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Abstract

The main objective of this article is to study the dynamic transition associated with
the activator-substrate system. Two criteria are derived to describe the transition
from real eigenvalues or complex eigenvalues and the types of transition. Notably,
we get two parameters b, and b,, which can determine the the types of transitions
for the two criteria respectively. The analysis is carried out using dynamic transition
theory developed recently by Ma and Wang (Phase transition dynamics, Springer,
New York, 2013, Bifurcation Theory and Applications, World Scientific, Singapore,
2005, Stability and Bifurcation of Nonlinear Evolutions Equations, Science Press,
Beijing, China, 2007).

Keywords Activator-substrate system - Real eigenvalues - Complex eigenvalues -
Center manifold reduction - Dynamic transition

1 Introduction

Natural patterns are various in shape and form. The development processes of such
patterns are complex, and also interesting to researchers. To understand the underly-
ing mechanism for patterns of plants and animals, Turing [4] first proposed the cou-
pled reaction-diffusion equations. It was shown that the stable process could evolve
into an instability with diffusive effects. He showed that diffusion could destabilize
spatially homogeneous states and cause nonhomogeneous spatial patterns, which
accounted for biological patterns in plants and animals. Such instability is frequently
called the Turing instability, also known as diffusion-driven instability. Gierer and
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Meinhardt [5] presented the Gierer-Meinhardt model( Activation-inhibition dif-
fusion system [6, 7]) and activator-substrate system (depletion model) [8, 9], and
which was used to describe the Turing instability.

In this article, we consider the bifurcation of activator-substrate system, which
was used to describe pigmentation patterns in sea shells [10, 11] and the ontogeny of
ribbing on ammonoid shell [12], and the model could be written as follows

u,=d /N\u—u+u,

v,=DAv-v—-u*v+o, M
where u(x, 1) and v(x, f) represent the population densities of the activator and the
substrate at time 7 > 0 and spatial location x respectively. Here, the substrate with
concentration v(x, f) could be consumed by activation or some indirect effect of acti-
vation, and is supplied at a constant rate. d and D are the diffusion constants of the
activator and the substrate respectively. o is the source concentration for the sub-
strate, and the activator-substrate system of interest in present work is confined in a
rectangle:

@=[Jo.z @
J=1

There are extensive studies from the mathematical point of view for activator-
substrate system, and we refer in particular to [13, 14], and the references therein
for studies related to the steady-state solutions, Hopf bifurcation, global structure.
Motivated by the above papers, what we are concerned in this paper is to study the
dynamical transition for the system (1). The technical method for the analysis is the
dynamical transition theory, which has been developed by Ma and Wang [1-3]. It is
worth noticing that the dynamical transition theory is recently developed to identify
the transition states and classify them both dynamically and physically, see [15-18].

With this method in our disposal, we derive in this article a characterization of
dynamic transition of the activator-substrate system. In particular, the analysis in
this article shows that the activator-substrate system always undergoes a dynamic
transition either to multiple equilibria or to periodic solution, dictated by the sign of
the parameters 4, and 4,, where 4, and 4, are related to the diffusion constants of the
substrate D, the source concentration for the substrate ¢ and the k-th eigenvalue of
the Laplacian p;:

24 o\/o2 — 4
llzminl l—Dpk—HL , 3)
ko py 2

2 —
Dpk _ +0'\2/52 4 +2

Dl’i + 62+a\2/0'2—4pk

Ay = min

“)
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For the case of transitions to multiple equilibria, for fg ez dx # 0, the transition is
2

either continuous or jump based on the sign of parameter b,. In the periodic case
(complex eigenvalues ), the types of transitions are determined again by another
parameter b,. b, b, are related to the diffusion constants of the substrate D, the
source concentration for the substrate o and the k-th eigenvalue of the Laplacian p,,
k-th eigenvector of the Laplacian e, see (24) and (45).

This article is organized as follows: Sect. 2 introduces the abstract operator form
and the principle of exchange of stabilities (PES), Sect. 3 studies the dynamic transi-
tions of the activator-substrate system and presents the main results. In Sect. 4, we
summarize the conclusions and give the example derived from previous calculations.

2 Mathematical Set-Up
2.1 Basic State and Abstract Operator Form

The equation (1) admits three physically realistic constant steady-state solutions:

U, =(0,0)",
U, = (o-— \/0'2—4’0'+\/0'2+4>T’

2 2 5)
U, = <U+ \/62—4,6— \/0'2—4>T'

2 2

In this paper, we mainly focus on the bifurcation and transition problem of (1) at the
steady-state solution U in (5). For this purpose, we take the transition

r o+Ver-4

u=u + —, V=1 +
2

6c—Vo2—-4
2

Omitting the prime, the system (1) is written as

-

24 6\or—4-2
u,:lAu+u+G to ; v+ (6 + Vo2 —duy
o2 _4
+Lu2+u2v,
1 2 (6)
o’ +oVo? -4 6—Vo2-4,
v,=DAv—fV—2u—fu
— (o + Vo2 —duy — uv.

