5.1 (Landing set of a ray) Let s ∈ �2 and let γ ∞
s be the dynamic ray of sequence

s. We define the landing set Ls of the ray γ ∞
s as the set of values w ∈ ̂C for which there is

a sequence {tn}n ⊂ R such that tn → +∞ and γ ∞
s (tn) → w, as n → ∞. If Ls = {w}, we

say that the dynamic ray γ ∞
s lands at w.

Observe that, by Proposition 4.4(b), γ ∞
s ∪ Ls contains all the points in ∂U with itinerary

s, so

γ ∞
s ∪ Ls = {

z ∈ ∂U : I (z) = s
}

.

Therefore, all non-escaping points with itinerary s are in Ls , but a priori Ls may contain
escaping points. This leads us to define the following set.

Definition 5.2 (Non-escaping set) Let s ∈ �2. We define the non-escaping set Ws as the set
of points in ̂S with itinerary s which do not escape to infinity.

Clearly, Ws ⊂ Ls ∩ C. Since all escaping points are in a ray, we have Ws = γ ∞
s � γ ∞

s .
Moreover, Ls is always non-empty, compact and connected, whereas Ws may be empty.
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We start by describing Ls and Ws for eventually constant sequences.

Lemma 5.3 (Eventually constant sequences) Let s ∈ �2. Then, Ls = {∞} if, and only if, s
is eventually constant. In this case, Ws = ∅.

Proof Recall that γ ∞
0

= L+ and γ ∞
1

= L−, so L0 = L1 = {∞}. Since preimages of curves
landing at ∞ are again curves landing at ∞ and hairs with eventually constant sequence are
the preimages of L±, one implication is proven.

Now, assume s is a non-eventually constant sequence, and γ ∞
s lands at ∞. Then, γ ∞

s
divides S into two regions: R1, R2. The absorbing domain V is contained in one of them, say
R1, so R1 ∩ U �= ∅. We claim that R2 ∩ U �= ∅. Indeed, R2 ∩̂S �= ∅, because the points that
leave S after applying f are the ones enclosed by f −1(L±) ∩ S, and γ ∞

s is not a preimage

of L± (see Figs. 4, 10). The fact that U = Int(̂S) (Corollary 4.5) gives that R2 ∩U �= ∅. This
is a contradiction because U is connected. �

The goal for the remaining part of the section is to describe the landing and the non-
escaping sets for non-eventually constant sequences. First, we deal with the dynamics of the
non-escaping points, whose orbit may be bounded or oscillating. It turns out that this only
depends on its itinerary. Moreover, for certain types of sequence, we have a great control on
the orbit of the ray and the non-escaping set, as the following results show.

Definition 5.4 (Types of sequences) Let s ∈ �2 be a non-eventually constant sequence. We
say that s is oscillating if it contains arbitrarily large sequences of 0’s or 1’s. Otherwise, we
say that s is bounded.

Proposition 5.5 (Dynamics on the non-escaping sets) Let s ∈ �2 and let Ws be its corre-
sponding non-escaping set. Then,

{

f n(Ws)
}

n is contained in a compact set if and only if s is
a bounded sequence. In this case, there exists R > 0 such that f n(γ ∞

s ) ⊂ {Re z < R} and
f n(Ws) ⊂ {|Re z| < R}.
Proof Assume first that s ∈ �2 is a bounded sequence and z ∈ Ws . Then, there exists
N > 0 such that s does not contain more than N consecutive 0’s and N consecutive 1’s. Take
R := F−N (0), where F(t) = t − e−t . We claim that Re f n(z) ≤ R for all n. Indeed, if it is
not the case, there must exist n0 such that Re f n0(z) > R. Then, since F is increasing, we
have

Re f n0+1(z) > Re f n0(z) − eRe f n0 (z) > R − e−R = F(R).

Repeating the argument inductively, we get

Re f n0+N (z) > Re f n0+N−1(z) − eRe f n0+N−1(z) > F N−1(R) − e−F N−1(R) = F N (R) = 0.

