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Abstract

We introduce an algorithm to compute the structure of the rational torsion subgroup
of the Jacobian of a hyperelliptic curve of genus 3 over the rationals. We apply a Magma
implementation of our algorithm to a database of curves with low discriminant due to
Sutherland as well as a list of curves with small coefficients. In the process, we find
several torsion structures not previously described in the literature. The algorithm is a
generalisation of an algorithm for genus 2 due to Stoll, which we extend to abelian
varieties satisfying certain conditions. The idea is to compute p-adic torsion lifts of
points over finite fields using the Kummer variety and to check whether they are
rational using heights. Both have been made explicit for Jacobians of hyperelliptic
curves of genus 3 by Stoll. This article is partially based on the second-named author’s
Master thesis.
Keywords: Torsion points, Hyperelliptic curves, Abelian varieties, Jacobians, Curves of
genus three

1 Introduction
For an abelian varietyA/Q, the torsion subgroupA(Q)tors of the groupA(Q) ofQ-rational
points on A is finite. If A = E is an elliptic curve, it is easy to compute E(Q)tors, and for
Jacobians of genus 2 curves, there is a p-adic algorithm due to Stoll (see [27, Sect. 11]). In
the present paper, we give a theoretical extension of Stoll’s algorithm to arbitrary abelian
varieties A/Q. We then make this extension practical for Jacobians of hyperelliptic curves
of genus 3. The latter heavily uses explicit arithmetic on the Kummer variety of such a
Jacobian, also due to Stoll [30].
Our main motivation comes from a database of hyperelliptic curves of genus 3 due to

Andrew Sutherland [32]. Similar to databases of elliptic curves and curves of genus 2 in
the LMFDB [34], it would be useful to compute the most important arithmetic invariants
of these curves, including the structure of the subgroup of rational torsion points on its
Jacobian. Sutherland asked for an algorithm to accomplish this in 2017.We have used our
algorithm to compute the torsion subgroups of all curves in the database, see Sect. 5.2.
In this computation we found several torsion structures that were not previously known

in the literature. Recall that for elliptic curves over Q, Mazur’s Theorem gives a complete
list of all torsion subgroups up to isomorphism. For dimension d > 1, it is not even known
whether there is a uniform bound on the size of all rational torsion subgroups of abelian
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varieties over Q of dimension d. A lot of work has gone into constructing Jacobians of
genus 2 curves with large torsion orders (see for instance [13] and the references therein).
Some constructions of rational torsion points of large order on Jacobians of hyperelliptic
genus 3 curves can be found in [12,17,23] and in [8,18], where families of Jacobians with
large rational torsion are constructed that contain hyperelliptic genus 3 examples. A list
of orders of rational torsion points for such curves known in the literature can be found in
[23, Table 3.2]. However, much less is known than for genus 2. Therefore it is interesting
to investigate which abelian groups actually occur. Inspired by a search by Howe for g = 2
[13], we ran through a list of certain hyperelliptic genus 3 curves with small coefficients,
and we found many new torsion structures in this way, see Sect. 5.3.2. We obtain the
following list of all torsion structures that are currently known to occur.

Theorem 1.1 Every abelian group of order ≤ 44 is isomorphic to the group of rational
torsion points on a geometrically simple Jacobian of a hyperelliptic curve over Q of genus 3,
with the possible exception of the groups with invariant factors [3, 3, 3], [3, 9], [2, 4, 4], [6, 6].
In addition, the abelian groups with the following invariant factors are isomorphic to the
group of rational torsion points on a geometrically simple Jacobian of a hyperelliptic curve
over Q of genus 3:

[46], [2, 2, 2, 6], [2, 2, 12], [2, 24], [4, 12], [48], [49], [50], [51], [2, 26], [52], [3, 18], [54],

[2, 2, 14], [2, 28], [56], [58], [2, 30], [63], [2, 2, 2, 2, 2, 2], [2, 2, 2, 2, 4], [2, 2, 2, 8], [2, 4, 8],

[2, 32], [64], [65], [70], [6, 12], [72], [2, 2, 2, 10], [2, 2, 20], [2, 42], [2, 44], [91], [2, 2, 28],

[2, 52], [2, 2, 2, 2, 10],

All torsion structures in Theorem 1.1 came up in our search or in Sutherland’s database,
except for the groups (Z/2Z)5, (Z/2Z)6, (Z/2Z)4 × Z/4Z and (Z/2Z)3 × Z/6Z, which
we constructed. We do not claim that the groups listed as exceptions in Theorem 1.1 do
not occur; we simply did not find such examples in our computations or the literature.
Using our computations we found examples for all torsion structures that appeared in the
literature prior to our work; in particular, we found new examples for the largest known
prime group order 43 and the largest known point order 91, both exhibited by Nicholls
[23]. The group (Z/2Z)4 × Z/10Z is the largest group of rational torsion points on a
geometrically simple Jacobian of a hyperelliptic genus 3 curve found so far; no such group
of size > 91 was previously known.

Remark 1.2 We focused on geometrically simple examples. More generally, we have
found, for every abelian group A of order < 45 except for the groups with invariant
factors [3, 3, 3] and [3, 9], a Jacobian of a hyperelliptic curve over Q of genus 3 with group
of rational torsion points isomorphic toA. We expect that many additional structures can
be found by systematically gluing abelian varieties of lower dimension, for instance using
the methods of [15].

There are other possible applications of our algorithm: The order of the rational torsion
subgroup appears in the strong version of the conjecture of Birch and Swinnerton-Dyer,
and we therefore need an algorithm to compute this quantity to gather empirical evidence
for the conjecture. Finally, if J is the Jacobian of a smooth projective curve X/Q with
rkJ (Q) = 0, and we have an Abel–Jacobi embedding j : X → J defined over Q, then
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we can compute the set X(Q) by finding J (Q) = J (Q)tors and checking which points
P ∈ J (Q)tors have a rational preimage under j.

1.1 Upper bounds using reduction

Let A/Q be an abelian variety. An upper bound on the order of A(Q)tors can be computed
easily as follows: For a prime p of good reduction forA and an integerm (which we require
to be odd if p = 2), the restriction of the reduction map

ρp : A(Qp) → Ã(Fp)

to A(Qp)[m] is injective, where Ã/Fp is the reduction of A modulo p (see [14, Theorem
C.1.4]). We choose a set S containing a few small odd primes of good reduction and
compute #Ã(Fp) for all p ∈ S; then

#A(Q)tors | gcd
p∈S

#Ã(Fp) .

We can obtain more information from the structure of Ã(Fp) rather than only its order.

Example 1.3 Consider the Jacobian J of

X : y2 = x8 + 2x7 + 3x6 + 4x5 + 9x4 + 8x3 + 7x2 + 2x + 1 =: f (x) .

The primes of bad reduction forX are 2, 3 and 13177.Wefind #J̃ (F5) = 180, #J̃ (F7) = 666,
so that #J (Q)tors | 18. A closer inspection shows

J̃ (F5) ∼= Z/3Z × Z/60Z ; J̃ (F7) ∼= Z/666Z .

Weconclude that J (Q)tors is isomorphic to a subgroup ofZ/6Z.Wewill see in Example 4.9
that #J (Q)[2] = 2. To find #J (Q)tors, it remains to check whether there is a rational point
of order 3. Searching among small rational points on X , we find that [(0,−1) − ∞1] has
this property, where ∞1 is the point with coordinates (0, 1) on the model

w2 = 1 + 2z + 3z2 + 4z3 + 9z4 + 8z5 + 7z6 + 2z7 + z8 .

Most of the time, the upper bound that we get from considering the structure of Ã(Fp)
for a reasonable number of primes p of good reduction is actually equal to the correct
order. For instance, in the database [32], we found this to be the case for more than 97%
of all Jacobians, where we used all good primes below 1000. For the remaining ones, the
quotient is a small power of 2 in the vast majority of cases. See Sect. 5.2 for more details.
Example 1.3 has the convenient property that X has a rational point, which allows us

to add points in J (Q). The computer algebra system Magma [1] contains an algorithm to
compute the group law in J (k) for the Jacobian of a hyperelliptic curve of odd genus over a
field k if a k-rational point on the curve is known; alternatively, one may use Sutherland’s
(more efficient) balanced divisor approach [33].
Now consider the following example, brought to our attention by Andrew Sutherland.

Example 1.4 Let X/Q be the hyperelliptic curve defined by

y2 = 5x8 − 14x7 + 33x6 − 36x5 + 30x4 + 2x3 − 16x2 + 20x − 7.

with Jacobian J/Q. There seems to be a point of order 13 in J̃ (Fp) for all good primes p. Is
there a global point of order 13? The curveX does not seem to have any rational points, so
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arithmetic in J (Q) is not implemented. In any case, there are no obvious nontrivial points
in J (Q). We will show in Example 5.2 that J (Q)tors ∼= Z/13Z.

Our method for computing J (Q)tors follows an approach due to Stoll for dimension 2
[27, Sect. 11], and works as follows: We lift points of order m coprime to p to A(Qp)[m]
and then checkwhether the lift is rational. To do so, one potential approach is to represent
points inA(Qp) using a projective embedding ofA. This, however, ismuch too complicated
in practice, since in general one would have to work in P4g−1 and no explicit projective
embedding is known for g > 2. Instead, we follow Stoll in using the Kummer variety of A.
This is practical for Jacobians of hyperelliptic curves of genus 3, since the required explicit
theory of the Kummer variety and of heights was developed by Stoll in [30].

1.2 Outline

We gather preliminaries on Kummer varieties and heights on abelian varieties in Sect. 2.
In Sect. 3 we generalise Stoll’s algorithm for the computation of J (Q)tors when J is the
Jacobian of a genus 2 curve to abelian varieties A/Q that satisfy Assumption 3.1. Then we
show that this assumption is satisfied for Jacobians of hyperelliptic curves of genus 3 in
Sect. 4. Finally, we discuss our computations in Sect. 5.