Since we will study the influence of the diffusion constants of the activator-d on the
stability of bifurcation, so we select d = A as the control parameter.
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For system (6), there are two types of physically-sound boundary conditions: the
Dirichlet boundary condition

U=(u,v)=0 on 0Q, @)
and the Neumann boundary condition

(3)—2]:0 on 0Q. )]

Qs as in Equ. (2) .
Define the function spaces

H = L*(Q, R%),
H, = {U € H*(Q,R*) n H)(&, R*)} for boundary condition (7)

H, = {U € H*Q,R%) | (;—U |,o= 0} for boundary condition (8).
n

Define the operators L, =A; + Band G : H; — H by

AU = (A A\ u,D Av)T,
6t +o 0'2—4—2V 6> +o0Vo2—4

BU = (u+ 5 : ) v—2u),
GU = ((c + \/E)Mv + %\/0'2——4”2 + uv, ®
%\/O-Z—_Atuz —(oc+ \/62——4)uv - uzv)T.
Then the Equ. (6) with (7) or (8) can be written in the following abstract form
& =LU+6W) (10)
2.2 Linear Theory and Principle of Exchange of Stabilities(PES)
The linearized eigenvalue Equ. (6) are given by
AN u+u+ 62+0\/02-2—_4_2v=ﬂu,
DAV—MV—2u=ﬁV. "

2
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with the boundary condition (7) or (8). Let p, and e, be the k-th eigenvalue and
eigenvector of the Laplacian with either the Dirichlet or the Neumann condition:

A € = —PrCs

e (12)
€ lgo=0 or a_nk lso= 0.

Denote by M, the matrix given by

—/1,01( +1 0'2+0'\/§2—4—2
) _ Dpk _ o2+c\o2—4

2

It is clear that all eigenvalues ﬁ;—' and eigenvectors (p,‘f of (11) satisty the following
equations

(pki = fkie]p

13
M = e 4

Where f;-' € R are the eigenvectors of M. And the eigenvalues ﬁ;—' are expressed as

1 o’ +o\Vo2 -4
= =11 = ap, - Dp - TEIV TRy
2 2
1 o’ +o\o?-4
5= dpy = Dpy = ————) (14)
2 v 52 _ 2 /52 —
—4(/1Dpi+/1pka++a4 - Dp, + H+0-4 _2)]§.

Proposition 1 With the above calculation, eigenvectors can be derived and are given
in the following two groups

1. [Itis clear that ﬂk_(/l) < ﬂ]:'(/l) = 0 if and only if

Dpk _ o2+05V62—4 +2

A= 2
o2+0\ 02—
DP§+%P1¢
2 \e2—_4
,1<l l—Dpk—HL :
Pk 2

2. B = xa (Vi with oy # 0 if and only if
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Pk 2

Dpk O'2+6\2/O'2—4 +2
A<

Dpi + 62+0'\2/ 62—4 o

Where

6’ +oVo2—4

a(A) = 2<wp,§ + Apy >

Thus we introduce two critical numbers

c’+oVor—4

!
A —mkm%(l—Dpk— >

o2+0\/ 62—

Dpy = —

—Dp, +

Pk,

242 Dp,, —

ST

2

62+6\/(72—4_2>

1 o’ +o\or-4
)=—>-Dp, — —>

2
(15)
02+17\/m

> +2

lzzmkin
2461/02—4
Dy + VT,

Obviously, the following theorem holds true.

- Dp2 +(72+O'\/O'2—4

(16)
k2 2 ky

Theorem 2 Let A, and A, be the two numbers given by (15) and (16). Then we have

the following assertions:

1. Let i, < A, and k, > 0 be the integer such that the minimum is achieved at k, in
the definition (16) of A,. Then ﬁ;; (A) is the first real eigenvalue of (11) near A = A,

satisfying that

<0 if A<,
myb =0 if A=A,
>0 if A>12,,

Reﬂji(ﬂ) <0, Vi€ Nandj# ﬂ;;.

k, is defined by (16),

a7

2. Let A < Ay, and k| > O be the integer such that the minimum is achieved at k, in
the definition (15) of A,. Then ﬂ;r (4) = B, (A) are a pair of first complex eigenval-

ues of (11) near A = A, satisfying that
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<0 if A<,
Reﬁ,j](/l) = Ref (D)y = 0 if A=A, kisdefinedby (15),
>0 if A> A,

Ref(A) <0,  VjeNandj#k,.