Therefore, by Lemma 3.10 (a), either
{

f n0+k(z)
}N

k=0 ⊂ �0 or
{

f n0+k(z)
}N

k=0 ⊂ �1, so s
has N +1 consecutive 0’s. Therefore, Re f n(z) < R, for all n ≥ 0. We note that the constant
R has been chosen to depend only on N (but not on the particular point z ∈ Ws), hence it
holds Re f n(z) < R, for all n ≥ 0 and z ∈ Ws .

We claim that, under the conditions described above, if R has been chosen large enough,
we also have Re f n(z) > −R for all n ≥ 0 and z ∈ Ws , and hence

{

f n(Ws)
}

n is contained
in a compact set.

Without loss of generality, we can assume R > 3 and large enough so that if z ∈ ∂U and
Re z < −R, then |Im z| <

(

0, π
3

)

or 2π
3 < |Im z| < 1. We note that this is possible since

φ1(L+) is a curve landing at −∞ from both sides, approaching tangentially L− and R; and
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φ0(L−) also at lands at −∞, but approaching L+ and R (see e.g. Fig. 4). Then, in order to
show that Re f n(z) > −R for all n ≥ 0 and z ∈ Ws , we proceed by contradiction: let us
assume that there exists z ∈ Ws and n0 ≥ 0 such that Re f n0(z) < −R. Then, since z ∈ Ws ,
we can assume that Re f n0+1(z) > −R. Hence, 0 < |Im f n0(z)| < π

3 . Then,

Re f n0+1(z) = Re f n0(z) + e−Re f n0 (z) cos(Im f n0(z))

≥ Re f n0(z) + 1

2
e−Re f n0 (z) > −Re f n0(z) > R.

This contradicts the assumption that Re f n(z) < R, for all n ≥ 0 and z ∈ Ws , proving one
implication.

For the other implication, let us assume that z ∈ Ws has a bounded orbit, and let us prove
that then s is bounded. Let R > 0 be such that −R ≤ Re f n(z) ≤ R, for all n ≥ 0, and
let ε > 0 be such that dist ( f n(z), V ) > ε, for all n ≥ 0. We note that, in this case, if
f n(z) ∈ �00 ∪�01, |Im f n(z)| > π

2 +ε. Let M = ∣

∣e−R cos( π
2 + ε)

∣

∣, and let N be such that
R − N M < −R. We claim that s cannot have more than N consecutive 0’s. On the contrary,
assume { f n(z)}N

n=0 ⊂ �00. Then,

Re f n(z) = Re f n(z) + e−Re f n(z) cos(Im f n(z)) < Re z − M,

for 0 ≥ n ≥ N − 1, so

Re f N (z) < Re z − N M < −R.

Therefore, s cannot have more than N consecutive 0’s. A similar argument can be used to
prove that s cannot have more than N consecutive 1’s; and this proves the other implication.

The existence of R > 0 such that f n(γ ∞
s ) ⊂ {Re z < R} and f n(Ws) ⊂ {|Re z| < R} is

deduced from the previous reasoning, taking into account that escaping points with bounded
itinerary cannot go arbitrarily far to the right, since they have to be in �01 (or �10) in a
bounded number of steps. �

Next, we use this control on the dynamic rays and the non-escaping sets for bounded
sequences to prove that the non-escaping set is actually a point where the dynamic ray lands.

Proposition 5.6 (Rays with bounded sequence land) Let s ∈ �2 be a bounded sequence.
Then, there exists a point ws ∈ C such that

Ls = Ws = {

ws
}

,

i.e. the dynamic ray γ ∞
s (t) lands at the point ws .

Proof First, let us prove that Ws consists of a single point. By Proposition 5.5, Ws is compact.
Assume, on the contrary that Ws consists of more than one point, so diamρ(Ws) > 0. Recall
that f is uniformly expanding in any compact set K ⊂ S � V with respect to ρ (see
Remark 3.7). Taking K to be Ws , we have diamρ( f n(Ws)) → ∞, which contradicts the fact
that

{

f n(Ws)
}

n is contained in a compact set (Proposition 5.5). Therefore, Ws must consist
only of one point, so Ws = {ws}.