2 Kummer varieties and heights
If A/k is an abelian variety of dimension g > 0 over a field k , then the Kummer variety
K/k of A is defined as K := A/〈−1〉. The quotient map is 2 : 1 except at points of order 2
in A, where it is injective. The images of these points are the singular points of K . By [2,
Theorem 4.8.1], K can be embedded into P2g−1. We fix a rational map

κ : A → P2g−1 (2.1)

such that the image κ(A) is a birational model for K .
Since κ identifies inverses on A, the group structure is lost, but scalar multiplication

[n] : A → A descends, since it commutes with inversion. In fact, there is a rational map
[[n]] : K → K such that

A A

K K

[n]

κ κ

[[n]]

commutes. Furthermore, there is a rational map B : Sym2(K ) → Sym2(K ) which, for
Q1, Q2 ∈ A, sends the unordered pair {κ(Q1), κ(Q2)} to the unordered pair {κ(Q1 +
Q2), κ(Q1 − Q2)}. We suppose that algorithms for the following tasks are available:

• Double: Given κ(Q) for Q ∈ A(k), return [[2]](κ(Q)) = κ(2Q).
• PseudoAdd: Given κ(Q1), κ(Q2), κ(Q1 − Q2) for Q1, Q2 ∈ A(k), return κ(Q1 + Q2).

This leads to the following double-and-add algorithm to compute [[n]](R) for n ∈ Z \ {0}
and R ∈ K .

Algorithm 2.1 Multiplication-by-n on the Kummer
Input: R ∈ K (k), n ∈ Z

Output: [[n]](R)

(1) Set x := κ(0), y := R, z := R andm := |n|.
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(2) Whilem 	= 0, repeat the following steps.

(a) Ifm is odd, then setx := PseudoAdd(x, z, y).Else, sety := PseudoAdd(y, z, x).
(b) Set z := Double(z).
(c) Setm := ⌊m

2
⌋
.

(3) Return x := [[m]](R).

Algorithm 2.1 is a generalisation of the Montgomery ladder for elliptic curves; the genus
2 case is discussed in [11].
Now suppose that k = Q. Then we can use the map κ to define heights on A(Q)

as follows. The naive height h : A(Q) → R≥0 is the function h := log(H ◦ κ), where
H : P2g−1(Q) → R≥0 is the usual height given by mapping P = (x1 : . . . : x2g ) to
max(|x1|, . . . , |x2g |), where x1, . . . , x2g are coprime integers. The map h is quadratic up to
a bounded function, hence the canonical height is well-defined:

ĥ(Q) := lim
n→∞

h(nQ)
n2

Theorem 2.2 (Néron-Tate) [14, Theorem B.5.1] The following properties are satisfied.

(1) ĥ(nQ) = n2ĥ(Q) for all n ∈ Z and Q ∈ A(Q).
(2) For Q ∈ A(Q), we have ĥ(Q) = 0 if and only if Q ∈ A(Q)tors.
(3) The set {Q ∈ A(Q) : ĥ(Q) ≤ B} is finite for every constant B ≥ 0.
(4) The height difference |ĥ − h| is bounded.
By Theorem 2.2(2), torsion points have small naive height. More precisely, suppose that
β ∈ R≥0 satisfies

|ĥ(Q) − h(Q)| < β

for all Q ∈ A(Q). We call β a height difference bound.

Corollary 2.3 Let Q ∈ A(Q)tors. Then H (Q) < eβ .

To compute an explicit bound β , the standard approach is to decompose the difference
between the naive height and the canonical height into local components, see for instance
[11, Theorem 4]. As we shall see, β will help us decide whether a p-adic torsion point is
Q-rational or not.

3 An algorithm for finding torsion subgroups of abelian varieties
LetA/Q denote an abelian variety with Kummer varietyK/Q and a fixedmap κ as in (2.1).
In this section we discuss an algorithm which computes the group A(Q)tors as an abstract
abelian group, provided Assumption 3.1 below is satisfied. Our algorithm is based on an
algorithm for Jacobians of genus 2 curves due to Stoll [27, Sect. 11].

Assumption 3.1 We have algorithms for the following:

(1) the map κ : A → K ⊂ P2g−1 and equations for its image;
(2) deciding whether a given point R ∈ K (Q) lifts to A(Q) under κ ;
(3) the maps [[2]] and B;
(4) a height difference bound β ;
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(5) arithmetic in the group Ã(Fp) for primes of good reduction p and enumeration of its
elements.

The algorithm in [27, Sect. 11] crucially relies on the fact that Assumption 3.1 is satisfied
for Jacobians of curves of genus 2, see Sect. 3.4. We will show in Sect. 4 that it is also
satisfied for Jacobians of hyperelliptic curves of genus 3.

Remark 3.2 We can replace (5) by the assumption that we also have (1), (2) and (3) for
the reduction K̃/Fp if p is a prime of good reduction. This is the case, for instance, for
Jacobians of hyperelliptic curves of genus ≤ 3 (for g = 3, we need p > 2). We can then
enumerate K̃ (Fp) and check which elements lift to Ã(Fp) to compute the latter. Moreover,
arithmetic in Ã(Fp) can be reduced to arithmetic in K̃ (Fp), for which we can use (3). In
practice, we prefer to compute (in) Ã(Fp) directly.

The strategy can be summarised as follows. One first uses reduction modulo p for a
number of good primes p to obtain an integer d > 0 such that #A(Q)tors | d. For each
prime q | d, we find the q-Sylow subgroup ofA(Q)tors; to this end,we first choose a suitable
good prime p 	= q. For each Q̃ ∈ Ã(Fp) of q-power order m, we can compute the unique
lift1 κ̃(Q̃) in κ(A(Qp)[m]) to any desired precision pN . Using β , we chooseN and construct
a lattice L with the following property: If there is a point R ∈ κ(A(Qp)[m]) ∩ K (Q) that
reduces to our approximation of κ̃(Q̃) modulo pN , then the shortest nontrivial vector in
L must be this point R. We can decide whether such a point exists by applying the LLL
algorithm. If it does, then it remains to checkwhether it lifts toA(Q)[m]. SeeAlgorithm3.4
for odd q. This is then used in Algorithm 3.14, which computes the q-part of A(Q)tors for
odd q. The case q = 2 is discussed in Sect. 3.2.1. Finally, Algorithm3.15 computesA(Q)tors,
provided Assumption 3.1 is satisfied.

Remark 3.3 We stress that we do not assume that we can explicitly compute in A(Q); nor
do we assume that we can explicitly write down points inA(Q). If the latter is possible and
if we can compute the preimages under κ in (2), then we can also find A(Q)tors as a set,
see Remark 3.16 below.

3.1 Checking whether reduced points lift

The most challenging part of the algorithm is to check whether a reduced torsion point
lifts to a rational torsion point or not. More specifically, given a prime p of good reduction
and a point Q̃ ∈ Ã(Fp) of order m coprime to p, there exists a unique lift Q ∈ A(Qp)[m]
such that Q reduces to Q̃. This algorithm decides whether Q ∈ A(Q) ⊂ A(Qp). Below, we
will apply the LLL-algorithm with standard parameter δ = 3

4 (see [19]).

Algorithm 3.4 Lifting Torsion Points
Input: An abelian variety A/Q such that Assumption 3.1 is satisfied and a point Q̃ ∈

A(Fp) of orderm > 2 coprime to p.
Output: TRUE if there is a point Q ∈ A(Q)tors ⊂ A(Qp)tors that reduces to Q̃, else

FALSE.

(1) Compute a height difference bound β for A.

1We hope that no confusion arises from using the word “lift” both for Hensel lifts as well as lifts of points from K to A.
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(2) ChooseM = 1 + am such that p � a.
(3) Let R̃0 be κ̃(Q̃), considered on an affine patch in A2g (Z/pZ) and normalised such

that the first nonzero coordinate is equal to 1. Set r := 1, n := 0.
(4) Let N > 1 such that pN > 2(2g+g)e2β . While r < N , repeat the following steps:

(a) Set r := min{2r, N }.
(b) Let R̃′

n be any lift of R̃n to A2g (Z/prZ).
(c) Set R̃n+1 := 1

M−1 (MR̃′
n − [[M]](R̃′

n)), whereMR̃′
n is obtained by multiplying the

coordinates of R̃′
n byM.

(d) Set n := n + 1.

(5) Now, consider R̃n =: (r̃1 : . . . : r̃2g ) in K (Z/pNZ). Let (r1, . . . , r2g ) ∈ Z2g reduce to
(r̃1, . . . , r̃2g ) modulo pN such that 0 ≤ ri < pN for all i. Let L be the lattice generated
by (r1, . . . , r2g ) and by (pNe1, . . . , pN e2g ), where (e1, . . . , e2g ) is the standard basis of
Z2g . Let w be the first basis vector of an LLL-reduced basis of L and let R = Pw be
the corresponding point in P2g−1(Q).

(6) If R /∈ K (Q) or H (R) > eβ , return FALSE.
(7) If [[m]](R) 	= κ(0), return FALSE.
(8) If κ−1(R) ⊂ A(Q), return TRUE. Else return FALSE.

Weprove the correctness of the algorithm in Sect. 3.1.3. For Jacobians of curves of genus 2,
this is sketched in Stoll [27, Sect. 11].

Theorem 3.5 Algorithm 3.4 terminates and returns TRUE if and only if there is a point
Q ∈ A(Q)tors ⊂ A(Qp)tors that reduces to Q̃.

We first need some preliminary results.

3.1.1 The lifting procedure

We start by showing that Step (4) of Algorithm 3.4 lifts to the m-torsion point that we
want to approximate. We say that a point on K is m-torsion if the map [[m]] sends it to
κ(0) ∈ K . Equivalently, a point on K is m-torsion if and only if there is a point in A[m]
that maps to it under κ .

Proposition 3.6 After Step (4) of Algorithm 3.4, R̃n is the unique m-torsion point in
K (Z/pNZ) that reduces to κ(Q̃).