(18)

Proposition 3 ﬂ;—'] (Mare simple complex eigenvalues at (< A,), and in general, if
Pr, is a simple eigenvalue of (12), then ﬂl:(/l) are also simple at 1,(< A)).

3 Main Results and Proofs

In this section, we will give the main results and proofs which based on the the
dynamical transition theory for nonlinear dissipative systems developed by Ma and
Wang [1-3]. Then, the following theorems will show the types of transitions that the
system undergos basing on Theorem 2 .

3.1 Transition from Real Eigenvalues

Here after, we always assume that the eigenvalues ﬁ]:; (A4) in (17) are simple. Based
on theorem 3.1, as 4, < 4, the transition of (10) occurs at 4 = 4,, which is from real
eigenvalues. Let p; be as in theorem 3.1, and ¢, the eigenvector of (12) correspond-
ing to e satisfying

/ ezzdx £ 0. (19)
Q

Then, under the condition (19), for the system (6) with boundary condition (7) or (8)
we have the following transition theorem.

Theorem 4 Let A, < 4, Then the system (10) has a transition at A = A,, which is
mixed. In particular, the system bifurcates on each side of A = A, to a unique branch
U* of steady state solution, such that the following assertions hold true:

1. On i < A,, the bifurcated solution U* is a saddle, and the stable manifold sepa-
rates the space H into two disjoint open sets Wf and W; ,suchthatU =0 € Wf
is an attractor, and the orbits of (10) in W; are far fromU = 0.

2. On A > A,, the stable manifold separates the neighbourhood O of U = 0 into two
disjoint open sets ﬁf and ﬁ;, such that the transition is jump in ﬁf, and is con-
tinuous in ﬁ;. The bifurcated solution U* € ﬁ; is an attractor such that for any
QE ﬁ;

lim |U(t, @) = Ul =0,
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where U(t, U,) is the solution of (10) with U(0, U) = U,,.
3. The bifurcated solution U* can be expressed as

Ut = LB DE €, + 0B

C
T
o’ +oVo -4
& = <Dpkz I 2
c’+o\Vo2—4
C= <Dpk2 e (Dpy, +1)-

[y, 4 2 202V [y
|(Dp, + 22— (02 4 Vo2 =4 - 2)| [ €
) P Q "k,

Proof We apply Theorem 2.3.2 in [1] to prove this theorem. Let @ be the center
manifold function of (10) at A = 4,. We need to simplify the following expression:

1
gy = ﬁ(c@(l’lz + ®()), (PZ_:% (20)
k> Pk,

where y € R!, G is the operator defined by (9), (p;(r is the eigenvector corresponding
2

to ﬁljz(/lz) =0, and (p;:* is the conjugate eigenvector, which is the eigenvector of

adjoint equation for Eq“.(l 1). And the adjoint equation are given by

AN w4 ut =20 = put,

., o*+oVer—-4 ., o*+o0Vor-4-2, y e
D A\ Vv — v+ .

) > uw = pv
By (13)
MEE = pres, MIEE = prees, o)
op =&, wi=ETe,
o240\ o2—4-2 +
B [ 10 B 23)
2
—2  -Dp, - Tyt Sin

-2 1 -2 +x
o—2+§ pl;ZZ——:—z 2+o\o2—4 éljfi =0 (24)
— > “Do,-—7— ékzz

By definition of 4, and k,, we infer from (23) and (24) that
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2 2
o toVer-4 1 (25)

— T _
&= G = Dp + T

2

T
6’ +oVo2—4 ¢*+o 62—4—2> 26)
2 9 b

* * s\T __
g/:; _(/;21’52;2) _(Dpk2+
By ®(y) = o(| y |), the function g(y) in (20) is rewritten as

§0) = e

><G(y<pk+2), ?07) +00?).
ky? Tk,

By (22)and (25) we see that

2 T4
GOop) = <y2(—2(0 + \/m)(ppkz " ﬂ)

2
- 24 2 Vol -4
+U c Dk+6 +oVvo )z)ei +0(y2 ’
2 2 2
2 Vo2 —4
_yz(—Z(U + Vo2 - 4)(Dpk2 + H%)
T
c—Vol—-4 o’ +o\Vo2—4
+f-<Dpkz+f>2)ezz+o<y2> :

Thus, we deduce from (22) and (25), (26) that

0'2+o'\/o'2—4>2

+ R\
<§0k2a (pkz ) - <Dpk2 + 2

—<0'2+U\/62—4—2>]/€i7dx,
ok

. o’+o\Vo2—4
(G9! o) =y Dpy, + ————— |Dpy, + 1)
ky ky 2 2

2
— 2 _ 2 2 _
il L] () PR A K ntute ) NG VP SV S
2 2 2
/Qezzdx+0(y2).