To end the proof, it is enough to show that Ls cannot contain any escaping point. Indeed,
this would imply, together with the previous lemma, that Ls ⊂ {

ws,∞
}

and, since Ls is
connected and it cannot be equal to ∞, necessarily Ls = {

ws
}

.
By Proposition 5.5, f n(γ ∞

s ) and f n(Ws) are contained in the half-plane {Re z < R}.
Assume the dynamic ray γ ∞

s accumulates at an escaping point z. Since z is escaping and
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has itinerary s, by Theorem 4.3(a), there exists n0 ≥ 0 such that f n0(z) ∈ γσ n0 (s) and
Re f n0(z) < −R.

We note that σ n0(s) is also a bounded sequence satisfying that f n(γ ∞
σ n0 (s)) ⊂ {Re z < R};

and f n0(z) is escaping and f n0(z) ∈ Lσ n0 (s). Therefore, there exists an increasing sequence
{tn}n ⊂ R and wn := γ ∞

s (tn) → f n0(z), as n → ∞. Let us choose some m such that
tm ≥ −2, and hence wm ∈ γ ∞

s � γs , and Re wm < −R. Since wm is not in the escaping tail,

there exists M > 0 such that Re f M (wm) > −2+π , M being the minimal integer satisfying
this property. Hence, Re f M−1(wm) < −R, so Re f M (wm) > R (since | f (z)| > Re z, as
shown in the proof of Proposition 4.2).

Therefore the property f n(γ ∞
σ n0 (s)) ⊂ {Re z < R} does not hold, leading to a contradic-

tion. �
To end the section, we prove that rays with oscillating sequences do not always land. In

fact, we are going to prove that, for uncountably many sequences, Ls is an indecomposable
continuum which contains the ray γ ∞

s . We follow the ideas of Rempe [32, Thm. 3.8.4], [33,
Thm. 1.2].

Proposition 5.7 (Some rays do not land) There exist uncountably many dynamic rays γ ∞
s

which do not land.

Proof First, by Lemma 5.3, if we show that, for a non-eventually constant sequence s, the
landing set Ls contains ∞, then the ray γ ∞

s do not land. Hence, our goal is to construct a
non-eventually constant sequence s with ∞ ∈ Ls .

Let us denote by 0
n
a block of n zeroes and by 0 an infinite block of zeroes. Then, the

itinerary s that we construct will be of the form s = 10
n110

n210
n3

. . . for an infinite sequence
{

n j
}

j . We choose the n j ’s inductively among countably many choices in each step, leading
to uncountably many non-landing rays at the end.

Assumen1, . . . , n j−1 havebeen chosen, and consider the sequence s j = 10
n1

. . . 10
n j−110.

Then, γ ∞
s j is a preimage of L+, so it lands at ∞ in both ends. Let us choose t j > −2 such

that
∣

∣

∣γs j (t j )

∣

∣

∣ > j . By Theorem 4.3 (c), there exists N j ∈ N such that
∣

∣γs(t j )
∣

∣ ≥ j for all

s ∈ �2(s j , N j ). We choose n j ≥ N j .
Let s be the sequence constructed in this way. Then, s is clearly non-eventually constant,

and ∞ ∈ Ls , since γ ∞
s (t j ) → ∞, as j → ∞, proving that the ray γ ∞

s does not land.
Evidently, by symmetry, the same construction interchanging 0’s by 1’s also gives non-
landing rays (Fig. 11). �

Corollary 5.8 (Some landing sets are indecomposable continua) The landing set Ls of the
non-landing rays of Proposition 5.7 is an indecomposable continuum.