In order to prove Proposition 3.6, we first show that Step (c) approximates Q by an
m-torsion lift to the required p-adic precision pN . By [3, III, Sect. 8, Corollary 2] and
[20], the group A(Qp) is a p-adic abelian Lie group whose topology is the local product
topology: a neighborhood of a point Q ∈ A(Qp) is a neighborhood U of Q contained in
an affine space, and for any d ≥ 1, the p-adic topology on Ad(Qp) = Qd

p is induced by the
maximum norm ‖ · ‖p.

Lemma 3.7 Let Q ∈ A(Qp) be a torsion point of order m, not divisible by p. Let n ≥ 1, let
φ : A → An be a rational map defined over Qp that is differentiable as a map A(Qp) →
An(Qp) and a p-adic immersion near Q, and let a ∈ Z. If U ⊂ A(Qp) is a neighborhood of
Q, then for any Q′ ∈ U, we have

φ([1 + am]Q′) − φ(Q) = (1 + am)(φ(Q′) − φ(Q)) + O(‖φ(Q′) − φ(Q)‖2p) . (3.1)
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Proof For the proof, we set M := 1 + am, so that [M](Q) = Q. Near Q, the map φ is an
immersion, so there is a well-defined map [[M]] that makes the diagram

A(Qp) A(Qp)

φ(A(Qp)) φ(A(Qp))

[M]

φ φ

[[M]]

(3.2)

commute on a neighborhood ofQ. Since φ is a rational map toAn, we have that φ(A(Qp))
consists of the Qp-rational points on an affine variety over Qp. Hence the differential of
[[M]] : φ(A)(Qp) → φ(A)(Qp) at φ(Q) is the best linear approximation of [[M]] around
φ(Q). In other words, it consists of the linear terms of the Taylor expansion of [[M]]
around φ(Q). By [3, Chap. III, Sect. 2.2] the differential of the multiplication-by-M-map
[M] is scalar multiplication on the tangent space, and a computation using (3.2) shows
that the same holds for the differential of [[M]].
Now let Q′ be close to Q, so that φ(Q′) is close to φ(Q). By the above, we find

[[1 + am]](φ(Q′)) − [[1 + am]](φ(Q)) = (1 + am)(φ(Q′) − φ(Q))

+O(‖φ(Q′) − φ(Q)‖2p).
Using (3.2), we have [[1+ am]](φ(Q)) = φ([1+ am](Q)) = φ(Q). Therefore (3.1) follows.

��
We now apply Lemma 3.7 to a map φ : A → A2g that factors through κ : A → K .

Proof of Proposition 3.6 Since κ is differentiable outside A[2], composing with a map that
projects onto an affine patch results in a differentiable map that is a local immersion
outside A[2]. Let φ denote the map κ composed with the projection onto a suitable affine
patch. Then φ satisfies the conditions of Lemma 3.7 and we obtain

[[M]](R̃′
n) − R̃n+1 = M(R̃′

n − R̃n+1) + O(‖R̃n+1 − R̃′
n‖2p).

By construction, we have ‖R̃n+1 − R̃′
n‖2p = p−r in Step (4) of Algorithm 3.4, and therefore

R̃n+1 = 1
M − 1

(MR̃′
n − [[M]](R̃′

n)) + O(pr)

is them-torsion point in K (Z/prZ) that reduces to κ(Q̃). ��
Remark 3.8 Intuitively, one can view φ as a map that gives local affine coordinates of Q
with the property that we can find a best linear approximation of the multiplication-by-
(1+ am)-map. For the approximation in Step (c), one may use a different projection onto
A2g in every iteration of Step (4). Thismay be necessary if, for example, the first coordinate
of R is divisible by pr , but is not divisible by p2r for some r ≥ 1.

Remark 3.9 In [27, Sect. 11], it is assumed that p divides M. Here, we generalise this by
allowingM 	≡ 1 mod p. One way to use this additional flexibility in practice is to choose
M to be a power of 2, because doubling on K is often faster than applying the map B.
See Sect. 3.3.

3.1.2 Determining a suitable p-adic precision

We now show that we can find a p-adic precision such that the corresponding rational
approximation R̃n ∈ K (Z/pNZ) either leads to a rational liftR = κ(Q) such thatQ ∈ A(Q),
or no such rational lift exists.
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Proposition 3.10 Let N ∈ Z be such that pN > 2(g+2g )e2β . Let R̃n, (r1, . . . , r2g ), L, w and
R be as computed in Step (5) of Algorithm 3.4. Then we have:

(a) If H (R) ≤ eβ , then R is the unique point in P2g−1(Q) that satisfies H (R) ≤ eβ and
reduces to R̃n.

(b) If H (R) > eβ , then no point on P2g−1(Q) of height ≤ eβ reduces to R̃n.

To lift points, we use the following result, whose proof is immediate.

Lemma 3.11 Let n, d ∈ Z≥1 and let R̃ ∈ Pd(Z/pnZ). Let

v := (r0, . . . , rd) ∈ Zd+1 \ {0}
be primitive, i.e. gcd(r0, . . . , rd) = 1, such that R := Pv := (r0 : . . . : rd) ∈ Pd(Q) lifts R̃.
Then the lattice L generated by {v} ∪ {eipn : 0 ≤ i ≤ d} contains all vectors w such that the
corresponding point Pw ∈ Pd(Q) reduces modulo pn to R̃. Moreover, let

u := a0v + pna1e1 + · · · pnad+1ed+1 ∈ L ,

where a0, . . . , ad+1 ∈ Z. If p � a0, then Pu ∈ Pd(Q) reduces modulo pn to R̃ ∈ Pd(Z/pnZ).

Moreover, we need the following uniqueness result.

Lemma 3.12 Let B ≥ 1 be a real number and let d ∈ Z be positive. Let u, u′ ∈ Zd+1 \ {0}
such that

(a) ‖u‖∞, ‖u′‖∞ ≤ B

(b) there is an integer D > 2B2 such that all 2× 2minors of the matrix
(
u
u′

)

∈ Z2×(d+1)

are divisible by D.

Then the points Pu and Pu′ in Pd(Q) represented by u and u′, respectively, are equal.

Proof By (a), the 2× 2 minors have absolute value bounded by 2B2. Hence they all vanish
by (b). Therefore u = λu′ for some nonzero λ ∈ Q. ��

We apply Lemma 3.12 to the lattice L from Step (5) of Algorithm 3.4. We thank an
anonymous referee for suggesting the structure of the following proof.

Proof of Proposition 3.10 By Lemma 3.11, the lattice L in Step (5) contains all integer
representatives of the points in P2g−1(Q) that reduce to R̃n ∈ P2g−1(Z/pNZ) as obtained
after Step (4) of Algorithm 3.4. Moreover, any vector that corresponds to a lift of R̃n is of
the form u = a0v + pNa1e1 + · · · pNa2g e2g with p � a0. For such a vector u, we have

H (Pu) ≤ ‖u‖∞, with equality if and only if u is primitive. (3.3)

Let w ∈ Z2g be the first vector of an LLL-reduced basis of L as in Step (5) of Algorithm
3.4. We distinguish cases as follows. First suppose that ‖w‖∞ > 2(2g−1)/2√2g eβ . In this
case, we claim that there is no nonzero vector u ∈ L such that ‖u‖∞ ≤ eβ . Indeed, our
choice δ = 3/4 of parameter in the LLL-algorithm implies that the first basis vector of an
LLL-reduced basis has euclidean length at most 2(2g−1)/2 times the euclidean length of the
shortest nonzero vector (see [19]). In particular, there is no point in P2g−1(Q) of height
≤ eβ that reduces to R̃n by Lemma 3.11 and by (3.3).
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Now suppose that ‖w‖∞ ≤ 2(2g−1)/2√2g eβ . By construction, all pairs of nonzero vectors
inL satisfy condition (b) of Lemma3.12withD = pN > 2e2β . Since 2·(2(2g−1)/2√2g eβ )2 =
22g (2g )e2β < pN , we can apply Lemma 3.12 with d = 2g − 1 and B = 2(2g−1)/2√2g eβ .
This implies that for any vector w′ ∈ L satisfying ‖w′‖∞ ≤ B, we have Pw′ = Pw = R.
Hence, by Lemma 3.11 and by (3.3), if there is a point in P2g−1(Q) that reduces to R̃n and
has height ≤ eβ , then it must be R. ��

3.1.3 The conclusions of the lift-checking algorithm

Proof of Theorem 3.5 It is clear that the algorithm terminates. To prove Theorem 3.5, it
suffices to prove the correctness of Steps (6)–(8) of Algorithm 3.4, which we do now.
Since a torsion point P ∈ A(Q) satisfies H (P) = H (κ(P)) ≤ eβ , Proposition 3.6 and
Proposition 3.10 imply that if there is a point Q ∈ A(Q)[m] that reduces to Q̃, then the
point R ∈ K (Q) from Step (4) of Algorithm 3.4 satisfies R = κ(Q). Clearly we then have
[[m]](R) = κ(0) and κ−1(R) = {±Q} ⊂ A(Q), so that the algorithm returns TRUE.
Conversely, suppose that the algorithm returns TRUE. Then, using Propositions 3.6

and 3.10 again, R is the unique m-torsion point in K (Q) that reduces to κ̃(Q̃). Thus the
points in κ−1(R) are Q-rational points of orderm, so one of these two points is a point in
A(Q)[m] ⊂ A(Q)tors that reduces to Q̃. ��

Remark 3.13 In practice, we can often terminate the algorithm long before the required
precision in Step (4) is reached, as follows: Let R̃r be as in Step (4), for some r < N . From
R̃r , determine R using Step (5) and check if the conditions of Step (6)–(8) are satisfied. If
they are, then we have found a pointQ ∈ A(Q)[m] that reduces to Q̃. However, if no such
point is found, then it is not guaranteed that no other candidate exists.

3.2 Computing the rational torsion subgroup

Now that we can conclusively decide for good primes p whether a point in Ã(Fp) lifts to
A(Q)tors or not, we can find the rational torsion subgroup ofA(Q). Since we do not assume
that we can represent or compute with general points in A(Q), we compute A(Q)tors as
an abstract abelian group by finding its invariant factors. This is again a generalisation
of the idea proposed in [27, Sect. 11] for Jacobians of curves of genus 2. For a prime q
and a finite abelian group G, we let the q-part of G be the q-Sylow subgroup of G, as
an abstract abelian group. Then the reduction map ρp : A(Qp) → A(Fp) is injective on
q-parts of A(Q)tors for any prime number q 	= p.