Therefore the function (20) is given by

g = Cy* + 0(?).
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Where
C= (Dp,<2 + w>(D% + 1)
[PT\/E(D% + ﬂoTM) - 20 —2Vo? —4] fge3 dx
[(Dpk2 + @)2 <52 +oVo2—4 ] fﬂe dx
and the theorem follows from Theorem 2.3.2 [1], The proof is completed. a

Remark 1 If /Q ei dx # 0, then the local topological structure of the transitions of
(10) is schematically shown in the center manifold in Fig. 1.

Now, we consider the case where (19) is not true, i.e.,

/ eizdx =0. (27)
Q

We introduce the following parameter

1
(Dpy, + "2+"— Voldy _ (62 + 0Vo? — 2)

(Dpk2 + D[(c + Vo2 - 4)((Dpk2 + HO-— ~0'2—4> / erizdx
Q

2

+ (Dpkq(a — Vo2 —4)—2V/2 —4) / wleédx
. Q
2
2 2_4
_2<Dpk2+6+6— fo) [
Q

b, =

2

where v = (v, y,) satisfies

|«
<
>
| e
<
ull
=)
————
S
<
1}
<)
| <
<
>

1<a, A=1; A> Ay

Fig. 1 Topological structure of mixing transition of (10), when fQ ezq dx#0
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AN +yy + o+ 6\/32—__ 2y, + [(Dpy, + o tover—4 Gz/m)z-
%‘/m —2(c + Vo2 — H)(Dpy, + @)]eiz —0

) (29)
DAw, - @V& — 2y, — [(Dpy, + %)2-
%\/m ~ 2o + Vo2 - 4)(Dp, + "z”fmne,@ =0

By the Fredholm Alternative Theorem, under the condition (27), the Equ. (29) has a
unique solution.
Then, under the condition (27), we have the second dynamic transition theorem.

Theorem 5 Let (27) hold true, A, < A, and b, is the number given by (28). Then the
transition of (10) at A = A, is continuous if by < 0, and is jump if b, > 0. Moreover,
the following assertion hold true:

1. Ifb, > 0, (10) has no bifurcation on A > A,, and has exact two bifurcated solu-
tions Ui andU” on A < A, which are saddles. Moreover, the stable manifolds of
the two bifurcated solutions divide the space H into three disjoint open sets U%,

U(’)l, U?, such thatU =0 € U(’} is an attractor, and the orbits of (10) in Ui are far
fromU = 0.

2. Ifb, <0, (10) has no bifurcation on A < 4,, and has exact two bifurcated solu-
tions Ujl and U* on A > A,, which are attractors. In addition, there is a neigh-
bourhood O C H of U = 0, such that the stable manifold of U = 0 divides O two
disjoint open sets ﬁi and 0* such that Ui C ﬁi, U* c 0*, and Ui attracts ﬁi.

3. The bifurcated solution U i can be expressed as

UL = C(BL ()& ey, + 0B (A,

T
2 2_4
o = <D,,k2+0+6— Voot _2> |

1

_(_1 AR

C= <—b—l-/gek2dx> .
where b, as in (28).

Proof We use Theorem 2.3.1 [1] to prove this theorem. To get the function g(y),
we need to calculate the center manifold function ®(y). By Theorem Al.1 [1], ®(y)
satisfies
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L, ®= —P2G(y(p;r2), (30)

where P, : H — E, is the canonical projection, L, is as in (9), (p:2 and go,:;* are given
by (22), and

E,={U€eH|(Ug)=0}. €2y

We see that

o’ +0Vor—-4

GOe;) = ((=2(c + Vo2 = H(Dpy, + > )

c—Vo2-4 o+ o0\o? -

40, 2 2
+ — (Dpy, + ) e +o0(7),
o’ +o\o2—4

-V (-2(c + Vo2 - 4)(Dpy, + f)

c—Vol-4 o’ +o\o2-4 T
+ — Dpy, + f)z)eé +007)

Let
Q=yy +00%)., w=.y)EH. (32)

By (27) and (31), (eiz, —eiz) € H. Hence. it follows from (30) and (32) that

c—Vo2—-4 o’ +0\or—4

Ly =-—7 - (Dpy, + > )’ .
—2(c + Vo2 — D) (Dp,, + @)]w;, —e2 ).
Which is an equivalent form of (29). By (32), we have
GO, +®) = GOl +y'w)+00)
= (’[(c® + 6 Vo2 — 4)(Dp,, + m“f\/"z—_‘%w — 2e, y))

o’+o\o2—4
+(c*-o6Vo2 - 4)(Dpy, + f)ekﬂ/l] +007) +0(y*),
o’ +o\o?-4
=¥l@* + 0 Vo = H((Dpy, + ————)er, v — 26,y

o’ +o\Vo2 -4
+ (62 —oVo? - 4)(Dpk2 + f)ekzwl] + 00’2) + 0(}’3))T
(34)
Hence, we deduce from (22), (25) and (34) that
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A<, A> 2,