Proof To prove that Ls is an indecomposable continuum, we shall invoke Curry’s Theorem
2.15, after checking that Ls does not separate the plane and that γ ∞

s ⊂ Ls .
On the one hand, let us observe that effectively Ls cannot separate the plane.We follow the

same argument as in the proof of Lemma 5.3. Indeed, if Ls separatesC, it should also separate
the strip S. Let R1 be the connected component of S � Ls that contains the absorbing domain
V , so R1 ∩ U �= ∅. Let R2 be any other component of S � Ls . We claim that R2 ∩ U �= ∅.
Indeed, R2 ∩ ̂S �= ∅, because the points that leave S after applying f are the ones enclosed
by f −1(L±) ∩ S, and Ls is not a preimage of L±. The fact that U = Int(̂S) gives that
R2 ∩ U �= ∅. This is a contradiction because U is connected. We note that this argument not
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Fig. 11 Schematic representation of the construction of the non-landing ray γ ∞
s , to give a geometric intuition

of the proof, showing the first three steps of the induction. The sequence on the right indicates the itinerary
of the ray. The first ray that is constructed is the one of sequence s1, which is a preimage of L+. In red, it
is marked the point γ ∞

s1
(t1). In the next step of the induction, it is chosen s2 in such a way that γ ∞

s2
gets

close to γ ∞
s1

(t1), so γ ∞
s2

wraps along γ ∞
s1

. This wrapping is precisely what makes that, in the limit, we get a

non-landing ray (color figure online)

only proves that Ls cannot separate the plane, but also that neither γ ∞
s nor γ ∞

s can separate
the plane.

On the other hand, the proof that γ ∞
s ⊂ Ls follows the idea of Rempe [33, Lemma 3.3]

based on the fact that dynamic rays accumulate among them. Indeed, Ls cannot intersect any
dynamic ray different from γ ∞

s . In particular, Ls does not intersect the dynamic rays γ ∞
rn ,

defined by

rn := s0s1 . . . sn−1rnsn+1sn+2 . . . ,

where rn = 0, if sn = 1, and rn = 1, if sn = 0. By Theorem 4.3 (c), it is clear that γ ∞
rn → γ ∞

s ,
as n → ∞, uniformly on every interval (−∞, t0], t0 ∈ R. Moreover, from the fact that s
is not eventually constant and escaping tails are ordered vertically following the (inverse)

lexicographic order, it follows that
{

γ ∞
rn

}

n
approximates γ ∞

s from above and from below.

Therefore, we redefine the previous sequences as rn,+ := rm , if m ≤ n is the maximal such
that rm > s in the inverse lexicographic order; and rn,− := rm , if m ≤ n is the maximal

such that rm < s in the inverse lexicographic order. Hence, the sequence of rays
{

γ ∞
rn,+

}

n

approximates γ ∞
s from above; and

{

γ ∞
rn,−

}

n
from below.

Now, assume that γ ∞
s �⊂ Ls , so we can find t0 such that ε := dist (γ ∞

s (t0), Ls) > 0.
Since ∞ ∈ Ls and points in Ls must have itinerary s, it follows that Ls is contained in the
connected component Un of

C �

(

D(γ ∞
s (t0), ε) ∪ γ ∞

rn,+ ∪ γ ∞
rn,−

)

,
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which contains γ ∞
s (t), for all t ≤ t1, for some t1 < t0. Therefore, Ls ⊂ ⋂

n
Un ⊂

γ ∞
s ((−∞, t0]). In such a case, γ ∞

s would separate the plane into (at least) two different con-
nected components, what we have proved before that it is not possible. Therefore, γ ∞

s ⊂ Ls ,
as desired.

Then, it follows from Curry’s Theorem 2.15 that Ls is an indecomposable continuum, as
desired. �

Finally, we prove Theorem B.

Proof of Theorem B The existence of uncountably many rays that land follows from Proposi-
tion 5.6 (observe that there are uncountablymany bounded sequences), whereas the existence
of uncountably many non-landing rays follows from Proposition 5.7. On Corollary 5.8, we
prove that the accumulation set of such non-landing rays is an indecomposable continuum.

6 Accessibility from U of points in @U: proof of Theorem C

This section is devoted to the proof of TheoremC, which relates the accessibility fromU with
the previously studied sets: the escaping set, the non-escaping sets and the landing sets. In
particular, Theorem C asserts that all boundary points in the escaping set are non-accessible,
while points in ∂U having a bounded orbit are accessible.

First of all, let us choose as a Riemann map the function ϕ : D → U such that ϕ(0) = 0
and ϕ(R ∩ D) = R, as in [2]. With this choice, the associated inner function is

g(z) = 3z2 + 1

3 + z2
.