Algorithm 3.14 Computing the q-part of the torsion subgroup
Input: an abelian variety A/Q for which Assumption 3.1 is satisfied and a prime q > 2.
Output: The q-part of A(Q)tors as an abstract abelian group.

(1) LetG0 be the q-part of Ã(Fp), where p is a good prime not equal to q. SetT0 := {0} ⊂
G0, S0 := G0 \ {0}, S′

0 := {0}. (Throughout, Gi is a quotient of G0, Ti is a subgroup
of G0, and Si and S′

i are subsets of Gi.)
(2) Set n := 0, repeat the following steps until Sn = ∅.

(a) Let g ∈ Sn ⊂ Gn and choose a representative g̃ ∈ G0 of g .
(b) Using Algorithm 3.4, compute the smallest � > 0 such that q�g̃ lifts to A(Q).
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(c) Set

Tn+1 := 〈Tn, q� · g̃〉 ,
Gn+1 := Gn/〈q� · g〉 ,
S′
n+1 := image of S′

n ∪ 〈g〉 in Gn+1 ,

Sn+1 := Gn+1 \ S′
n+1 .

(d) Set n := n + 1.

(3) Return Tn as an abstract abelian group.

It is preferable to take a primitive element in Step (a), but this is not required. In Step (1),
we typically pick a prime p such that the q-part of Ã(Fp) is small. If it is trivial, then there
is nothing to do. In practice, we have already computed Ã(Fp) for all good primes below
some bound, see Algorithm 3.15 below.

3.2.1 Two-power torsion

Algorithm 3.4 excludes the case m = 2 because the lifting procedure does not work on
points of order 2, since κ(A[2]) consists of singular points. It is still possible to com-
pute A(Q)[2], for instance by finding the solutions R ∈ K (Q) of the projective system of
equations [[2]](R) = κ(0) and checking which of these lift . Hence we can skip this case
in Algorithm 3.14. We can, alternatively, determine A(Q)[2∞] iteratively as follows: For
s ≥ 2, we find A(Q)[2s] from A(Q)[2s−1] for s ≥ 2 by solving the system [[2]](R) = S for
each S ∈ κ(A(Q)[2s−1]) and checking which solutions lift. We implemented this strategy
for Jacobians of hyperelliptic curves of genus 3, but we found that this is quite expensive.
Fortunately, in this case there is a simpler method, discussed in Sect. 4.5.

3.2.2 The algorithm

Algorithm 3.15 Computing the Torsion Subgroup
Input: an abelian variety A/Q satisfying Assumption 3.1.
Output: the invariant factors of A(Q)tors.

(1) Compute a height difference bound β .
(2) Compute a multiplicative upper bound t for the size of the torsion subgroup by

computing the structure of Ã(Fp) for a reasonable number of good odd primes p.
(3) For each prime factor q of t, compute the q-part of A(Q)tors using Algorithm 3.14

and Sect. 3.2.1.
(4) Deduce the invariant factors of A(Q)tors from the invariant factors of its q-parts.

Remark 3.16 If we can describe points in A(Q) explicitly and if we have an algorithm to
compute κ−1(R) for given R ∈ K (Q), then we can also return κ−1(R) in Step (8) of Algo-
rithm 3.4. In this case, we can also compute (generators for) the q-part in Algorithm 3.14,
rather than only its structure as an abstract abelian group. Hence we can amend Algo-
rithm 3.15 to find generators for A(Q)tors.
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3.3 Avoiding the use of sum-and-difference-laws

Inpractice, oneof themost expensive tasks inAlgorithm3.15 is the computationof [[n]](R)
for points R ∈ K and potentially large n ∈ Z. Namely, in Algorithm 3.4, we apply [[M]] in
Step (c) and we apply [[m]] in Step (7). Recall from Algorithm 2.1 that the multiplication-
by-n-map [[n]] : K → K requires formulas for the doubling map [[2]] : K → K and for
the map B : Sym2(K ) → Sym2(K ) such that

B({κ(Q1), κ(Q2)}) = {κ(Q1 + Q2), κ(Q1 − Q2)}

for Q1, Q2 ∈ A. For Jacobians of hyperelliptic curves of genus ≤ 3, the formulas for the
map B aremuchmore complicated than those for themap [[2]]. Hence, we prefer to apply
the map [[n]] only for small n of the form n = ±2s since then the doubling formulas
suffice. In addition, we might be in a situation where the doubling map [[2]] is available
explicitly, but the map B is not. Then it turns out that it is often still possible to compute
A(Q)tors, as we now explain.
Recall that by construction,m is a power of a prime q ≥ 2. Inmost cases,mwill be small.

We require M to satisfy M ≡ 1 mod m and M 	≡ 1 mod p, so we can use M = 1 − m if
we want to keepM small. Ifm is odd, it is clear that we can instead find a suitableM of the
formM = ±2s, and Step (c) of Algorithm 3.4 can be performed using only the map [[2]].
This does not work whenm is even. However, recall that we can use the strategy discussed
in Sect. 3.2.1 to compute the 2-part of A(Q)tors without Step (c) of Algorithm 3.4.
Besides Step (c), arithmetic onK is also used in Step (7) of Algorithm 3.4. Here, we check

whether a point R ∈ K (Q) satisfies [[m]](R) = κ(0). If arithmetic in A(Q) is implemented,
for instance when A is the Jacobian of a hyperelliptic curve of even genus or odd degree,
then we can avoid Step (7) by first computing κ−1(R) ∩ A(Q). If this set is non-empty,
say containing a point Q, then we can check directly whether mQ = 0 ∈ A(Q). If no
algorithm for arithmetic in A(Q) is available, then we can only avoid the use of the map B
in Step (7) for specific values ofm. For instance, suppose that all prime powersm dividing
t in Algorithm 3.15 are at most 60. Then we can avoid the use of B if and only if all these
m satisfy m ∈ {2u : u ∈ Z≥1} ∪ {3, 9, 5, 7, 17, 31} , and if t is not divisible by both 7 and 9.
See [25, Sect. 4.7] for details.

3.4 Computing torsion subgroups for Jacobians of genus 2 curves

Suppose thatA = J is the Jacobian of a curveX/Q of genus 2 and letK denote its Kummer
surface. We may assume that X is given by an equation y2 = f (x), where f ∈ Q[x] is
squarefree and has degree 5 or 6. If deg(f ) = 5, then we can represent points on J using
the (affine)Mumford representation.More generally, points in J (Q) correspondbijectively
to triples (A, B, C) of binary forms overQ of homogeneous degrees 2, 3 and 4, respectively,
such that the degree 6 homogenisation F of f satisfies F = B2 −AC (see [4]). One can use
this representation to compute in the group J (Q) via a generalisation of Cantor’s algorithm
[6]. In fact, Cantor’s algorithm has been extended to any curve of genus 2 over any field.
Assumption 3.1 is satisfied for J :

• A morphism κ : J → P3 such that κ(J ) is a model for K was given by Flynn [9], see
also [7, Chap. 3]. In this case the Kummer surface is a quartic hypersurface.

• A point in K (Q) lifts to J (Q) if and only if the expressions in Equations (5.1, 5.2) of
[29] are squares in Q.
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• The map [[2]] is given by quartic polynomials and B : Sym2(K ) → Sym2(K ) is given
by biquadratic forms; explicit formulas can be found in [7, Sect. 3].

• There is an explicit theory of heights which allows us to compute a height difference
bound β ; see [10,11,21,27].

Hence Algorithm 3.15 can be used to compute #J (Q)tors. In fact, one can compute (in)
J̃ (Fp) for primes p of good reduction using the (generalised) Mumford representation,
which is faster than the approach in Remark 3.2. Moreover, we can compute J (Q)[2]
easily using the prime factorisation of f in Q[x], see [28, Lemma 4.3, Lemma 5.6].
Using the generalised Mumford representation, we can actually compute generators of

J (Q)tors. As mentioned above, this is essentially already discussed in [27, Sect. 11] and an
implementation is available in Magma.

4 Computing torsion subgroups of Jacobians of genus 3 hyperelliptic curves
Section 3 gives a complete algorithm to compute the torsion subgroup for an abelian
variety that satisfies Assumption 3.1. In this section, we show that Assumption 3.1 is
satisfied when A = J is the Jacobian of a hyperelliptic curve of genus 3. Hence we obtain
an algorithm to compute J (Q)tors, which we have implemented in Magma and which
is available at https://github.com/bernoreitsma/g3hyptorsion. This answers a question
raised by Andrew Sutherland at the 2017 BanffWorkshop “Arithmetic Aspects of Explicit
Moduli Problems”.
Throughout this section, we fix a field k such that char(k) 	= 2 and a hyperelliptic curve

X/k of genus 3 given by an equation

X : y2 = f (x) ,

where f ∈ k[x] is squarefree of degree 7 or 8. Let ι : X → X be the hyperelliptic involution
and let J/k be the Jacobian of X . We will represent (most) points on J using the following
notion:

Definition 4.1 A divisor D on X is in general position if it is effective and if there is no
point P ∈ X such that D ≥ (P) + ι(P).