Fig.2 Topological structure of continous transition of (10), when », > 0 and fQ ezzdx =0

A> 2, A<y

Fig. 3 Topological structure of continous transition of (10), when »; < 0 and fg ezzdx =0

(GO, +®).0f)) =y (Do, + DI + Vo - 4)(1),;k2 +

62+6\/a2—4>

2

2
2 4 ov/o2 — 4
/ y/zei7dx + (Dpk2 (6 —Vo2-4)-2Vo2 - 4)/ y/leizdx - 2<Dpk2 A A Kl / ezzdx] +0().
Q 2 Q Q

2
(35)
Thus, the function g(y) in (20) can be written as
b
g0) = —5—y +0("),
fg ekzdx
where b, is as in (28). Hence the theorem follows from Theorem 2.3.1 in [1]. O

Remark 2 1f fg ez dx = 0, then the local topological structure of the transition of
2
(10) is schematically shown in the center manifold in Fig 2 and 3.
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n
Remark 3 When the domain Q is a rectangle, i.e. Q = I1(0, L,), the b, in (28) for the
=

Neumann condition can be explicitly expressed in terms of the parameters D, ¢ and
L,
For example, we consider the case where Q = (0,L). The eigenvalues p, and
eigenvectors ¢, of (12) are given by
(k—1)>z? (k— Dz

=——  ¢€,=cos x, k=1,2,3,---.
Py 12 k 2

It is clear that k, > 2, and (27) hold true. We see that

k, — 1 2k, — 1
ei = cosz¥x = %(1 + cos#) = %(el + ey,1)-
Hence, by (29), we have
v ={e; +ne;, with j=2k, — 1. (36)

where
o’+o\o2—4-2 B
1 2 S\_(2
_n _ ZroVe4 |\ &) 123
2
24 24— B
—Aapop,-1 + 1 B — <'Il> _ <_BE>
o240V o2—4 =l
-2 —Dpy,—y — “’T Ub) 2

2 2_4 — 2_4
B= (D,,k2+ff+ff— V"><D%L_2 62_4_(,).

2

It is readily to see that

B
§1= s
62+0Vo2—4-4
-B
§2= s
62+0Vo2—4—-4
Vo4
B Dpzkz_] +D’+626 1
’1] == - )
4 o D'\/(T
o2 +oVo? =4~ (1= Ay, (Dp2k2—l+ +2 4)
1+ Ay, -1
=

2<(;2 +0Vo? —4) = (1 = dypoy,_)(2Dpy, _, + TeVE “’2‘4>

Inserting (52) and &, &,, 1;, #, into (28), we can get the explicit expression of b,.
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3.2 Transition from Complex Eigenvalues

As A, < 4,, the transition of (10) occurs at A = 4, and the system bifurcates to a
periodic solution.
In this case,
1 62 +o0Vo2—-4 1 62 +o0Vo?2—4
1-Dpy— — 1—Dpk]—— ,

Ay = min —
Pr Py 2 2

Pi,

Then we define the following parameter b, as in (49). Here M, is the matrix defined
by

o’+o\o2-4-2 1

2
62401/ o2— (37)
-2 - Dp,, — g toVor—4

and we have the following theorem

Theorem 6 Let b, be the number given by (49) and A; < A,. For the problem (10),
the following assertions hold true

1. The problem undergoes a dynamic transition at A = A, which is the Hopf bifurca-
tion.

2. When b, < 0, the transition bifurcates to a stable periodic solution on A > A, and
when b, > 0, transition bifurcates to an unstable periodic solution on A < A,.

3. The bifurcated periodic solution U* = (U?, U;) can be expressed as

1 1
Ul = \/E(_bll)z sin(ayt + %)ekl +o(ly ),

Uﬂ _ 2 2 D 2 Y \i 0 %
4 = /2(a2 + (Dpy, +¢) (_b_1)2 cos(agt + O)e;, +o(l v 12),

ay+Dp;. +e
where § = arctan ——.
ay—Dp;, —€

Proof By (13) the eigenvalues and eigenvectors of (11) with (7) or (8) at

A= j (1 —Dp;, — AUT VoP—4 ) are determined by the matrices M, given by (37). It
1

is clear that M, has a pair of imaginary eigenvalues
BE () = iy,
o2+0\o2—4
— 2
o2+c\o2—4
2

1
where  a, = [/le]%1 + Ap,, — Doy, + 3. It is clear that

ay = 2(e = 1) = (Dp, +€)*, where € = .Let &,7 € R? be the eigenvectors

of M, satisfying
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Mklg = aog, Mklﬁ = _aoﬁ.