It is easy to check that the Denjoy–Wolff point of g is 1. Moreover, since g is a Blaschke
product of degree 2 (and hence there are no critical points in the unit circle), g|∂D is a 2-to-1
covering of ∂D, being 1 the only fixed point. In particular, the preimages of 1 under g are
itself and −1, since ϕ(R ∩ D) = R and f (−∞) = +∞.

Let us consider the following subsets of the (closed) unit disk

D0 := D ∩ {Im z > 0} D1 := D ∩ {Im z < 0} ,

as shown in Fig. 12. We define the itinerary for a point in ∂D in the following way.

Definition 6.1 (Itineraries in ∂D) Let eiθ ∈ ∂D. If gn(eiθ ) �= 1, for all n ≥ 0, then the
itinerary of eiθ is defined as the sequence S (eiθ ) = s = {sn}n ∈ �2 satisfying gn(eiθ ) ∈
Dsn .

If there exists n0 ≥ 0 such that gn0(eiθ ) = 1, then the itineraries of eiθ , S (eiθ ), are

defined as the two sequences s j =
{

s j
n

}

n
∈ �2, j = 0, 1, satisfying gn(eiθ ) ∈ Dsn for

n ≤ n0 − 2, s0n0−1 = 1, s1n0−1 = 0 and s j
n = j , for n ≥ n0.

Hence, we have just defined a multivalued function

S : ∂D −→ �2.

We note that, since every point in ∂D has an itinerary, the domain ofS is ∂D. Moreover, we
claim thatS is injective, i.e. that two different points in the unit circle cannot have the same
itinerary. This is due to the expansiveness of the map g|∂D. Indeed,

g′(z) = −16z

(3z2 + 1)2
,
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and hence, for eiθ ∈ ∂D, it holds

∣

∣

∣g′(eiθ )

∣

∣

∣ = 16
∣

∣eiθ
∣

∣

∣

∣3ei2θ + 1
∣

∣

2 ≥ 16

(3
∣

∣ei2θ
∣

∣ + 1)2
≥ 1.

We also shall consider its inverse

S −1 : �2 −→ ∂D,

which is a single-valued function. Moreover, S −1 is surjective, but not injective, and com-
mutes with the shift map σ in �2.

SinceS is only multivalued when considering eventual preimages of 1, it follows thatS
is a bijection if we restrict ourselves to non-eventually constant sequences in �2 and points
in ∂D which are not eventual preimages of 1.

The following proposition is the key result which relates itineraries in ∂D and in ̂S, and
will clarify the choice of the itineraries in ∂D.

Proposition 6.2 (Correspondence between itineraries) Let eiθ ∈ ∂D. If gn(eiθ ) �= 1, for all
n ≥ 0, and s = S (eiθ ) then Cl(ϕ, eiθ ) = γ ∞

s . If there exists n0 ≥ 0 such that gn0(eiθ ) = 1

and
{

s0, s1
} = S (eiθ ), then Cl(ϕ, eiθ ) = γ ∞

s0
∪ γ ∞

s1
.

Proof Observe that, according to the chosen Riemann map ϕ : D → U , it holds that
ϕ(Int D0) ⊂ �0 and ϕ(Int D1) ⊂ �1 (see Fig. 12). Moreover, ϕ((−1, 1)) = R ⊂ U .

Hence, if eiθ ∈ ∂D and eiθ /∈ {−1, 1}, then eiθ ∈ Di , and so does a neighbourhood of
eiθ in D. Hence, Cl(ϕ, eiθ ) ⊂ �i , for some i ∈ {0, 1}. By continuity of g, every sequence
in D converging to eiθ maps under g to a sequence converging to g(eiθ ). If eiθ ∈ ∂D is
not a preimage of 1, then g(eiθ ) /∈ {−1, 1}, so f (Cl(ϕ, eiθ ) ∩ C) ⊂ � j , for some j ∈
{0, 1}. Repeating inductively the same argument, we get that the itinerary of eiθ determines
completely the itinerary of points in Cl(ϕ, eiθ ), so