In the literature, the explicit theory of hyperelliptic curves is usually first developed
for the case where the polynomial f has odd degree. More generally, if X(k) contains a
Weierstrass point, then wemay apply a transformation to get an odd degree equation over
k . In this case, every point on the Jacobian can be represented uniquely by a divisor of the
form D − d(∞), where d ≤ 3 and D is in in general position. This leads to the unique
Mumford representation (a, b) of a pointQ ∈ J (k), wherea ∈ k[x] ismonic of degreed and
vanishes precisely in the x-coordinates of the points in supp(D), and b ∈ k[x] determines
the y-coordinates. TheMumford representation can be used to perform arithmetic in J (k)
using Cantor’s algorithm [6]. Based on this, an explicit theory of the Kummer variety was
found for the degree 7 case in [22,31].
For our application, we do not assume thatX contains a k-rationalWeierstrass point (or,

in fact, any k-rational point). Instead, we rely on an explicit theory of the Kummer variety
in the general case developed and implemented by Stoll (see [26,30]). We summarise his
results here and describe a few modest additions of ours.

https://github.com/bernoreitsma/g3hyptorsion


   23 Page 14 of 26 J. S. Müller, B. Reitsma Res. Number Theory           (2023) 9:23 

4.1 Representing points on the Jacobian

In order to find an explicit map κ : J → P7 such that κ(J ) is a model of K , we need an
explicit description of points on J without the assumption deg(f ) = 7. We will now show
that we can represent points Q on J using divisors of degree 4, but we cannot expect
uniqueness anymore.
We follow the discussion in [30]. The idea is to use the canonical isomorphism between

Pic0(X) and Pic4(X) given by adding the canonical class. Let the divisorD∞ on X be equal
to 2(∞) if deg(f ) = 7 and to (∞1)+ (∞2) otherwise, where∞1 and∞2 are the two points
at infinity on X . Then 2D∞ is a canonical divisor of X .

Proposition 4.2 For every Q ∈ J \ {0}, exactly one of the following holds
(a) Q = [DQ − 2D∞] for a divisor DQ of degree 4 in general position;
(b) Q = [DQ − D∞] for a divisor DQ of degree 2 in general position.

In case (b), the divisor DQ is uniquely determined by Q.

Proof The proof is sketched in [30, Sect. 2]. Suppose that Q ∈ J \ {0} is represented by
EQ ∈ Div0(X). By Riemann–Roch, the Riemann–Roch space L(EQ +2D∞) has dimension
at least 2; let ϕ be a nontrivial element. Then D′

Q := EQ + 2D∞ + div(ϕ) is effective of
degree 4 andwe haveQ = [D′

Q−2D∞]. IfD′
Q is in general position, thenwe setDQ := D′

Q;
otherwise D′

Q = DQ + (P) + (ι(P)) for some P ∈ X and DQ is effective of degree 2 and in
general position, since Q 	= 0.
For DQ of degree 2 in general position, the Riemann–Roch space L(DQ + D∞) has

dimension 2, generated by 1 and x. Hence all elements of the corresponding linear system,
containing all divisors linearly equivalent to DQ + D∞, are of the form DQ + (P) + (ι(P))
for some P ∈ X . This shows that the two cases (a) and (b) are mutually exclusive and also
proves the uniqueness of DQ in case (b). ��
From now on, we say thatQ is of degree 4 in case (a) and of degree 2 in case (b). The point
0 ∈ J is defined to have degree 0.
We first consider the case where Q ∈ J has degree 4. Then the divisor DQ in Propo-

sition 4.2(a) is not unique by [30, Lemma 2.1]. As in Sect. 3.4, DQ yields a generalised
Mumford representation as follows. Let F be the degree 8 homogenisation of f . There is a
model y2 = F (x, z) ofX in the weighted projective plane over k with weight 1 associated to
x and z and weight 4 = g + 1 associated to y. By [30, p. 4], divisorsD ∈ Div4(X) in general
position correspond bijectively to triples of binary formsA, B, C ∈ k[x, z] of degree 4 such
that

B2 − F = AC . (4.1)

The image of a point P = (x0 : y0 : z0) in the support of D under the hyperelliptic
covering π : X → P1 corresponds to a root of A with the correct multiplicity, and we
have y0 = B(π (P)). Note that this Mumford representation of DQ is unique up to adding
multiples of A to B.

Remark 4.3 If X(k) is non-empty, then we can find an equation y2 = f (x) for X such that
we either have deg(f ) = 7 or we have deg(f ) = 8 and the leading coefficient of f is a
square. We have already discussed the former case. In the latter case, we can arbitrarily
fix one of the two points ∞1,∞2 ∈ X(k) at infinity, say ∞1. If Q ∈ J (k) has degree 4,
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then requiring that ∞1 ∈ supp(DQ) fixes DQ uniquely. By the above, we can represent
Q using a triple (A, B, C) representing DQ. Moreover, we can use this representation for
arithmetic in J (k) using a generalisation of Cantor’s Algorithm. This is implemented in
Magma. In practice, it is better to use Sutherland’s balanced divisor approach [33], which
is more efficient. It also requires the existence of a k-rational point.

If the leading coefficient of f is not a square in k , then it is not clear how to represent
degree 4 points consistently (and hence uniquely). In this case, Magma does not represent
such points and arithmetic in J (k) has not been implemented.

4.2 The Kummer variety

In [30, Lemma 2.1], Stoll shows that there is a subgroup� of SO(Q), whereQ is the ternary
quadratic form y2 − xz, with the following property: Two triples (A, B, C) and (A′, B′, C ′)
represent divisors in general position of degree 4 with the same image on J if and only
if they are equivalent under the action of �. Moreover, they represent inverse points if
and only if they are equivalent under the action of −�. Stoll then uses this observation
to construct the Kummer variety K of J explicitly as follows. There is a canonical theta
divisor 
 on J such that the support of 
 consists of 0 and the points on J of degree 2 in
the sense of Proposition 4.2. A basis for the Riemann-Roch spaceL(2
) defines a rational
map κ : J → P7 such that κ(J ) is a model for the Kummer variety K of J . By the above, the
complement of the image of
 in Pic4 under the canonical isomorphism can be described
by the affine varietyV defined by (4.1), quotiented out by the action of�. Stoll finds a basis
ξ1, . . . , ξ8 of L(2
) from ±�-invariants in k[V ]. Let κ : J → P7 be the map defined by
ξ1, . . . , ξ8. Then κ is invariant under multiplication by −1 on J . Hence its image K := κ(J )
describes a birational model of the Kummer variety by [30, Theorem 2.5].
According to [22, Proposition 3.1], K can be defined by quartic relations. To find such

relations, Stoll notes that ξ1, . . . , ξ7 are of degree 2 in the coefficients ofA, B andC , whereas
ξ8 is quadratic in ξ1, . . . , ξ7, leading to a quadratic relation, and hence 36 quartic ones,
satisfied by the ξi. By [30, Theorem 2.5], one needs an additional 34 quartic relations; such
relations are constructed before [30, Lemma 2.2].
Todescribe themapκ onpointsQ ∈ J (k) of degree 2 (which lie on
), Stoll approximates

the divisor DQ + D∞, where DQ is as in Proposition 4.2(b) (see the discussion following
[30, Theorem 2.5]). Write DQ = (P1) + (P2), where Pi = (xi : yi : zi) ∈ X , and

A(x, z) = (z1x − x1z)(z2x − x2z) =: a0x2 + a1xz + a2z2 ∈ k[x, z] .

Then we have

κ(Q) = (0 : a20 : a0a1 : a0a2 : a
2
1 − a0a2 : a1a2 : a22 : ξ8) .

If z1 = z2 = 1 and x1 	= x2, then a0 = 1 and ξ8 = 2y1y2−G(x1 ,x2)
(x1−x2)2

, where

G(x1, x2) = 2
4∑

j=0
f2j(x1x2)j + (x1 + x2)

3∑

j=0
f2j+1(x1x2)j

and F (x, z) = f0z8 + f1xz7 + . . . + f8x8. In this case, ξ8 satisfies

((x1 − x2)2ξ8 + G(x1, x2))2 − 4f (x1)f (x2) = 0 . (4.2)

We now give κ(Q) explicitly for the remaining special cases. More details can be found in
[25, Sect. 5.4]. If z1 = z2 = 1 and x1 = x2, then we can find ξ8 by writing (4.2) as

s2ξ28 + s1ξ8 + s0 = 0. (4.3)
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Then s2 = 0 and s1 = −2G(x1, x1) = −4f (x1). If s1 	= 0, then Q 	= 0, and it follows that

κ(Q) =
(
0 : 1 : −2x1 : x21 : 3x21 : −2x31 : x41 :

−s0
s1

)
. (4.4)

If z1 = 1 and P2 = (1 : w : 0) for some w ∈ k̄ such that w2 = f8, then we can use an
approximation to find

κ(Q) = (0 : 0 : 0 : 0 : 1 : −x1 : x21 : 2y1w − 2f8x41 − f7x31). (4.5)

If P1 = P2 = (1 : w : 0), then we can use (4.3) to find

κ(Q) = (0 : 0 : 0 : 0 : 0 : 0 : 4f8 : 4f6f8 − f 27 ). (4.6)

Finally, we have

κ(0) = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 1).

Remark 4.4 If s2 = 0, then we can also express ξ8 in terms of the coefficients of the
polynomials A, B, C :

ξ8 = −a30c6 − a20a2c4 + 2a20b2b4 − 2a0a1b1b4 − a0a22c2 + 2a0a2b1b3
+2a21b0b4 − 2a1a2b0b3 − a32c0 + 2a22b0b2

where B(x, z) = b0z4 + b1xz3 + b2x2z2 + b3x3z + b4x4 and C(x, z) = c0z6 + . . . + c6x6.

4.2.1 Traces of the group law

Recall that Assumption 3.1 requires, in particular, algorithms for

• the map [[2]] : K → K such that κ(2Q) = [[2]](κ(Q)) for all Q ∈ J ;
• the map B : Sym2(K ) → Sym2(K ) such that for all Q1, Q2 ∈ J we have

B({κ(Q1), κ(Q2)}) = {κ(Q1 + Q2), κ(Q1 − Q2)} .
Similar to the genus 2 case [7, Sect. 3], there are homogeneous quartic polynomials

δ1, . . . , δ8 ∈ Z[f0, . . . , f8][x1, . . . , x8]

such that [[2]](R) = (δ1(R) : . . . : δ8(R)) for all R ∈ K , normalised to map (0, . . . , 0, 1) to
itself. The polynomials can be constructed using representation theory; see [30, Theorem
7.3]. The map B is constructed using representation theory in [30, Lemma 8.1].