Then, by (13) the eigenvectors of (11) corresponding toﬁ]:—r (4, ) are given by & = Eek ,
1 1
andy = ﬁekl . It is readily to check that

¢=(61,6) = (e~ Lay—Dp, =€)y, (38)

n=m,n)=(E—-1,—(a)+ DPkl + 5))ek,- (39)
We consider the conjugate eigenvectors £* = 5_*ekl and * = 11_*53k1 with
M;:lé‘ =ay, Mklﬁ* = —aoé.
where M is the transpose of M, , Direct calculation shows that
1

& =(.8) =(a+Dp, +e.6 =Dy, (40)

n* = (’1?,11;) = (—0(0+Dpk1 +e,6— l)ekl. 1)
It is easy to see that
(.n")=(n.&") =0,

€)=ty =2age =) [ & an )

Let U = x¢ + yn + ®(x,y) € H be a solution of (6) at A = 4;, and ® be the center
manifold function. By (42), the reduced Equ. (6) read

% = —ayy + @(G(ﬂ: +yn + ®(x. ). &),
| (43)
% = apx + ﬁ(G(x& +yn + @(x, ), 1),
where the operator G is given by
G(u) = Gy(u) + G5(u), (44)

G (k = 2,3)is a k-multilinear operator defined by
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G,(U,V) = (2—u1v2+gulvl,—2—£ulv2—zulvl),
o £ o €

G3(U, V, W) = (u1V1W2’ _MIVIWZ)’ (45)
G2(U) = Gz(Ua U),
G,(U) = G5(U, U, U).

Based on (38-42) and (44,45, 43) can be rewritten as

.
% = —ayy + azoxz + a02y2 +a;xy + a30x3 + a21x2y+
alzxyz + a03y2 + —(G,(£, @) + G,(D,¢),&")
(¢, 5 )
== (Gy(n, @) + Go(D, 1), ) + o + ),
<a§ cf )
1 dy (46)
bipxy? + byy? + ——(Gy(£. ®) + Go(®, &), ")
(n.m*)
+ 2 (Gy(1. D) + Gy @, ). ") + 0+,
L (n,n*)

where ay,,a,,,ay;. gz, Ay, 1o, a3 a0d by, , by, boy, b3, by, by, azy are given in
Appendix A

We are now in a position to derive the center manifold function ®. By Theorem
Al.1[1]

O =D, + D, + D, + 0o(x* +y%), (47)
Where
— L, @, = P,[G,(&,EX + (Gy(&,m) + Gy (n, E))xy + Gy, m)y*],
— (L, +4ap)L; @, = 20P[(G (&, 8) = Go(n. m)(* = %)
= 2(Gy(&, ) + Gy(n, ©)xyl,
(L3 +4a3)®3 = aP,[(Gy(&,m) + Gy, ) = x7) + 2(Gy (&, )
= G, (11, m)xy].

L, is as in (9), where P, : H — E, is the canonical projection, and
E,={ueH| (u E*Y = (u,n*) =0} is the complement of E, = span{é,#n} in H.
Note that qok , @, * are given by (22). Hence, we obtain from (38,39,44 and 47).
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= (e = DICE (@ = Dy, = &)+ Z(e = )2 + 2% (e = 1) = (D, + Dy

[, € edx
+(Z (5_1)‘_(D/’k +e+a))y’1x ) s ———— My <—ll> e
& Joer dx

®, = 8aj(e ~ D Za(y’ ~ )~ (o(1 - ;) - ;(Dpkl + &)yl

fgeilekdx “1 2 -1 ]
Xy M+ 4a) ™ () e

etk Ja €k

D, =2(e — D[(co(1 - %) - %g(D,okl +e)? —xH) + 4;?Eafoxy]
€, e dx
x Y Joci (0 +4a)” <_11> e

itk Ja k,
Direct calculation shows that

_ 1 Dp, +¢ e-—1
—M 1 = 1 s
=My det(—M,) < =2 A, -1
N S
afet(M2 +4a2)
(Dpy, +€)* —2(e — 1)+ 40> — (e = 1)(1 — Ayp;, — Dpy, — &)
2(1 = Aypy, — Dpy, — ©) (1—/11/;,{1)2—2(z3—1)+4o'2 ’

(M} +4a))™" =

Thus we have

@, = (e - 1)[(2(;_6(“0 —Dpy, — ) + g(e — )