Cl(ϕ, eiθ ) ⊂
{

z ∈ ∂U : I (z) = S (eiθ )
}

∪ {∞} ,

if eiθ ∈ ∂D is not an eventual preimage of 1.
On the other hand, consider 1 ∈ ∂D, S (1) = {

0, 1
}

. We note that, for any sequence
of points {wk}k ⊂ D0 converging to 1, and for all n ≥ 0, there exists k0 = k0(n) such
that {gn(wk)}k≥k0 ⊂ D0; and we observe that 1 is the only point in ∂D with this property.
Similarly, if z ∈ ∂U and for any sequence {zk}k ⊂ �0 converging to z, for all n ≥ 0
there exists k0 such that { f n(zk)}k≥k0 ⊂ �0, then z ∈ L+. Therefore, for any sequence
{wn}n ⊂ D0, wn → 1, any accumulation point of {ϕ(wn)}n must be in L+ ∪ {∞}. The
analogous argument works similarly with D1 and L−. Hence,

Cl(ϕ, eiθ ) ⊂ L+ ∪ L− ∪ {∞} = {

z ∈ ∂U : I (z) ∈ {

0, 1
}} ∪ {∞} .

Therefore, if eiθ is an eventual preimage of 1, and hence S (eiθ ) = {

s0, s1
}

, it holds

Cl(ϕ, eiθ ) ⊂ {

z ∈ ∂U : I (z) ∈ {

s0, s1
}} ∪ {∞} .

We note that, given two different sequences r , s ∈ �2, the sets of points in ∂U having
these itineraries are disjoint, i.e.

{

z ∈ ∂U : I (z) ∈ r
} ∩ {

z ∈ ∂U : I (z) ∈ s
} = ∅,
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Fig. 12 Representation of the Riemann map ϕ : D → U , which fixes the real axis. The regions D0, D1, �0
and �1 are also represented, and it is clear that ϕ(D0) ⊂ �0 and ϕ(D1) ⊂ �1 implying the correspondence
between itineraries

since a point in ∂U has a unique itinerary. Moreover, any point z ∈ ∂U must belong to at
least one cluster set, hence the previous three inclusions are in fact equalities. The fact that
all points in ∂U are in the closure of a hair ends the proof of the proposition. �

Let us observe that the previous proposition gives, in particular, a way to compute the
impression of the prime end at 1, alternative to the one in [2, Thm. 6.1].

Corollary 6.3 (Prime end at 1) The prime end of U which corresponds by the Riemann map
ϕ to 1 has the impression L+ ∪ L− ∪ {∞}. Equivalently, Cl(ϕ, 1) = L+ ∪ L− ∪ {∞}.

The previous correspondence between itineraries and the fact that in each cluster set
Cl(ϕ, eiθ ) there is at most one accessible point, imply that there is at most one accessible
point per itinerary. In particular, in each hair and its landing set there is at most one accessible
point.

A first study on accessibility and radial limits was carried out by Baker and Domínguez,
characterizing the accesses to infinity.

Theorem 6.4 (Accesses to infinity, [2]) Accesses from U to infinity are characterized by the
eventual preimages of 1, i.e.

{

eiθ : ϕ∗(eiθ ) = ∞
}

=
{

eiθ : gn(eiθ ) = 1, for some n ≥ 0
}

.

Next, we prove Theorem C, which asserts that escaping points are non-accessible from
U , while points in ∂U having a bounded orbit are all accessible from U . Using the Cor-
respondence Theorem 2.8 between accesses and radial limits, we rewrite the statement of
Theorem C as follows.

Theorem C (a) Let eiθ ∈ ∂D such that the radial limit z := ϕ∗(eiθ ) exists. Then, z is non-
escaping.

(b) Let z ∈ ∂U be a point whose orbit is bounded. Then, there exists eiθ ∈ ∂D such that
ϕ∗(eiθ ) = z, i.e. z is accessible from U.