4.3 Checking whether rational points lift to rational points

This section gives a procedure that decides whether the preimage under κ of a point

R = (ξ1 : . . . : ξ8) ∈ K (k)

is in J (k) or not. Let Q ∈ J such that κ(Q) = R. ThenQ is of degree 4 if and only if ξ1 	= 0.
Also, we have Q = 0 if and only if R = (0 : 0 : 0 : 0 : 0 : 0 : 0 : 1).
The case whereQ ∈ J has degree 4 is treated in [30, Sect. 4]. Briefly, the idea is that when

h is a nonzero odd function on J/k , then h2 induces a function j onK/k , and R ∈ K (k) can
only have rational preimages if j(R) is a square in k . Conversely, if j(R) is a nonzero square
in k , then R has rational preimages. Stoll constructs suitable functions j as 3×3-minors of
a 4 × 4 matrixM = M(ξ1, . . . , ξ7) (see [30, (2.7)]). The preimage of R consists of rational
points if and only if all values j(R) are squares in k .
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Suppose thatQ ∈ J has degree 2. In this case [30, Sect. 4] suggests to simply consider the
map κ explicitly. The uniqueness of the divisorDQ = (P1)+(P2) such thatQ = [DQ−D∞]
implies that Q ∈ J (k) if and only if DQ is defined over k . By Sect. 4.2, we have ξ1 = 0. We
now distinguish cases, using the explicit expression for R given in Sect. 4.2.
First suppose that ξ2 = 0. Since Q 	= O, we are either in case (4.5) or in case (4.6). If

ξ5 = 0, then it is the latter. Note that ξ7 	= 0, since otherwise we would have R = (0 : 0 :
0 : 0 : 0 : 0 : 0 : 1). Therefore P1 = P2 = ∞1/2, and the preimage of R is rational if and
only if X has rational points at infinity.
If ξ2 = 0, but ξ5 	= 0, then R is as in Eq. (4.5). Hence without loss of generality P1 =

(x1, y1) and P2 = ∞1/2.We have κ−1(R) ⊂ J (k) if and only if∞1/2 and (x1, y1) are rational.
The latter holds if and only if f (−ξ6) = y21 is a square in k .
It remains to discuss the case ξ2 	= 0, i.e. degA(x, 1) = 2. ThenDQ = (P1)+ (P2), where

Pi = (xi, yi) are affine and

R =
(
0 : 1 : −(x1 + x2) : x1x2 : x21 + x1x2 + x22 : −(x1 + x2)x1x2 : (x1x2)2 :

2y1y2 − G(x1, x2)
(x1 − x2)2

)
.

(4.7)

Lemma 4.5 The preimage κ−1(R) consists of rational points if and only if y1 + y2 ∈ k and
if one of the following conditions is satisfied:

(1) x1 = x2,
(2) x1 	= x2 and y1−y2

x1−x2 ∈ k.

Proof The divisor DQ is k-rational if and only if P1 and P2 are k-rational or if P1, P2 ∈
X(k ′) for a quadratic extension k ′/k and σ (P1) = P2, where σ is the nontrivial element
of Gal(k ′/k). Hence a necessary condition for rationality of DQ is that the polynomial
(y − y1)(y − y2) is defined over k . It follows from (4.7) that y1y2 ∈ k . Suppose from now
on that y1 + y2 ∈ k .
If x1 = x2, then x1 = − 1

2ξ3 ∈ k and y1 = 1
2 (y1 + y2) ∈ k , since Q 	= 0 by assumption;

henceDQ is k-rational.Nowassume that x1 	= x2. Then there is aMumford representation
(A, B, C) of Q such that the polynomial b(x) = B(x, 1) is linear and satisfies b(x1) = y1
and b(x2) = y2, and DQ is k-rational if and only if b ∈ k[x]. Write b(x) = b0 + b1x, then
b1 = y1−y2

x1−x2 and b0 = y2x1−y1x2
x1−x2 . Since

y1 + y2 = 2b0 + b1(x1 + x2) ,

and since both y1 + y2 and x1 + x2 = −ξ3 are in k , we conclude that b ∈ k[x] if and only
if b1 ∈ k . ��
From (4.7), we can compute y1y2 and

y21 + y22 = f (x1) + f (x2) =
8∑

j=0
fj(x

j
1 + xj2) ,

hence also (y1 ± y2)2. Since (x1 − x2)2 is also computed easily from (4.7), we can use
Lemma 4.5 in practice to check whether R lifts to rational points.

Remark 4.6 Stoll shows in [30, Sect. 4] how to compute a lift of R when X(k) is nonempty
and the lifts of R have degree 4. Using the above, we can compute the unique Mumford
representation of the points lifting R in the degree 2 case.
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4.4 Using arithmetic on reduced Jacobians

Recall that Step (3) of Algorithm 3.15 requires the structure of J̃ (Fp) for primes of good
reduction p, where J̃ is the reduction of J modulo p. Moreover, in Step (b) of Algorithm
3.14, we need to enumerate all elements of the q-parts of J̃ (Fp), where q is prime and
p 	= q is a prime of good reduction, and we need to compute scalar multiples.
In Remark 3.2 we discussed how to compute J̃ (Fp) for a prime p of good reduction using

arithmetic of the Kummer variety K̃ and checking whether points in K̃ (Fp) lift to J̃ (Fp).
In practice, it turns out to be more efficient to compute J̃ (Fp) using arithmetic in J̃ (Fp), if
that is implemented.
Recall from Sect. 4.1 that there are algorithms (and implementations) for arithmetic in

J̃ (Fp) if we know a point in X̃(Fp), but no algorithm is known if we do not. If X̃(Fp) is
nonempty, then we fix a point P̃ ∈ X̃(Fp) and use a change of coordinates φ : X̃ → X̃ ′

such that φ(P̃) is a point at infinity. Let J̃ ′ be the Jacobian of X̃ ′. Then we can compute in
J̃ ′(Fp), for instance in Magma. Moreover, we can enumerate J̃ ′(Fp) and find its structure
as an abelian group. We adjust Steps (3) and (4) of Algorithm 3.15 in the following way.
Here, we denote the Kummer variety of J̃ ′ by K̃ ′.

• In Step (3) and (4) of Algorithm 3.15, find suitable primes p with the extra condition
that X̃(Fp) is not empty.

• In Algorithm 3.14, let G0 be the q-part of J̃ ′(Fp). In Step (2), find the smallestm such
that κ̃(φ−1∗ (qm · g)) lifts to J (Q), where φ : X̃ → X̃ ′ is as above.

This modification still allows us to choose from infinitely many primes p, since the Hasse-
Weil bound implies #X̃(Fp) ≥ 1 for all good p ≥ 41.

Remark 4.7 In practice, we replace κ̃ ◦ φ−1∗ by φ−1
K̃ ◦ κ̃ ′, where φK̃ : K̃ → K̃ ′ is the

isomorphism induced by φ. Explicit formulas for φK̃ are given in [25, Appendix B].

4.5 Computing the rational two-torsion points.

It is possible to compute J (Q)[2] via the approach sketched in Sect. 3.2.1, but this takes
quite long in practice.Wenowdiscuss amore efficientmethod, suggested to us byMichael
Stoll.
First suppose that deg(f ) = 7. Let g1, . . . , gr ∈ k[x] be the monic irreducible factors of f .

Then, by [28, Lemma 4.3] J (Q)[2] is generated by the points withMumford representation

(g1, 0), . . . , (gr−1, 0) .

Now suppose that deg(f ) = 8. Let� ⊂ Q be the set of zeros of f (x). We call an unordered
partition {�1,�2} of � even if #�1 (and hence #�2) is even. An even partition {�1,�2} of
� gives rise to a two-torsion point P�1 (= P�2 ) represented by

∑

ω∈�1

(ω, 0) − #�1
2

D∞ ∼
∑

ω∈�2

(ω, 0) − #�2
2

D∞ , (4.8)

and every point in J (Q)[2] arises in this way from a unique unordered partition. See [30,
Sect. 5] and [24]. More precisely, (4.8) induces a bijection between J [2] and the Galois-
module of unordered even partitions of roots of f (see [24, Sect. 6]). Hence J (Q)[2] is
in bijection with the set of all unordered even partitions {�1,�2} that are fixed by the
absolute Galois group GQ of Q. For instance, if f is monic and �1 (equivalently, �2) is



J. S. Müller, B. Reitsma Res. Number Theory            (2023) 9:23 Page 19 of 26    23 

fixed byGQ, then P�1 ∈ J (Q)[2], and P�1 has Mumford representation (A(x, z), 0, C(x, z)),
where A(x, z) = ∏

ω∈�1 (x − ωz) and C(x, z) = ∏
ω∈�2 (x − ωz).

However, in general not every point in J (Q)[2] arises in this way. It is also possible that
{�1,�2} is fixed by GQ, but �1 and �2 are not fixed individually. Then both �1 and
�2 have size 4 and we have �2 = �σ

1 , where σ is the non-trivial element of Gal(k/Q)
for a quadratic number field k . This corresponds to a factorisation f = lc(f ) · h · hσ ,
where h = ∏

ω∈�1 (x − ω) ∈ k[x] − Q[x] and hσ = ∏
ω∈�2 (x − ω) are coprime and

lc(f ) is the leading coefficient of f . In this case, P�1 has no Mumford representation of
the form (A, 0, C) defined over Q (the degree-4 homogenisations of h and hσ give such a
representative over k). The factorisation f = lc(f ) · h · hσ implies that k is a subfield of the
étale algebra Q[x]/(f ).
Wemayuse this to compute J (Q)[2] as follows. Let 2tQ denote the number ofmonic even

degree divisors of f in Q[x]. For a quadratic extension k/Q with Galois group Gal(k/Q) =
{1, σ }, we define

tk := 1
2
#

{
h ∈ k[x] : h is monic, f = lc(f ) · h · hσ , gcd(h, hσ ) = 1

}
.

By the discussion above, we obtain the following formula.

Lemma 4.8 Wehave #J (Q)[2] = tQ+∑
k tk , where k runs through the quadratic subfields

of Q[x]/(f ).