+2(ZE-1)- 2—E(Dp,<l + €))xy
& (o2
2 E
+&e-1- f(Dpkl +e+ap)?] <F1> ,
@, = Bag(e - D= “00’ -3 = (o(1 - —) - —(Dpk + €))xy] <I€2> ,
@, = 2(e = Di(o(1 = 1) = 2Dp,, + )07 =)+ L <§§> ,

where

@ Springer



Journal of Nonlinear Mathematical Physics

E =2 Jodad
N - (Dpy + Dey,
1 k2, Jo ei] dx - det(—M,) k k
2
/Q e, exdx
F]=— ! '(Alpk"'l)ek,
k;kI Jo eil dx - det(—M,)
2
/Q , exdx
b= - [(Dp; + €)A, + (¢ — 1)B,]e,,
k;/;] o "i] dx - det(—M,) - det(M} + 4a?)
2
/Q e, exdx
e l “[=24; + (419 — DBley,
2 k#zkl Ja ei]dx - det(—=M,) - det(M7 + 4a3) k 1Pk ey
2
/Q , exdx
E; = Ay,
k;k, Jo € dx - det(M; + 4ag)
2
/Q e, exdx
l Bey,

F; = .
k;kl fg ez]dx . det(le +4a§)
A =Dp, + e =2 —1D+46+ (-1 - Ape —Dpy =€),

By = =2p (A, + D) — (1 — Ay p)* — 4o°.

Inserting ® = @, + @, + ®; + o(x? + y?) into (46), we derive that

dx i\ ot
= —ay+ D @y + Y Gty o +y),
2<i+<3 k+r=3 (48)
d - ~
% = qux ++ Z byx'y + Z by + o( +y%),
2<i+j<3 k+r=3

Where a; and b;(0 < i,j < 3) are as in (46), and 4y are as in Appendix B.
Then we give the number
r

2a,

T

b, = (agobgy — azobyp) + (ayayy + ayyagy — by1byy — by1byy)

4
o (49)

3 ~ ~ T ~ ~
+ T(%O + bsyg + a3y + byg) + Z(alz + by +ay, + byy),

Thus, Assertions (1) and (2) of this theorem follow from Theorem 2.3.7 [1] It is
known that the bifurcated periodic solution near 4 = 4, takes form

U* = x(0& + y0n + o(|x] + IyD), (50)

where &, 5 are as in (38) and (39), and x(#), y(#) are the solutions of the following
equation
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d

jf =1 =+ o 51, é) ———(GQ@E, +yn, + D, (5, ))), ),
d

2y (Wx + agx + ——(GE, + v, + O, ), 1),
dt < M1 ,{>

where &, n, are eigenvectors of L, corresponding to the complex eigenvalues ﬂ,:—;(/l),
and é‘j{, r/j the conjugate eigenvectors. The solution (x(#), y(f)) near 4, is of the form

X(1) = (=1)7 cosagt +o(l v [2),
1

Y.L 1 (51
y@® = (—b—)z sinayt +o(| v |2),
1

where b, is as in (49). Therefore, assertion (3) holds true from (50), (51). The proof
is completed. O

4 Conclusions and examples

In this work, we study the dynamical transition for a activator-substrate system from the
perspective of dynamic transition recently developed by Ma and Wang. By using the
Principle of Exchange of Stabilities condition for activator-substrate system, we note
that the system is in a static state in space patterns for A < min{4,, 4,}, where 4, and
A, are determined by parameters (¢, d) € R? and A = d is the diffusion constant of the
activator. However, when A > min{4,, 4, }, i.e., the diffusion constants are greater than
the specified value, the stability is broken. Then we have the following characteristics:
First, when 4, > /12, it was demonstrated that chaotic coexistence bifurcates from
the periodic when [, e? e, dx # 0. If Jo 13( dx = 0, we show that the permanent coexist-

ence was existed for activator-substrate system.
Second, when 4, < A,, the first eigenvalues are complex, and we show that the sys-
tem undergoes a dynamic transition, which is Hopf bifurcation.

Remark 4 When the domain Q is a rectangle, i.e. Q = I1(0,L;), the b, in Theo-
=1

rem 3.2 for the Neumann condition can be explicitly éxpressed in terms of the
parameters D, o and L;.
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For example, we consider the case where Q = (0, L). The eigenvalues p, and eigen-
vectors ¢, of (12) are given by
(k- 1)%z?

(k- Drx
Px P §———

, €, =Co. x, k=1,2,3,---.