Proof (a) The proof is based on the one developed by Baker and Domínguez in [2, Thm.
6.3]. Assume z := ϕ∗(eiθ ) is an escaping point and let us define the open set

W :=
{

z ∈ S : Re z < −2 and |Im z| >
π

2

}

.
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Fig. 13 Schematic representation of the region bounded by ϕθ1 and ϕθ2 and its reflection along the real axis,
where f n(ϕθs ) is contained, for all n ≥ 0

Iterating the function if needed, we can assume f n(z) ∈ W , for all n ≥ 0. Since the
radial segment

ϕθ :=
{

ϕ(reiθ ) : r ∈ (0, 1)
}

lands at z, one can choose r0 ∈ (0, 1) such that γ := {

ϕ(reiθ ) : r ∈ (r0, 1)
} ⊂ W . For

points in W we have Re f (z) < Re z. Hence, since γ is connected and f n(z) ∈ W for
n ≥ 0, we have f n(γ ) ⊂ W , for all n ≥ 0. This is a contradiction because γ ⊂ U , so
points in γ must converge to +∞.

(b) First, we note that, by the the results in Sect. 5, the only points in ̂S with bounded orbit
are endpoints ws for bounded sequences s ∈ �2. Therefore, the goal is to prove that, if
eiθs ∈ ∂D has itinerary s ∈ �2, and s is a bounded sequence, then ϕ∗(eiθs ) = ws . We
note that the radial cluster set Clρ(ϕ, eiθs ), which is connected, is contained in the cluster
set Cl(ϕ, eiθs ) (see Sect. 2), and for a bounded sequence, it holds

Cl(ϕ, eiθs ) = γ ∞
s = γ ∞

s ∪ {

ws
} ∪ {∞} ,

by Propositions 5.6 and 6.2. Hence, it is enough to show that, if s is a bounded sequence,
then the radial cluster set Clρ(ϕ, eiθs ) cannot contain any escaping point.
Recall that g|∂D is conjugate to the doubling map. Moreover, since s contains at most N
consecutive 0’s and 1’s, there exist 0 < θ1 < θ2 < π such that θ1 and θ2 are eventual
preimages of 1 and gn(eiθs ) ∈ (

eiθ1 , eiθ2
) ∪ (

e−iθ2 , e−iθ1
)

. Then, ϕθ1 and ϕθ2 are curves
starting at 0 and landing at −∞ approaching L+. Since ϕ is a bijection, f n(ϕθs ) is
contained in the region bounded by ϕθ1 and ϕθ2 and its reflection along the real axis.
Therefore, there exists R > 0 such that, if we consider the open set W defined as before
and

W ′ :=
{

z ∈ S : Re z < −R and |Im z| <
π

2

}

,

then f n(ϕθs ) ∩ W ′ = ∅, for all n ≥ 0. Compare with Fig. 13.
�

Assume the radial cluster set contains an escaping point z. Iterating the function if needed,
we can assume Re f n(z) < −R, for all n ≥ 0, so z ∈ W . Then, there exists a sequence
of real numbers {tn}n such that tn → +∞ and zn := γ ∞

s (tn) → z, as n → ∞. Without
loss of generality, since z ∈ W , we shall assume {zn}n ⊂ W . For points in W we have
Re f (z) < Re z, so they either belong to W or to W ′. But W ′ has been defined so that
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f n(ϕθs ) ∩ W ′ = ∅, so {

f k(zn)
} ∈ W for all k ≥ 0: a contradiction, since {zn}n ⊂ U , and

points in U converge to +∞.

Remark 6.5 Alternatively, Theorem C can be seen as a consequence from the results of [9].
Indeed, in [9, Sect.6], it is proved that, for functions in class B and bounded postsingular
set, accessible points in the boundary of an invariant Fatou component coincide with the
endpoints of the hairs lying in its boundary (Remark 6.11). Such result can be applied to
h(w) = we−w , semiconjugate to f (z) = z + e−z (Sect. 3), to deduce that points with
bounded orbit are accessible from U , since they are the endpoint of a hair in ∂U .

Nevertheless, although Theorem C can be seen as a consequence of this more general
result, it relies strongly on the study of the landing sets of the dynamic rays, carried out
in the previous section, which has to be done specifically for our function. Moreover, our
construction shows explicitly the relation between the dynamics of the inner function in ∂D

and the dynamics of f in ∂U , which was the main goal of the paper.