Example 4.9 Recall from Example 1.3 that for the Jacobian J of

X : y2 = x8 + 2x7 + 3x6 + 4x5 + 9x4 + 8x3 + 7x2 + 2x + 1 =: f (x)

the group J (Q)tors is isomorphic to a subgroup ofZ/6Z. The polynomial f (x) is irreducible
over Q, but it has the factorisation

f = (x4 + (1 − 2i)x3 + (−1 − 2i)x2 + (−1 − 2i)x − 1) · (x4 + (1 + 2i)x3

+(−1 + 2i)x2 + (−1 + 2i)x − 1)

over Q(i), where i2 = −1. This shows that #J (Q)[2] = 2.

Remark 4.10 Lemma 4.8 holds more generally for hyperelliptic curves overQ of arbitrary
genus and even degree. However, if g is even, then deg(f ) is not divisible by 4, and hence
tk = 0 for all quadratic fields k . In this case all rational 2-torsion points come from even
degree factors of f over Q and we recover [28, Lemma 5.6].

4.6 Halving a rational point on K

In practice, the formulas found by Stoll in [30, Lemma 8.1] for the map B as in Section 2
need a lot more space to store than the δi, and they also take longer to evaluate. Recall
fromSect. 3.3 thatwe can avoid theBij altogether inmany situations. If J (Q)[2] is nontrivial
(and we do not already know that J (Q)[2∞] = J (Q)[2]), then this requires computing
preimages under [[2]], as discussed in Sect. 3.2.1. In other words, for κ(Q) = (y1 : . . . :
y8) ∈ K (Q) we need to solve a projective system

δi(x1, . . . , xn) = cyi , c ∈ Q× , 1 ≤ i ≤ 8. (4.9)

We have implemented this approach in Magma, using Gröbner bases to find all ratio-
nal points on the zero-dimensional projective scheme defined by (4.9) and the defining
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equations of K . This approach works in practice, but we found that most of the time,
computing such preimages is significantly slower than simply using the map B.
An alternative approach for computing preimages under [[2]] is proposed by Stoll in

[27, Sect. 5] for genus 2. We also generalised this to genus 3 and implemented this gener-
alisation. However, this requires working over the splitting field of f . Even when f splits
completely over Q, we still found the approach via B to be more efficient.

4.7 Height difference bound

In [30], Stoll describes a method to compute β > 0 such that the difference between
the naive and the canonical height is bounded by β . His approach generalises results for
genus 2 [11,21,27]. Stoll shows in [30, Corollary 10.3] that one can take

β = 1
3
|26disc(f )| + 1

3
γ∞ ,

where γ∞ is an upper bound for the local height contribution ε∞ introduced in [30, Sect.
10]. One can find a suitable γ∞ using the archimedean triangle inequality and represen-
tation theory of J [2], see [30, Lemma 10.4]. A refined bound can be obtained by iterating
this procedure [30, Lemma 10.5].

5 Examples and databases
We have implemented the algorithm of Sect. 3 for hyperelliptic curves of genus 3 using
the explicit theory discussed in Sect. 4 in Magma. The implementation is based on Stoll’s
Magma-implementation of explicit formulas for the Kummer variety and heights available
from [26]. Our code, as well as the results of the computations discussed below, can be
found at https://github.com/bernoreitsma/g3hyptorsion.WeusedMagma v2.6 on a 64-
core 2.6 GHz AMD Opteron(TM) Processor 6276 with 256GB RAM, running Ubuntu

18.04.
This section provides some example computations, illustrating various aspects of the

algorithm. We also used our implementation to compute all rational torsion subgroups
in a database maintained by Andrew Sutherland [32]. Finally, we ran our algorithm on a
large number of hyperelliptic curves of genus 3 with small coefficients. Together with a
few additional constructions, these computations prove Theorem 1.1.

5.1 Example computations

Example 5.1 In Example 1.3, we showed that for the Jacobian J of the curve

X : y2 = x8 + 2x7 + 3x6 + 4x5 + 9x4 + 8x3 + 7x2 + 2x + 1,

we have #J (Q)tors = 3. To find a generator using Algorithm 3.4, we pick p = 17 because
the 3-part of J̃ (F17) is isomorphic to Z/3Z. We choose a point Q̃ ∈ J̃ (F17) of order 3 and
consider κ(Q̃) ∈ K̃ (F17). If the lift Q ∈ J (Qp)[3] of Q̃ is indeed in J (Q), then κ(Q) ∈ K (Q).
After a few iterations of the Hensel lifting, we can check whether the coordinates define
a point on K (Q). Indeed, after computing the power series up to p4, we arrive at a point
R ∈ K (Q) such that [[3]](R) = κ(0), and we check that κ−1(R) ⊂ J (Q)tors. We find that
J (Q)[3] is generated by the point represented by the divisor (0 : −1 : 1)− (1 : 1 : 0), where
the points are viewed inside the projective plane with weights 1, 4, 1.

https://github.com/bernoreitsma/g3hyptorsion
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Example 5.2 The following example was suggested by Andrew Sutherland. Let X be the
hyperelliptic curve over Q defined by

y2 = 5x8 − 14x7 + 33x6 − 36x5 + 30x4 + 2x3 − 16x2 + 20x − 7.

The curveX has no small rational points, so this example illustrates howwe can compute
J (Q)tors without an implementation of the group law in J (Q). Computing the order of
#J (Fp) for some small primes of good reduction, we obtain that #J (Q)tors | 13, but no
rational point 13-torsion point on J is found easily.
For our algorithm, we pick the prime of good reduction p = 3, resulting in the curve

X̃ : ỹ2 = 2x̃8 + x̃7 + 2x̃3 + 2x̃2 + 2x̃ + 2

over F3, which is isomorphic over F3 to

X̃ ′ : ỹ2 = x̃8 + x̃7 + x̃6 + 2x̃3 + x̃2 + 2 .

Since X̃ ′ has rational points at infinity, arithmetic in J̃ ′(F3) is implemented, see the dis-
cussion in Sect. 4.4. As in Remark 4.7 we use the induced change of coordinates on the
Kummer varieties of J̃ and J̃ ′ to check whether a candidate point κ(Q̃) ∈ J̃ (F3)[13] lifts to
J (Q)tors. We indeed find the point

R = (0 : 1 : −1 : 1 : 0 : −1 : 1 : 20) ∈ κ(J [13]) ∩ K (Q)

and we can show that κ−1(R) ⊂ J (Q). Therefore we have J (Q)tors ∼= Z/13Z.
Since the first coordinate of R is 0, the preimages Q ∈ J (Q) of R are of degree 2 and

hence can be described uniquely using a divisor DQ − D∞. A short calculation using the
explicit formulas in Sect. 4.3 shows that one of the points Q has

DQ = (1 + ζ3, 1 + ζ3) + (1 + ζ 2
3 , 1 + ζ 2

3 ),

where ζ3 is a primitive third root of unity.
Alternatively, one can search for points of bounded height on J (Q) reducing to κ̃(Q̃)

using a lattice-based approach as in [30, Sect. 11]. This also finds a rational point of
order 13.

Example 5.3 According to [17, Example 3.9], the curve X defined by

y2 = 46656
3125

x7 + 407097961
39062500

x6 + 281238453
3906250

x5 − 22959453
312500

x4 − 2767361
15625

x3

+381951
2500

x2 + 3093
6250

x + 1
2500

has a torsion point of order 41. It is easy to see that 41 is an upper bound for #J (Q)tors.
We run our algorithm on the curve with equation y2 = f (x), where

f = 583200000x7 + 40709761x6 + 2812384530x5 − 2869931625x4

−6918402500x3 + 5967984375x2 + 19331250x + 15625 .

The height difference bound β computed using Stoll’s code satisfies β ≈ 97, hence
we need N log(p) ≥ 11 log(2) + 194 in Step (4) of Algorithm 3.4. We pick p = 7; this
yields the required p-adic precision O(pN ) where N = 128, which is reached in just 7
steps in Step (4). It turns out that we need not go that far; N = 32 suffices to find a
lift R ∈ K (Q) ∩ κ(J [41]). After showing that R = κ(Q) for some Q ∈ J (Q), we see that
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Table 1 Torsion structures found in the database [32]

Inv factors Ord Count Gs? Inv factors Ord Count Gs? Inv

factors

Ord Count Gs?

1 1 38370 Yes 17 17 5 Yes 36 36 3 Yes

2 2 17093 Yes 3, 6 18 1 Yes 37 37 1 Yes

3 3 956 Yes 18 18 30 Yes 38 38 2 Yes

2, 2 4 2483 Yes 19 19 3 Yes 2, 2, 10 40 16 Yes

4 4 2673 Yes 2, 10 20 88 Yes 2, 20 40 7 Yes

5 5 616 Yes 20 20 33 Yes 40 40 1 No

6 6 1332 Yes 21 21 2 Yes 42 42 6 Yes

7 7 701 Yes 22 22 14 Yes 2, 22 44 1 Yes

2, 2, 2 8 163 Yes 2, 2, 6 24 19 Yes 44 44 1 Yes

2, 4 8 493 Yes 2, 12 24 98 Yes 46 46 1 Yes

8 8 639 Yes 24 24 21 Yes 2, 2, 12 48 2 No

9 9 175 Yes 25 25 4 Yes 2, 24 48 7 Yes

10 10 493 Yes 26 26 9 Yes 4, 12 48 2 No

11 11 34 Yes 27 27 3 Yes 49 49 2 Yes

2, 6 12 161 Yes 2, 14 28 33 Yes 5, 10 50 1 No

12 12 403 Yes 28 28 17 Yes 52 52 2 Yes

13 13 22 Yes 30 30 6 Yes 2, 2, 14 56 1 Yes

14 14 307 Yes 2, 2, 2, 4 32 1 Yes 2, 28 56 4 Yes

15 15 5 Yes 2, 2, 8 32 21 Yes 2, 30 60 1 No

2, 2, 2, 2 16 3 Yes 2, 16 32 10 Yes 60 60 3 No

2, 2, 4 16 47 Yes 32 32 3 Yes 2, 2, 2, 8 64 1 Yes

2, 8 16 156 Yes 2, 18 36 2 Yes 2, 6, 6 72 1 No

4, 4 16 3 No 3, 12 36 1 No 2, 52 104 1 No

16 16 57 Yes 6, 6 36 2 No

J (Q)tors ∼= Z/41Z, confirming [17, Example 3.9]. An explicit generator is represented by
(0, 125) − (∞). We checked that the Jacobian is in fact geometrically simple using the
results of [16, Sect. 3]; this was also done by Nicholls using [23, Proposition 2.4.2].