It is clear that k, > 2, and (27) hold true. We see that

ky, —1 2(ky — 1
2 = coszux = l(1 + COSM) = %(61 + e, -1)-

Ck L 2 L

Hence, by (29), we have
v = &e, +ne;, with j=2k, - 1. (52)

o240\ 02—4-2 B

1 2 &\ _ _BE
_n _ THoVoi-4 \2/52—4 & 3
24 5y/02—4-2

B
('11) — _BE
=2 = Dpy - TR AR

where

o’ +oVo?-4 c—\Vor—4
B = (Dp;, + > )(Dpy, > —-2Vo6?2 -4 -0).
It is readily to see that
B
S = >
62+oVo2—4-4
-B
&= >
62+o0Vo2—4-4
, Dpy s+ Z20i i
m=7 -4
4 o2+cy\ 02—
02+ 0Vo? =4 — (1 = ypy,_)Dpy,_y + 22
L+ 2200k,
m =

2(c2+o0Ver—-4)—(1 - A2Pok,-1)(2Dpy, 1 + M)

Inserting (52) and &, &,, 1;, #, into (28), we can get the explicit expression of b,.
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Appendix A
3
(Gy&.8,6%)  Jacyd 2
= = Dpy, + (= (apg - D
@0 (&,8%) 2a fg ezldx(ao * Doy, + 1 4 @ Pi)
— 2_52 +o(1 - l))
(o2 £
3

(Gaem) + Gy, 6, &%) Jaoi & L 2

= &) YA elildx(% * Doy + Dol = 2) = 2Dy, + ).

L _(Game) G ®
CTEE) 2 fyedx

(a9 + Dpy, + o1 = 5)

2¢e
- ;(0‘0 + Dpy, +€)),

4
(G5&.88,6%)  Jag
03 = (€, &%) - 209 [q :’1%1 dx(% + Dy, + D = Diag = Dpy, =),

(G3E.6m) + Gy, &) + Gy(n.6,6,6%)  Jaihydx
2= (&) YA eildx("o +Dpy, + 1)(e = D(ag = 3Dpy, = 3),

_ (G3(&,1n,m) + G3(n,n, &) + G3(11, &, 1), §%) Ja ‘321 dx

a * = (ag + Dpy, + 1)(€ — 1)(—ay — 3Dp;, — 3¢),
12 (&, &%) Z“O/Qeildx 0 . 0 1
4
(Gytnonm.&®y  ~Jaddr
- = +Dpy, + 1)(e = D(ag + Dpy, +e),
a3 ) 200 /o efldx(ao i, + V(e = D(ag + Dpy, +€)
3
(Ga&.&1n) _ Jach 2
= = Dpy, — D (ay — Dp,. —
(n,n*) 2a4 [, eildx( i, — % + 1( . (ag = Dpy, — &)
ol =),
3
_(Gaem + GOy _ Jae L.
by = () = % fQ ez]aix(Dpk' —ay+ D(o(1 - ;) — ;(ZDPkl +€)),
3
(Gyn.m.n) Jo €, o .
= Dpp —ag+ D(e(1 = =
” () 2a4 fy eil dx( Py = @ + Dlol =2
- %(“0 +Dpy, +€),
4
(Gyeeo) o ®
by = - = D _ 1 1 _D —e)
STy fyetar P 0 e e =D =0
b = (G Em +G3(&n. &) + G3(n1.6.). ")
" (n.n*)
/g Ezldx ® \ e i " .
=k —u e D — 3o,
20 /Q ei] dx Pk, 0 0 Pk,
4
(G3&n.m) + G3(1.1, &) + G3(n. &, ), ) /Qek]dx
by, = " = (Dpy, — ay + 1)(e — 1)(—ag — 3Dpy, — 3e),
1 (n,n*) 2a /Q ei]dx 1 )
Gynnm.n®)  ~Jad®
g = (G3(n.mm)n*) e, (Dpy, — @y + 1)(e = Dlag + Dpy, +e€).

(n.m*) 2ay [, ezldx
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Appendix B

ay+ Dp;, +

Uy = e—1 F.e? dx
0" ofge dx [a( )2811/9 T

3
c & 2
+(Z(e =D+ =(ay = Dpy, = 1) Zg” /QE,-ekldx],

ayg+Dp, +1
i[_(\g—nzgﬁ/mk dx+
Ofgek dx ©

3
c £ 2
(Ze =D+ =(a = Dpy = 1) Y 8 /QEiekldx

i=1
+ (5—1)2 g / Fie} de+

i=1

ap =

3

< (5—1)+—(a0 Dp, —1))2&2/@82‘1’“]
Q

i=1

~ a+Dp, +1 4 3 3 2
by = W[(;(£ -1 - ;(ao +Dpk] +¢€)) ZgiS /QEiekldx

i=1
+ (e—l)ZgB/Fieildx],
Q

i=1
~ aO +Dp;, +

aO/Q 2 dx

+ (£—1)Zg,1/Fieildx
Q

i=1

[(e(e l)——(a0+Dpk +e))2g,l/QE,.e§]dx

3

& (o2 2
+ (;(& -+ ;((xo - Dp;, — €)) Z giz/QEiekldx

i=1
+ (s—l)zg,z/Fie,ildx].
Q

i=1
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