7 Periodic points in @U: proof of TheoremD

This last section of the paper is dedicated to prove Theorem D, which asserts that periodic
points are dense in ∂U . Although it is known that periodic points are dense in the Julia set,
if we restrict ourselves to the boundary of a Baker domain, it is not known, in general, the
existence of a single periodic point.

The general argument used to prove that periodic points are dense in the Julia set (e.g. [14,
Thm. III.3.1]) cannot be used, since it gives no control about the resulting periodic point. The
proof we present allows us to find a periodic point in any neighborhood of any point in ∂U ,
whose orbit is entirely contained in S, and hence implying that the periodic point is in ∂U .

Theorem D Periodic points are dense in ∂U.

Proof In view of Theorem 2.13, it is enough to approximate z ∈ ∂U having a dense orbit
by periodic points in ∂U . Let us fix ε > 0 and consider the disk D(z, ε). Without loss of
generality, we can assume D(z, ε) ⊂ S and D(z, ε) ∩ V = ∅, where V is the absorbing
domain defined in Sect. 3. We also assume ε < 1.

Recall that f is expanding in S � V and uniformly expanding in any left-half plane
intersected with it (see Remark 3.7). In particular, the map is uniformly expanding in S ∩
{Re z < −2 + ε} with constant of expansion λ > 1.

Take n0 > 0 such that λn0 > 2. Since the orbit of z is assumed to be dense in ∂U , it visits
infinitely many times S ∩ {Rez < −2}. Let n1 be such that

#
{

n < n1 : Re f n(z) < −2
} ≥ n0.

Since the orbit of z is dense, there exists n2 > n1 with zn2 := f n2(z) ∈ D(z, ε). Then,
φs0 ◦ · · · ◦ φsn2−1(zn2) = z, for a suitable choice of s0, . . . , sn2−1 ∈ {0, 1}.

We claim thatφs0◦· · ·◦φsn2−1(D(z, ε)) ⊂ D(z, ε). Indeed, since D(z, ε)∩V = ∅, we have
D(z, ε) = Dρ(z, ε), for the ρ-distance defined in Definition 3.4. The forward invariance of V
gives φs0 ◦· · ·◦φsn (D(z, ε)) ⊂ S�V , for all n ≥ 0.Moreover, since inverses are contracting,
ifφs0◦· · ·◦φsn (z) ∈ S∩{Re z < −2}, we haveφs0◦· · ·◦φsn (D(z, ε)) ⊂ S∩{Re z < −2 + ε}.
Hence, after applying n2 inverses, since the iterated preimages of D(z, ε) are contained in
{Re z < −2 + ε} at least n0 times, ρ-distances in D(z, ε) are contracted by a factor less than
1

λn0 . Therefore we have:
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ρ(φs0 ◦ · · · ◦ φsn2−1(z), z) = ρ(φs0 ◦ · · · ◦ φsn2−1(z), φs0 ◦ · · · ◦ φsn2−1(zn2))

≤ 1

λn0
ρ(z, zn2) ≤ 1

2
ε.

Now let w ∈ D(z, ε), then

ρ(φs0 ◦ · · · ◦ φsn2−1(w), φs0 ◦ · · · ◦ φsn2−1(z)) ≤ 1

λn0
ρ(w, z) ≤ 1

2
ε.

Therefore, applying the triangle inequality, one deduces that φs0 ◦ · · · ◦φsn2−1(w) ∈ D(z, ε),
for any w ∈ D(z, ε), as desired.

Finally, observe that ρ(φs0 ◦ · · · ◦ φsn2−1 is well-defined in D(z, ε), and

φs0 ◦ · · · ◦ φsn2−1(D(z, ε)) ⊂ D(z, ε).

Hence, Brouwer fixed-point theorem guarantees the existence of a fixed point z0 for φs0 ◦
· · · ◦ φsn2−1 in D(z, ε). This point is periodic for f . Moreover, since its orbit is all contained
in S, we have z0 ∈ ∂U , by Proposition 4.4. This ends the proof of Theorem D. �
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