5.2 Sutherland’s database

Using the techniques of [5], Andrew Sutherland has assembled a file with 67879 genus 3
hyperelliptic curves of small discriminant at [32].Weusedour implementation to compute
the rational torsion subgroups of their Jacobians. For the complete database containing the
results for the 67879 curves, we refer to the file database.txt in https://github.com/
bernoreitsma/g3hyptorsion. All torsion structures and the frequency of their appearance
can be found in Table 1. Column inv factors contains the invariant factors, ord the order of
the group, count is the number of times we found this torsion structure and gs? indicates
whether we found at least one curve whose Jacobian has this torsion structure and is
geometrically simple.
Here we summarise some of our findings.

• 38370 Jacobians (≈ 56.5%) have trivial rational torsion subgroup.
• 5663 Jacobians (≈ 8.3%) have a rational torsion point of odd order.
• 25679 Jacobians (≈ 37.8%) have a nontrivial cyclic rational torsion subgroup, hence

3830 (≈ 5.6%) have 2 or more generators.

https://github.com/bernoreitsma/g3hyptorsion
https://github.com/bernoreitsma/g3hyptorsion
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• Of the non-cyclic torsion subgroups found, 3555 have 2 generators, 370 have 3 gen-
erators, and 5 torsion subgroups have 4 generators. The 5 curves that have four
generators all have at least 3 of these generators of order 2.

• 11 Jacobians have a torsion subgroup such that there are two invariant factors that
are not equal to 2.

• For 65938 (≈ 97.1%) of the Jacobians, the order of the rational torsion subgroup is
equal to the upper bound b obtained by reducing modulo all good primes below 1000
as in Example 1.3. For the others, we have the following, where count denotes the
number of occurrences. Most of the Jacobians for which the quotient b/#J (Q)tors is
not 1 are geometrically split, for instance, all Jacobians for which the quotient is > 7
or equal to 6, and 182 out of the 192 Jacobians with quotient equal to 4. The three
Jacobians for which the quotient is 7 are geometrically irreducible; they have upper
bound 7 and #J (Q)tors = 1.

b/#J (Q)tors 2 3 4 5 6 7 8 10 16 32
count 1644 56 192 2 8 3 25 1 9 1

5.3 Large orders

5.3.1 Previous work

In [23, Table 3.2], Nicholls lists all known orders of rational torsion points on Jacobians of
hyperelliptic curves of genus 3.Most of these were constructed by him in suitable families;
in particular, he constructs geometrically simple Jacobians J/Q with a point P ∈ J (Q) of
order N for every N ∈ {25, . . . , 44}. Moreover, he constructs such points for

N ∈ {15, 22, 48, 49, 50, 52, 54, 56, 64, 65, 72, 91} .
In particular, the Jacobians of the curves

y2 = −16x7 + 409/4x6 − 275x5 + 399x4 − 334x3 + 160x2 − 40x + 4 (5.1)

y2 = −16x7 + 393/4x6 − 237x5 + 309x4 − 242x3 + 116x2 − 32x + 4 (5.2)

have a rational point of order 43. This is the largest known prime order for a rational point
on the Jacobian of a hyperelliptic curve of genus 3 (the previous record holder was the
curve in Example 5.3). The largest known point order is 91, but Nicholls does not give the
equation of the curve.

Remark 5.4 We focused on geometrically simple Jacobians. In [12, Sects. 4.3–4.6], Howe,
Leprevost and Poonen construct split Jacobians of hyperelliptic curves of genus 3 with
large torsion orders. They find the groups with the following invariant factors:

[2, 30], [10, 10], [2, 8, 8], [2, 2, 2, 24], [2, 2, 2, 4, 8], [2, 2, 6, 12], [4, 4, 8], [2, 2, 2, 4, 8],

[2, 2, 2, 2, 4, 8]

5.3.2 Searching for large orders

Howe [13] searched among genus 2 curves of the form

y2 + h(x)y = g(x) (5.3)
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with deg(h) = 3 and deg(g) = 2 and small coefficients to find large torsion orders. Such
curves are promising, because every curve of genus 2 with a rational non-Weierstrass
point has a model of the form (5.3).
Similarly, we naively searched among those genus 3 curves that have a model

y2 + h(x)y = g(x)

with deg(h) = 4, deg(g) = 3 and coefficients bounded in absolute value by 8. See the file
searchresults.m at https://github.com/bernoreitsma/g3hyptorsion.
We found the following 3 pairwise non-isomorphic curves having #J (Q)tors = 43:

y2 = x8 + 4x6 + 12x5 − 4x4 + 24x3 + 20x2 − 16x + 16

y2 = x8 − 4x7 + 10x5 + 4x4 − 20x3 + x2 + 12x + 4

y2 = x8 − 4x7 + 18x5 − 16x4 − 12x3 + 9x2 + 8

The third curve is isomorphic to the curve (5.1) found by Nicholls.We did not recover the
example (5.2) and we found no larger prime order. All three Jacobians are geometrically
simple.
The largest order #J (Q)tors that we found was 160; this occurred exactly once, for the

following curve, whose Jacobian is geometrically simple:

y2 = 9x8 − 48x7 + 46x6 + 96x5 − 119x4 − 72x3 + 64x2 + 24x .

This is the largest torsion order on a geometrically simple Jacobian of dimension 3 found
so far.
The largest (finite) order of an element of J (Q) was on the Jacobian J of the curve defined

by

y2 = 9x8 − 36x7 + 36x6 + 18x5 − 48x4 + 24x3 + x2 − 4x + 4 .

We have J (Q)tors ∼= Z/144Z. Here J is not geometrically simple. The largest (finite) order
of a rational point on a geometrically simple Jacobian occurred for the curve

y2 = x8 − 2x7 + 7x6 − 6x5 − x4 + 10x3 − 6x2 + 1

whose Jacobian has J (Q)tors ∼= Z/91Z, generated by the point [2(1, 2) − D∞].
Table 2 contains all group structures found in the search which do not already appear

for a geometrically simple Jacobian of a curve in Sutherland’s database.

Remark 5.5 In our computations, we found all point orders in Nicholls’ [23, Table 3.2].
Moreover, the following orders appeared for geometrically simple Jacobians, but were not
previously described in the literature for such Jacobians:

23, 24, 46, 51, 58, 63, 70

In addition, we found every order up to 22. We also found the following new orders for
split Jacobians:

60, 80, 144

The corresponding curves all have automorphism group of order greater than 2, so their
Jacobians are split over Q.

https://github.com/bernoreitsma/g3hyptorsion
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Table 2 Torsion structures found in the search

Inv factors Ord Gs? Inv factors Ord Gs? Inv

factors

Ord Gs?

3,3 9 Yes 2, 26 52 Yes 2, 2, 20 80 Yes

4,4 16 Yes 3,18 54 Yes 2, 40 80 No

23 23 Yes 54 54 Yes 4, 20 80 No

5, 5 25 Yes 56 56 Yes 80 80 No

29 29 Yes 58 58 Yes 2,42 84 Yes

31 31 Yes 2, 30 60 Yes 2, 44 88 Yes

2, 4, 4 32 No 60 60 No 91 91 Yes

4, 8 32 Yes 63 63 Yes 2,2, 24 96 No

35 35 Yes 2, 2, 16 64 No 2, 4, 12 96 No

3, 12 36 Yes 2, 4, 8 64 Yes 2, 48 96 No

6, 6 36 No 2, 32 64 Yes 4, 24 96 No

39 39 Yes 4, 16 64 No 2, 2, 28 104 Yes

40 40 Yes 64 64 Yes 2, 52 104 Yes

41 41 Yes 65 65 Yes 2, 60 120 No

43 43 Yes 70 70 Yes 2, 2, 2, 2, 8 128 No

2, 2, 12 48 Yes 2, 2, 18 72 No 2, 2, 2, 16 128 No

4, 12 48 Yes 2, 6, 6 72 No 2, 4, 16 128 No

48 48 Yes 2, 36 72 No 12, 12 144 No

5,10 50 No 6, 12 72 Yes 144 144 No

50 50 Yes 72 72 Yes 2, 2, 2, 2, 10 160 Yes

51 51 Yes 2, 2, 2, 10 80 Yes

5.4 Additional examples and proof of Theorem 1.1

All torsion structures in Theorem 1.1 occurred in the computations discussed in Sects.
5.2 and 5.3.2 (see Tables 1 and 2), except for (Z/2Z)5, (Z/2Z)6, (Z/2Z)4 × Z/4Z and
(Z/2Z)3 × Z/6Z. It is easy to find geometrically simple Jacobians with rational torsion
subgroup isomorphic to the first two using Sect. 4.5. For instance, the curves

X1 : y2 = x(x − 1)(x − 2)(x − 3)(x − 4)(x2 + x + 1)

and

X2 : y2 = x(x − 1)(x − 2)(x − 3)(x + 1)(x + 2)(x + 3)

have geometrically simple Jacobian with rational torsion subgroup isomorphic to (Z/2Z)5

and (Z/2Z)6, respectively. In a systematic search, we also found the curves

X3 : y2 = x7 − 8x6 − 19x5 + 235x4 − 130x3 − 875x2 − 500x

and

X4 : y2 = x7 − 15x6 + 87x5 − 244x4 + 335x3 − 191x2 + 9x + 18

whose Jacobians J3 and J4 are geometrically simple. We have J3(Q)tors ∼= (Z/2Z)4 × Z/4Z

and J4(Q)tors ∼= (Z/2Z)3 × Z/6Z. This completes the proof of Theorem 1.1.
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